
A Preliminary Model for Estimating the
Impact of Price Limits on Taiwan Stock

Exchange1

Je�ery Russell, Chen Yang

Graduate School of Business

University of Chicago

December 17, 2003

1Research support from the Sanford J. Grossman Fellowship in Honor of Arnold Zellner is

gratefully acknowledged; any opinions expressed herein are the authors' and not necessarily

those of Sanford J. Grossman or Arnold Zellner.



Abstract

In many emerging stock markets, price limits are imposed on the magnitude of
daily price movements. Price limit advocates claim that such limits serve as "cir-
cuit breakers" and decrease stock price volatility. Critics argue that the limits cause
supply and demand imbalances in trading. Consequently, they prevent immediate
corrections in price and increase the volatility of the opening return on the subse-
quent trading day. This is known as the volatility spillover hypothesis.

The empirical results on the impact of price limits in the stock market appear
mixed. Furthermore, research using high frequency data directly from an emerging
stock market where daily price limits are implemented is rare. Our study uses 5-
minute intra-day price data from the Tai Wan stock exchange, where a daily price
limit of 7% is imposed for all traded stocks. We consider the spillover e�ect of price
limits as the e�ect that, given the price hitting the limits and staying at the limits
for a certain amount of time, how much the next day's �rst �ve-minute(ten-minute,
�fteen-minute...) volatility is elevated. We �nd signi�cant evidence for this e�ect,
after controlling for the company's speci�c overnight e�ect. Contrary to what might
be expected after the emergence of a consensus price, the period immediately after a
trading cessation is characterized by higher levels of volatility. We conclude that the
daily price limits in TSE are ine�ective in preventing over-reaction.
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Introduction

In many emerging stock markets, price limits are imposed on the magnitude of
daily price movements. Examples include the markets in Austria, Belgium, China,
Japan, Korea, Malaysia, Mexico, Taiwan, and Thailand. This trading mechanism
stands in sharp contrast to the primary practice in the U.S. stock market. The latter
has obligations to provide continuous liquidity to the market, while the former re-
stricts price movements in a certain range that is proportional to the previous day's
closing price.

Price limit advocates claim that such limits serve as �circuit breakers� and de-
crease stock price volatility. They also believe that price limits will provide a cooling
o� period for rational reassessment during times of panic trading. On the other hand,
critics argue that the limits cause supply and demand imbalances in trading. Con-
sequently, they prevent immediate corrections in price and increase the volatility on
the subsequent trading day. It is known as the volatility spillover hypothesis.

A large body of theoretical research reveals that the market microstructure is an
important determinant of the components of volatility. Greenwald and Stein (1988)
have argued that price limits could be bene�cial if the price changes are caused by
market failure, or a noise-generated panic. On the other hand, Fama (1989) points
out that inciting trading in anticipation of circuit breakers will generally increase
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price volatility and merely delays the adjustment of prices to changes in fundamental
values. In a study of trading halts in �nancial markets, Subrahmanyam (1994) shows
that the existence of temporary circuit breakers may distort optimal trading deci-
sions. Further, it leads to perverse e�ects on price variability and market liquidity.
He concludes that a continuous price limits imposed daily will have the same volatility
spillover e�ect as that of the temporary circuit breakers.

The empirical results on the impact of price limits in the stock market appear
mixed. In cross-country research, Roll (1988) argues that price limits had no signif-
icant impact on the decline during the international crash of October 1987. On the
contrary, Bertero and Mayer (1990) using the same data as Roll, �nd that price lim-
its were e�ective. In studies that focus on single stock markets, Kuhn, Kurserk, and
Locke (1991) show that stock volatility was not moderated by circuit breakers during
the 1989 U.S. mini-crash. Kim and Rhee(1997) use Tokyo Stock Exchange data to
conclude that volatility does not return to the normal level after reaching the price
limits. They use daily data and compare the behavior of stocks that reach a price
limit to stocks that almost reach their daily limit. However, Lauterbach and Ben-
Zion(1993) study the behavior of Israeli stock market, and �nd price limits slightly
smoothed return �uctuations during the October 1987 crash.

