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1 Introduction

A common finding in much of the empirical finance literature is that although the returns on speculative

assets contain little serial correlation, the absolute returns and their power transformations are highly

correlated (see, for example, Dacorogna et al. 1993, Granger and Ding, 1995a, 1995b and Breidt et al.

1998). In particular, Ding et al. (1993) investigate the autocorrelation structure of |rt|δ, where rt are

the daily S&P 500 stock market returns, and δ is a positive number. They found that |rt| has significant

positive autocorrelations for long lags. Ding and Granger (1996) analyse the autocorrelation structure

of the Deutschmark-U.S. dollar exchange rate and find the strongest autocorrelation pattern for δ = 1
4 .

Motivated by this empirical result they propose a new general class of ARCH models, which they call

the Asymmetric Power ARCH (APARCH) model. In addition, they show that the APARCH model

comprises seven other models in the literature1. Bollerslev and Mikkelsen (1996) provide strong evidence

that the conditional variance for the S&P 500 composite index is best modeled as a mean-reverting

fractionally integrated process. Baillie et al. (1996) apply the fractionally integrated GARCH model

to the Deutschmark-U.S. dollar exchange rate. They illustrate how this model captures the long-run

dynamics of the series better than either the stable GARCH or the integrated GARCH (IGARCH) model.

Tse (1998) analyzed the yen-dollar exchange rate using a fractionally integrated APARCH (FIAPARCH)

type of model. This model is constructed by extending the APARCH model of Ding et al. (1993) to a

process that is fractionally integrated, as defined by Baillie et al. (1996)2.

The FIAPARCH model increases the flexibility of the conditional variance specification by allowing

(a) an asymmetric response of volatility to positive and negative “shocks”, (b) the data to determine the

power of returns for which the predictable structure in the volatility pattern is the strongest, and (c)

long-range volatility dependence. These three features in the volatility processes of exchange rate returns

have major implications for many paradigms in modern financial economics. Optimal portfolio decisions,

the pricing of long-term options and optimal portfolio allocations must take into account all of these

three findings. Value-at-Risk is computed by utilizing volatility forecasts. Giot and Laurent (2003) have

shown that APARCH volatility forecasts outperform those obtained from the RiskMetrics model which

is equivalent to an integrated GARCH model with pre-specified autoregressive parameter value. Thus,

the FIAPARCH model may lead to further improvement, if FIAPARCH forecasts are more accurate than
1These models are: the ARCH(p) model (see Engle, 1982), the GARCH(p,q) model (see Bollerslev, 1986), the Tay-

lor/Schwert GARCH in standard deviation model (see Taylor, 1986, and Schwert, 1900), the GJR model (see Glosten et al.,

1993), the TARCH model (see Zakoian, 1994), the NARCH model (see Higgins and Bera, 1992) and the log-ARCH model

(see Geweke, 1986, and Pantula, 1986).
2The Fractionally integrated GARCH (FIGARCH) model is closely related to the long- memory GARCH model intro-

duced by Robinson (1991) and the component GARCH model introduced by Ding and Granger (1996).
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those obtained from the stable APARCH.

Another important advantage of having a long-memory asymmetric power ARCH model is that it

nests the two major classes of ARCH models, namely the APARCH and FIGARCH models, as special

cases of the general model. This provides an encompassing framework for these two broad classes of

models and facilitates comparison between them. The main contribution of this paper is to enhance our

understanding of whether and to what extent this type of model improves upon its simpler counterparts.

The evidence provided by Tse (1996, 1998) suggests that the fractionally integrated APARCH model

is applicable to the yen-dollar exchange rate. An interesting research issue is to explore how generally

applicable the FIAPARCH model is to a wide range of currencies. In this paper we attempt to address

this issue in two steps. First, by estimating a FIAPARCH model for ten series of exchange rate returns

we provide in-sample evidence. These countries are Canada, France, Germany, Hong Kong, Japan,

Singapore, the United Kingdom and the United States. As the FIAPARCH specification adopted in this

paper nests the FIGARCH and APARCH formulations, the relative ranking of each of these models can

be considered using the standard Wald testing procedure. Furthermore, standard information criteria,

such as the Hannan-Quinn and the Shibata ones, can be used to provide a ranking of the models. Second,

we provide out-of-sample evidence, i.e. the ability of the FIAPARCH model to forecast exchange rate

volatility is assessed by a variety of forecast error statistics. Moreover, a direct comparison of the forecast

accuracy of nested models will be carried out by encompassing tests.

The remainder of the paper is structured as follows. In section 2 we detail the FIAPARCH model and

discuss how various GARCH models are nested within it. Section 3 discusses the data and presents the

empirical results. Quasi-maximum Likelihood (QML) parameter estimates for the FIAPARCH model are

presented, as are the results of the Wald testing procedure. The robustness of these results is assessed

using four alternative information criteria. To test for the apparent similarity of the power and fractional

differencing terms across countries pairwise Wald tests are performed. Section 4 provides out-of-sample

evidence. The different model specifications are evaluated in terms of their forecast ability. For each

country and each model fourteen forecast error measures are calculated and evaluated against each other.

Moreover, we test for equal forecast accuracy of the nested models by utilizing two encompassing test

statistics. Section 5 concludes the analysis.
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2 FIAPARCH Model

One of the most common models in finance and economics to describe a time series rt of exchange rate

returns is the white noise process

rt = c + εt, t ∈ N, (2.1)

with

εt = et

√
ht,

where {et} are independent, identically distributed random variables with E(et) = E(e2
t − 1) = 0. ht is

positive with probability one and is a measurable function of Σt−1, which in turn is the sigma-algebra

generated by {rt−1, rt−2, . . .}. That is ht denotes the conditional variance of the returns {rt} (rt|Σt−1) ∼
IID(c + ρrt−1, ht).

Tse (1998) examined the conditional heteroskedasticity of the yen-dollar exchange rate using a long-

memory volatility specification. The paper by Tse extends the APARCH model to a fractionally inte-

grated APARCH process to represent long-memory in volatility. Accordingly, we consider the FIAPARCH

(1, d, 1) model represented by the following conditional variance equation:

(1− φL)(1− L)df(εt) = ω + (1− βL)ξt, (2.2)

with

ξt ≡ f(εt)− h
δ
2
t ,

and

f(εt) ≡ [|εt| − γεt]δ,

where γ (−1 < γ < 1) is the leverage parameter, δ is the parameter for the power term, |φ| < 1, ω > 0,

and 0 ≤ d ≤ 13.

On rearranging the terms, (2.2) can be written as follows:

h
δ
2
t = (1− β)−1ω + λ(L)f(εt),

3The fractional differencing operator, (1− L)d is most conveniently expressed in terms of the hypergeometric function

(1− L)d ≡ F (−d, 1; 1; L) =
∞∑

j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Lj =

∞∑

j=0

(d

j

)
(−1)jLj ,

where

F (a, b; c; z) ≡
∞∑

j=0

(a)j(b)j

(c)j

zj

j!

is the Gaussian hypergeometric series, (b)j is the shifted factorial defined as (b)j ≡
∏j−1

i=0 (b + i) (with (b)0 ≡ 1), and Γ(·)
is the gamma function.
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where λ(L) is defined as4

λ(L) ≡
∞∑

i=1

λiL
i ≡ [

1− (1− βL)−1(1− φL)(1− L)d
]

When d = 0, the process in (2.2) reduces to the APARCH(1,1) model. Two major classes of ARCH models

are nested in the APARCH specification. Specifically, a Taylor/ Schwert type of model5 is specified when

δ = 1, and a Bollerslev type of model is specified when δ = 2. There seems to be no obvious reason why

one should assume that the conditional standard deviation is a linear function of lagged absolute returns

or the conditional variance a linear function of lagged squared returns. As Brooks et al. (2000) point out

“The common use of a squared term in this role (δ = 2) is most likely to be a reflection of the normality

assumption traditionally invoked regarding financial data. However, if we accept that (high frequency)

data are very likely to have a non-normal error distribution, then the superiority of a squared term is lost

and other power transformations may be more appropriate. Indeed, for non-normal data, by squaring

the returns one effectively imposes a structure on the data which may potentially furnish sub-optimal

modelling and forecasting performance relative to other power term”.

