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1 Introduction

Exchange rate risk plays a major role in international portfolio diversification and in several aspects of

economic policy, including the assessment of the uncertainty surrounding prices of exports and imports,

the value of international reserves and open positions in foreign currency, and the domestic currency

value of debt payments and workers’ remittances which, in turn, may affect domestic wages, prices,

output and employment. In international financial markets, expectations of future exchange rates

affect agents’ decisions in a number of respects, including their investment, hedging, and borrowing

and lending decisions. It is not surprising, therefore, that an enormous empirical literature has

developed which focuses on modelling and forecasting nominal exchange rates.

The vast majority of the empirical literature on forecasting exchange rates has centered on fore-

casting the level of nominal exchange rates. This literature is highly influenced by the seminal work

of Meese and Rogoff (1983a,b), who first documented that empirical exchange rate models, based on

conventional macroeconomic fundamentals suggested by international macroeconomics theory, can-

not outperform a simple no-change or random walk forecast of exchange rates in terms of standard

measures of point forecast accuracy. After over twenty years of research since the publication of the

Meese-Rogoff studies, their findings remain, with a few exceptions (e.g. Mark, 1995), very robust.1

While macroeconomic fundamentals do not appear to be useful in forecasting exchange rates,

however, models which exploit the information in the term structure of forward exchange rates and

forward premia have produced satisfactory results. Clarida and Taylor (1997) first argued that,

although the forward exchange rate is not an optimal predictor of the future spot exchange rate (e.g.

see Lewis, 1995; Engel, 1996; and the references therein), forward rates may still contain valuable

information for forecasting future spot exchange rates. Under fairly general assumptions, Clarida

and Taylor (1997) derive a linear vector equilibrium correction model (VECM) of spot and forward

exchange rates. Using this linear VECM, Clarida and Taylor show that is possible to extract sufficient

information from the term structure of forward premia to outperform the random walk model for

several exchange rates in out-of-sample forecasting. Then, following the large literature showing the

existence of regime-switching behavior in exchange rate movements (e.g. Engel and Hamilton, 1990;

LeBaron, 1992; Engel, 1994; Engel and Hakkio, 1996), Clarida, Sarno, Taylor and Valente (2003)

generalize the linear VECM of spot and forward exchange rates to a nonlinear, three-regime Markov-

switching VECM (MS-VECM) which is found to outperform a random walk as well as to improve on

1See, for example, the papers published in the special issue of the Journal of International Economics (May 2003)
on “Empirical Exchange Rate Models.”
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the linear VECM in terms of out-of-sample forecasting.

While an extensive body of literature has investigated the performance of exchange rate models in

forecasting the level of the exchange rate, surprisingly little attention has been devoted to forecasting

the density of exchange rates. In a decision-theoretical context, the need to consider the density

forecast of a variable2 - as opposed to considering only its conditional mean and variance - seems fairly

accepted on the basis of the argument that economic agents may have loss functions that do not depend

symmetrically on the realizations of future values of potentially non-Gaussian variables (Satchell and

Timmermann, 1995; Granger, 2003). In this case, agents are interested in forecasting not only the

mean and variance of the variables in question, but their full predictive densities. In various contexts

in economics and finance - among which the recent boom in financial risk management represents an

obvious case - there is an increasingly strong need to provide and evaluate density forecasts.

Several researchers have recently proposed methods for evaluating density forecasts. These meth-

ods allow us to evaluate a model-based predictive density by measuring the closeness of two density

functions or by testing the hypothesis that the predictive density generated by a particular model

corresponds to the true predictive density (e.g. Diebold, Gunther and Tay, 1998; Berkowitz, 2001).3

More recently, this line of research has also provided a test statistic to formally evaluate the relative

ability of competing models in matching the true predictive density (Corradi and Swanson, 2003,

2004). However, a literature focusing on the performance of empirical exchange rate models to

forecast the density of exchange rates has not emerged to date, and the main focus of the relevant

literature remains on point forecasting of the nominal exchange rate.4

The present paper contributes to the relevant literature in that we re-examine the forecasting

2A density forecast (or predictive density) of the realization of a random variable at some future time is an estimate
of the probability distribution of the possible future values of that variable. It therefore provides a full description
of the uncertainty associated with a forecast, in contrast with a point forecast, which contains no description of the
associated uncertainty. For a survey of the literature on density forecasting and a discussion of its applications in
macroeconomics and finance, see Tay and Wallis (2000). See also Granger and Pesaran (1999), Li and Tkacz (2001),
Granger (2003), Wallis (2003) and Sarno and Valente (2004a,b).

3By ‘true’ predictive density of the data we mean the density of the data over the chosen forecast period. Therefore,
no forecast is in fact carried out in this case, and the term ‘predictive’ simply refers to the fact that the density in
question does not refer to the full sample but only to the forecast period. Also note that we use the terms ‘predictive
density’ and ‘forecast density’ interchangeably below.

4An exception is the paper by Bos, Mahieu and van Dijk (2000), who analyze, using Bayesian methods, the implica-
tions of basic time series patterns for daily exchange rate risk management, with specific emphasis on hedging. See also
Clements and Smith (2001), who consider the forecasting performance of two nonlinear exchange rate models and show
that whether the nonlinearities inherent in the data can be exploited to forecast better than a random walk depends
on how forecast accuracy is assessed. Evaluation based on traditional measures, such as (root) mean squared forecast
errors, may mask the superiority of the nonlinear models (see also Satchell and Timmermann, 1995). Other related
studies of interest include Peel and Speight (1994), Chappell, Padmore, Mistry and Ellis (1996), Dacco and Satchell
(1999), Ma and Kanas (2000a,b) and Boero and Marrocu (2002).
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performance of term structure models of exchange rates, which were shown to outperform a random

walk in out-of-sample point forecasting by Clarida and Taylor (1997) and Clarida et al. (2003).

However, we assess the ability of these models to forecast out-of-sample the one-step-ahead density of

nominal exchange rates, hence filling, to some extent, the important gap in the literature described

above.5 Our analysis is carried out using the recent techniques on evaluating density forecasts

mentioned above as well as on Value-at-Risk (VaR) calculations.

In particular, using weekly data for eight bilateral dollar exchange rates from January 1985 to

December 2003, we focus on the ability of both the linear VECM and the MS-VECM to forecast the

one-week-ahead exchange rate density. To anticipate our main results, we find that Markov-switching

term structure models of exchange rates produce satisfactory density forecasts of exchange rates. In

particular, the MS-VECM of the term structure convincingly outperforms a random walk forecast

and a linear term structure VECM in our density forecasting exercise, suggesting that the allowance

for nonlinearity in these models may be particularly important to produce satisfactory out-of-sample

density forecasting performance.

