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Abstract

This paper seeks to investigate and remedy the apparent inability of Markov

regime switching models to predict future states in the medium to long term. We

show that projected time varying transition probability series in the model may be

biased towards predicting regime switches with high probability in the short run,

and as a consequence it is hard or impossible to obtain longer run inference. Also,

we show that ordinary likelihood ratio tests of the transition equation variables yield

significant results too often in limited samples. We propose a penalized maximum

likelihood estimator where non-smoothness in the transition series has negative in-

fluence on the likelihood function. This remedies both the short run bias and the

spuriousity. In an empirical investigation of U.S. real GDP, the penalized model

works better in terms of matching the NBER business cycles as well as for forecast-

ing the probability of contractionary states for horizons longer than 4 quarters.
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Introduction

Few non-linear time series models have attained the same level of popularity as the

the Markov regime switching model of Hamilton (1989) . The division of economic

variables into different states, such as contraction and expansions phases of GDP,

enjoys a intuitive advantage over more continuos models. A very large part of con-

temporary research focuses on improving the Hamilton model by including various

extensions from other parts of the time-series literature in order to match the mo-

ments in the data.

A less probed but equally important area emphasizes the other novel invention

following the Hamilton model: the determination of states. We may very well match

moments of the model perfectly but if we assume an incorrect or non-optimal struc-

ture to determine the probability of states, the performance of the model will suffer.

In the plain vanilla Hamilton model, the transition between states is governed by a

constant probability. This assumption is rarely questioned, although intuitively we

accept that the probability that a bull-market continues is higher after only a few

months of rising stock prices than when the bull-market has persisted for a longer

period of time. To reflect this in the model, one may let the transition probability

be time varying. The first published paper to recognize this possibility is Diebold,

Lee and Weinbach (1994).

A number of papers have applied the Diebold et al. methodology: Gray (1996)

for interest rates, Tronzanon, Psaradakis and Sola (2003) for target zones and Abiad

(2003) in the currency crisis context. Results have been mixed, and it seems that

one of the main reasons for the relatively infrequent use of this approach is the

difficulty to obtain sensible parameter estimates. The problems are exacerbated in

the multivariate transition equation setting. Statistical inference in this environ-

ment can be very difficult, since the model in essence tries to estimate a model with

two unobserved variables. As always in the Markov regime switching (henceforth

denoted MS) model, we try to estimate the unobserved state variable. Moreover,

we seek the relation between exogenous variables and the dependent variable in the

transition equation which also is unobserved.

This paper seeks to establish that the maximum likelihood estimator will be

biased toward finding a parameterization of the model that leads to a projected

transition probability series with very abrupt shifts. In general, a parameterization

that produces a high probability to switch regimes a short time interval prior to

an observed shift will be preferred to a parameterization with a lower probability

to switch but during a longer time period, irrespective of the true data generating

process.

Although the bias reflects an optimal moment-matching, the use of the model

becomes deeply restricted due to this bias. For policy purposes, parameter values

may be of lesser importance than the ability to obtain early warnings of an upcoming

switch. The exact size of the contraction/expansions trends in a model of GDP are

relatively unimportant to a policy maker who intends to take measures that only

have lagged effects. The average time before an interest rate change gives effect
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is estimated to be around 12-24 months. For a central banker, early warnings of

the type ””with a 50% probability, GDP growth will enter the” ”contraction phase

within the next 18 months”” will be preferred to a statement of the type ””with

95% probability, we will enter the contraction phase next month.””

We provide a possible solution to the short run bias problem by introducing a

penalty term in the log likelihood function. It penalizes non-smooth behavior of the

transition probabilities series with a weight chosen by the researcher. In that sense,

it is an ad hoc approach, but our results indicate that this addition remedies a num-

ber of problems inherent in the standard estimation procedure. For example, using

non-stationary variables in the transition equation introduces spurious significance

of these variables. Although the effect is not as severe as in the traditional spurious

regression setting, it is too large to be ignored. Using a penalty, it is possible to

reduce the spuriousity to nominal levels.

In an empirical excercise, we investigate U.S. real GDP in a regime switching set-

ting. The penalized maximum likelihood method finds a different and much smaller

set of variables to include in the final model than the ordinary maximum likelihood

does. When forecasting the NBER recessions, the penalized model exhibits better

performance than the benchmark models for horizons exceeding 4 quarters, both

in- and out-of-sample.

In section 2, we introduce the baseline model and the maximum likelihood esti-

mation procedure. Thereafter we discuss MS models with time varying transition

probabilities (TVP) as a proxy for the threshold models. Section 4 is dedicated to

a formal proof in a very simple model that the maximum likelihood estimator will

select a short-run variable prior to a longer run one, irrespectively of the data gen-

erating process (DGP). In section 5, simulation evidence corroborates these results

in the stochastic setting. We propose a remedy to the short run bias as well, and

analyze the effects of using a penalty term in various settings using Monte Carlo

analysis. We apply the proposed method on actual data in section 6. Section 7

concludes.

Model and Estimation Procedure

We base the discussion on a simple form of the Hamilton (1989) Markov regime

switching model. The baseline model with constant transition probabilities:

∆yt = µSt
+ ǫt (1)

where St is a state variable that follows a first order Markov chain with transition

probability matrix:

P =

[

p11 p12

p21 p22

]

(2)

where, in turn, pij denotes the probability to go from state i to state j. The iterative

procedure to estimate this kind of model is presented in Hamilton (1994).
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The number of extensions made to this simple model, and the combinations

thereof, can be counted in the hundreds. Most of these seek to engineer to model in

a way as to have a better fit to the data, modifying the elements of equation 1, e.g.

by introducing exogenous variables, auto-regressive parameters and ARCH effects.

A smaller number of studies, e.g. Diebold, Lee and Weinbach (1994) , have focused

on modelling the probability to switch to other regimes, as in equation 2, noting

that P by no means have to be constant. In the general 2 state case:

Pt (Zt) =

[

h
(
Z1

t

)
1 − h

(
Z1

t

)

1 − g
(
Z2

t

)
g

(
Z2

t

)

]

(3)

where f, g ∈ [0, 1].1 This will be referred to the time-varying transition probability

(TVP) model. The functional form of f, g is usually chosen to be of probit of logit

type. We will assume the logit style functional form for both h, g such that:

h (x) = g (x) =
exp (x)

1 + exp (x)
= f(x) (4)

In order to estimate the Hamilton Markov regime switching model we iterate on

the equations:

ξ
t|t =

ξ
t|t−1

⊙ η
t

1′
(

ξ
t|t−1

⊙ η
t

) (5)

and

ξ
t|t−1

= P′ · ξ
t−1|t−1

(6)

where ηt is a (NxT ) matrix of each N states conditional density based on the

parameter vector θ. For the 2 state case:

ηt =





1√
2πσ1

exp
{−(yt−µ1)2

2σ2

1

}

1√
2πσ2

exp
{−(yt−µ2)2

2σ2

2

}



 (7)

The log likelihood to be maximized is given by:

L(θ) =
T∑

t=1

log 1′
(

ξt|t−1 ⊙ η
t

)

(8)

A number of other estimation methods are available, see e.g. Filardo and Gordon

(1998) for a Gibbs sampling approach in the time varying transition probability

context.

1A discussion of the case where the number of states exceeds 2 is saved for later.
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Bounded Regime Switching Processes

To be able to conduct simulation excercises, we now introduce a regime switching

parameterization where the projected time-series is only dependent upon the pa-

rameter vector and a single vector of random disturbances.