It is important to note that the methodology adopted by most of the above papers
is very di�erent from ours. They carry out event study and divide trading days into
periods, namely, before the event and after the event. Then, di�erent return windows
are constructed and the null hypothesis that volatility is the same across all periods
is tested. However, the event windows immediately following trading halts are neces-
sarily high volatility periods, potentially inducing an unwanted selection bias. In our
study, we condition on the volatility level and ask whether the volatility subsequent
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to a market closure is higher or lower than the expected given the volatility level
immediatly preceding the close.

Though circuit breakers and trading halts have been studied in some markets
that don't have daily price restrictions, like the New York Stock Exchange, empirical
research using data directly from an emerging stock market where daily price limits
are implemented is rare. In this paper, we use 5-minute intra-day return series from
the Taiwan Stock Exchange, which imposes a 7% daily price limit for all the trading
stocks.

The paper is organized as follows. Chapter 1 introduces the hypothesis of interest
and its implication on policy issues. The methodology we use to test the hypothesis
is also discussed. Chapter 2 provides a brief description of the TSE data. In Chapter
3 we specify an econometric model for the 5-minute return series and use this model
to obtain the expected price path during halt. Results of the empirical tests are
presented in Chapter 4. Finally we have a few comments about the model, and
conclude the paper in Chapter 5. We �nd that, contrary to what might be expected
after the emergence of a consensus price, the opening of the market after a trading
cessation is characterized by higher levels of volatility.
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Chapter 1

Hypothesis and Methodology

1.1 Motivation

Let Pt denote the price at time t, t = 1, 2, ...T . Let Rt denote the log return
ln(Pt)− ln(Pt−1). Let Ft denote an information set available at time t which includes
the �ltration of returns and potentially other information available at time t. Let It

be a random variable taking the value 1 if a trading halt is in e�ect at time t. It is
not included in the information set Ft. Let k denote the duration that price stays at
the limits, our hypothesis of interest is then constructed by examining the following
equality:

E[(Rt,t+k − µ)2|Ft, It] = E[(Rt,t+k − µ)2|Ft] (1.1)

Satisfaction of this equality implies that trading halts have no impact on volatil-
ity. Violations of this equality imply either volatility exuberance or cooling o� e�ect,
depending on whether the equality is replaced with a greater than or less than sign
respectively. Of course we do not get to observe the �return� when a trading halt is
in e�ect which complicates the testing of this equality.
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To solve this unobservability problem we take advantage of the structure of the
Tai Wan Stock Exchange(TSE). TSE imposes a daily price limit of 7% for all traded
stocks. Within a trading day, the price for a single stock cannot move more than 7%

from the previous day's closing price. During the sample period from January 3, 1998
to March 20, 1999, our summary statistics show that the price reached the limits, on
average, 23.7 days out of the 324 trading days, which is about 7.3% of the sample
period; and closed at the limits 17 days. In addition, the price stayed at the ceiling
on average for 51 minutes once it reached the ceiling and it stayed at the �oor for 44
minutes once it reached the �oor. Thus within a trading day (3 hours), the stocks
tend to stay at the limits for quite a long time once they reach the limits. Though
stock price may remain on the limits for more than one day, this only occurs 9% of
the time and for the rest, we are able to observe price movements when the market
opens following a trading halt. More details of the data will be revealed in Chapter
2. With the above conditions, we can proceed to the next step of testing.