Finally, we illustrate the practical importance of our results on density forecasting with a simple

application to a risk management exercise. In recent years, trading accounts at large financial

institutions have shown a dramatic growth and become increasingly more complex. Partly in response

to this trend, major trading institutions have developed risk measurement models designed to manage

risk. The most common approach employed in this context is based on the VaR methodology, where

VaR is defined as the expected maximum loss over a target horizon within a given confidence interval

(Jorion, 2001).6 In our simple application we analyze the out-of-sample forecasting performance of

term structure models of exchange rates, investigating the implications of these forecasts for a risk

manager who has to quantify the risk associated with holding a currency portfolio over a one-week

horizon. This application further illustrates how the MS-VECM captures satisfactorily the higher

moments of the predictive density of exchange rates, generating VaRs that estimate the probability

of large losses better than the other two competing models. Put another way, our findings indicate

that better density forecasts of exchange rates, of the type recorded by the regime-switching model

considered in this paper, can potentially lead to substantial improvements in risk management and,

5We focus on one-step-ahead forecast densities since the econometric techniques developed to date are designed for
one-step-ahead density forecasting tests alone. Extensions of these tests to multi-step-ahead forecasts are awaited (e.g.
Tay and Wallis, 2000).

6More formally, VaR is an interval forecast, typically a one-sided 95% or 99% interval of the distribution of expected
wealth or returns.
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more precisely, to better estimates of downside risk.

The remainder of the paper is set out as follows. In Section 2, we briefly review the literature

employing term structure models of forward premia to forecast exchange rates, both in a linear

framework and in a Markov-switching framework. In Section 3, we describe the data and carry

out a preliminary unit root and cointegration analysis of the spot and forward exchange rates data.

We also report linearity tests and other tests designed to select the most adequate MS-VECM in our

context. We then forecast from these models in Section 4, where we report tests designed to assess

the performance of the random walk model, the linear VECM and the MS-VECM in terms of density

forecasting. We also explore the implications of the density forecasting results in a risk management

exercise. A final section briefly summarizes and concludes.

2 Term Structure Forecasting Models of Exchange Rates: A
Brief Overview

Let st and fkt be, respectively, the spot exchange rate and the k-period forward exchange rate at time

t. Under the mild assumptions that (i) each of st and fkt are well described by unit root processes

and that (ii) departures from the risk-neutral efficient markets hypothesis - namely expected foreign

exchange excess returns, fkt − Et (st+k|Ωt), defined with respect to a given information set Ωt - are
stationary, it is straightforward to derive an expression which implies that the forward premium, fkt −st
is stationary (Clarida and Taylor, 1997). In turn, this result implies that forward and spot exchange

rates have a common stochastic trend and are cointegrated with cointegrating vector [1,−1]. This

also implies that, since this is true for any k, if we consider the vector of forward rates of tenor 1 to m

periods, together with the current spot rate, [st, f1t , f
2
t , f

3
t , . . . , f

m
t ]

0, then this must be cointegrated

with m unique cointegrating vectors, each given by a row of the matrix [−ι, Im], where Im is an

m-dimensional identity matrix and ι is an m-dimensional column vector of ones. Finally, by the

Granger Representation Theorem (Granger, 1986; Engle and Granger, 1987) this vector of forward

and spot rates must possess a VECM representation in which the term structure of forward premia

plays the part of the equilibrium errors.

The linear VECM used by Clarida and Taylor (1997) may be written as follows:

∆yt = ν +
Pp−1

d=1 Γd∆yt−d +Πyt−1 + ut (1)

where yt = [st, f4t , f
13
t , f26t , f52t ]

0, with the superscript denoting the number of weeks corresponding to

the maturity of the forward contract; Π = αβ0 is the long-run impact matrix whose rank determines the
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number of cointegrating vectors linking spot and forward rates (equal to four in this specific VECM);

and ut is a vector of Gaussian error terms (Johansen, 1988, 1991). Clarida and Taylor (1997) exploit

this linear VECM representation to show that sufficient information may be extracted from the term

structure in order to forecast the spot dollar exchange rate during the recent floating exchange rate

regime. Their dynamic out-of-sample forecasts suggest that the linear VECM is superior to a range

of alternative forecasts, including a random walk and standard spot-forward regressions.

Clarida et al. (2003) then generalize the linear VECM in equation (1) to a multivariate Markov-

switching framework and examine the performance of such a model in out-of-sample exchange rate

forecasting. This generalized term structure model was inspired by encouraging results previously

reported in the literature - cited in the introduction - on the presence of nonlinearities (and particularly

by the success of Markov-switching models) in the context of exchange rate modelling. Using weekly

data on spot and forward dollar exchange rates for the G5 countries over the period 1979 through

1995, Clarida et al. report evidence of the presence of nonlinearities in the term structure, which

appeared to be well characterized by a three-regime MS-VECM that allows for shifts in both the

intercept and the covariance structure of the error terms. This MS-VECM may be written as follows:

∆yt = ν (zt) +Πyt−1 +
p−1X
d=1

Γd∆yt−d + εt, (2)

where yt is as defined in equation (1); ν(zt) is a 3-dimensional column vector of regime-dependent

intercept terms, ν(zt) = [ν1(zt), ν2(zt), ν3(zt)]
0; the Πi’s are 3 × 3 matrices of parameters; εt =

[ε1t, ε2t, ε3t]
0 is a 3-dimensional vector of error terms, εt ∼ NID(0,Σε(zt)). The regime-generating

process is assumed to be an ergodic Markov chain with three states zt ∈ {1, 2, 3} governed by the
transition probabilities pij = Pr(zt+1 = j | zt = i), and

P3
j=1 pij = 1 ∀i, j ∈ {1, 2, 3}. This

MS-VECM is termed Markov-Switching-Intercept-Heteroskedastic-VECM or MSIH-VECM. In order

to reflect the fact that the model has three regimes and one lag of the dependent variable in each

equation, the model is termed MSIH(3)-VECM(1).7

Clarida et al. (2003) use the MSIH(3)-VECM(1) to forecast dynamically out of sample over the

period 1996 through to 1998. The results suggest that the MS-VECM forecasts are strongly superior

to the random walk forecasts at a range of forecasting horizons up to 52 weeks ahead, using standard

forecasting accuracy criteria. Moreover, the MS-VECM also outperforms, in general, a linear VECM

for spot and forward rates in out-of-sample forecasting of the spot rate, although the magnitude of

7Estimation of an MS-VECM can be carried out using an expectations maximization (EM) algorithm for maximum
likelihood (Dempster, Laird and Rubin, 1977; Krolzig, 1997).
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the gain, in point forecasting, from using an MS-VECM relative to a linear VECM is rather small in

magnitude at short horizons (about 10% on average at the 4-week forecast horizon). Nevertheless, it

is possible that traditional measures of forecast accuracy mask somehow the potential superiority of

nonlinear models (Satchell and Timmermann, 1995; Clements and Smith, 2001; Granger, 2003).