Since its introduction by Ding et al. (1993), the APARCH model has been frequently applied. It

is also worth noting that Fornari and Mele (1997) showed the usefulness of the APARCH scheme in

approximating models developed in continuous time as systems of stochastic differential equations. This

feature of GARCH schemes has usually been overshadowed by their well-known role as simple econometric

tools providing reliable estimates of unobserved conditional variances (Fornari and Mele, 2001).

When γ = 0 and δ = 2 the process in (2.2) reduces to the FIGARCH(1, d, 1) model6. The FIGARCH

specification includes Bollerslev’s (1986) GARCH (when d = 0) and the Integrated GARCH (IGARCH)

model (when d = 1) as special cases. Baillie et al. (1996) mention that a striking empirical regularity that

emerges from numerous studies of high-frequency, say daily, asset pricing data with ARCH-type models,
4The coefficients λi in the lag polynomial λ(L) can be calculated using the following recursions: λ1 = φ − β + d, and

λi = βλi−1 + [(i − 1 − d)i−1 − φ]ζi−1 for i = 2, . . . ,∞, where ζi = ζi−1(i − 1 − d)i−1, with ζ1 = d (see Bollerslev and

Mikkelsen, 1996). From these recursions, it follows that the inequality constraints:

β − d ≤ φ ≤ (2− d)(0.333),

d[φ− (1− d)(0.5)] ≤ β(φ− β + d)

are sufficient to ensure that the parameters in the infinite ARCH representation are all nonnegative (see Bollerslev and

Mikkelsen, 1996).
5Taylor (1986) and Schwert (1990) have suggested that the conditional standard deviation obeys a GARCH specification.
6When d ∈ (0, 1), the cumulative impulse response coefficients for the optimal linear forecast of the future conditional

variance are eventually dominated by a hyperbolic rate of decay rather than the exponential rate that is characteristic of

covariance-stationary GARCH processes. Furthermore, the FIGARCH model has a strictly stationary and ergodic solution,

which is not, however, square integrable. Whether this result holds for the FIAPARCH model is an open question (Tse,

1998).
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concerns the apparent widespread finding of integrated GARCH behavior. This property has been found

in stock returns, exchange rates, commodity prices and interest rates (see Bollerslev et al. 1992). Yet

unlike I(1) processes for the mean, there is less theoretical motivation for truly integrated behavior in the

conditional variance (see Baillie et al. 1996 and the references therein)7.

Finally, as noted by Baillie et al. (1996) for the variance, being confined to only considering the

extreme cases of stable GARCH and IGARCH processes can be very misleading when long-memory (but

eventually mean-reverting) processes are generating the observed data. They showed that data gener-

ated from a process exhibiting long-memory FIGARCH volatility may be easily mistaken for IGARCH

behavior.

3 Data and basic estimation results

Daily exchange rate data for ten currencies against the US dollar were sourced from the Datastream

database for the period 1st January 1990 to 18th November 2003, giving a total of 3,621 observations.

The ten currencies are: the British pound (BRP), the German mark (GEM), the French franc (FRF),

the Italian lira (ITL), the Swedish krona (SWK), the Spanish peseta (SPP), the Japanese yen (JAY), the

Singapore dollar (SID), the Canadian dollar (CAD) and the Australian dollar (AUD). For each national

currency, the continuously compounded return was estimated as rt = 100 · [log(pt)−log(pt−1)] where pt

is the price on day t. The FIAPARCH models are estimated for period 1st January 1990 to June 2002,

i.e. we have 3256 in sample observations, while the period from July 2002 to November 2003 is used for

out-of-sample forecasting providing 365 daily observations.

We proceed with the estimation of the FI(A)PARCH(1, d, 1) model in equations (2.1) and (2.2) in order

to take into account the serial correlation and the GARCH effects observed in our time series data, and

to capture the possible long-memory in volatility. We estimate the FI(A)PARCH models using the quasi-

maximum likelihood estimation (QMLE) method as implemented by Laurent and Peters (2002) in Ox. To

obtain robust inference about the estimated models, we compute the robust standard errors as suggested

by Bollerslev and Wooldridge (1992). Table 1 reports the results for the period 1st January 1990 to June

7In particular, the occurrence of a shock to the IGARCH volatility process will persist for an infinite prediction horizon.

This extreme behavior of the IGARCH process may reduce its attractiveness for asset pricing purposes, where the IGARCH

assumption could make the pricing functions for long-term contracts very sensitive to the initial conditions. This seems

contrary to the perceived behavior of agents who typically do not frequently and radically change their portfolio compo-

sitions. In addition, the IGARCH model is not compatible with the persistence observed after large shocks such as the

Crash of October 1987. A further reason to doubt the empirical reasonableness of IGARCH models relates to the issue of

temporal aggregation. A data generating process of IGARCH at high frequencies would also imply a properly defined weak

IGARCH model at low frequencies of observation. However, this theoretical result seems at odds with reported empirical

findings for most asset categories (abstracted from Baillie et al. 1996).
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2002. The φ̂ parameter is significant for all countries but Spain, while β̂ is significant for all countries.

The estimates for leverage term (γ̂) are statistically significant for the British pound, the Swedish krona,

the Japanese yen, the Singapore dollar and the Canadian dollar, confirming the hypothesis that there

is negative correlation between returns and volatility for these countries. For the other countries we

estimated an insignificant leverage term and therefore reestimated the model excluding the γ parameter.

In all countries the estimates for the power term (δ̂) and the fractional differencing parameter (d̂) are

highly statistically significant. In all cases, the ARCH parameters satisfy the set of conditions sufficient

to guarantee the nonnegativity of the conditional variance (see footnote 3). According to the values of

the Ljung-Box tests for serial correlation in the standardized and squared standardized residuals there is

no statistically significant evidence of misspecification.
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Table 1: FI(A)PARCH(1,d,1) models (QML Estimation).

BRP GEM FRF ITL SWK SPP JAY SID CAD AUD

ω̂ 0.02 0.02 0.02 0.01 0.04 0.03 0.02 0.13 0.15 0.03

(0.18) (1.86) (2.01) (1.00) (1.76) (1.16) (1.05) (1.33) (1.42) (1.72)

φ̂ 0.41 0.40 0.46 0.32 0.34 0.22 0.73 0.61 0.33 0.43

(4.72) (6.36) (6.26) (5.20) (2.87) (1.13) (4.92) (4.57) (3.44) (4.81)

γ̂ -0.17 - - - -0.22 - 0.48 -0.14 -0.12 -

(-1.87) - - - (-2.10) - (2.47) (-2.05) (-1.54) -

δ̂ 1.92 1.78 1.81 1.97 1.73 2.08 1.76 1.89 1.91 1.94

(10.00) (5.46) (7.97) (10.74) (5.90) (8.70) (5.85) (12.00) (7.10) (7.96)

β̂ 0.64 0.732 0.72 0.71 0.53 0.46 0.80 0.80 0.78 0.63

(7.78) (8.05) (8.94) (8.25) (3.91) (1.91) (7.88) (7.60) (6.92) (5.41)

d̂ 0.30 0.39 0.35 0.45 0.30 0.27 0.19 0.45 0.51 0.27

(3.63) (3.02) (3.63) (4.06) (5.05) (3.54) (2.45) (3.90) (2.49) (3.50)

Q20 14.36 14.65 16.08 27.26 15.02 21.16 26.83 32.60 18.46 22.21

[0.81] [0.80] [0.71] [0.13] [0.78] [0.39] [0.14] [0.04] [0.56] [0.33]

Q2
20 12.13 24.57 13.69 28.67 19.32 15.81 17.78 7.09 12.58 13.15

[0.84] [0.14] [0.75] [0.05] [0.37] [0.61] [0.47] [0.99] [0.82] [0.78]

Notes: For each of the ten currencies , table 1 reports QML parameter estimates for the FI(A)PARCH(1, d, 1)

model: rt= c + εt, with εt= et

√
ht, et

i.d∼ t(0, 1), and (1− φL)(1− L)d
f(εt) = ω + (1− βL)ξt,

where f(εt) ≡ [|εt| − γεt]
δ
, and ξt≡ f(εt)− h

δ
2
t . The numbers in parentheses are t-statistics. Robust

standard errors are reported in {·}. Q20 and Q2
20 are the 20th order Ljung-Box tests for serial

correlation in the standardized and squared standardized residuals respectively.