The process will be based on the previously considered model in equation 1:

∆yt = µSt
+ ǫt ⇒ yt = yt−1 + µSt

+ ǫt (9)

The long run drift of yt can be calculated using the ergodic (unconditional) proba-

bilities:

P (St = j) = π =

[

(1 − p22)/(2 − p11 − p22)

(1 − p11)/(2 − p11 − p22)

]

(10)

which can be obtained by solving the eigenvalue problem |P− λI2| = 0. Explicitly,

the long drift in the N state model becomes

µ =
N∑

j=1

P (St = j) · µj

Using the long term drift, it easy to see that in the long-run, this process will

mimic a random walk with drift. For many purposes, however, it seems unreasonable

that a variable - in the long run - should follow such a process. Examples could

be trade balance, debt-to-GDP ratios and real exchange rates. It is likely to be

some reversion back to some, yet undefined, mean once we reach a level that is

much higher or lower than the posited mean. Assume that µ2 = −µ1 and µ1 ≥ 0.

Moreover, assume that there is a bound a ≥ 0 so that P
(
St+1 = 2

∣
∣ yt ≥ a) =

1 and P
(
St+1 = 1

∣
∣ yt ≤ a) = 1. In words, if the level process yt exceeds/goes

below a/−a, we automatically switch back to a state that reverts the process in the

other direction. This is analogously to a Threshold Auto-Regressive (TAR) model.

Another way to express this is that the boundary model in effect has time varying

transition probabilities. The two transition matrices are:

Pt =







[

0 1

1 0

]

if ‖yt‖ > a
[

p11 p12

p21 p22

]

if ‖yt‖ ≤ a

(11)

The long run mean y of the bounded process can be calculated but most note-

worthy here is the fact that the process yt will never be ’far’ away from its long-run

mean, which makes an argument for the variable to posses a form of stationarity.

For this purpose, we establish the following definition of global stationarity :

1. There exists a long-run mean to which the the series returns

2. The long-run variance is time-invariant and finite.

3. The long-run theoretical auto-correlation diminishes when lag-length increases.
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An even more flexible, and foremost sensible,2 version of the bounded model is

where the probability to go to the reversion state is dependent upon the distance

the process is from its long run mean. Hence, we would posit, with ‖ · ‖ denoting

an appropriate metric, that P
(
St+1 = j|St = i; ‖yt − yt‖

)
is large when ‖yt −yt‖ is.

We can translate this to the more general form of the transition matrix in equation

3:

Pt (β; ‖yt − yt‖) =

[

f (β1 · ‖yt − yt‖) 1 − f (β1 · ‖yt − yt‖)

1 − f (β2 · ‖yt − yt‖) f (β2 · ‖yt − yt‖)

]

(12)

By setting β1 6= β2, the boundaries are allowed to be asymmetric. Once the pro-

cess yt goes ’far’ off from the long run mean, the probability that we will switch

to the state where we revert back increases. In the limit, this switch will happen

with probability 1. Hence, the same argument for global stationarity as in the fixed

threshold setting applies. We also note that the process does not have to have both

an upper and lower bound in order to be globally stationary. If the long run drift

term is positive/negative, the process will be globally stationary if there is an up-

per/lower bound.

Using the baseline model (1) with the associated transition matrix in (12), we

see that we have a process that is (1) globally stationary and (2) only a function

of the parameter vector θ ∈ {µ, β} and the vector of disturbances ǫ. Besides the

advantage of being parsimonious, this model possesses the quality of being well-

suited for simulation excercises, since the sources of variation in the artificial data

are reduced to a minimum.

The Short Run Paradox

Now we will consider a simple case of the TVP model which brings about a paradox

with serious economic implications. Consider the growth of the debt-to-GDP ratio.

We assume that there are two states: the first where debt is growing, and a second

where debt is decreasing. Economic theory suggest that there is an upper bound

to how much debt in relation to income can grow, since rational lenders will not

supply more credit once debt-to-GDP reaches an ’unsustainable’ level. The point

in time where credit dries up due to unsustainability will be depicted as a regime

switch, where the ratio cannot rise anymore,3 but switches to the decreasing state

as the government is forced by creditors to impose policies to this end. There will

be some heterogeneity in opinion of what is a sustainable level; hence the timing of

the switch is not predictable, although the probability to switch is. One motivation

for the sudden shift is that there seems to be herding effects. Once a large investor

2The discrete boundaries previously considered cannot be estimated with gradient based optimization

algorithms. As in the TAR case, one usually would resort to grid-based estimation procedures.

3Of course, GDP can decrease with the effect of the ratio rising, but this is not likely to happen for

extended periods of time. We will not consider that case here.
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stops buying a certain country’s debt, other investors tend to follow to avoid a

liquidity squeeze.

To estimate such a model on empirical data, we would use the set-up (state 1

corresponds to the rising debt state):

∆yt = µSt
+ ǫt (13)

with

Pt

(
θ; yt−1

)
=

[

f
(
α1 + β1 · yt−1

)
1 − f

(
α1 + β1 · yt−1

)

p21 p22

]

where ∆yt is the growth of the debt-to-GDP ratio. In this case, it seems unlikely

that there is a long-run drift of the dependent variably, so µ in equation (12) is set

to zero.

In empirical work, however, we do not have the luxury of knowing exactly what

variables to include in the transition equations, but have to discriminate between a

number of possible candidates. Besides using the dependent variable itself, let us

assume we also observe a binary variable called xt that takes on the value 1 one

unit of time prior to the crisis and is zero otherwise. Hence, we estimate the model

with the transition matrix:

Pt

(
θ; yt−1

)
=

[

f
(
α1 + β1 · yt−1 + β2 · xt−1

)
1 − f

(
α1 + β1 · yt−1 + β2 · xt−1

)

p21 p22

]

In this model, we will find that β2 is very significant and β1 insignificant, even if

the data is generated using the model the model in (13)! The reason for this will

be shown below. At this stage, we want to note that for policy purposes, a model

that gives us as much advance warning of an oncoming debt crisis as possible will

preferred to one that gives us very little time to react. But paradoxically the best

econometric fit is obtained with a model that is more or less worthless for polic

purposes since it only gives advance warning in the period prior to the crisis.

To see why we by traditional econometric criteria will select the variable with the

short duration prior to the shift, we should observe the likelihood function. Suppose

there occurs a regime shift at time T and that St = 1 for t = 1, 2, ..., T −2, T −1. We

have two binary possible candidates: xA that produces a low probability (1−π1) =

1 − f(xA) to switch to regime 2 from time T − j : T − 1, j > 1; and xB that

produces a very high probability (1−π2) = 1− f(xB) to switch at time T − 1 but a

0 probability otherwise, and (1 − π1) < (1 − π2) ⇒ π1 > π2. The corresponding

transition matrices are

(A)

PA
T−j:T−2 =

[

π1 1 − π1

p21 p22

]

⇒ PA
T−1 =

[

π1 1 − π1

p21 p22

]

and

(B)

PB
T−j:T−2 =

[

1 0

0 1

]

and PB
T−1 =

[

π2 1 − π2

p21 p22

]
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We furthermore assume that we are certain to have been in regime one for the

whole period prior to the switch so that ξt|t = [1 0]′ for t = 1, 2..., T − 2, T − 1.

Because of that, if we disregard the mean zero random part, we can simplify ηt in

(7) to

ηt = [a b]′

for t = 1...T − 1 and we also have that a > b > 0. For the time t = T...T + k, we

have

ηt = [b a]′

Just looking at the time T − 1 transition matrices, (B) gives us a better expla-

nation of the dependent variable than (A) since To verify this, we note that at time

T , the inner part of the likelihood functions is:

LT = 1′
(

ξT |T−1 ⊙ ηT

)

= 1′
(

P′
T−1ξT−1|T−1 ⊙ ηT

)

(14)

For the case (A) and (B) this reduces to: π1b + (1 − π1)a
︸ ︷︷ ︸

LA

T

and π2b + (1 − π2)a
︸ ︷︷ ︸

LB

T

.