Overall, this literature suggests that not only the term structure of forward premia contains valu-

able information about the future spot exchange rate but also that the allowance for nonlinear dy-

namics in the form of regime-switching behavior enhances somewhat this information to produce

a satisfactory forecasting model of the exchange rate. While previous research on term structure

forecasting models of the exchange rate has analyzed forecasting performance focusing primarily on

accuracy evaluations based on point forecasts, several authors, cited in the introduction, have recently

emphasized the importance of evaluating the forecast accuracy of economic models on the basis of

density - as opposed to point - forecasting performance. Especially when evaluating nonlinear models,

which are capable of producing non-normal forecast densities, it would seem appropriate to consider a

model’s density forecasting performance. This is indeed the primary objective of the empirical work

undertaken in this paper, where we carry out density forecasting tests on the linear VECM and the

MS-VECM of the term structure of forward premia as well as on a random walk exchange rate model.

We then investigate some of the implications of our density forecasting results for exchange rate risk

management.

3 Empirical Analysis I: Modelling

In this section, we describe the data and carry out a preliminary unit root and cointegration analysis

of the spot and forward exchange rates data. We also report linearity tests and other tests designed

to select the most adequate MS-VECM in our context, which we then estimate.8

3.1 Data and Preliminaries9

Our data set comprises weekly observations of eight bilateral spot and 4-, 13-, 26- and 52-week forward

US dollar exchange rates (vis-à-vis the UK sterling, Swiss franc, Japanese yen, Canadian dollar, New

Zealand dollar, Swedish krona, Norwegian krona, Danish krona). The sample period spans from

8Throughout our discussion of the empirical results, we employ a nominal significance level of 5% percent unless
explicitly stated otherwise.

9Full details on the preliminary empirical analysis discussed in this sub-section are available from the authors upon
request, but are not reported to conserve space.
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January 4 1985 to December 31 2003 for all exchange rates.10 Following previous literature (e.g.

Hansen and Hodrick, 1980, p. 852), data are Tuesdays of every week, taken from Datastream. From

this data set, we constructed the time series of interest, namely the logarithm of the spot exchange rate,

st and the logarithm of the k-week forward exchange rate, fkt for k = 4, 13, 26, 52. In our empirical

work, we carried out our estimations over the period January 1985-December 1995, reserving the last

eight years of data for out-of-sample forecasting tests.

As a preliminary exercise, we tested for unit root behavior of the spot rate and the four forward

rate time series examined for each of the exchange rates under investigation by calculating standard

augmented Dickey-Fuller (ADF) test statistics.11 Consistent with the large literature on unit root

behavior for these time series, our unit root tests clearly indicate that each of the time series examined

is a realization from a stochastic process integrated of order one, which suggests that testing for

cointegration between st, f
4
t , f

13
t , f

26
t , and f52t , is the logical next step.

We then employed the Johansen (1988, 1991) maximum likelihood procedure in a vector au-

toregression for yt = [st, f
4
t , f

13
t , f26t , f52t ]

0 and an unrestricted constant term. On the basis of the

Johansen likelihood ratio test statistics for cointegrating rank, we could strongly reject the hypothesis

of three independent cointegrating vectors against the alternative of four, but were not able to reject

the hypothesis of exactly four cointegrating vectors for each exchange rate examined at conventional

nominal test sizes.

When testing the hypothesis that the cointegrating vectors linking spot and forward rates are of

the form [1,−1], we rejected this hypothesis but - consistent with Naka and Whitney (1995), Luintel
and Paudyal (1998) and Clarida et al. (2003) - the departure from the overidentifying restrictions,

albeit statistically significant at conventional test sizes, was found to be very small in magnitude.

Following Clarida et al. (2003), we therefore interpreted the rejection of the unity restrictions on

the cointegration space as due to tiny departures from the null hypothesis (due, for example, to tiny

data imperfections) which are not economically significant, but which appear as statistically significant

given our large sample size. Given the theoretical economic priors in favor of the unity restrictions and

the fact that, under covered interest parity, coefficients different from unity would have the implausible

implication of a unit root in international interest rate differentials, we carried out our empirical work

employing the unity restrictions.12

10The start date was chosen since it was the earliest date for which data for all exchange rates examined are available.
11 In each case, the number of lags was chosen such that no residual autocorrelation was evident in the auxiliary

regressions.
12We did, however, carry out a fraction of the empirical analysis discussed below without imposing the unity restric-
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We next estimated a standard linear VECM, as given in equation (1), using full-information

maximum likelihood (FIML) methods, assuming a maximum lag length of three, as suggested by

both the Akaike Information Criterion and the Schwartz Information Criterion. Employing the

conventional general-to-specific procedure, we obtained fairly parsimonious models for each exchange

rate.

3.2 Linearity Tests and Identification of the MS-VECM

We proceeded to investigate the presence of nonlinearities further through the estimation of a very

general MS-VECM of the form:

∆yt = ν (zt) +Π (zt) yt−1 +
p−1X
d=1

Γd (zt)∆yt−d + ηt, (3)

where all parameters are as defined in equation (2), except for the autoregressive parameters Γd’s and

the long-run matrix Π which are also allowed to be regime-shifting, i.e. Γd (zt) and Π (zt) = α (zt)β
0;

ηt is a vector of error terms, ηt ∼ NID(0,Ση(zt)). The number of regimes, zt - for which we consider

a maximum of three regimes, i.e. zt ∈ {1, 2, 3} - is identified using a likelihood ratio test specifically
designed for this purpose and described below. The MS-VECM in equation (3) is indeed slightly

more general than the MS-VECM used by Clarida et al. (2003) in that, except for the long-run

cointegrating matrix β0, which is restricted to be consistent with stationary forward premia, every

other parameter of the model is now allowed to be regime shifting. In essence, this MS-VECM allows

for each of the intercepts, the variance-covariance matrix and the autoregressive structure to be regime

dependent. To reflect the fact that model (3) allows for each of the parameters on the autoregressive

lags of ∆y to be regime switching, in addition to regime-switching intercept vector and covariance

matrix, this VECM is termed Markov-Switching-Intercept-Autoregressive-Heteroskedastic-VECM or

MSIAH-VECM.