The numbers in brackets are p-values.

3.1 Tests of fractional differencing and power term parameters.

A large number of studies have documented the persistence of volatility in stock returns; see, e.g., Ding

et al. (1993), Ding and Granger (1996), Engle and Lee (2000). Using daily data many of these studies

have concluded that the volatility process is very persistent and appears to be well approximated by an

IGARCH process. Similarly, Baillie et al. (1996) estimate a GARCH model for the Deutschmark-U.S.

dollar exchange rate and obtain a persistence parameter which is not significantly different from one

(α̂ + β̂ = 0.98 (0.01)).

Accordingly, the persistence parameter we estimated in the (A)PARCH(1,1) specification (not re-
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ported here) is very close to unity, suggestive of “integrated” (A)PARCH (“I(A)PARCH”) behavior.

However, from the FI(A)PARCH(1, d, 1) model estimates (reported in table 1), it appears that the long-

run dynamics are better modelled by the fractional differencing parameter. To test for the persistence of

the conditional heteroskedasticity models, we examine the Wald (W) statistic for the linear constraints

d = 1 (“I(A)PARCH” model) and d = 0 (stable (A)PARCH model). As seen in table 2 the W statis-

tics clearly reject both the (A)PARCH and “I(A)PARCH” null hypotheses against the FI(A)PARCH

model. Thus, purely from the perspective of searching for a model that best describes the volatility in

the exchange rate series, the FI(A)PARCH model appears to be the most satisfactory representation.

Following the work of Ding et al. (1993), Hentschel (1995), Brooks et al. (2000) and Tse (1998)

among others, the Wald statistic can be used for model selection. Alternatively, the Akaike, Schwarz,

Hannan-Quinn or Shibata information criteria (AIC, SIC, HQIC, SHIC respectively) can be applied to

rank the various GARCH models8. These model selection criteria check the robustness of the Wald

testing results discussed above9. According to the AIC, SIC, HQIC and SHIC, the optimal GARCH type

model (i.e., FIAPARCH, APARCH or “IAPARCH”) for all currencies was the FIAPARCH one10.

Moreover, recall that the two common values of the power term imposed throughout much of the

GARCH literature are the values of two (Bollerslev’s model) and unity (the Taylor/Schwert model).

The invalid imposition of a particular value for the power term may lead to sub-optimal modeling and

forecasting performance (Brooks et al. 2000). Accordingly, we test whether the estimated power terms

are significantly different from unity or two using Wald tests. As reported in table 2, all the estimated

power coefficients are significantly different from unity (see column three). In sharp contrast, each of the

power terms are not significantly different from two (see column four). Hence, on the basis of these results,

in all the cases support is found for the Bollerslev FI(A)ARCH model. In other words, according to the

Wald testing results, allowing the power term to take on values other than two does not significantly

enhance the models.

The evidence obtained from the Wald test statistic is reinforced by the model ranking provided by

the AIC, SIC, HQIC and SHIC model selection criteria. In all cases the criteria favor the Bollerslev

FI(A)ARCH model over both Taylor/Schwert’s and power fractionally integrated (asymmetric) GARCH

models. That is, the optimal GARCH type model (i.e. the specification that produced the lowest AIC,

SIC, HQIC or SHIC) according to each criterion was the Bollerslev FI(A)ARCH one for all currencies11.

8As a general rule, the AIC, SIC, HQIC or SHIC approaches suggest selecting the model which produces the lowest AIC,

SIC, HQIC or SHIC values.
9The use of the AIC, SIC, HQIC and SHIC techniques for comparing models has the advantage of being relatively less

onerous compared to the Wald testing procedures, which only allow formal pairwise testing of nested models (Brooks et al.

2000).
10We do not report the AIC, SIC, HQIC or SHIC values for space considerations.
11We do not report the AIC, SIC, HQIC or SHIC values for space considerations.
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Table 2: Tests of fractional differencing and power term parameters.

H0:(A)PARCH
(d=0)

H0: “I(A)PARCH”
(d=1)

H0: FI(A)ARCH
(δ=1)

H0: FI(A)ARCH
(δ=2)

BRP 13.16 [0.00] 70.31 [0.00] 22.86 [0.00] 0.20 [0.66]

GEM 9.00 [0.00] 22.43 [0.00] 5.70 [0.02] 0.47 [0.50]

FRF 13.10 [0.00] 45.12 [0.00] 12.73 [0.00] 0.69 [0.41]

ITL 16.44 [0.00] 24.04 [0.00] 27.97 [0.00] 0.25 [0.62]

SWK 25.51 [0.00] 143.83 [0.00] 6.19 [0.02] 0.85 [0.36]

SPP 12.50 [0.00] 95.14 [0.00] 16.50 [0.00] 0.14 [0.91]

JAY 5.98 [0.02] 114.37 [0.00] 6.39 [0.01] 0.64 [0.43]

SID 15.19 [0.00] 22.71 [0.00] 31.66 [0.00] 0.52 [0.47]

CAD 6.18 [0.02] 5.83 [0.02] 11.44 [0.00] 0.11 [0.74]

AUD 12.22 [0.00] 86.54 [0.00] 14.79 [0.00] 0.71 [0.79]

Notes: For each of the ten currencies, columns 1 and 2 report the value of the following Wald test:

W=[d̂u−dr)2/(SEd)2, where d̂u denotes the estimated value of the long-memory parameter for the

unrestricted FI[A)PARCH(1, d, 1) model, SEd is the corresponding standard error and dr is

either 0 or 1. Columns 3 and 4 report the corresponding Wald statistics for the power term parameter.

The numbers in brackets are p values.

Furthermore, we test the apparent similarity of the optimal fractional differencing parameters esti-

mated for each of the ten currencies using a pairwise Wald test:

W =
(d̂1 − d̂2)2

(SE1)2 + (SE2)2
,

where d̂i, i = 1, 2 is the fractional differencing parameter from the FI(A)PARCH model estimated for

currency i and SEi is the standard error associated with the FI(A)PARCH model estimated for currency

i. The above Wald statistic tests whether the fractional differencing parameters of the two exchange

rates are equal (d̂1 = d̂2), and is distributed as χ2
(1). The following table presents the results of this

pairwise testing procedure. The p values in the table provide support for the null hypothesis that the

estimated fractional parameters are not significantly different from one another. For example, currencies

which generated very similar fractional parameters, such as the BRP (d̂ = 0.30) and the SWK (d̂ = 0.30)

or the ITL (d̂ = 0.45) and the CAD (d̂ = 0.51) were, as expected, not significantly different (W= 0.01

and W= 0.05 respectively). Furthermore, the null hypothesis could not be rejected even in the case of

quite dissimilar estimated fractional differencing parameters, such as the JAY (d̂ = 0.19) and the CAD

(d̂ = 0.51); the value of the Wald test (W= 2.17) is clearly insignificant at 5% level.
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Table 3: Tests of fractional differencing parameters in FIAPARCH models.