Setting these equal and solving yields:

π1
︸︷︷︸

+

(b − a)
︸ ︷︷ ︸

−

= π2
︸︷︷︸

+

(b − a)
︸ ︷︷ ︸

−

so that

LA
T < LB

T

It is straightforward to verify that also LA
T−j:T−1 < LB

T−j:T−1. Hence, an ordi-

nary maximum likelihood estimator would prefer variable (B) to variable (A) in this

setting. So far, this is not controversial.

But what happens if we try to estimate a model where both xA, xB are in-

cluded in the transition equations? To do this we need to elaborate on the rela-

tion between the transition matrix and the functions producing it. Consider that

π1 = f(α1−β1x
A), so that a higher value of β1 means a higher probability to switch

regimes, and π2 = f(α2 −β2x
B). We assume that both x variables are positive. We

first note that a change of β1 has effects on two likelihood elements. The first is at

time T − 1:

∂LA
T−1

∂β1

=
−xA

T−1 exp
(

α1 − β1x
A
T−1

)

[

1 + exp
(

α1 − β1x
A
T−1

)]2 · (a − b) < 0 (15)

and
∂LB

T−1

∂β2

= 0 (16)

In essence, equation (15) means that if there is a probability for a regime switch

but none ocurrs, this affects the likelihood value negatively irrespectively of the

underlying transition probability process.
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The derivative of LB
T−1 has been calculated using the fact that xB

T−1 = 0. Looking

at time T derivatives instead we obtain:

∂LA
T

∂β1

=
−xA

T exp
(

α1 − β1x
A
T

)

[
1 + exp

(
α1 − β1x

A
T

)]2 · (b − a) > 0 (17)

and

∂LB
T

∂β2

=
−xB

T exp
(

α2 − β2x
B
T

)

[
1 + exp

(
α2 − β2x

B
T

)]2 · (b − a) > 0 (18)

Looking at the global likelihood, using equations (15)-(18), we obtain:

∂LA

∂β1

=
∂LA

T−1

∂β1

+
∂LA

T

∂β1

and
∂LB

∂β2

=
∂LB

T−1

∂β2

+
∂LB

T

∂β2

> 0

Note that for when using the variable xB the maximum likelihood will be found as

parameter β2 goes towards infinity, which is not the case for the xA.

Now we proceed to the situation where the transition equation consists of both

variables:

πt = f(α − β1x
A
t − β2x

B
t ) ≡ f(Θ)

What we will show is that the effect stemming from xB
T will act very much more

strongly than the effect of xA
T . First, we consider the derivatives of the likelihood

function:
∂L

∂β1

=
∂LT−1

∂β1

+
∂LT

∂β1

(19)

and
∂L

∂β2

=
∂LT−1

∂β2

+
∂LT

∂β2

= 0 +
∂LT

∂β2

> 0

Again, the effect of this will be a solution in which β2 → ∞ and a more ambiguous

solution for β1.

lim
β2→∞

∂L

∂β1

= lim
β2→∞

∂LT−1

∂β1

+ lim
β2→∞

∂LT

∂β1

(20)

where

lim
β2→∞

∂LT−1

∂β1

=
−xA

T−1 exp (Θ)

[1 + exp (Θ)]2
·(a − b) = −xA

T−1

1

[1 + exp (Θ)]
︸ ︷︷ ︸

→1

exp (Θ)

[1 + exp (Θ)]
︸ ︷︷ ︸

→0

· (a − b) = 0

and

lim
β2→∞

∂LT

∂β1

=
−xA

T exp (Θ)

[1 + exp (Θ)]2
· (b − a) = −xA

T

1

[1 + exp (Θ)]
︸ ︷︷ ︸

→1

exp (Θ)

[1 + exp (Θ)]
︸ ︷︷ ︸

→0

· (b − a) = 0
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Using these results, we see that (20) will converge towards zero. When maxi-

mizing the likelihood function, we will see the impact of the variable xA
t diminish as

the more and more weight is put on xB
t through the parameter β2. It follows that

the standard error of β1 will become very large.

To summarize, the above discussion has assumed that we have a variable that is

a perfect short-run predictor of future state switches. From this it has been shown

that any other variable, although better resembling the true data generating process

of transition probabilities, will be crowded out and deemed non-signficant in a joint

estimation.

Simulation Evidence

In this section, we will consider a case where the short run selection bias prevents

a more useful analysis of early warning indicators. Consider the following simple 2

state model:

∆yt = µSt
+ ǫS,t (21)

where µ < 0, µ1 > 0 > µ2, ǫt ∼ N(0, σ2
St

), σ2
1 = 0.5 and σ2

2 = 1. The transition

matrix is

Pt =

[

f(α1) 1 − f(α1)

1 − f(α2 + βyt−1) f(α2 + βyt−1)

]

In words, this process would have a negative drift were it not for the lower probability

boundary that reverts the process back into the positive mean state. In figure 1,

a simulated series with the parameters µ1 = 0.5, µ2 = −0.3, α = 5, β = 0.1 and

α1 = 3.4761 ⇔ p11 = 0.97 is plotted.

One note is appropriate here: we see that a pure threshold model would have a

hard time to capture the dynamics of the series, since regime switches occur at quite

different magnitudes of yt. The regime switching model can allow for this; although

the probability for the first regime switch is quite low, it can be incorporated into

the model.

To proceed, we have constructed a binary indicator variable xt that takes on the

value 1 the time period prior to a switch to state 1 and is 0 otherwise. We have

then estimated three different setups of transition equations of the model:

(i) f(α2 + β1yt−1)

(ii) f(α2 + β1yt−1 + β2xt−1)

(iii) f(α2 + β2xt−1)

It is apparent from table that the predicted effect of including the binary indi-

cator variable exists in the simulated data, even if the form of the long-run variable

is different than from the theoretical set-up. The addition, the difference in the

likelihood value between case (ii) and (iii) is virtually zero and the standard error

of the parameter β1 is very high.

The correlation coefficient has been computed as: ρ = Corr
[

∆f(Θ); ∆f(Θ̂)
]
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Figure 1: Simulated data. Solid line indicates the yt process (right scale); bars indicate the

positive mean reversion state and the dotted line indicates the true transition probability

process (left scale).

where ∆ denotes the first difference operator and ·̂ denotes empirical estimates. It

indicates that the model without the short run indicator has a high correlation with

the true process, whereas the other models - which should be preferred in terms of

statistical significance - has a much lower correlation. The importance of this effect

can be seen in figure 2 where the true and projected transition probabilities have

been plotted. As can be expected, the model including xt signals a 0 probability to

stay in state 1 one period prior to the actual shift but signals a stay probability of

1 otherwise. Model (i) shows a transition probability pattern similar to the DGP,

but is somewhat more extreme in its estimates.

These results indicate that one should simply exclude short-run variables from

the regression if one wants to have long-run inference. What is then needed is a

sense of how large the short-run bias of the parameter on the long-run variable is.

It seems probable that the bias will decrease as the sample size increases.