Next we applied the ‘bottom-up’ procedure designed to detect Markovian shifts in order to select

the most adequate characterization of an MS-VECM for ∆yt.13 The linearity tests led us, for each

exchange rate, to reject the linear VECM against an MS-VECM. These tests provide strong empirical

evidence that the linear VECM fails to capture important nonlinearities in the data generating process,

tions in the cointegration space and using instead the unrestricted estimates of the cointegrating parameters. The
results were virtually identical to those reported below.
13Essentially, the bottom-up procedure consists of starting with a simple but statistically reliable Markov-switching

model by restricting the effects of regime shifts on a limited number of parameters and checking the model against
alternatives. In such a procedure, most of the structure contained in the data is not attributed to regime shifts, but
explained by observable variables, consistent with the general-to-specific approach to econometric modelling. For a
technical discussion of the bottom-up procedure, see Krolzig (1997).
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since linearity is rejected with marginal significance levels (p-values) of virtually zero - see the last

column in Table 1.

For each MS-VECM estimated, we tested the hypothesis of no regime shifts against the alternative

hypothesis of regime shifts in each of the vector of intercept terms, the variance-covariance matrix,

and the autoregressive structure respectively. The likelihood ratio (LR) tests LR1, LR2 and LR3,

constructed as suggested by Krolzig (1997, p. 135-6) and reported in Table 1, suggest in each case

massive rejections of the null hypotheses tested, clearly indicating that an MS-VECM that allows for

shifts in each of the intercept, the variance-covariance matrix and the autoregressive structure, namely

an MSIAH-VECM, is the most appropriate model within its class in the present application.14

Finally, in order to discriminate between models allowing for two regimes against models governed

by three regimes we also calculated an LR test for this null hypothesis. The results produced (see

LR4, Table 1) very low p-values, suggesting that three regimes are appropriate in all cases. Therefore,

in spite of parsimony considerations, we allowed for three regimes in the MSIAH-VECM.

4 Empirical Analysis II: Forecasting and Risk Assessment

In this section we compute tests designed to assess the performance of the random walk model, the

linear VECM and the MS-VECM in terms of exchange rate density forecasting. We then explore the

implications of the density forecasting results in a risk management exercise.

4.1 Out-of-Sample Density Forecasts

Following the results from the identification procedure reported in Table 1, we estimated the MSIAH-

VECM (3) for each of the eight exchange rates examined. The estimation yielded fairly plausible

estimates of the coefficients, including the adjustment coefficients in α, which were generally found to

be strongly statistically significantly different from zero.15 16

14Further, in the same spirit of the above LR tests, we executed an LR test in order to select the most parsimonious
MS-VECM appropriately representing the dynamic relationship between spot and forward exchange rates. In particular,
we tested the null of MSIAH-VECM with one lag against the alternative of MSIAH-VECM with three lags and, for all
exchange rates examined, we were not able to reject this null hypothesis at standard significance levels. The tests are
not reported to conserve space but are available upon request.
15We also checked the MSIAH-VECM residuals. Unfortunately, many conventional diagnostic tests, such as standard

residual serial correlation tests, may not have their conventional asymptotic distribution when the residuals come from
Markov-switching models and are therefore not reported here. However, the graphs of the residuals provided no visual
evidence of serial correlation in any of the residuals series.
16For each exchange rate we find that three regimes are appropriate in describing the data. Shifts from one regime

to another appeared to be due largely to shifts in the variance of the term structure equilibrium. On the other
hand, shifts in the intercept terms and, to a lesser extent, in the autoregressive structure were found to be relatively
smaller in magnitude, albeit strongly statistically significant. This seems consistent with the large empirical literature
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To investigate the forecasting ability of our linear and Markov-switching VECMs, we attempt to

exploit the whole information provided by the out-of-sample predictions of the models in the context

of a density forecasting approach. In particular, it is interesting to examine whether the MSIAH-

VECM (3), which was chosen on the basis of the identification procedure which rejected the linear

VECM, performs satisfactorily in terms of ‘closeness’ of the predicted moments of the forecast density

of the model relative to the true moments of exchange rate movements obtained from the data over

the forecast period. This question cannot be addressed fully by using conventional methods of

point forecast accuracy evaluation, since these methods consider only the first two moments of the

distribution of exchange rates.

A large and growing literature has recently focused on evaluating the forecast accuracy of empirical

models on the basis of density, as opposed to point, forecasting performance (see, inter alia, Diebold et

al., 1998; Granger and Pesaran, 1999; Tay and Wallis, 2000; Timmermann, 2000; Sarno and Valente,

2004a,b). Several researchers have proposed methods for evaluating density forecasts. For example,

Diebold et al. (1998) extend previous work on the probability integral transform and show how it is

possible to evaluate a model-based predictive density. Diebold et al. propose the calculation of the

probability integral transforms of the actual realizations of the variables (i.e. exchange rate changes

for each country under investigation) over the forecast period, {∆st+1}nt=1 with respect to the models’
forecast densities, denoted by {pt (∆st+1)}nt=1:

wt =

Z ∆st+1
−∞

pt (ϕ) dϕ t = 1, . . . , n. (4)

When the model forecast density corresponds to the true predictive density, then the sequence of

{wt}nt=1 is iid U [0, 1]. The idea is therefore to evaluate whether the realizations of the data over

the forecast period come from the selected forecast density by testing whether the {wt} series departs
from the iid uniformity assumption.

Berkowitz (2001) suggests that rather than working with the {wt} series it may be fruitful to take
the inverse normal cumulative distribution function (CDF) transform of the series {wt}, denoted by
{xt}. Under the null hypothesis of equality of the model density and the true predictive density,

{xt} is distributed as standard normal, and Berkowitz proposes an LR test for zero mean and unit
variance, under the maintained hypothesis of iid normality. We rely on the test of Berkowitz (2001)

investigating the time-varying nature of exchange rates risk premia. One tentative interpretation of this MSIAH-VECM
is, in fact, in terms of shifts in the mean and variance of foreign exchange returns consistent with deviations from the
equilibrium levels implied by conventional macroeconomic fundamentals that may be caused, for example, by ‘peso
problems’ or by other kinds of departures from the efficient markets hypothesis (see Engel and Hamilton, 1990; Clarida
et al., 2003).
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in our empirical work, since Berkowitz shows that working with the inverse normal transform of the

series {wt} drastically increases the power of the test relative the version based on uniformity.
While, under general conditions, the linear VECMs forecast densities are easy to calculate analyt-

ically (they are in fact multivariate normal distributions with means and variances given by functions

of the estimated parameters), the MSIAH-VECM forecast densities can, in general, be obtained an-

alytically only for one-step-ahead forecasts. The MSIAH-VECM forecast densities are mixtures of

multivariate normal distributions with weights given by the predicted regime probabilities. In general

the MSIAH-VECM forecast densities are non-normal, asymmetric and heteroskedastic. In this paper

we focus on the one-step-ahead forecast density of the MSIAH(3)-VECM(1), which is given by:

pt+1 (∆yt+1) =
3X

j=1

(
3X
i=1

pijP

)
pt+1 (∆yt+1 | zt+1 = j,Ωt) , (5)

where pij = Pr(zt+1 = j | zt = i) are the transition probabilities; P is the transition matrix conditional

on the information set at time t, Ωt; and pt+1 (∆yt+1 | zt+1 = j,Ωt) is the regime-conditional forecast

density.