Right after the event day (on which the trading process was halted by price reach-
ing the limit), the second day witnesses a free price movement when the market opens,
due to reset of the price boundary. It is not clear what time interval in that day is
the best to look at and connect to the impact of price limits, especially when we con-
sider the policy implications that can be drawn from this study, whether elevation of
volatility in the �rst 5-minute, 15-minute, 30-minute or 1-hour, etc... returns should
be �agged to the policy makers. However, the test of �spillover e�ect� is indeed a
test of the logic behind policy making. Moreover, it is expected to reveal, in a simple
setting, the mechanism through which certain missing information during the halt is
to a�ect the trading process and spill over to the next day. In this paper, we are going
to perform tests using the �rst 5-minute, 15-minute, 30-minute, and 1-hour returns
at the beginning of a post-event day, and document relative changes of the price limit
e�ects.
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Take the �rst 5-minute opening return as an example. Our basic assumptions
are: equation (1.1) holds, and price can move freely and adjust immediately to the
equilibrium level in the �rst �ve minutes. Under those two assumptions, the �rst
5-minute return is lnPt∗+k+1 − lnPt∗ , where t∗ is the time that price reaches its limit
on the previous day, and k is the duration of trading cessation. Furthermore, this
di�erence should equal to the sum of all the expected returns on the unobservable
price path over k. For simplicity, assume that the returns are uncorrelated, then a
relationship between the observed and the hypothetical volatility in the �rst 5 minutes
can be established:

Robs
t∗+k+1 = ln(Pt∗+k+1)− ln(Pt∗) =

k∑
j=1

Rhyp
t∗+j + Rhyp

t∗+k+1 (1.2)

V ar(Robs
t∗+k+1) =

k∑
j=1

V ar(Rhyp
t∗+j) + V ar(Rhyp

t∗+k+1) (1.3)

Due to the summation term
∑k

j=1 V ar(Rhyp
t∗+j) in equation (1.3)1, volatility of the

observed opening return will be clearly higher than that of the hypothetical one. This
is the intuition behind the Spillover Hypothesis. The volatility in the post-halt period
is elevated no matter how the market responds to the limits. Since stocks always
experience price continuations, the same arguments apply to the volatility of the �rst
15-minute, 30-minute and 1-hour returns as well.

A simple test for a particular stock can be performed according to equation (1.3):

V ar(Robs
t∗+k+1) = β1V ar(Rhyp

t∗+k+1) + β2 ∗
k∑

j=1

V ar(Rhyp
t∗+j) + ε (1.4)

1Rhyp
t∗+k+1 is the hypothetical opening return when the price limit restrictions were removed.
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(Robs
t∗+k+1)

2 = β1E[(Rhyp
t∗+k+1)

2|Ft∗ ] + β2 ∗
k∑

j=1

E[(Rhyp
t∗+j)

2|Ft∗ ] + ε (1.5)

Where V ar(Robs
t∗+k+1) = (Robs

t∗+k+1)
2, the realized volatility of the observed �rst

5-minute return; and
∑k

j=1 V ar(Rhyp
t∗+j) =

∑k
j=1[E(Rhyp

t∗+j)
2|Ft∗ ], the sum of expected

volatility over the halt period, which is calculated from GARCH forecasting and sim-
ulation. We apply a AR(3)-GARCH(2,2) model to describe the characteristics of a
stock's 5-minute return series, this functional form takes into account the fact that real
stock price has increased/decreased to the limit's level. We will discuss the modeling
part in detail later. V ar(Rhyp

t∗+k+1) is the volatility of the hypothetical �rst 5-minute
return, in literature, it is also called �overnight volatility�. For a particular stock, we
assume the volatility of the �rst 5-minute return can be represented by a linear func-
tion of the realized volatility of the previous day. Under the null hypothesis that price
limits have no e�ect, we estimate the linear function using data from all days that sat-
isfy two conditions: (1) stock price does not reach the limit at the end of a day, (2) the
�rst 5-minute return in the subsequent day is observable. Further, we apply the func-
tion to days that the stock price reaches the limit and causes a halt, in order to obtain
the volatility of the expected hypothetical �rst 5-minute returns. More speci�cally,
E(Rdayi