We should also consider a case where we want to see if another exogenous stochas-

tic variable has an effect on transition probabilities. Suppose we have another eco-

nomic aggregate zt such that

zi
t = zi

t−1 + ǫzi

t

where ǫzi

t ∼ N(0, 1). The null hypothesis of our test would be β3 = 0 when we

have replaced the lower row of Pt with
[
1 − f(α2 + β3z

1
t ) f(α2 + β3z

1
t )

]
. This

is a regression of a non-stationary variable on a bounded stationary series, since

transition probabilities are bounded between [0, 1]. We conduct a small Monte
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Model (i) (ii) (iii) CTP

Param. Value p Value p Value p Value p

µ1 0.5967 0.00 0.6040 0.00 0.6040 0.00 0.6009 0.00

µ2 -0.2255 0.00 -0.2273 0.00 -0.2273 0.00 -0.2260 0.00

σ1 1.1414 0.00 1.1373 0.00 1.1373 0.00 1.1418 0.00

σ2 0.4838 0.00 0.4846 0.00 0.4846 0.00 0.4833 0.00

α1 3.3733 0.00 3.4369 0.00 3.4369 0.00 3.2719 0.00

α2 21.3593 0.09 25 n.a. 14.6708 0.00 4.3380 0.00

β1 0.7064 0.13 0.4221 0.94

β2 -25 n.a. -25 n.a.

LogL -236.5861 -232.0960 -232.0961 -240.7682

ρ 0.6311 0.2335 0.2335 n.a.

Table 1: Parameter values when models (i), (ii) and (iii) are estimated on the simulated

data. The optimization procedure has been constrained to not allow parameters in the

transition equation to exceed 25 in absolute value. Correlation denotes the correlation

coefficient between the simulated TVP series and the empirically projected series.

ǫz z1
t z1

t , z
2
t

Mean Likelihood Ratio 1.2202 (1.80) 1.9853 (2.51) 3.9748 (3.36)

LR, 5th percentile 0.0803 0.1663 0.2267

LR, 10th percentile 0.1345 0.2545 0.3380

LR, 50th percentile 0.5341 0.6533 0.7440

ρ∆ 0.0001 (0.06) 0.0001 (0.07) 0.0001 (0.08)

Table 2: Effects of white noise/random walks as explanatory variables in the transition

equation. Standard errors in parentheses. 1000 series with 250 observations each have

been generated according to the parameterization in the text.

Carlo experiment to this end. The results are presented as case A in table 2.

We note that a larger share of the random walks turn out to be significant than

would be expected comparing to a χ2 distribution with 1 degree of freedom. The

corresponding random walks do not exhibit a correlation pattern different from the

rest of sample.4 We draw two conclusions from this: regressing a non-stationary

variable in the transition equation does not result in spurious regression results as

serious as in the standard case in the literature. But the likelihood ratio statistics

are still significant too often. We also note that the LR statistic is somewhat over-

sized even for the case where we regress the only the noise term in the transition

equation. Moreover, this over-rejection of the null is highly dependent upon the

sample size, as illustrated in table 3. Even for a relatively large sample, 500 obser-

vations, the empirical size of the likelihood ratio statistic is approximately twice the

4Results available upon request.
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Figure 2: Transition probabilities. Thin line marks the DGP transition probabilities, thick

black line marks the projection from model (i) and dotted line marks the projection from

model (iii). The projected transition probabilities from model (ii) are virtually identical

to those of model (iii).

Sample size

100 250 500 1000

Average p-value 0.2688 0.3470 0.3958 0.4855

5th percentile 0.2509 0.1784 0.1166 0.0565

10th percentile 0.3675 0.2686 0.1873 0.1007

Table 3: Spuriousity and sample size, case z1
t .

theoretical size.5

In order to check the effects of situations where we have two or more possi-

bly non-stationary series in the transition equation, we conduct yet another Monte

Carlo experiment where two random walks are included in the transition equation

so that the lower row of Pt is
[
1 − f(α2 + β3z

1
t + β4z

2
t ) f(α2 + β3z

1
t + β4z

2
t )

]
The

results in table 2, case z1
t , z

2
t (with the LR statistic distributed according to χ2

2) in-

dicate that the spuriousity increases as more and more non-stationary variables are

included. Using two random walks in the transition equation, we are going to obtain

jointly significant likelihood ratios in 23/34% of the cases when applying a 5/10%

5Not only the sample size itself but also the stability, i.e. the ””stay”” probabilities, should affect how

often we reject the true null. The effective sample size for the transition equation depends on the total

number of observed regime switches. The TVP equation effective sample size effect on the over-rejection

rate remain to be investigated.
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significance level. Again, the effective sample size - that is, the number of observed

regime switches - is likely to affect the degree of spurious results. Intuitively, in a

sample with few switches, it does not seem very hard to construct a linear combina-

tion of two or more non-stationary variables that happens to be high/low relative

to the sample mean in periods when switches occur. As is depicted in the bottom

row of table 2, these linear combination are going to have virtually zero correlation

with the true data generating process.

For empirical purposes, the spurious effects induce a difficult problem: even

though the process generating the transition probabilities is globally stationary, we

will not be able to regress other possibly globally stationary variables in the transi-

tion equation of the model. Inference obtained from such estimations, as measured

by the likelihood ratio statistic, is subject to very large positive size distortions.

It seems useful to relate this discussion of spurious regressions to the standard

case in the literature. There, one non-stationary variable is regressed on another

and the result is a spurious inference on their relation where none exists. Since

both variables are directly observable, regressing differences of the variables instead

is straightforward. In the transition probability case, the left-hand side variable is

non-observable, so we cannot take differences of it directly. Instead, we have to

proxy it by the inference we have on states in the empirical data. So, in order

to conduct a differencing operation in this set-up, one would regress the (differ-

enced) exogenous variables on the changes in regimes. Assume that we have a

globally stationary variable that decreases at a rate δ K periods prior to a regime

switch at time T in the dependent variable, and is a noise variable around a given

mean µ otherwise. The disturbance term is always ǫ ∼ (0, 1). When differenced,

the regression would amount to relating δ to the binary variable indicating regime

shifts. Hence, the differenced model can only measure a jump in the probability

which is equal for all t = (T − K), (T − K) + 1, ...., (T − 1), and we loose all the

information about that the longer we have observed a δ in the series, the more

likely we are to switch. Moreover, if the fluctuations in ǫ are large relative to δ, it

will be very hard to discern what observations are truly collected from the period

(T −K), (T −K) + 1, ...., (T − 1). Consequently, differencing all variables may lead

to a large loss of information which may not be tolerable if the effective sample size

is small.

Proposed Remedy

The previous investigation has shown that there is a bias towards selecting variables

that induce changes in the transition equation very close and abruptly to a regime

switch. We have argued that in empirical work, one may have the opposite objec-

tive. Also, including non-stationary variables in the transition equation results in an

inference problem similar to that of standard spurious regressions. In this section,

we will suggest a simple solution to remedy these problem. To do this, we require

the researcher’s prior about how important the long-run effects are in relation to

14



the short-run ones.

We begin with the cases considered initially, case (A) and (B). As we saw both

in the theoretical and empirical setting, the problem with case (B), was that max-

imization of the likelihood function led to a corner solution for β2. A natural way

to avoid this is to introduce a penalty in the likelihood function so that there exist

a finite solution for (18)= 0. The problem is to decide upon the magnitude and

functional form of the penalty. The simple approach suggested here uses a prior

about how the projected transition probability series should look. To begin with,

we assume that fundamental economic variables evolve slowly over time. Then,

if these fundamentals govern the probability to switch economic states, we would

expect the series of probabilities to correspondingly move slowly. In a graphical

depiction of the probabilities, a smooth series implies slow movements in the under-

lying variable one measures. For example, the Hodrick-Prescott filter decomposes

a time-series into a slowly moving, smooth trend component and a faster moving,

non-smooth cyclical component.