We now turn to the evaluation of the probability integral transforms. The null of iid normality is

a joint hypothesis and, in the spirit of Diebold et al. (1998), we consider each part of the hypothesis in

turn. The iid assumption is tested by calculating the Ljung-Box (1978) test for no serial correlation.

In order to take into account the dependence occurring in the higher moments, we consider (x− x)q

for q up to four. In our forecasting exercise, we compare the density forecasting performance of the

linear VECM in equation (1) and the MSIAH-VECM in equation (3) with the standard benchmark

in the literature on exchange rate forecasting, namely the random walk model.17 The p-values from

carrying out these tests are reported in Panel a) of Table 2. The results suggest that, for each

exchange rate, we are unable to reject the null hypothesis of no serial correlation at conventional

significance levels. This finding holds for each of three models examined, namely the random walk

model, the linear VECM, and the MSIAH-VECM. We then carry out tests for normality to verify

whether the {xt} series displays any statistically significant skewness or excess kurtosis. The p-values
from these tests, reported in Panel b) of Table 2, suggest that the null hypotheses of no skewness and

no excess kurtosis cannot be rejected for any of the exchange rates and any of the three competing

models considered. Taken together, the results in Panel a) and Panel b) of Table 2 indicate that, for

each of the three models considered and for each exchange rate, the null hypothesis of iid normality
17Obviously, the random walk model refers to the level of the exchange rate, implying that in the case of exchange

rate changes the model becomes a model of normally distributed exchange rate changes with mean equal to the drift
term and variance equal to the residual variance estimated over the sample period available.
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of the {xt} series cannot be rejected.
Given these findings, the maintained hypothesis which is required to carry out the LR test proposed

by Berkowitz (2001) is validated by the data. Hence, we calculate the LR tests of zero mean and

unit variance proposed by Berkowitz (2001), which we report in Panel a) of Table 3. The results

are interesting. On the basis of these LR tests, the only model for which we cannot reject the null

hypothesis is the MSIAH-VECM. Indeed, the forecast densities of the random walk model and the

linear VECM lead to rejection of the null hypothesis for each exchange rate except for the New Zealand

dollar. In other words, except for the New Zealand dollar (where each of three competing models

performs satisfactorily), the random walk model and the linear VECM produce density forecasts that

are statistically significantly different from the actual density of exchange rates data over the forecast

period. On the other hand, the MSIAH-VECM generates, for each exchange rate considered, density

forecasts that are statistically identical to the true predictive densities.

One of the limitations of the testing procedure employed above is the fact that, while it allows us

to measure how well a model’s predictive density approximates the true predictive density of the data,

it does not allow a formal test of which of the competing models considered performs best in terms of

density forecasting performance. Heuristically this can be investigated by inspecting the p-values of

the Berkowitz tests for each individual model (i.e. higher p-values presumably reflect a better density

forecast) but it is not possible to use the Berkowitz testing procedure to obtain a p-value for the null

hypothesis that two models perform equally well in forecasting the true predictive distribution. A

solution to this problem has recently been proposed by Corradi and Swanson (2003, 2004), who derive

a test statistic for the null hypothesis that two models have equal density forecast accuracy. In some

sense, this test evaluates competing forecasting models in terms of density forecasting in the same

spirit of the Diebold and Mariano (1995) test for equal point forecast accuracy of competing models.

Using a measure that may be seen as the analogue of the mean square error in the contest of density

forecasts, Corradi and Swanson (2003, 2004) test a null hypothesis that can be expressed as

H0 :

Z
U

E
n
[F1,t+1 (∆st+1|u)− F0 (∆st+1|u)]2 − [F2,t+1 (∆st+1|u)− F0 (∆st+1|u)]2

o
φ (u) du, (6)

where u ∈ U ⊂ <, φ (u) ≥ 0 is a possible unbounded set on the real line; R
U

φ (u) du = 1; Fq,t+1 (∆st+1|u)
is the predictive cumulative density function (CDF) implied by model q = 1, 2 at time t + 1 for a

given u; and F0 (∆st+1|u) is the value of the true CDF for a given u. The test statistic for the null

hypothesis (6) takes the form of

ZT =

Z
U

ZT,uφ (u) du, (7)
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where ZT,u = 1√
n

Pn−1
t=0

½h gF1,t+1 (∆st+1|u)− F0 (∆st+1|u)
i2
−
h gF2,t+1 (∆st+1|u)− F0 (∆st+1|u)

i2¾
;

and gFq,t+1 is the estimated counterpart of Fq,t+1 for q = 1, 2. The test statistic ZT is then calculated
by averaging ZT,u over u ∈ U . In practice, following Corradi and Swanson (2003, 2004), this can be

done by generating a fine grid of u whose values are equally spaced across the range determined by

the minimum and maximum value of ∆st+1 over the sample period. Hence, if we assume a grid with

S points, the tests statistic (7) becomes:

ZT =
1

S

SX
(=1

(
1√
R

n−1X
t=0

½h gF1,t+1 (∆st+1|u()− F0 (∆st+1|u()
i2
−
h gF2,t+1 (∆st+1|u()− F0 (∆st+1|u()

i2¾)
.

(8)

Differently from the previous testing procedures based on the probability integral transform, the lim-

iting distribution of the test statistic (8) is a functional of a Gaussian process whose covariance kernel

is not a martingale difference sequence in the presence of model misspecification. This implies that

its limiting distribution is not nuisance-parameter free and therefore cannot be tabulated. Corradi

and Swanson (2003, 2004) show how to obtain critical values for the distribution of the test statistic

(8) by bootstrap.18 19

The results from calculating the Corradi-Swanson (2004) test are reported in Panel b) of Table 3.