BRP GEM FRF ITL SWK SPP JAY SID CAD AUD

BRP - 0.32
[0.57]

0.15
[0.70]

1.17
[0.28]

0.01
[0.91]

0.10
[0.75]

1.05
[0.31]

1.081
[0.30]

0.87
[0.35]

0.06
[0.80]

GEM - 0.06
[0.81]

0.14
[0.71]

0.43
[0.51]

0.68
[0.41]

1.84
[0.18]

0.12
[0.73]

0.24
[0.63]

0.59
[0.44]

FRF - 0.48
[0.49]

0.23
[0.63]

0.48
[0.49]

1.79
[0.18]

0.43
[0.51]

0.48
[0.49]

0.39
[0.53]

ITL - 1.53
[0.22]

1.92
[0.17]

3.89
[0.05]

0.01
[0.91]

0.05
[0.82]

1.74
[0.19]

SWK - 0.10
[0.75]

1.31
[0.25]

1.41
[0.24]

0.99
[0.32]

0.06
[0.81]

SPP - 0.56
[0.46]

1.78
[0.18]

1.23
[0.27]

0.00
[0.95]

JAY - 3.64
[0.06]

2.17
[0.14]

0.64
[0.43]

SID - 0.06
[0.81]

1.61
[0.21]

CAD - 1.15
[0.28]

AUD -

Notes: Table 3 presents a Wald test of the null hypothesis that the estimated fractional differencing

parameters are not significantly different from one another.

The numbers in brackets are p-values.

Finally, we test the apparent similarity of the optimal power terms estimated for each of the ten

currencies using a pairwise Wald test:

W =
(δ̂1 − δ̂2)2

(SE1)2 + (SE2)2
,

where δ̂i, i = 1, 2, is the power term from the FI(A)PARCH model estimated for currency i, and SEi is

the standard error associated with the FI(A)PARCH model estimated for currency i. The above Wald

statistic tests whether the power terms of the two countries are equal (δ̂1 = δ̂2), and is distributed as

χ2
(1). The following table presents the results of this pairwise testing procedure. The p values in the

table provide support for the null hypothesis that the estimated power parameters are not significantly

different from one another. For example, currencies which generated very similar power terms, such as

the BRP (δ̂ = 1.92) and the CAD (δ̂ = 1.91) or GEM (δ̂ = 1.78) and JAY (δ̂ = 1.76), were, as expected,

not significantly different (W= 0.01 and W= 0.01 respectively). Furthermore, the null hypothesis could

not be rejected even in the case of quite dissimilar estimated power terms, such as the SWK (δ̂ = 1.73)

and the SPP (δ̂ = 2.08); the value of the Wald test (W= 0.83) is clearly insignificant at any conventional

size of the test.
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Table 4: Tests of power term parameters in FIAPARCH models.

BRP GEM FRF ITL SWK SPP JAY SID CAD AUD

BRP - 0.13
[0.72]

0.12
[0.73]

0.44
[0.83]

0.28
[0.60]

0.27
[0.61]

0.19
[0.66]

0.01
[0.91]

0.01
[0.91]

0.00
[0.95]

GEM - 0.01
[0.91]

0.27
[0.61]

0.01
[0.91]

0.54
[0.46]

0.01
[0.91]

0.09
[0.76]

0.10
[0.75]

0.15
[0.70]

FRF - 0.30
[0.59]

0.05
[0.83]

0.64
[0.43]

0.02
[0.89]

0.07
[0.79]

0.08
[0.78]

0.14
[0.71]

ITL - 0.49
[0.49]

0.12
[0.73]

0.36
[0.55]

0.12
[0.73]

0.03
[0.86]

0.01
[0.91]

SWK - 0.83
[0.36]

0.01
[0.91]

0.22
[0.64]

0.21
[0.65]

0.29
[0.59]

SPP - 0.67
[0.41]

0.43
[0.51]

0.21
[0.65]

0.17
[0.68]

JAY - 0.14
[0.71]

0.14
[0.71]

0.21
[0.65]

SID - 0.01
[0.91]

0.03
[0.87]

CAD - 0.01
[0.91]

AUD -

Notes: Table 4 presents a Wald test of the null hypothesis that the estimated power terms

are not significantly different from one another.

The numbers in brackets are p-values.

4 Forecasting

4.1 Forecasting methodology and evaluation criteria

Our full sample consists of 3,621 trading days and each model is estimated over the first 3,256 observations

of the full sample, i.e. over the period January 1990 to June 2002. As a result the out-of-sample period

is from July 2002 to November 2003 providing 365 daily observations. The parameter estimates obtained

with the data from the in-sample period are inserted in the relevant forecasting formulas and volatility

forecasts ĥt+1 calculated given the information available at time t = T, . . . , T + 364, i.e. 365 one-step

ahead forecasts are calculated.

The true underlying volatility process is unobservable, therefore in order to evaluate the predictive

ability of various volatility models we need to have a valid proxy. Andersen and Bollerslev (1998) show

that although the daily squared return is an unbiased estimator of the true volatility, it is also an

extremely noisy estimator. They propose the construction of a volatility measure based on the cumulative

squared returns obtained from high-frequency intraday data which they called realised volatility12. This
12See Andersen et al. (2001, 2003) and Barndorff-Nielsen and Shephard (2002) for a formal discussion of the properties

of realised volatility.
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integrated ex-post volatility measure allows for the construction of more accurate volatility forecast

evaluation criteria. However, Awartani and Corradi (2003) argue that in the case of discrete time data

generating processes, squared returns and realized volatility are both unbiased estimators of the true

underlying volatility13. Therefore, when interested in the comparison of different models, in principle

there is not much to choose between the use of squared returns and realized volatility as proxy of the true

unobservable volatility process. In other words, the use of either squared returns or realized volatility,

would lead to the choice of the ‘right’ model, as it does not alter the correct comparison of models, at

least in terms of quadratic loss function.

We examine the ability of the various asymmetric GARCH models to forecast exchange rate return

volatility. A complete description of the evaluation requires a specification of a loss function. As Andersen

et al. (1999) pointed out, it is generally impossible to specify a forecast evaluation criterion that is

universally acceptable (see also, e.g., Diebold et al., 1998). This problem is special acute in the context

of nonlinear volatility forecasting. Accordingly, there is a wide range of evaluation criteria used in

the literature. Following Andersen and et al. (1999) we shall not use any of the complex economically

motivated evaluation criteria but instead we will report summary statistics based directly on the deviation

between forecasts and realizations. A number of out-of-sample forecast performance measures will be used

to evaluate and compare the various models.

First, the quality of the individual forecasts is assessed by regressing the squared returns (r2) on the

corresponding forecast:

r2
t = a + bĥt + et,

If the volatility forecasts are unbiased, then a = 0 and b = 1. The accuracy of the forecast can be assessed

by the R2 of the regression14. As the squared returns are a noisy measure of true volatility low values

for R2 should be expected. Andersen and Bollerslev (1998) have shown how the R2 increases with the

frequency from which realized volatility is constructed.

Although this is one of the most commonly employed criterion in the existing literature, it is not nec-

essarily the best criterion adopt when evaluating nonlinear volatility forecasts (Andersen, et al., 1999).