first−5)
2 = ω1 + ω2 ∗

∑dayi−1

all R2
t , and E[(Rhyp

t∗+k+1)
2|Ft∗ ] = ω1 + ω2 ∗

∑t∗
t∗−35+k R2

t .
Equation (1.3) reveals a mechanical impact of imposing price limits. However, we
are more interested in testing whether there is derivative �spillover e�ect� besides
the mechanical e�ect. Therefore, under the null hypothesis that equation (1.1) holds
� the price limits do not have derivative �spillover e�ect�, the βs in equation (1.5)
should be one. In other words, the unobserved price path above the limits should
not have a volatility leverage larger than one under the null. However, if the impact
of price limits truly �spills over� to the next day more than can be explained by the
mechanism shown in equation (1.2) and (1.3), we are going to see βs greater than one.
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There can be many explanations if the leverage is greater than one. Suppose
there is information di�usion coming along with a sudden increase or decrease in the
price such that the price hits the limit. Imposing a boundary here merely delays the
di�usion process as well as adding to uncertainty that people feel about the amount
of information being released. The most important channel open to traders to judge
the market's trend has been shut down, and price movement becomes invisible to
investors. As a result, larger changes in prices, and consequently higher volatility, is
supposed to compensate for the uncertainties caused by price limits.

On the other hand, it is also possible that the �abnormal� moves in price are initi-
ated purely by noise traders. Instead of taking time to reassess their decision during
the �cooling o�� period, noise traders may become even more optimistic or pessimistic
about the current situation, and push the price further away from the �normal� level.
Noise trader e�ect, coupled with overnight e�ect, worsen the problem, and provide
room for speculation on volatility dynamics. If that is the case, we expect to �nd a
notably higher volatility than what is predicted by the mechanism in equation (1.3)�
the �spillover� in the short run, but a reverse of price volatility in the long term. If we
can group companies by criteria that noise traders use to make investment decisions,
we may be able to �nd that certain companies have larger leverage than the others.

1.2 Random E�ect Model

We ran a cross sectional random e�ect regression model to test the null hypoth-
esis. The simplest case where a random e�ects model might be considered is when
there are two stages of sampling. At the �rst stage units are selected at random from
a population, and at the second stage a number of measurements is made sequentially
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in time or space on each unit sampled in the �rst stage. If we regard the stocks in our
data set as �xed, then the most general model we might consider would have separate
simple linear regressions of V ar(Robs

t∗+k+1) on V ar(Rhyp
t∗+k+1) and

∑k
j=1 V ar(Rhyp

t∗+j) for
each stock, as shown in equation (1.4). However, there are large variations in slopes.
We test if the slopes can be considered constant, as then we can adopt the simpler
parallel-line regression model. The results suggest that di�erences between slopes are
not adequately explained by a cross sectional regression with those parameters β1 and
β2 �xed. We will discuss the results in detail in Chapter 4.

A promising way of generalizing the model is to assume that the stocks we examine
are from a population where the slope coe�cients depend on the sample. The model
we investigate has the form

Yij = (β1 + θ1
i )X

1
ij + (β2 + θ2

i )X
2
ij + εij (1.6)

where i denotes the sample and j the observation on that sample, and θ1
i ∼ N(0, σ2

1),
θ2

i ∼ N(0, σ2
2), εij ∼ N(0, σ2). Further, (θ1

i , θ
2
i ) and εij are independent, but θ1

i and
θ2

i can be correlated. This allows for the possibility that predictions from the �tted
equation will need to cope with two sources of error, one associated with the sampling
process and the other with the measurement process within the sample itself.

In particular, the parameters in the variance structure (such as the variance com-
ponents) are estimated by maximizing the marginal likelihood of the residuals from
a least-squares �t of the linear model, and then the �xed part of the e�ects are esti-
mated by maximum likelihood assuming that the variance structure is known, which
amounts to �tting by generalized least squares.

Suppose that for each company we write Yi = Xiβi + εi, where βi = β + λi,
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λ = λ(e, θ), E[λi] = 0 and E[λiλ
′
i] = Σ. Combining terms, we obtain the model

Yi = Xiβ + (εi + Xiλi) = Xiβ + ωi (1.7)

where E[ωi] = 0 and E[ωiω
′
i] = σ2

i I+XiΣX ′
i = Πi. For the full sample of observations

from all companies, V = [Π] with Πi on the diagonal and zero o� the diagonal in
matrix [Π].

V = [Π] =




Π1 0 0 . . . 0

0 Π2 0 . . . 0

.

.

.