Hence, we proxy the prior of slowly moving fundamentals with a term in the like-

lihood function that penalizes non-smooth behavior. The penalized log likelihood

takes on the following form:

L(θ) =
T∑

t=1

{

log 1′
(

ξ
t|t−1

⊙ η
t

)

− eγ1′ [diag (Pt) − diag
(
Pt−1

)]2
}

(22)

where diag(·) denotes the principal diagonal operator and γ is the weight of the

prior given by the econometrician. The first drawback of this approach is obvious:

traditional likelihood ratio testing will not possible using the expression in (22) since

the penalty term will make it be lower than the the baseline model’s log likelihood.

However, since this change of the likelihood is always negative, a likelihood ratio

statistic based on it will be more conservative in the sense that it rejects too many

variables. If this is acceptable, which it often may be in empirical work, one may

just use the penalized likelihood instead of the standard one. One way to reduce

this drawback is to use the estimation results obtained from maximizing (22) and

evaluate the non-penalized likelihood function with the corresponding parameter

vector.6

Figure 3 shows that applying the penalty results in a more smooth transition

probability function. It also shows the trade-off between smoothness and magnitude

of the predicted probabilities. Once the functions becomes more smooth, it is less

capable of inducing a large transition probability. For penalties of 15 and more, the

stay probability is always more than 98%. In table 4, the results show - up to a

certain level for the penalty - that the penalized models increase the correlation be-

tween the true DGP and the projected stay probabilities. The coefficient estimates

are reduced and come closer to their true value as well, and the modified likelihood

values decrease as the penalty increases.

From figure 4, where model (ii) has been estimated and used to project stay

6The latter case will be denoted with an additional *.
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Figure 3: Stay probabilities with different priors (γ = G) ; model (ii).

0.9

0.92

0.94

0.96

0.98

1

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

DGP

G=0

G=5

G=10

G=15

Figure 4: Stay probabilities with different priors (γ = G) ; model (ii).
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α2 β1 ρ∆ Log-L*

γ = 0 19.8316 0.6570 0.7143 -235.7250

γ = 1 16.7850 0.5375 0.7579 -235.7753

γ = 3 13.0636 0.3874 0.8323 -236.0339

γ = 5 9.9710 0.2556 0.9184 -236.5826

γ = 7 7.8733 0.1574 0.9826 -237.3949

γ = 10 5.2109 0.0330 0.9739 -239.0265

γ = 15 4.3393 0.0002 0.9403 -239.7009

Table 4: Diagnostics for different penalty priors; model (i), simulated data set as in figure

1.

α2 β1 β2 ρ∆ Log-L*

γ = 0 23.8403 0.3839 -25.0000 0.1811 -231.0568

γ = 1 25.0000 0.0000 -24.1682 0.1811 -233.4431

γ = 3 12.9989 0.3768 -0.6987 0.8039 -235.6277

γ = 5 10.1913 0.2608 -0.3066 0.9064 -236.3956

γ = 7 8.0139 0.1612 9 -0.1501 0.9784 -237.2978

γ = 10 5.2474 0.0339 -0.0320 0.9751 -238.9969

γ = 15 4.3394 0.0002 -0.0002 0.9410 -239.7007

Table 5: Diagnostics for different penalty priors; model (ii), simulated data set as in figure

1.

probabilities, the importance of the penalty becomes more protruding. The un-

constrained model has the binary looking transition series, whereas the prior con-

strained series exhibit patterns (and by looking in table 5 correlations) closely linked

to the true DGP.

In table 6, the effect on the likelihood ratio statistic of using different sizes of

penalties on different setups of the model is explored. To begin with, when esti-

mating the model according to the true data generating process, we note that for

0 < γ ≤ 2 the LR statistics are just slightly lower than the corresponding statistics

for the γ = 0 case. For higher settings of the penalty, the model finds a distinctly

lower number of significant LR statistics than in the non-penalized case. This in-

dicates that one should use caution when setting γ, since too large a value may

very well lead to too few rejections of the null hypothesis of no relation between

the TVP variable and the true process.7 Contrary to this, we find the highest

correlation between the changes in the true TVP variable and the projected one

when higher values of γ are applied. The peak is here obtained when applying

7A reduction of this too low rejection rate can be obtained by using the likelihood ratio statistic

computed using the penalty coefficient estimates in the non-penalized likelihood function, which yields a

higher/more significant statistic. The magnitude of this reduction remains to be studied.
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γ

Case 0 1 2 5 7 10 15

yt (DGP)

Mean p 0.0772 0.0834 0.0850 0.1173 0.2102 0.5876 0.9629

LR 5% 0.6947 0.6732 0.6499 0.3950 0.0224 0.0000 0.0000

LR 10% 0.8319 0.8240 0.8235 0.6835 0.3165 0.0000 0.0000

LR 50% 0.9720 0.9693 0.9692 0.9636 0.9272 0.3239 0.0000

Mean ρ∆ 0.7807 0.7983 0.8182 0.9033 0.9375 0.8316 0.7109

ǫt

Mean LR 1.3424 0.4587 0.3166 0.0165 0.0020 0.0001 0.0000

LR 5% 0.0986 0.0058 0.0087 0.0000 0.0000 0.0000 0.0000

LR 10% 0.1623 0.0261 0.0203 0.0000 0.0000 0.0000 0.0000

LR 50% 0.5681 0.2928 0.1710 0.0000 0.0000 0.0000 0.0000

Mean ρ∆ 0.0029 0.0023 0.0018 0.0073 -0.0022 0.0025 -0.0010

z1
t

Mean LR 1.7328 1.2507 1.0699 0.7004 0.2643 0.0364 0.0002

LR 5% 0.1164 0.0905 0.0474 0.0000 0.0000 0.0000 0.0000

LR 10% 0.2069 0.1509 0.1121 0.0216 0.0000 0.0000 0.0000

LR 50% 0.6293 0.5948 0.5776 0.5043 0.1897 0.0129 0.0000

Mean ρ∆ 0.0038 0.0011 0.0122 0.0092 0.0198 0.0129 0.0107

z1
t , z

2
t

Mean LR 4.1401 2.9455 2.5298 1.3919 0.5961 0.0717 0.0005

LR 5% 0.2586 0.0862 0.0474 0.0000 0.0000 0.0000 0.0000

LR 10% 0.3448 0.2328 0.1466 0.0043 0.0000 0.0000 0.0000

LR 50% 0.7241 0.6810 0.6595 0.4655 0.1121 0.0000 0.0000

Mean ρ∆ -0.0049 0.0046 0.0158 0.0208 0.0264 0.0146 0.0142

Table 6: Likelihood ratios and quantiles when different sizes of penalties are applied. 350

simulations have been used.
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γ = 7. Hence, one has to consider the trade-off between the difficulties using the

LR statistic and obtaining the highest possible correlation between projected and

true transition probabilities.

In general, the ”false” variables as in the 2 middle panels of table 6 are signifi-

cant about twice as often as they should be at the 5% level, with a somewhat higher

over-significance for the non-stationary variable z1
t . For the noise variable ǫt, the

effect of the penalty is that we reject the null of no correlation in too many cases

as soon as the penalty is applied. For the non-stationary variable, the reduction of

the over-significance is gradual, and applying γ = 2 yields likelihood ratio statistics

close to the nominal sizes.

For the case on multiple non-stationary variables as regressors in the TVP

equation, we note a large over-significance of likelihood ratio statistics in the non-

penalized model. As many as 25% of the statistics are larger than the 5% significance

value of a χ2 distribution with 2 degrees of freedom. Again, setting γ = 2 yields

significance results much closer to the nominal level.