13If the conditional mean is zero, then squared returns provide an unbiased estimator of the true underlying volatility

process. But if the conditional mean in not zero, then one should use the squared residuals form the regression of rt on a

constant and on ρrt−1. Of course, if we mispecify the conditional mean such squared residuals are no longer an unbiased

estimator of the conditional variance (Awartani and Corradi, 2003).
14Andersen and Bollerslev (1998) showed that the maximum obtainable R2 from the regression of squared returns on

the volatility forecast is indeed very small. For example, under the null hypothesis that the returns are generated by a

GARCH(1,1) model with zero conditional mean and conditional Gaussian errors the R2 will be bounded from above by

1/3. Engle and Patton (2001) also point out that the heteroscedasticity of returns, implies even more heteroscedasticity in

the squared returns so parameters are estimated inefficiently and the usual standard errors are misleading.
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Consequently, we also report results from a number of alternative more robust evaluation criteria. First,

we employ two error statistics which were used by Andersen et al. (1999). The first is the mean square

error (MSE). The usual measure based on the MSE maybe unreliable in the presence of heteroscedasticity,

so we also report the more robust mean absolute error (MAE). To better accommodate the heteroscedas-

ticity in the forecast errors, we also calculate the corresponding hetroscedasticity adjusted statistics.

These are the heteroskedasticity adjusted root mean square error (HRMSE) and the heteroskedasticity

adjusted mean absolute error (HMAE), which were used by Andersen et al. (1999), Martens (2002) and

Hol and Koopman (2002) (see table 5a below). Second, we employ four loss functions which are also

based directly on the deviation between forecasts and realizations. These are the HRMSE1 and HMAE1

criteria. These are interesting because they are more robust to outliers, than the HRMSE and HMAE

criteria (see Martens, 2001). The other two are the QLIKE and R2LOG criteria which are discussed in

Bollerslev et al. (1994). The former loss function corresponds to the loss implied by a Gaussian likelihood

while the latter exaggerates the interest in predicting when residuals are close to zero. All these four

statistics were employed by Hansen and Lunde (2001).

Table 5a: Evaluation criteria.

MSE: 1
k

T+k∑
t=T+1

(ĥt − r2
t )2 MAE: 1

k

T+k∑
t=T+1

∣∣∣ĥt − r2
t

∣∣∣

HRMSE:

√
1
k

T+k∑
t=T+1

(1− r2
t

ĥt
)2 HMAE: 1

k

T+k∑
t=T+1

∣∣∣1− r2
t

ĥt

∣∣∣

HRMSE1:

√
1
k

T+k∑
t=T+1

(1− rt√
ĥt

)2 HMAE1: 1
k

T+k∑
t=T+1

∣∣∣∣1− rt√
ĥt

∣∣∣∣

QLIKE: 1
k

T+k∑
t=T+1

[ln(ĥt) + r2
t

ĥt
] R2LOG: 1

k

T+k∑
t=T+1

[ln( r2
t

ĥt
)]2

Notes: k is the number of steps ahead, T is the sample size, ĥt is the forecasted variance

and r2
t are the squared returns. MSE and MAE are the mean square and mean

absolute errors. HRMSE and HMAE are the heteroscedasticity adjusted root

MSE (RMSE) and MAE statistics.

QLIKE and R2LOG are discussed in Bollerslev et al. (1994).

We also employ three error statistics which are used by Peters (2001). These are the median squared

error (MedSE), the adjusted mean absolute percentage error (AMAPE), and the Theil inequality coeffi-

cient (TIC) (see table 5b). The Theil inequality coefficient is a scale invariant measure that always lies

between zero and one, where zero indicates a perfect fit.

All the previous error statistics assume that the underling loss function is symmetric. Brailsford and

Faff (1996) point out that many investors will not attribute equal importance to both over- and under-

predictions of volatility of similar magnitude. For example, an over-prediction of stock price volatility will
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lead to an upward biased estimate of the corresponding call option price since the relationship between

the volatility of underlying stock prices and call option prices is positive. This over-estimate of the price

is more likely to be of greater concern to a buyer than a seller (see Brailsford and Faff, 1996). Therefore,

we report a summary statistic which penalizes under-predictions more heavily and is called the mean

mixed error (MME(U)). Similarly, the statistic MME(O) weights over-predictions more heavily. These

two statistics were proposed by Brailsford and Faff (1996).

Table 5b: Evaluation Criteria.

AMAPE: 1
k+1

∑T+k
t=T

∣∣∣ ĥt−r2
t

ĥt+r2
t

∣∣∣

TIC:

√
1

k+1

T+k∑
t=T

(
ĥt − rt

)2
[√

1
k+1

T+k∑
t=T

ĥ2
t +

√
1

k+1

N+k∑
t=N

r2
t

]−1

MedSE: Median of{
(ĥT+1 − r2

T+1), . . . , (ĥT+1 − r2
T+K)

}

MME(U): 1
k

[
O∑

j=1

∣∣∣ĥj − r2
j

∣∣∣ +
U∑

j=1

(∣∣∣ĥj − r2
j

∣∣∣
)2l

]

MME(O): 1
k

[
U∑

j=1

∣∣∣ĥj − r2
j

∣∣∣ +
O∑

j=1

(∣∣∣ĥj − r2
j

∣∣∣
)2l

]

Notes: AMAPE is the adjusted mean absolute percentage error and TIC is the Theil inequality coefficient.

MedSE is the median square error. MME(U) and MME(O) are the two mean mixed errors

where O (U) is the number of over (under)-predictions. If the absolute value of the forecast error

is greater (less) than unity , then l = 1(l = −1), and MME(U)/MME(U) takes the square (root)

of the errors in order to place a heavier weighting on the under-predictions/over-predictions.

4.2 Forecasting results

On the basis of several model selection techniques the fractionally integrated APARCH specification was

the superior fitting model (see section 3.1). While such model fitting investigations provide useful insights

into volatility, the models are usually selected on the basis of full sample information. For practical

forecasting purposes, the predictive ability of these models needs to be examined out-of-sample. The aim

of this section is to examine the relative ability of the various long-memory and power models to forecast

daily exchange rate volatility. Table 6 gives a relative indication of overall forecasting performance.

Calculated values are provided for fourteen different forecasting performance measures across ten exchange

rates, so in total we have one hundred and forty cases.

An examination of table 6 reveals that the general FI(A)PARCH model is clearly superior. That is,

there is strong evidence that both the restrictive stable and integrated (A)PARCH models are inferior to

the fractionally integrated (A)PARCH specification. The more restrictive models are outperformed by
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the FI(A)PARCH specification for sixty four out of the one hundred and forty cases, whereas for only

thirty six cases the best performing model is the (A)PARCH one. In particular, for all the currencies

except the Canadian dollar the QLIKE loss function favors the long-memory (A)PARCH formulation.

Moreover, the FI(A)PARCH specification has the best MSE statistic for eight out of the ten currencies.

In addition, for seven currencies the best ranked model, as assessed by the MedSE, R2LOG and the

MME(O) statistics, is also the fractional integrated one. Finally, for six out of the ten exchange rates

the MAE and AMAPE loss functions also favor the FI(A)PARCH formulation. In sharp contrast, for

the majority of the currencies (six to seven out of the ten) the integrated (A)PARCH model has the

best heteroscedasticity adjusted error statistics whereas the worst performing model, as assessed by these

statistics, is the long-memory specification. However, in many cases these statistics do not allow for a

clear distinction between the ranking models which is evidenced by the marginal difference in relative

accuracy which separates the three models.

Notice also that the FI(A)PARCH model does extremely well in the Japanese yen since eleven out of

the fourteen error statistics identify the fractionally integrated specification as superior. In other words,

for this currency the results appear to be robust to the choice of the loss function. The FI(A)PARCH

model does quite well in the Singapore dollar and the Spanish peseta. For these two exchange rates

nine out of the fourteen error statistics indicate that the long-memory specification provides the most

accurate forecasts. Similarly, for the British pound, the Swedish krona and the Australian dollar across

the majority of the statistics (eight out of the fourteen) the best performing model is the fractionally

integrated one. For the Italian lira while the FI(A)PARCH specification ranks second, for twelve out of

the fourteen evaluation criteria, it is not substantially worse than the best ranked model.