In general, the null hypothesis of equal density forecast accuracy is rejected for most exchange rates

at the 5% significance level. In particular, there is clear evidence that the MSIAH-VECM is able

to generate predictive densities which are better approximations of the true predictive density than

the ones implied by the random walk model and the linear VECM. Indeed, by inspecting the second

and third columns in Panel b) of Table 3, the Corradi-Swanson test statistics are all positive and

statistically significant. This means that the distance between the true predictive density implied by

the data and the predictive densities generated by the random walk model (column 2) or the linear

VECM (column 3) is systematically larger than the distance between the true predictive density

and the predictive density generated by the MSIAH-VECM. Further, while it is straightforward to

establish, on the basis of these results, that the MSIAH-VECM is the best model in terms of density

forecasting performance, it is difficult to discriminate between the linear VECM and the random walk

18Full details of the bootstrap procedure are provided in Corradi and Swanson (2004, Section 3), which we follow
in computing these tests below. In our density forecasting exercise we implement the bootstrap designed to calculate
critical values using subsampling, as shown in Politis, Romano and Wolf (1999, Ch. 3) and recently employed by Linton,
Maasoumi and Whang (2003).
19Note that another test for equal density forecast accuracy available in the literature is due to Sarno and Valente

(2004a). While this test has the advantage of being easily applicable since it has a known limiting distribution, we prefer
to use the Corradi-Swanson test since this is more general and works under less stringent assumptions and regularity
conditions.
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model since there is no clear pattern in the sign of the test statistics.

Summing up, the forecasting results in this section suggest that, in terms of density forecasting

performance, the general MSIAH-VECM that allows for multiple regimes performs better than the

linear VECM and the random walk model in terms of explaining the out-of-sample behavior of ex-

change rate movements. Clearly, this finding, obtained by both testing procedures employed - namely

the Berkowitz test and the Corradi-Swanson test given in Table 3 - is due to the allowance for multiple

regimes in the MSIAH-VECM, which enhances the information embedded in the forward premia and

generates density forecasts that are closer to the true predictive densities, providing a better charac-

terization of the uncertainty surrounding the exchange rate forecasts than the other two competing

models.

4.2 The Economic Value of Density Forecasts: A Simple Example of VaR
Analysis

Under the 1997 Amendment to the Basle Accord, banks may seek approval for the adoption of their

own in-house risk models in order to calculate the minimum required capital to cover their market

risk. Given that banks are permitted to develop different risk models, it is very important to assess

the relative performance of alternative models. In particular, it is interesting to further investigate

the practical implications of the density forecasting results reported in the previous sub-section in the

context of a simple risk management exercise. Given the predictions of the three competing models

examined here, assume that a US risk manager wishes to quantify the one-week-ahead risk associated

with holding a position in foreign currency. Assume that the position in question is a naive diversified

portfolio comprising a domestic asset and N foreign assets which are identical in all respects except

for the currency of denomination, e.g. euro-deposit rates. Each asset delivers yields in local currency,

and given that diversification of this portfolio is assumed to be naive, the weight on each asset is

1
N+1 . Define it the domestic (US) one-period interest rate and ict the foreign one-period interest rate

associated with country c. Then, given a certain level of wealth at time t invested in this portfolio,

say Wt, the law of motion of wealth is as follows:

Wt+1 =

"
1

N + 1
exp (it) +

NX
c=1

1

N + 1
exp

¡
ict +∆s

c
t+1

¢#
Wt (9)

where ∆sct+1 is the first difference in the dollar log-exchange rate vis-á-vis the currency of country c

(e.g. Mark, 2001; Elton, Gruber, Brown and Goetzmann, 2003). Given that it and ict are known at

time t, the only source of risk to be taken in consideration by the risk manager at time t is the future
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nominal exchange rate ∆sct+1 for c = 1, . . . , N . Normalizing Wt = 1 for simplicity, the risk manager

can use a specific model of exchange rates at time t to produce one-week-ahead density forecasts of

∆sct+1, which, in turn, imply one-week-ahead density forecasts for the one-week-ahead wealth Wt+1.

On the basis of these densities the risk manager calculates, for each of the three competing models

- the random walk, the linear VECM and the MSIAH-VECM - the VaR as a confidence interval for

losses such that

Pr (Wt+1 < V aRt+1) = 1− φ. (10)

In our example the VaR is a 99% confidence level for losses (i.e. φ = 0.99), for all models; and N = 8,

corresponding to the eight dollar exchange rates studied in this paper. Equation (10) simply states

that the probability that one-week-ahead wealth,Wt+1 is less than the VaR is equal to the significance

level (1− φ).20

Summary statistics are reported in Panel a) of Table 4. In order to assess the relative size and

relative variability of the VaR estimates across the competing models we use the mean relative bias

statistic (MRB) and root mean squared relative bias statistic (RMSRB), suggested by Hendricks

(1996). The MRB statistic is calculated as:

MRBg =
1

n

nX
h=1

V aRg,t+h − V aRt+h

V aRg,t+h
(11)

where V aRg,t is the estimated VaR from the specific model g used at time t, V aRt is the cross-

sectional average VaR at time t over the three competing models, and n is the number of out-of-sample

observations. This statistic gives a measure of size for each estimated VaR relative to the average of

all competing models.

The RMSRB statistic is calculated as:

RMSRBg =

vuut 1

n

nX
h=1

µ
V aRg,t+h − V aRt+h

V aRg,t+h

¶2
. (12)

This measure provides us with information about the extent to which the estimated VaR tends

to vary around the average VaR at time t. The results from calculating the MRB and RMSRB,

reported in Panel a) of Table 4, suggest that the MSIAH-VECM produces higher VaRs (compared

to the average VaR produced by the other two competing models) and it also produces more volatile

VaRs (around the average VaR). The higher VaR produced by the MSIAH-VECM is indicative that

this model is less conservative, on average, than the other two competing models.

20For this sub-section, we obtained weekly observations of 1-week eurorates for each country examined during the
sample period January 1996-December 2003 from Datastream.
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We also report in Panel a) of Table 4 the average distance (AD) between the realized data and

the VaR implied by the random walk model, the linear VECM and the MSIAH-VECM, standardized

by the average distance of the random walk model; and, finally, we report the correlation coefficient

between the estimated VaR from each model and the realized data, calculated as in Hendricks (1996)

and termed corrV aR,W . These calculations indicate, on the basis of the AD, that the MSIAH-VECM

produces the “closest” VaR to the realized data by some 13% relative to the random walk model and

12% relative to the linear VECM. Also, on the basis of corrV aR,W , the MSIAH-VECM generates the

VaR most highly correlated with the realized data across the three models considered.21

In Panel b) of Table 4, we report some VaR backtests. In particular, we report (as V ) the number

of times that Wt+1 < V aRt+1, and the implied estimate of the violation rate (i.e. V divided by

the number of out-of-sample observations), say V R, for each of the random walk model, the linear

VECM and the MSIAH-VECM respectively. We also test of the null hypothesis that the violation rate

V R does not exceed the theoretical 1% violation rate considered in this VaR application, calculated

as in Kupiec (1995). Finally, we report the Christoffersen and Diebold (2000) test for the sample

first-order autocorrelation of a binary variable which is equal to unity if a violation occurs and zero

otherwise.22 The results in Panel b) indicate that the random walk model and the linear VECM are

too conservative in that they both exhibit one violation, whereas the number of violations under the

VaR estimated for the MSIAH-VECM is three, which implies an estimated violation rate of 0.72%.