To summarize, the results indicate that applying a penalty is essential to avoid

getting too many significant variables in the TVP equation. What the size of the

penalty should be is less clear. Setting γ to a high value, one risks obtaining too few

signficant variables, but can also get projected transition probabilities closer to the

true process and thus have more exact measurement of the impact of one variable

on the probability to switch states. Moreover, the effects of γ as depicted in table

6 are very likely to be data dependent. Hence, for a different parameter vector

or sample size, the optimal γ could be quite different from what can be inferred

from the table. A useful approach for empirical purposes could be to observe the

projected transition probabilities and compare them to what seems reasonable for

the data. For example, if one reaches a final specification for a set γ that yields

transition probabilities that are very certain prior to regime switches that a regime

switch will occur, one may suspect that over-fitting has occurred and that γ should

be increased. These issues are beyond the scope of this paper.

Empirical Application

The original Hamilton (1989) paper established the usefulness of the Markov regime

switching model to replicate business cycles. We apply the same methodology on

quarterly real GDP data from 1964:1 to 2002:4 for a total of 150 observations.8 A

similar data-set is studied in Coe (2002). The baseline model is

∆yt = µSt
+ ǫRt

(23)

where ∆yt is the logarithmic change in real GDP per capita and St,Rt are unob-

served state variables. The error term ǫRt
is distributed according to N(0, σ2

Rt
). The

8Nominal GDP and inflation as measured by the consumer price index are obtained through the IMF’s

International Financial Statistics database.
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LR HN
0 HM

0

N = 1; M = 2 33.9970 0.0040 0.5737

N = 2; M = 4∗ 15.8450 0.0080 0.9920

Table 7: Test for Markov switching dynamics. 250 Monte Carlo runs.

first state variable, St ∈ [SExpansion, SContraction]; SContraction ≺ SExpansion, gov-

erns the intercept and the second one Rt governs volatility. Initially, the transition

matrix Pt is kept constant as in equation (2). The transition matrix Qt associated

with the R process is assumed to be constant trough out the remainder of the pa-

per.

In order to test for the existence of Markov switching dynamics in the data,

we apply the Monte Carlo testing procedure discussed in Cheung and Erlandsson

(2003), which is an extension of the Rydén, Teräsvirta and Åsbrink (1998) proce-

dure.

The results in table 7 indicate strong evidence of Markov switching dynamics in the

data. Diagnostic testing rejects the hypothesis that variances are equal across states

for the standard 2 state setting. Consequently, we also investigate the possibility of

variance following a regime switching process of its own so that St 6= Rt for some

t, thus allowing for a total of 4 states.9 The results of this test are also clear. We

reject the 2 state MS model, but are do not reject the 4∗ state counterpart. One

could also suspect even more states in the data, but limited computational capacity

restricts us from investigating these suspicions. An alternative is to look at the

diagnostics of the model in the proposed specification. With 4∗ states, neither sig-

nificant residual autocorrelation as measured by the Ljung-Box Q statistic (p-value

0.074, nor ARCH effects as measured by Engle’s LM test (p-value 0.173), is present

in the standardized residuals. For the 2 state model the corresponding p-values are

0.001 and 0.311 respectively.

Another diagnostic measure to validate the model is how well it replicates busi-

ness cycles as measured elsewhere. The by all standards most common benchmark

in the literature is the National Bureau of Economic Research (NBER) business

cycle dates., which we will denote as Ŝt. The smoothed probabilities, computed ac-

cording to the algorithm of Kim (1994) of the the contractionary state of real-GDP

in our model is plotted against the NBER dates in figure 5. As can be seen, the

model replicates the dates quite well. Only using 2 state produces a graph that

does not resemble the NBER dates. The reason for this seems to be a shift from the

low volatility state to the high volatility states in 1984:1-1984:2. The high volatility

state seems to be absorbant within the sample, meaning that the volatility process

does never return to the low state after 1984. The simpler model produces proba-

bilities that are a mix of the level and volatility states in the more general model.

9This parameterization is constricted however so that the 4 state transition matrix is the Kronecker

product of the two separate processes’ respective transition matrices. Since the resulting transition matrix

is constrained, we will denote these 4 states with a subscript ∗ → 4∗.
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Figure 5: NBER dates (black) and smoothed probabilities of the contractionary state

(grey) using the constant transition probability model. U.S. real GDP is plotted with

dots (normalized to 0 in 1965Q4).

To proceed with investigating factors that predict recession, we convert the base-

line model to a restricted TVP parameterization. The transition matrix for the St

process is

Pt =

[

f(α1 + βXt) 1 − f(α1 + βXt−1)

1 − f(α2) f(α2)

]

where Xt−1 is a set of possible leading indicator candidates. This structure means

that the transition probability from the expansionary phase of the economy to the

contractionary is time varying, whereas the reverse is constant.

The next step is to specify X. In table 11, we present 31 variables suggested

by Economagic to be related to the business cycle. Monthly data has been trans-

formed to quarterly by taking the end of quarter monthly value. Each variable in

first differences, an 8 quarter moving average, and in levels has been tested individ-

ually through likelihood ratio tests,10 and with differing penalty terms. 12 of the

candidates have median p-values below 20%.11 Of these, 10 are 8 quarter moving

averages and 2 are in levels. This should be viewed in the light that 18 variables in

first differences are significant at the 10% level when estimating the model without

10To obtain better convergence properties all variables have been normalized. The level variable has

been calculated as the cumulative sum of normalized first differences so that any time trends have been

removed. The moving average has been calculated the same way, but as the average of the 8 last

observations.

11The median p-values are calculated as the median of the p values for one variable, one transformation

and 6 different penalty settings (ranging from 0 to 5).
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a penalty term, but all of them turn insignificant once the penalty term is applied.

Given the previous simulation results, setting γ = 2 seems to strike a good

balance between the long-run capability, and the statistical properties. Using this

prior, we have conducted a testing down procedure of X. The least significant vari-

able has been removed until the reduction in the likelihood ratio statistic is below

5% level.12 The final specification that are reached are presented in table 8, column

2. The results from a number of benchmark models are also presented. The first

column, γ = 0, refers to the results when estimating the specification obtained from

the penalized setting but setting γ = 0. The CTP model is the constant transition

probability model. In the fourth column, denoted γ = 0(∗), a final specification has

been obtained using the same testing down procedure as above, but with γ = 0.

The results indicate that all TVP models estimate the contractionary phase as

more severe than in the CTP case. When using the penalized version, two variables

are found significant as leading indicators of a recession: the seasonally adjusted

production price index of finished goods and the number of unemployed civilians.13

A rise in the production prices decreases the probability to stay in the expansionary

state, as does an increase in unemployment. One interpretation of these indicators

is that the probability of recessions is strongly linked to shortages in both goods

and labor markets.

Using the traditional approach of testing down the model’s TVP variables, a

very different conclusion is reached. First, many more variables are deemed sig-

nificant, which also was the prediction of the simulation results in the previous

section. Second, for the one variable that the specification have in common, the

signs are opposite. The difference is likelihood values is large, even when applying

the non-penalized value on the penalized specification.

Using the above specifications of the model and its benchmarks, we register dates

t at which the predicted probability to proceed to the contraction state in the time

interval t + 1 : t + k exceeds a certain threshold level in percent, denoted ω. The

forecasted probability for t + 1 is calculated as:

Pr(St+1 = 1|Ωt) = p11,tPr(St = 1|Ωt) + p21,tPr(St = 2|Ωt) (24)

For the k > 1 step ahead forecast, we focus on the probability that we will at least

one crisis period within the time interval t + 1, t + 2, ..., t + k − 1, t + k. This equals

1 minus the probability that we see no crises within the time interval:

Pr(min(St+1,...,t+k) = 1|Ωt) = 1 − Pr(St+1,...,t+k = 2|Ωt) = (25)

= 1 −
[

p12,tp
k−1
22,t Pr(St = 1|Ωt) + pk

22,tPr(St = 2|Ωt)
]

12In this non-linear setting, the likelihood ratio statistic has been shown to be more robust than

statistics based on the variance-covariance matrix, such as the Wald statistic.