0 0 0 . . . Πn




To estimate the parameters, let bi be the ith ordinary least squares coe�cient
estimator for the ith company,

V ar[bi|Xi] = E[(bi − βi)(bi − βi)
′|Xi] = E[(X ′

iXi)
−1X ′

iωiω
′
iXi(X

′
iXi)

−1|Xi] (1.8)

and since E(ωiω
′
i) = Πi, let

Vi + Σ = (X ′
iXi)

−1X ′
iΠiXi(X

′
iXi)

−1 (1.9)

be the covariance matrix of bi, where Vi = σ2
i (X

′
iXi)

−1. On the other hand, the co-
variance matrix of β̂, the GLS estimator, is V ar[β̂i] = [X ′

iΠ
−1
i Xi]

−1.

Rao (1973) proved that the GLS estimator in the cross-sectional heteroscedastic
model may be written as:

β̂ =
n∑

i=1




(
n∑

i=1

(Vi + Σ)−1

)−1

(Vi + Σ)−1


 bi (1.10)
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indicating that GLS estimator is a matrix weighted average of the OLS estimators. In
order to estimate the unknown parameters in Vi and Σ, Swamy (1971) suggested a two-
step approach. First we obtain the ordinary least squares estimators bi for each com-
pany, and get the sample covariance matrix V̂i = s2

i (X
′
iXi)

−1, where s2
i = e′iei/(ni−k),

as we have k parameters and ni observations in each company.

Then the second step is to let b̄ = 1
n

∑n
i=1 bi.

Σ̂ = E[λiλ
′
i] =

1

n− 1

(
n∑

i=1

bib
′
i − nb̄b̄′

)
− 1

n

n∑
i=1

V̂i (1.11)

This comes from equation (1.8). Intuitively, there should be an adjusting compo-
nent 1

n

∑n
i=1 V̂i, because the between-group variation among bi's calculated from the

n least square equations does not control for the within-group variation among the
observations of Xi's. So to calculate an estimator for Σ in the cross-sectional model,
we need to make the above adjustment. In large-sample behavior of Σ̂, the second
matrix will be negligible.

To get the estimators of variance components, we use maximum likelihood esti-
mation.

lnL = −n

2
ln(2π)− 1

2
ln |Π| − 1

2
ω′(Π)−1ω (1.12)

where Π = Π(Vi, Σ). Let Γ = Π−1, and use Y −Xβ to substitute ω,

lnL = −n

2
ln(2π) +

1

2
ln |Γ| − 1

2
(Y −Xβ)′Γ(Y −Xβ) (1.13)

Then
∂lnL

∂β
= X ′Γ(Y −Xβ) (1.14)

∂lnL

∂Γ
=

1

2

[
Γ−1 − ωω′

]

=
1

2
[Π− ωω′] (1.15)
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Given a consistent estimator of Π(Vi, Σ) from equation (1.10), we use (1.13) above
to estimate β. With the new estimates of β, we then reestimate all the parameters
in Π or Γ from (1.14). Thereafter we repeat the two-step iteration until satisfactory
convergence has been achieved.

Denoting Ai = (Σ−1 + V −1
i )Σ−1, Ωi = [

∑n
i=1(Vi + Σ)−1]−1(Vi + Σ)−1 and Vi =

σ2
i (X

′
iXi)

−1,

β̂i = [Σ−1 + V −1
i ]−1[Σ−1β̂ + V −1

i bi]

= Aiβ̂ + [I − Ai]bi (1.16)

For standard errors and con�dence intervals,

V ar[β̂i] =


 Ai

I − Ai







∑n
i=1 Ωi(Σ + Vi)Ω

′
i Ωi(Σ + Vi)

(Σ + Vi)Ω
′
i (Σ + Vi)





 Ai

I − Ai


 (1.17)

In S+, the test of the random coe�cients model is based, equation by equation,
on the di�erences between the OLS estimates and a weighted average of the OLS
estimates. The test statistic suggested by Swamy (1971) is:

χ2 =
n∑

i=1

[bi − b̃]′V̂ −1
i [bi − b̃] (1.18)

where b̃ =
[∑n

i=1 V̂ −1
i

]−1 ∑n
i=1 V̂ −1

i bi. The statistic is asymptotically distributed as
chi-squared with K(n-1) degress of freedom under the null hypothesis of parameter
constancy. It is equivalent to the standard F statistic for testing H0 : β1 = β2 = ... =