Such estimated violation rate is indeed insignificantly different from the theoretical violation rate of

1%, as confirmed by the Kupiec test statistic. On the other hand, the estimated violation rate for the

other two competing models is, in each case, equal to about 0.23%, and is statistically significantly

different from the theoretical violation rate of 1%. The CD test also suggests that there is no

first-order serial correlation in the VaR violations for each of the three models under examination,

indicating that these violations are, for each model, non-systematic.

Summing up, this simple application further illustrates the satisfactory out-of-sample forecasting

performance of the MSIAH-VECM relative to the random walk benchmark and to the linear VECM.

We find that the MSIAH-VECM provides a violation rate which is statistically insignificantly different

from the theoretical violation rate of 1%, whereas the other two competing models provide estimated

VaRs which are too conservative and, generally, poor estimates of the risk of the portfolio under

21The results show the poor performance of the other two models, which both display statistically insignificant
correlation coefficients and, for the random walk model, a negatively signed one.
22A significant autocorrelation coefficient denotes a persistent series of violations, which in turn implies unsatisfactory

performance of a model in estimating the VaR.
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examination. This may be seen as evidence that the most general model, the MSIAH-VECM does

better than the other two competing models at matching the moments of the predictive distribution

of exchange rate changes, generating VaRs that are more in line with the theoretical violation rate

of 1%, confirming the findings of the previous sub-section on density forecasting performance and

illustrating the practical importance of such results.

5 Conclusion

This article has re-examined the performance of some empirical exchange rate models in terms of

out-of-sample forecasting of nominal exchange rates. In particular, inspired by the success of recently

developed models of the term structure of forward exchange rates in terms of point forecasting, we

have carried out a density forecasting analysis, applied to both linear and regime-switching versions

of these term structure models. This exercise was aided by the recent developments of sophisticated

econometric techniques which allow us to formally evaluate the performance of time series models in

terms of density forecasting.

Our main result, using weekly data for eight US dollar exchange rates during the recent floating

exchange rate regime, is that a Markov-switching VECM for spot and forward exchange rates that

explicitly takes into account the mounting evidence that the conditional distribution of exchange rates

is well characterized by a mixture of normal distributions produces very satisfactory one-week-ahead

density forecasts. This model was found to outperform its more parsimonious linear counterpart as

well as the standard benchmark in the exchange rate forecasting literature, namely the random walk

model.

The implication of our findings were further investigated in the context of a simple application of

Value-at-Risk methods. In our application we specifically examined the implications of our exchange

rate density forecasts for a risk manager who has to quantify the risk associated with holding a

currency portfolio over a one-week horizon. This application further illustrated how the Markov-

switching VECM captures satisfactorily the moments of the predictive density of exchange rates,

generating VaRs that measure the probability of large losses more accurately than the other two

competing models.

Overall, the pecking order implied by our density forecasting results - Markov-switching term

structure model, linear term structure model, random walk model23 - is the same as recorded in

23Specifically, this is the result suggested by the Berkowitz test statistic, while using the Corradi-Swanson test we
were not able to discriminate between the linear VECM and the random walk model. All tests indicated, however,
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previous work based on conventional point forecasting criteria. However, when evaluating these

models in terms of density forecasting results, the superiority of the Markov-switching VECM relative

to the linear VECM becomes much clearer than previously recorded in the literature using point

forecast evaluation. Overall, our findings highlight how better density forecasts of exchange rates, of

the type recorded in this paper using Markov-switching models of the term structure, can potentially

lead to substantial improvements in risk management and, more precisely, to better estimates of

downside risk.

that the best performing model is the Markov-switching VECM.
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Table 1. ‘Bottom up’ identification procedure

LR1 LR2 LR3 LR4 Linearity

UK 0 1.67×10−16 1.59×10−14 2.61×10−22 0
Switzerland 0 4.13×10−14 7.36×10−18 2.23×10−24 0
Japan 0 3.02×10−12 2.61×10−18 2.83×10−37 0
Canada 3.98×10−243 5.93×10−3 9.77×10−15 5.85×10−46 2.24×10−275
New Zealand 0 2.08×10−8 2.86×10−8 4.01×10−82 0
Sweden 0 0 4.77×10−9 1.93×10−17 0
Norway 0 4.23×10−27 6.64×10−10 2.64×10−32 0
Denmark 0 1.53×10−6 2.79×10−13 1.09×10−50 0

Notes: LR1 is a test statistic of the null hypothesis of MSI(3)-VECM(1) versus MSIAH(3)-
VECM(1). LR2 is a test statistic of the null hypothesis of MSH(3)-VECM(1) versus MSIAH(3)-
VECM(1). LR3 is a test statistic of the null hypothesis of MSIH(3)-VECM(1) versus MSIAH(3)-
VECM(1). LR4 is the likelihood ratio test for the null hypothesis that the MSIAH-VECM(1) with
2 regimes is equivalent to the MSIAH-VECM(1) with 3 regimes. These LR tests are constructed as
2(lnL∗− lnL), where L∗ and L represent the unconstrained and the constrained maximum likelihood
respectively. These tests are distributed as χ2(r) where r is the number of restrictions. ‘Linearity’
is a linearity test for the null hypothesis that the selected MSIAH-VECM(1) is equivalent to a linear
Gaussian VECM(1). p-values relative to the LR4 and linearity tests are calculated as in Ang and
Bekaert (1998). For all test statistics only p-values are reported; p-values below 10−350 are reported
as 0.
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Table 2. Out-of-sample performance: tests for iid and normality

Panel a) Tests for iid based upon inverse normal probability transform

(x− x)

RW VECM MSIAH-VECM

UK 0.6418 0.7148 0.5057
Switzerland 0.2083 0.3228 0.2938

Japan 0.1297 0.3857 0.6756
Canada 0.9946 0.9999 0.9996

New Zealand 0.1137 0.2823 0.2758
Sweden 0.5129 0.7465 0.8697
Norway 0.2161 0.4233 0.4113
Denmark 0.2266 0.3691 0.4011