Brooks et al. (2000) point out that invalid imposition of a particular value for the power term may

lead to sub-optimal forecasting performance. Accordingly, we examine the relative ability of the three

fractionally integrated models to forecast daily volatility. The Taylor/Schwert FI(A)ARCH model has

the best heteroscedasticity adjusted and TIC error statistics for almost all the currencies. These five

statistics rank the general FI(A)PARCH specification second for eight out of the ten currencies. For the

majority of the currencies the worst performing model, as assessed by these five statistics, is the Bollerslev

FI(A)ARCH model. In sharp contrast, the MAE error statistic in table 6 indicate the superiority of the

Bollerslev FI(A)ARCH formulation for nine out of the ten currencies. Similarly, the AMAPE, R2LOG

and MME(O) statistics rank this specification first for eight out of the ten currencies. Further, the

MedSE and MMe(U) loss functions identify the Bollerslev FI(A)ARCH model as superior for seven out

of the ten currencies. According to these five statistics across the majority of the ten currencies the power

FI(A)ARCH formulation is ranked second whereas the Taylor/Schwert FI(A)ARCH model provides the

worst forecasts. Finally, for half of the currencies the Bollerslev FI(A)ARCH model is ranked first by the
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coefficient of determination (R2), RMSE and QLIKE evaluation criteria. These last two statistics rank

the general FI(A)PARCH specification first for four out of the ten currencies.

The FI(A)ARCH model does quite well in the Spanish peseta. For this exchange rate seven out of

the fourteen statistics indicate that the fractionally integrated specification provides the most accurate

forecasts. In sharp contrast, in the Canadian dollar the power formulation is ranked third by the majority

of the evaluation criteria. However, for the other ten currencies the power FI(A)ARCH specification is

the second best forecasting model according to the majority of the statistics.

In summary the ranking of the three fractionally integrated models varies depending upon the choice

of the error statistic. In other words, our rankings for the three long-memory formulations are not robust

between the error statistics. This contrast in the rankings of these specification illustrates that the

forecasts are highly sensitive to the assessment criteria. Hence, as Brailsford and Faff (1996) point out,

caution should be exercised in the interpretation of the obtained rankings.
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Table 6: Error statistics from forecasting daily exchange rate volatility.

BRITISH POUND GERMAN MARK

P IP FIP BFI TSFI P IP FIP BFI TSFI

R2 0.00 5/104 0.00 1/104 0.00 1/104 3/104 4/104 7/104 0.00

MSE 0.19 0.20 0.18 0.18 0.20 0.37 0.38 0.37 0.37 0.40

MAE 0.30 0.33 0.25 0.25 0.34 0.41 0.45 0.42 0.41 0.50

HRMSE 1.48 1.41 1.90 1.96 1.26 1.55 1.33 1.49 1.59 1.17

HRMSE1 0.67 0.67 0.71 0.72 0.66 0.66 0.64 0.65 0.66 0.62

HMAE 0.97 0.95 1.12 1.14 0.90 1.02 0.92 1.00 1.04 0.87

HMAE1 0.57 0.57 0.58 0.58 0.57 0.55 0.54 0.55 0.56 0.54

AMAPE 0.57 0.59 0.55 0.54 0.59 0.54 0.55 0.54 0.54 0.57

TIC 0.53 0.52 0.59 0.59 0.51 0.53 0.50 0.53 0.54 0.48

QLIKE -0.32 -0.28 -0.34 -0.34 -0.27 0.13 0.14 0.13 0.13 0.18

R2LOG 6.47 6.82 5.65 5.58 7.13 5.57 6.04 5.65 5.48 6.52

MedSE 0.06 0.08 0.03 0.03 0.10 0.11 0.17 0.12 0.11 0.22

MME(U) 0.39 0.41 0.36 0.36 0.41 0.58 0.60 0.59 0.58 0.64

MME(O) 0.48 0.51 0.41 0.41 0.53 0.58 0.61 0.58 0.57 0.65

FRENCH FRANC ITALIAN LIRA

P IP FIP BFI TSFI P IP FIP BFI TSFI

R2 5/104 2/104 6/104 9/104 5/104 6/104 1/103 0.00 0.00 1/104

MSE 0.37 0.38 0.37 0.37 0.39 0.37 0.38 0.37 0.37 0.39

MAE 0.42 0.45 0.42 0.41 0.47 0.41 0.45 0.42 0.42 0.48

HRMSE 1.52 1.37 1.48 1.55 1.24 1.57 1.39 1.52 1.53 1.23

HRMSE1 0.65 0.64 0.65 0.66 0.63 0.66 0.64 0.66 0.66 0.63

HMAE 1.01 0.93 1.00 1.03 0.90 1.03 0.95 1.02 1.02 0.90

HMAE1 0.55 0.54 0.55 0.55 0.54 0.56 0.55 0.55 0.56 0.54

AMAPE 0.54 0.55 0.54 0.54 0.56 0.54 0.55 0.54 0.54 0.56

TIC 0.53 0.50 0.53 0.54 0.49 0.53 0.50 0.53 0.53 0.49

QLIKE 0.13 0.14 0.13 0.12 0.15 0.13 0.15 0.13 0.13 0.16

R2LOG 5.31 5.68 5.34 5.22 5.90 4.53 4.95 4.57 4.56 5.23

MedSE 0.12 0.16 0.12 0.11 0.19 0.11 0.15 0.12 0.12 0.20

MME(U) 0.59 0.60 0.59 0.58 0.62 0.58 0.60 0.59 0.58 0.62

MME(O) 0.58 0.61 0.58 0.57 0.63 0.57 0.61 0.58 0.58 0.64
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SWEDISH KRONA SPANISH PESETA