βn in the generalized model Yi = Xiβi +εi (i = 1, 2, ...n) with E[εiε
′
i] = σ2

i I, for i = j.
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Chapter 2

Presentation of Data

2.1 Overview

The Tai Wan Stock Exchange (TSE) is an order-driven call market that does
not utilize designated market makers. Investors issue orders, and the market uses a
periodic batch process to match demand and supply. The clearing price is determined
in order to maximize the trading volume. Tai Wan Stock Exchange (TSE) imposes
a daily price limit of 7% for all traded stocks. Within a trading day, the price for a
single stock cannot move more than 7% from the previous day's closing price. There-
fore, the maximum 1-day return is 7% and the minimum 1-day return is −7%.

The trading hours are from 9:00 am to 12:00 noon on weekdays. Trading also
occurred on the �rst and third Saturdays of each month and from 9:00 am to 11:00
am until March 1998. From April 1998, the trading hours for these two Saturdays
are extended to 3 hours from 9:00 am to 12:00 noon. The original dataset consists
of 5-minute return series of 346 listed companies in the TSE from January 3, 1998
to March 20, 1999, all adjusted for dividends and splits. The TSE categorizes these
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companies into 18 industrial sectors.

Table 2.1: TSE category of 18 industrial sectors

Code Sector # Firms A B C D E F
11 Cement 7 15.0 9.4 3.0 37.0 43.9 82.1
12 Food 24 29.4 21.6 11.3 48.5 46.6 59.8
13 Plastics 16 29.4 22.7 7.4 51.0 46.1 227.9
14 Textiles 48 27.0 18.8 7.8 55.3 41.7 72.8
15 Machinery 19 26.6 19.3 8.5 52.0 54.6 50.8
16 Elec. App. 12 21.6 15.4 6.5 45.1 50.5 102.1
17 Chemicals 16 24.2 17.1 6.9 48.0 38.8 65.2
18 Glass 6 18.8 13.0 5.0 59.9 41.6 51.8
19 Paper Pulp 6 21.2 15.5 5.5 57.6 38.3 85.8
20 Iron Steel 25 33.0 24.0 14.3 53.6 49.7 83.5
21 Rubber 8 27.3 20.5 7.4 60.0 46.0 82.6
22 Automobile 4 6.8 4.3 1.0 57.6 47.0 70.7
23 Electronics 66 36.8 27.1 8.4 49.4 49.1 278.4
25 Construction 31 31.1 22.8 11.2 45.7 51.1 96.1
26 Shipping 14 18.6 13.2 4.1 49.6 28.0 83.1
27 Tourism 6 20.3 13.5 5.1 49.7 29.6 30.3
28 Bank 34 18.5 13.6 5.1 52.1 30.2 166.2
99 Other 4 20.8 13.8 5.8 52.0 29.5 85.6

Tot/Ave 346 23.7 17.0 6.9 50.9 44.1 98.6

A: Sector average of days reaching the limits. B: Sector average of days closing at the limits. C:
Sector average of consecutive days closing at the limits. D: Sector average duration of staying at
the ceiling. E: Sector average duration of staying at the �oor. F: Sector median of daily trading
volume.

Table 1 gives summary statistics of how often the price limits are reached for the
�rms classi�ed by industrial sectors. During the sample period from January 3, 1998
to March 20, 1999, the price reached the limits, on average, 23.7 days out of the 324
trading days, which is about 7.3% of the sample period. The stocks closed at the
limits on average 17 days out of the 324 trading days. This implies that once the
limits are reached in a trading day, it is more likely to close at the limits. Table 1
also summarizes how long the price stays at the limits. On average, the price stays
at the ceiling for 51 minutes once it reaches the ceiling and it stays at the �oor for 44
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minutes once it reaches the �oor. Thus within a trading day (3 hours), the stocks tend
to stay at the limits for quite a long time after they reach the limits. It is also noticed
that sector 23�Electronics, has the highest median daily trading volume. The most
heavily traded company in Tai Wan, TSMC (Taiwan Semiconductor Manufacturing
Company Ltd.), is included in this sector. On the other hand, sector 27�Tourism, has
the lowest median daily trading volume. Table 1 clearly shows that the daily price
limits play a very important role during the sample period in the Tai Wan Stock
Exchange. Therefore, the data from TSE is a natural candidate for us to study the
e�ect and impact of the daily price limits.