(x− x)
2

RW VECM MSIAH-VECM

0.8343 0.8589 0.4124
0.4420 0.4007 0.2085

0.8186 0.6971 0.3731
0.3179 0.2214 0.2993
0.2287 0.0826 0.2010
0.7254 0.7170 0.6521
0.4269 0.4719 0.2673
0.4258 0.4131 0.3374

(x− x)
3

RW VECM MSIAH-VECM

UK 0.5712 0.6276 0.5653
Switzerland 0.4365 0.3774 0.2621
Japan 0.6344 0.7032 0.9260
Canada 0.9997 0.9898 0.9927

New Zealand 0.0927 0.0564 0.1713
Sweden 0.6938 0.7875 0.7801
Norway 0.6198 0.6643 0.5724
Denmark 0.4958 0.5058 0.5879

(x− x)
4

RW VECM MSIAH-VECM

0.6671 0.6519 0.6486
0.5964 0.5721 0.4772
0.7047 0.6953 0.3668
0.1012 0.4297 0.2364
0.3145 0.1416 0.1795
0.7622 0.7148 0.6689
0.6167 0.6197 0.4444
0.5060 0.4802 0.3604

(continued ...)
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(... Table 2 continued)

Panel b) Tests for normality based upon inverse normal probability transform

RW VECM MSIAH-VECM
Sk Ku Sk Ku Sk Ku

UK 0.4021 0.2618 0.3431 0.2669 0.5604 0.3330
Switzerland 0.1823 0.4309 0.1921 0.4089 0.2324 0.3615
Japan 0.0951 0.4780 0.0817 0.4511 0.2718 0.4734
Canada 0.2815 0.5165 0.4250 0.4801 0.4418 0.5155

New Zealand 0.7336 0.4482 0.6906 0.4043 0.6684 0.4273
Sweden 0.4482 0.4069 0.4624 0.4442 0.5021 0.3872
Norway 0.3649 0.2717 0.4698 0.2537 0.5232 0.3212
Denmark 0.4204 0.4567 0.4156 0.4464 0.5525 0.2804

Notes: Panel a): Figures denote p-values for the Ljung and Box (1978) χ2 test of no first-order
serial correlation of the normal inverse probability transform series, xt, as defined in Section 4.1.
Panel b): Figures denote p-values for the tests of the null hypothesis that the skewness (Sk) and
excess kurtosis (Ku) of the distribution of the normal inverse probability transform series xt are equal
to 0.
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Table 3. Out-of-sample performance: density forecasting tests

Panel a) Berkowitz (2001) LR test

RW VECM MSIAH-VECM

UK 2.60×10−2 3.08×10−2 6.92×10−1
Switzerland 5.47×10−6 7.03×10−5 7.03×10−1
Japan 1.27×10−10 4.25×10−8 3.19×10−1
Canada 2.91×10−7 6.86×10−5 3.11×10−1

New Zealand 6.41×10−1 6.35×10−1 7.04×10−1
Sweden 3.46×10−9 3.19×10−8 3.44×10−1
Norway 4.88×10−6 1.58×10−5 8.12×10−1
Denmark 5.70×10−4 3.42×10−4 3.89×10−1

Panel b) Corradi and Swanson (2004) test

RW vs VECM RW vs MSIAH-VECM VECM vs MSIAH-VECM

UK -0.0013 0.0201 0.0214
[0.0274] [0.0032] [0.0030]

Switzerland -0.0071 0.0077 0.0148

[0.0221] [0.0237] [0.0212]

Japan 0.0183 0.0102 0.0284
[0.0124] [0.0194] [0.0122]

Canada -0.0211 0.0264 0.0475
[0.0101] [0.0073] [0.0037]

New Zealand 0.0074 0.0285 0.0211
[0.0220] [0.0092] [0.0129]

Sweden 0.0010 0.0117 0.0107
[0.0299] [0.0280] [0.0307]

Norway 0.0085 0.0122 0.0037

[0.0211] [0.0188] [0.0249]

Denmark -0.0107 0.0047 0.0154
[0.0203] [0.0013] [0.0009]

Notes: Panel a): Figures denote p-values from computing the LR test statistic of Berkowitz
(2001), which is distributed as χ2 (3) under the null hypothesis. Panel b): Figures reported are
Corradi and Swanson (2004) test statistics for the null hypothesis that the conditional densities from
two competing models are equally accurate relative to the true density. The test statistics are
constructed by selecting u ∈ [∆smin,∆smax] where ∆s is the time series of the log-difference of the
nominal exchange rate over the entire sample period and 100 equally spaced values of u across this
range were used. Values in brackets are p-values calculated by bootstrap based on subsampling as in
Politis, Romano and Wolf (1999), where the number of bootstrap replications is set to 100.
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Table 4. Value-at-Risk calculations

Panel a) Summary statistics

RW VECM MSIAH-VECM

MRB -0.0014 -0.0010 0.0024
RMSRB 2.43×10−6 1.45×10−6 6.65×10−6

AD - 0.0132 0.1347

corrV aR,W -0.0121 0.0314 0.1553**

Panel b) VaR backtests

RW VECM MSIAH-VECM

V 1 1 3
V R 0.23%* 0.23%* 0.72%
CD 0.998 0.996 0.994

Notes: Panel a): MRB and RMSRB are the mean relative bias and the root mean square
relative bias, calculated as in Hendricks (1996) and given in equations (11) and (12) respectively.
AD is the average distance between the realized data and the VaR implied by each of the random
walk (RW) model, linear VECM and MSIAH-VECM, standardized by the average distance of the
RW model. corrV aR,W is the correlation coefficient between the estimated VaR and the realized
data, calculated as in Hendricks (1996). ** indicates statistical significance at the 1% significance
level. Panel b): V denotes the number of times that Wt+1 < V aRt+1, while V R denotes the
estimated violation rate (i.e. V divided by the number of out-of-sample observations), for each of the
three competing models. We test the null hypothesis that the violation rate V R does not exceed
the theoretical violation rate of 1% using the Kupiec (1995) test; the asterisk * indicates statistical
significance at the 5% significance level, while the absence of an asterisk next to V R implies that
the Kupiec test statistic does not reject the null hypothesis of equality of the model’s estimated
violation rate and 1%. CD is the Christoffersen and Diebold (2000) test for the sample first-order
autocorrelation of a binary variable which is equal to unity if a violation occurs and zero otherwise.
For the CD tests only p-values are reported.
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