P IP FIP BFI TSFI P IP FIP BF TSFI

R2 0.00 1/103 0.00 0.00 0.00 3/104 2/104 2/103 6/104 1/103

MSE 0.48 0.47 0.46 0.46 0.47 0.37 0.39 0.37 0.37 0.38

MAE 0.52 0.51 0.46 0.46 0.52 0.42 0.47 0.40 0.41 0.46

HRMSE 1.25 1.30 1.53 1.60 1.19 1.52 1.29 1.61 1.57 1.26

HRMSE1 0.63 0.63 0.66 0.66 0.62 0.65 0.63 0.67 0.66 0.63

HMAE 0.91 0.93 1.04 1.07 0.89 1.01 0.90 1.05 1.04 0.90

HMAE1 0.54 0.54 0.56 0.56 0.54 0.55 0.54 0.56 0.56 0.54

AMAPE 0.56 0.56 0.54 0.54 0.56 0.54 0.56 0.54 0.54 0.56

TIC 0.48 0.49 0.53 0.54 0.49 0.53 0.49 0.54 0.54 0.49

QLIKE 0.30 0.29 0.27 0.27 0.28 0.13 0.16 0.12 0.12 0.15

R2LOG 6.25 6.11 5.56 5.46 6.22 5.63 6.28 5.44 5.50 6.18

MedSE 0.23 0.21 0.14 0.12 0.22 0.12 0.18 0.10 0.10 0.18

MME(U) 0.71 0.70 0.68 0.68 0.70 0.59 0.62 0.58 0.58 0.61

MME(O) 0.67 0.66 0.62 0.61 0.67 0.58 0.63 0.56 0.57 0.62

JAPANESE YEN SINGAPORE DOLLAR

P IP FIP BFI TSFI P IP FIP BFI TSFI

R2 0.01 0.01 4/103 4/103 0.01 0.01 0.01 0.01 4/103 0.01

MSE 0.41 0.50 0.32 0.30 0.38 333.06 226.31 198.06 191.26 218.58

MAE 0.56 0.63 0.46 0.43 0.52 15.80 11.77 10.25 9.78 11.85

HRMSE 0.96 0.95 1.07 1.13 0.98 1.08 1.28 1.36 1.39 1.11

HRMSE1 0.66 0.67 0.66 0.66 0.66 0.68 0.68 0.68 0.67 0.66

HMAE 0.83 0.82 0.87 0.89 0.83 0.88 0.93 0.96 0.97 0.88

HMAE1 0.59 0.60 0.59 0.58 0.59 0.62 0.60 0.59 0.58 0.59

AMAPE 0.65 0.66 0.63 0.62 0.64 0.67 0.63 0.61 0.60 0.63

TIC 0.50 0.51 0.50 0.50 0.50 0.52 0.51 0.53 0.53 0.50

QLIKE 0.08 0.15 -0.05 -0.08 0.37 3.37 3.22 3.14 3.11 3.20

R2LOG 9.71 10.29 8.64 8.29 9.39 9.57 8.18 7.53 7.29 8.30

MedSE 0.35 0.45 0.21 0.18 0.31 251.64 108.00 81.42 73.80 132.56

MME(U) 0.64 0.70 0.56 0.53 0.61 113.99 133.80 142.38 145.41 125.97

MME(O) 0.71 0.75 0.63 0.61 0.69 234.87 104.29 65.95 55.64 104.47

19



CANADIAN DOLLAR AUSTRALIAN DOLLAR

P IP FIP BFI TSFI P IP FIP BFI TSFI

R2 0.01 0.01 0.01 0.01 0.01 1/104 1/103 2/104 3/104 0.00

MSE 103.88 1795.88 1843.81 1817.80 1784.90 0.37 0.37 0.37 0.37 0.38

MAE 10.18 22.28 22.33 22.30 22.31 0.42 0.45 0.42 0.42 0.48

HRMSE 0.98 3.80 4.39 4.03 3.70 1.45 1.34 1.45 1.48 1.17

HRMSE1 0.89 0.97 1.05 1.00 0.96 0.65 0.64 0.65 0.65 0.62

HMAE 0.98 2.02 2.29 2.13 1.97 0.99 0.93 0.99 1.00 0.88

HMAE1 0.88 0.72 0.77 0.74 0.71 0.55 0.54 0.55 0.55 0.54

AMAPE 0.95 0.53 0.54 0.53 0.53 0.54 0.55 0.54 0.54 0.56

TIC 0.93 0.72 0.75 0.74 0.72 0.52 0.50 0.52 0.52 0.49

QLIKE 2.37 4.71 4.90 4.78 4.68 0.12 0.14 0.12 0.12 0.15

R2LOG 29.30 4.62 4.56 4.60 4.66 5.54 5.84 5.49 5.45 6.15

MedSE 106.26 91.68 78.14 86.63 95.13 0.12 0.16 0.12 0.12 0.20

MME(U) 10.18 1765.14 1821.59 1791.06 1751.10 0.58 0.60 0.58 0.58 0.61

MME(O) 103.88 53.03 44.57 49.06 56.13 0.59 0.61 0.58 0.58 0.64

Notes: For the ten currencies, calculated values are provided for ten different error statistics across five ARCH-type

models used to forecast daily volatility. FIP, IP and P denote the fractionally integrated, integrated and

stable (A)PARCH models respectively. BFI and TSFI denote the Bollerslev and Taylor/Schwert fractionally

integrated (A)ARCH models respectively. R2 is the coefficient of determination of the regression:

r2
t = a + bĥt + et. MSE and MAE are the mean square and mean absolute errors.

HRMSE and HMAE are the heteroscedasticity adjusted RMSE and MAE errors. AMAPE is the adjusted

mean absolute percentage error and TIC is the Theil inequality coefficient. The QLIKE and R2LOG criteria

are discussed in Bollerslev et al. (1994). MME are the mean mixed error statistics.

Bold (underline) numbers indicate the power (fractionally integrated) model with the best performance.

4.3 Encompassing Tests

In this section we utilize two encompassing tests proposed by Ericsson (1992) and Harvey et al. (1998).

Before moving to the two tests some notation is needed. First, we denote the 1-step ahead forecast errors

as ξU,t ≡ r2
t − ĥU,t and ξR,t ≡ r2

t − ĥR,t (t = T + 1, . . . , T + k), for the unrestricted (FIAPARCH) and

restricted models, respectively. Forecasts of the squared returns are generated using the fixed forecasting

scheme (described in West and McCracken, 1998, p. 819). Next, let ψt ≡ ξ2
R,t − ξR,tξU,t and ψ ≡

k−1
∑T+k

j=T+1 ψj . The first encompassing test, proposed by Harvey et al. (1998) and denoted by ENC-T,
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is formed as

ENC-T =
√

k − 1ψ√
1
k

∑k
j=1(ψT+j − ψ)2

. (4.1)

The second test statistic proposed by Ericsson (1992) is a regression-based variant of the ENC-T test.

This forecast encompassing test, denoted by ENC-REG, can be expressed as

ENC-REG =
√

k − 1ψ√
1
k

∑k
j=1(ξR,T+j − ξU,T+j)2(

1
k

∑k
j=1 ξ2

R,T+j)− ψ
2
. (4.2)

Clark and McCracken (2001) (see footnote 2 in their paper), show that for the fixed scheme the ENC-T

and ENC-REG tests are asymptotically standard normal. The null hypothesis is that of equal predictive

accuracy, whereas the alternative is that the unrestricted model provides a more accurate prediction than

the restricted.

Next, we move to the pairwise comparison of nested models using the two aforementioned test statis-

tics. In particular, the FI(A)PARCH formulation is compared against the (A)PARCH, I(A)PARCH, and

the two restricted FI(A)ARCH specifications with δ = 1, 2.

For nine out of the ten currencies the ENC-T test rejects the null that the integrated (A)PARCH

forecasts encompass the FI(A)PARCH forecasts. The evidence obtained from the ENC-T test statistic is

reinforced by the ENC-REG test. That is, for eight out of the ten currencies the ENC-REG test rejects

the null of equal accuracy. Moreover, both the ENC-T and ENE-REG tests reject the null that the stable

(A)PARCH forecast encompasses the FI(A)PARCH forecast for four out of the ten exchange rates.

Clearly, assuming integrated (A)PARCH behavior results in volatility forecasts which are less accurate

compared to those forecasts obtained from the FI(A)PARCH model.

The Taylor/Schwert FI(A)ARCH is clearly rejected in favor for the FI(A)PARCH model by the ENC-

T (in nine cases) and by the ENC-REG test (in eight cases). In sharp contrast, the two encompassing

statistics indicate the superiority of the power model over the Bollerslev one only for the British pound

and the Swedish krona. This result however is in accordance with the results we obtained from the tests

on the δ parameter in section 3.1. While the δ = 1 hypothesis was clearly rejected for all the countries,

the δ = 2 hypothesis could not be rejected for any country. Naturally, the forecasts of the FI(A)PARCH

model should be superior to those obtained from the Taylor/Schwert FI(A)ARCH model, but should

not be able to improve upon those obtained from the Bollerslev FI(A)ARCH model. Interestingly,

for the Swedish krona where the Bollerslev FI(A)ARCH forecasts are dominated by the more general

FI(A)PARCH forecasts, we estimated a δ parameter (δ̂ = 1.73) for which the distance to δ = 2 was the

largest.

Hence, on the basis of these results, in the majority of the cases the FI(A)PARCH formulation out-

performs the integrated (A)PARCH model and the restricted Taylor/Schwert FI(A)ARCH specifications,

21



but - as expected - does not improve upon the Bollerslev FI(A)ARCH model.

Table 7. ENC-T and ENC-REG test statistics.