2.2 Typical Firms

For illustration purpose, one �rm from each category is picked out (18 �rms in all)
and their data structure is analyzed. There are 36 observations for a typical trading
day, and 24 for each special Saturday as explained in the previous section. The vari-
able Overnight Duration is constructed to summarize the length of time that stock
price stays at the limits � and hence no transaction occurs � before the market
opens and resumes to trade on the next day. By implication, Overnight Duration>0.

Figure 1: Mean of Overnight Duration
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Figure 1 shows the mean of overnight durations for the 18 �rms. The second �rm,
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TAIWAN PINEAPPLE, in sector 2 (Food) has the largest overnight duration. For
this stock, if the market closes at its limit on one day and then resumes to trade on
the following day, the price would have stayed at the limit for an average of 2 hours
on the previous day.

Further examination on TAIWAN PINEAPPLE is presented in Figure 2. Graph(a)
reveals a spike at overnight duration=92 around day 277. Graph (b) on the right pro-
vides an explanation for this number. The price has a clear upward trend before day
277, and in fact, it has been staying at the 7% ceiling for two and a half consecutive
days. In total, there are exactly 92 observations. Immediately after that day, the
open-to-open price seems to be very volatile on the stock market. This observation
is consistent with the prediction of the spillover hypothesis.

Figure 2: TAIWAN PINEAPPLE Price Data and Duration Plots
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However, when performing empirical tests, we mainly focus on the cases where
overnight duration is less than one day (amount to 36 observations). There are two
reasons behind this. First, the GARCH model we use to forecast the price movement
during the halt period is not good for prediction over long time horizon, especially
across days. The TSE market opens three hours every day and closes 21 hours be-
fore the next opening. It is not desirable to make forecasts across to the next day
when such a signi�cant �overnight� period is present. Second, frquency study of all
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the stocks shows that overnight duration <= 36 accounts for 91% of the times, when
overnight duration > 0 are counted. Therefore, we focus on the majority cases and
include in our study only the �rst two days of the minority cases, in which the du-
ration is longer than one day. To be more speci�c, for overnight duration > 36, the
observed opening return after the �rst event day is |7%| (at the limit); we include this
number in our study even though it underestimates the true absolute return at that
time. As a result, we minimize the downward bias that may be caused by leaving
those highly volatile, post-event days entirely out of the study.

The original TSE data that we obtained is 5-minute price series. The return is
de�ned conventionally as Rt = ln(Pt) − ln(Pt−1), where t represents each 5-minute
interval. Another restriction on TSE is that the price cannot move more than 2 tic
sizes between two consecutive transactions during a day. In practice, trade is usually
not observed to occur when the price moves beyond 6.8% or below −6.8% of the
previous day's closing price.

2.3 Feature of Data

It is well known that the volatility is higher at the beginning of a trading day than
during that day. Figure 3 plots the intra-day volatility pattern for the 346 TSE stocks
in our dataset. The volatility is de�ned as the standard deviation of the 5-minute
returns.

The TSE market opens at 9:00am and closes at 12:00 noon to make 36 5-minute
time bins. For each stock, we calculate the standard deviation of the returns for each
of the 36 time bins. Then the standard deviations are averaged over 346 stocks to
create the average intra-day volatility pattern. The following graph presents a clear
U-shape with the highest values achieved at two ends, i.e., the opening and closing
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Figure 3: Average Intra-day Volatility Pattern
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of the market. Therefore, we apply a widely used method�standardization to handle
this deterministic volatility pattern.

Speci�cally, for a given stock, let rt,k be the 5-minute return at day t and kth bin
and

δk =

√∑324
i=1(ri,k − r̄k)2

323

be the sample standard deviation of the return, where r̄k =
∑324

i=1 ri,k/324. The
standardized 5-minute return of the stock is then de�ned as

RETt,k =
rt,k

δk

.