13The latter variable reflects the number of unemployed civilians compared to the trend, and is conse-

quently similar to an ordinary unemployment rate figure.
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γ = 0 γ = 2 CTP γ = 0(∗)

Value p Value p Value p Value p

µExpansion 0.7308 0.00 0.7394 0.00 0.7459 0.00 0.7396 0.00

µContraction -0.7681 0.00 -0.7118 0.07 -0.6064 0.14 -0.9062 0.00

σ2

1
1.0213 0.00 1.0186 0.00 1.0397 0.00 0.9701 0.00

σ2

2
0.4866 0.00 0.4818 0.00 0.4765 0.00 0.4759 0.00

αS
1

100 0.00 3.8072 0.00 2.9896 0.00 100 n.a.

βS
13

-1.6376 0.00

βS
3
17 0.6659 0.00

βS
20

-0.4281 0.00

βS
21

-0.5264 0.00

βS
22

-0.743 0.00 -0.0129 0.00

βS
23

1.4974 0.00

βS
25

0.9836 0.01 0.0157 0.00 -0.2270 0.00

βS
26

-0.5538 0.00

αS
2

0.2332 0.80 0.7867 0.26 0.9697 0.13 -0.6939 0.68

αR
1

4.2969 0.00 4.2967 0.00 4.2960 0.00 4.2981 0.00

αR
2

100 n.a. 100 n.a. 100 0 100 n.a.

LogL -167.84 -175.77 -181.06 -161.52

R2 0.5775 0.5825 0.5494 0.5973

LR 26.4300 0.00 10.5670 0.01 0 n.a. 39.0743 0.00

LR* 26.4300 0.00 12.9619 0.00 0 n.a. 39.0743 0.00

Table 8: Estimation results. The optimization procedure has been bounded so that

−100 ≤ α, β ≤ 100. Standard errors of the stay probability parameter in the low volatility

state, αR
2 , are not computable since the state is absorbant within the data range. Subscript

indices on β refers to the index number of exogenous variables in table 11.

Four cases of signals from the model vis-a-vis the actual development can then be

constructed:14

1. The model signals a contraction, and a contraction occurs (CE):

Pr(min(St+1,...,t+k) = SContraction|Ωt) > ω and min(St+1:t+k) = SContraction

2. The model signals a contraction, but no contraction occurs (CE):

Pr(min(St+1,...,t+k) = SContraction|Ωt) > ω and min(St+1:t+k) = SExpansion

3. The model signals no contraction, but a contraction occurs (EC):

Pr(min(St+1,...,t+k) = SContraction|Ωt) ≤ ω and min(St+1:t+k) = SContraction

4. The model signals no contraction, and no contraction occurs (EE):

Pr(min(St+1,...,t+k) = SContraction|Ωt) ≤ ω and min(St+1:t+k) = SExpansion

Using these definitions, a number of benchmarks of the model’s performance can

be constructed. We will focus on two; the first being the ratio of correct sig-

nals to the total number of signals (CC + EE)/(CC + CE + EC + EE). In

14The first letter in each case’s acronym stands for the prediction of the model, the second for the

actual development. C refers to at least one contraction within the time interval, E (as in expansions) to

a time interval with no contraction.
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Figure 6: Forecasts of the probability that a contraction will occur within the next 8

quarters.

our setting this benchmark answers the question: ”How reliable is the predictions

of the model?” The second benchmark, the noise-to-signal ratio, is calculated as

[EC/(EC + EE)]/[CC/(CC + CE)], and returns a measure of how strong infer-

ence on the true development the model gives. A model that perfectly predicts the

future would have a noise-to-signal ratio of 0. The threshold for when a signal is

given, ω, may be set to different values than the traditional 50% to reflect different

sensitivities to recessions.

Table 9 presents the results of various models. We first note that the only instance

where the CTP model outperforms the TVP model in terms of correct forecasts is

for the 1 quarter ahead predictions with a threshold of 50%. For prediction horizons

of greater than 4 quarters, the CTP model exhibits much worse performance than

the TVP models. This is a matter of pure arithmetics: with the 50/25% threshold,

the model always predicts the probability to enter the contractionary phase within

12/8 quarters to be greater than the threshold.

The trend for the TVP models based on variable selection found with the pe-

nalized likelihood function (i.e. the cases γ = 0 and γ = 2) is that as the prediction

horizon expands, the better the γ = 2 model is relative to the γ = 0 model. This

also hold for the relation between the γ = 2 and γ = 0(∗) models. Looking at

what types of errors the models make, we note that the penalized model for these

horizons predicts a larger number of recessions, resulting in fewer case 3 errors.

Figure 6 provides a graphical illustrations on the forecasting performance at the

8 quarter horizon. As has been sought for, the penalized model exhibits a much

smoother projection of transition probabilities than the benchmark models. The

probabilities also seem to rise earlier prior to recession than for the benchmarks.
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Figure 7: Out-of-sample forecasts of the probability that a contraction will occur within

the next 8 quarters.

A more reliable way to evaluate the model’s performance is to observe the out-

of-sample forecasting properties. If the model reflects a relation that is stable over

time, out-of-sample forecasts will resemble the corresponding in-sample forecasts.

Otherwise, we have an indication of overfitting. The out-of-sample forecasting per-

fomance is tabulated in table 10. We have selected to produce forecasts of the two

last recessions in the sample, ending the in-sample at 1988:2 and forecasting 1988:3

to 2002:4. Since the latest recession has occured so recently, this means that the

performance of the 8 quarter and 12 quarter forecasts cannot be evaluated for that

recession.

The penalized model consistently outperforms the benchmark models in this

setting at all horizons. When viewing the graphical evidence as in figure 7, it turns

out that the penalized model is alone in being able to predict the 2001 recession. It

is also more consequent in prediction the 1990 recession, with a gradual increase in

probabilities rather than the jagged projection of the other TVP models.

Conclusion

This paper illustrates the inability of the Markov regime switching model to make

inference on the probability of states occurring in the medium to long term. For

policy purposes, short run predictors of future states may be irrelevant, since many

tools such as fiscal policy and interest rate changes only have effects in the medium
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to long term. Hence, the model has not been a commonly used tool when predicting

future states of the economy.

Rather than not being able to make inference in the longer run at all, the model

with time varying transition probabilities possesses a bias towards selecting short

run variables for predicting future states. This also leads to estimation problems in

the maximum likelihood setting, where bounded optimization procedures often has

parameter estimates of the TVP variables on the boundaries. Summed together:

the estimated model seems to be unable to depict a highly useful dimension of the

theoretical model, and it may be hard to obtain estimates at all.

There is also a spuriousity problem in the limited sample setting. We show that

this problem may be small when only looking a on variable at a time, but once

one tries to specify a model with more possibly non-stationary series, the problem

quickly increases.

We propose a simple penalty term, based on the smoothness of the projected time

varying probabilities, in the maximum likelihood function which aims to remedy

these interconnected problems. Simulation evidence indicates that both estimation

and inferential problems are reduced.