H0 : APARCH IAPARCH FIAARCH
(δ=2)

FIAARCH
(δ=1)

ENC-T ENC-R ENC-T ENC-R ENC-T ENC-R ENC-T ENC-R

BRP 2.94∗∗∗ 3.04∗∗∗ 4.89∗∗∗ 5.38∗∗∗ 1.23∗ 1.30∗ 6.05∗∗∗ 6.00∗∗∗

GEM 0.30 0.29 2.85∗∗∗ 2.83∗∗∗ 0.53 0.51 5.71∗∗∗ 5.46∗∗∗

FRF 0.77 0.88 2.89∗∗∗ 2.88∗∗∗ 0.20 0.19 3.95∗∗∗ 3.77∗∗∗

ITL 0.04 0.03 2.82∗∗∗ 2.88∗∗∗ 0.01 0.01 4.38∗∗∗ 4.19∗∗∗

SWK 3.73∗∗∗ 3.77∗∗∗ 2.87∗∗∗ 3.00∗∗∗ 1.26∗ 1.28∗ 3.01∗∗∗ 2.99∗∗∗

SPP 0.71 0.72 4.62∗∗∗ 4.53∗∗∗ -0.22 -0.21 3.57∗∗∗ 3.42∗∗∗

JAY 14.11∗∗∗ 11.26∗∗∗ 16.40∗∗∗ 12.95∗∗∗ -6.39 -5.76 12.30∗∗∗ 10.20∗∗∗

SID 15.79∗∗∗ -10629.66 9.85∗∗∗ -306.80 -4.88 -12.59 7.01∗∗∗ -180.71

CAD -7.26 -131.43 -5.20 -747.58 -6.09 -166.63 -5.20 -747.58

AUD 1.12 1.28∗ 2.85∗∗∗ 2.89∗∗∗ -0.15 -0.15 4.38∗∗∗ 4.21∗∗∗

Notes: The test statistics ENC-T and ENC-REG are defined in (4.1) and (4.2) respectively. The stable

and integrated (A)PARCH models and the Taylor/Schwert and Bollerslev FI(A)ARCH models

are compared against the FI(A)PARCH model. The null hypothesis is that of equal predictive accuracy,

whereas the alternative hypothesis is that the FI(A)PARCH model provides a more accurate prediction

than the restricted models. ∗,∗∗,∗∗∗indicate significance at the10%, 5% and 1% level respectively.

4.4 The empirical evidence

In this paper we proceeded in two steps. In a first step strong evidence has been put forward suggesting

that the conditional volatility for ten US bilateral exchange rates is best modelled as a mean-reverting

fractionally integrated APARCH process. On the basis of Wald tests the FI(A)PARCH model provides

statistically significant improvement over its integrated counterpart. One can also reject the more restric-

tive stable (A)PARCH model, and consequently all the existing models (see Ding et al. 1993) nested by

this specification in favor of the fractionally integrated parameterization. Hence, the in-sample analysis

has shown that the FI(A)PARCH formulation is preferred to both the stable (A)PARCH and the inte-

grated (A)PARCH models. In other words, the fractionally integrated model appeared to have superior

ability to differentiate between stable models and their integrated alternatives.

Moreover, both the (asymmetric) Taylor/Schwert and Bollerslev GARCH formulations are nested

within the (A)PARCH model. According to our analysis for all ten currencies the Taylor/Schwert speci-

fication was rejected in favor of the FI(A)PARCH formulation. In sharp contrast, for all ten currencies

tested the Wald statistics indicated a preference for the (asymmetric) Bollerslev GARCH formulation
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over the FI(A)PARCH model. That is, allowing the power term to take on values other than two did not

significantly enhance the model. In other words there is a lack of evidence to suggest the need of power

effects even in the presence of long-range volatility dependence.

Finally, comparing the pairwise testing results of the Wald procedures to the relative model rankings

provided by the four alternative criteria we observe that the findings were generally robust. That is, where

the Wald testing results provided unanimous support for the FI(A)PARCH specification over either the

stable (A)PARCH or integrated (A)PARCH formulations, the model selection criteria concurred without

exception. Thus, the inclusion of a a fractional unit root in the conditional variance equation appear to

augment the model in a worthwhile fashion. The same conclusion holds for the (asymmetric) Bollerslev

GARCH formulation which was supported by all the information criteria.

Baillie et al. (1996) analyzed the Deutschmark-U.S. dollar exchange rate by different GARCH speci-

fications. While in the simple GARCH the persistence coefficient was quite close to one and suggestive of

integrated behavior, the FIGARCH specification seemed to capture the long-run dynamics of the series

quite well. The estimated fractional differencing parameter was d̂ = 0.652 (0.160). Beine et al. (2002)

argue that this value may be a local maximum15 and estimate a FIGARCH model with fractional differ-

encing parameter of d̂ = 0.43 (4.613) (including closing days effects) which is quite similar to the value we

estimated for the Deutschmark-U.S. dollar exchange rate. The estimates they obtain for the BRP-, Yen-

and FRF-U.S. dollar exchange rates are again close to the ones we obtained. Thus, our results imply

that the fractional differencing parameter is much closer to stable than to integrated behavior.

Tse (1998) applied the FIAPARCH model to the Yen-U.S. dollar exchange rate. While he found

significant power and fractional differencing parameters, he estimated an insignificant leverage parameter.

In our analyzes for five out of the ten countries we find significant leverage parameters (including Japan).

Moreover, while he can not reject both hypothesis of δ = 1, 2 we clearly reject the δ = 1 hypothesis.

Tse (1998) also compares the stable APARCH and the FIAPARCH models by examining the coefficients

of their infinite series representations. He finds the differences between models to be small. This again

shows that the FIAPARCH specification is much closer to the stable APARCH specification than to the

integrated one which would produce constant coefficients.

In a second step we provided out-of-sample evidence for the FI(A)PARCH model. Its forecasting

accuracy was compared to the one of the stable and integrated specifications as well as to the one of

the Taylor/Schwert and Bollerslev GARCH formulations. Clearly, the forecast evaluation criteria favored

the more general FI(A)PARCH compared to the stable and integrated specifications. The ranking of

the three long-memory specifications heavily depended on the choice of the error statistic. The encom-

passing tests again clearly rejected the integrated specification, while the FI(A)PARCH and the stable

15See Beine et al. (2002), p. 697, fig. 2.
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(A)PARCH nearly performed equivalently. This result is in line with the finding that the estimated frac-

tional differencing parameters are much closer to stable than to integrated behavior. In accordance with

the Wald tests the encompassing tests reject the Taylor/Schwert model, but can not reject the Bollerslev

GARCH formulation.

5 Conclusion

The purpose of the current paper was to consider the applicability of the fractionally integrated (asymmet-

ric) PARCH model to ten US bilateral exchange rates. It was found that the FI(A)PARCH specification

captures the temporal pattern of volatility for observable returns better than previous parameterizations.

Our analyzes has shown that this improves forecasts for volatility and thus is useful for financial decisions

which utilize such forecasts.

We provided an interesting comparison to the stable and integrated (A)PARCH models. The results

reject both the hypotheses of a stable and an integrated model. This is consistent with the conditional

volatility profiles in Gallant et al. (1993), which suggests that shocks to the variance are very slowly

damped, but do die out.

All ten currencies show strong evidence in favor of the Bollerslev FI(A)ARCH model when long-

memory persistence in the conditional volatility have been taken into account, as both the power and

Taylor/Schwert (asymmetric) FIGARCH specifications were rejected in favor of the FI(A)ARCH formu-

lation with power term equal to two.

Moreover, we find that both the optimal fractional differencing parameter and power transformation

are remarkably similar across countries.

The in-sample estimation and testing results were reinforced by the out-of-sample forecast evaluation.

The forecast error measures supported the FI(A)PARCH model as the one with the highest forecast

accuracy. The Bollerslev FI(A)ARCH model can be seen as equal accurate compared with the more

general FI(A)PARCH specification in terms of encompassing tests, while the FI(A)PARCH dramatically

outperforms the integrated specification.
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