In an empirical application, we use a number of suggested leading indicators

to predict contractionary states of U.S. real GDP. The standard ML estimates are

shown to possess the problems shown in the simulation exercise. A large number

of variables show up as significant, and the projected transition probabilities are

very non-smooth. Applying the proposes penalized estimator yields a final model

specification with fewer variables and a smooth transition probabilities. In the in-

sample forecasting excercise, the penalized model performs better for longer (8-12

quarter) horizons. When calculating out-of-sample forecasts, the penalized models

exhibits better performance irrespective of the horizon. It is the only model that is

able to predict the 2001 recession out-of-sample.
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Threshold 50% γ = 0 γ = 2 CTP γ = 0(∗)

k = 1

Correct obs. ratio 0.8919 0.8716 0.9054 0.8581

Noise-to signal ratio 0.0853 0.1491 0.0856 0.1776

# CC/CE/EC/EE 20/9/7/112 13/5/14/116 19/6/8/115 10/4/17/117

k = 4

Correct obs. ratio 0.8621 0.8414 0.8414 0.8483

Noise-to signal ratio 0.1667 0.1912 0.1915 0.1831

# CC/CE/EC/EE 27/2/18/98 24/2/21/98 25/3/20/97 25/2/20/98

k = 8

Correct obs. ratio 0.7376 0.7943 0.6809 0.7092

Noise-to signal ratio 0.3356 0.2770 0.4612 0.3654

# CC/CE/EC/EE 27/2/35/77 37/4/25/75 27/10/35/69 23/2/39/77

k = 12

Correct obs. ratio 0.6131 0.7445 0.5693 0.5839

Noise-to signal ratio 0.5072 0.3943 n.a. 0.5338

# CC/CE/EC/EE 27/2/51/57 48/5/30/54 78/59/0/0 22/2/55/57

Threshold 25% γ = 0 γ = 2 CTP γ = 0(∗)

k = 1

Correct obs. ratio 0.9054 0.8919 0.8716 0.9122

Noise-to signal ratio 0.0499 0.0853 0.0601 0.0578

# CC/CE/EC/EE 23/10/4/111 20/9/7/112 23/15/4/106 22/8/5/113

k = 4

Correct obs. ratio 0.8690 0.8897 0.7103 0.8414

Noise-to signal ratio 0.1532 0.0562 0.2075 0.1906

# CC/CE/EC/EE 30/4/15/96 41/12/4/88 37/34/8/66 26/4/19/96

k = 8

Correct obs. ratio 0.7589 0.8227 0.4397 0.7021

Noise-to signal ratio 0.3131 0.1938 n.a. 0.3923

# CC/CE/EC/EE 30/2/32/77 50/13/12/66 62/79/0/0 24/4/38/75

k = 12

Correct obs. ratio 0.6423 0.7956 0.5693 0.5912

Noise-to signal ratio 0.4811 0.3031 n.a. 0.5446

# CC/CE/EC/EE 31/2/47/57 62/12/16/47 78/59/0/0 25/3/53/56

Table 9: In-sample prediction results.
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Threshold 50% γ = 0 γ = 2 CTP γ = 0(∗)

k = 1

Correct obs. ratio 0.8772 0.8772 0.8772 0.8421

Noise-to signal ratio 0.1887 0.1224 0.1224 0.4528

# CC/CE/EC/EE 2/2/5/48 4/4/3/46 4/4/3/46 1/3/6/47

k = 4

Correct obs. ratio 0.7963 0.8333 0.7778 0.7222

Noise-to signal ratio 0.2667 0.2029 0.3200 0.9600

# CC/CE/EC/EE 3/1/10/40 6/2/7/39 5/4/8/37 1/3/12/38

k = 8

Correct obs. ratio 0.6800 0.7800 0.7000 0.6800

Noise-to signal ratio 0.4348 0.2744 0.4390 0.4348

# CC/CE/EC/EE 3/1/15/31 8/1/10/31 6/3/12/29 3/1/15/31

k = 12

Correct obs. ratio 0.6522 0.7609 0.5870 0.6522

Noise-to signal ratio 0.4762 0.3041 0.7879 0.4762

# CC/CE/EC/EE 3/1/15/27 8/1/10/27 6/7/12/21 3/1/15/27

Threshold 25% γ = 0 γ = 2 CTP γ = 0(∗)

k = 1

Correct obs. ratio 0.8772 0.8947 0.8596 0.8596

Noise-to signal ratio 0.1887 0.0750 0.0492 0.2404

# CC/CE/EC/EE 2/2/5/48 5/4/2/46 6/7/1/43 2/3/5/47

k = 4

Correct obs. ratio 0.7963 0.9074 0.7778 0.7407

Noise-to signal ratio 0.2667 0.0636 0.2404 0.5612

# CC/CE/EC/EE 3/1/10/40 11/3/2/38 8/7/5/34 2/3/11/38

k = 8

Correct obs. ratio 0.6800 0.8800 0.3600 0.7000

Noise-to signal ratio 0.4348 0.1496 n.a. 0.3889

# CC/CE/EC/EE 3/1/15/31 13/1/5/31 18/32/0/0 4/1/14/31

k = 12

Correct obs. ratio 0.6522 0.8043 0.3913 0.6739

Noise-to signal ratio 0.4762 0.2514 n.a. 0.4268

# CC/CE/EC/EE 3/1/15/27 10/1/8/27 18/28/0/0 4/1/14/27

Table 10: Out-of-sample prediction results.
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Indicator Reporting frequency Index number

Total private: Indexes of Aggregate Weekly Hours, SA M 1

Average Weekly Hours; Private Nonagricultural Establishments; SA M 2

Total Borrowings at Federal Reserve Banks; Billions of Dollars; NSA M 3

Change in Business Inventories; SAAR Billions of Dollars Q 4

Corporate Profits After Tax with IVA and CCAdj; Billions; SAAR Q 5

Consumer Price Index All Urban Consumers: Total; 1982-84=100; SA Q 6

Consumer Price Index All Urban Consumers: Less Food and Energy; 1982-84=100, SA M 7

Employment Ratio; Civilian Employment/Civilian Non. Inst. Pop.; Percent SA M 8

Gross Savings; Billions of Dollars SAAR Q 9

Index of Help Wanted Advertising; in Newspapers; 1987=100; SA M 10

Total Industrial Production Index; 1992=100 SA M 11

M2 Money Stock; Billions of Dollars; SA M 12

Bank Prime Loan Rate M 13

Nonfarm Business Sector: Output Per Hour of All Persons; SA, 1992=100 Q 14

Private Business Sector: Output Per Hour of All Persons; SA, 1992=100 Q 15

Payroll Employment; of Wage and Salary Workers; Thousands; SA M 16

Personal Consumption Expenditures; Billions of Dollars SAAR M 17

Personal Income; Billions of Dollars SAAR M 18

PPI - Capital Equipment; 1982=100 SA M 19

PPI - Crude Materials for Further Processing; 1982=100 SA M 20

PPI - Finished Consumer Foods; 1982=100 SA M 21

PPI - Finished Goods; 1982=100 SA M 22

PPI - Intermediate Materials; 1982=100 SA M 23

Personal Saving; Billions of Dollars SAAR Q 24

Civilian Unemployed for 15 Weeks and Over; Thousands; SA M 25

Manufacturing Sector: Unit Labor Cost; SA, 1992=100 Q 26

Nonfarm Business Sector: Unit Labor Cost; SA, 1992=100 Q 27

Consumer Sentiment; University of Michigan; 1966Q1=100; NSA Q 28

Unemployment Level; All Civilian Workers; Thousands; SA Q 29

Capacity Utilization: Manufacturing (SIC); SA M 30

Industrial Production Index: Consumer goods; 1997=100; SA M 31

Table 11: Evaluated predictors of the transition probability to the contraction state.
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