Under such transformation, the U-shape pattern in the volatility has been removed.
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Chapter 3

Econometric Models

Andersen and Bollerslev(1997) have shown that high frequency stock returns usu-
ally have heavy tails, and that their volatility is correlated. In convention, the general-
ized autoregressive conditional heteroskedasticity (GARCH) model is used to capture
heavy tails and volatility clusterings. The GARCH(p,q) process models the condi-
tional variance ht as a linear function of past squared innovations and past conditional
variances. It incorporates such a fact in the �nancial markets that large innovations
tend to be followed by large innovations when uncertainty is prevalent.

In estimating the GARCH model for all the stocks, we exclude those returns when
the relevant prices are at the limits, because once the price reaches its limit, it can
stay at the limit or move only in one direction and hence exhibit unusual dynamics.
Once the price departs from the limit, the next return is included in the analysis.
Under the null hypothesis, the GARCH model estimated should govern the trading
process if there were no daily price limits imposed on the market, i.e. price limits
were not e�ective to change the volatility dynamics. As such, we will proceed to use
the GARCH model and forecast the price movements where they were not observed.

We �nd the TSE data typically exhibit strong negative serial correlations up to
the third lag. Therefore, we use AR(3) as the conditional mean function for the
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GARCH model. The conditional mean equation is speci�ed as follows:

Rt = ω0 + ω1Rt−1 + ω2Rt−2 + ω3Rt−3 + zt (3.1)

Where Rt is de�ned as Rt,k =
rt,k

δk
. The sample standard deviation of the return δk is

de�ned as
√∑324

i=1(ri,k − r̄k)2/323, where r̄k is
∑324

i=1 ri,k/324.

In this paper, a GARCH(2,2) process �nally �ts better than other alternatives,
and the ranks also agree with the GARCH model identi�ed in Cho, Russell, Tsay and
Tiao (2002). This model is applied to the conditional variance of the returns,

ht = α0 + α1z
2
t−1 + α2z

2
t−2 + β1ht−1 + β2ht−2 (3.2)

Where zt =
√

htεt. As in all GARCH models, αi ≥ 0,βj ≥ 0, and
∑

i=1(αi + βi) < 1.
The unconditional variance of zt is �nite whereas its conditional variance ht evolves
over time. It is straightforward that

E(z2
t ) =

α0

1−∑
i=1(αi + βi)

(3.3)

Since we have standardized the volatility to remove the U-shape pattern, we expect
α0 = 1−∑

i=1(αi + βi) .

The model we want to test consists mainly of three parts:

V olobs
ij = (β1 + θ1

i ) ∗ V olhyp
ij + (β2 + θ2

i ) ∗ V olhyp
halt + εij (3.4)

On the left hand side, the volatility of the observed �rst 5-minute return is approx-
imated by realized volatility, i.e., square of the return in its original units. On the
right hand side, the hypothetical volatility of the �rst 5-minute return is estimated
by the linear function speci�c to each �rm of the realized volatility from the previous
day. The hypothetical volatility over the halt period will be forecasted by the AR(3)-
GARCH(2,2) model. Since we know the unobserved price paths during the halt can
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only be above the 7% limits or below the −7% limits, the forecasts are conditional
ones. Accordingly, for each case that the price reaches the limit and stays there until
the end of the day, we simulate from the AR(3)-GARCH(2,2) model 1000 paths that
are all above or below the limits. After that, 1000 returns for each entire path are
calculated and volatility of the 1000 returns is recorded. Because the returns used to
build the GARCH model are standardized, the volatility forecast is not on the same
scale as the realized volatility. Thus, we �standardize back� the volatility forecast to
its original unit. We use days that have overnight duration > 0, because only those
observations are relevant to the null hypothesis we want to test.

In order to implement the random e�ect model, multiplicates from each company
are required. However, there are 14 companies that have single pair of observations
(observed volatility and expepcted volatility over the halt), and 21 companies that
have only two pairs of observations over the sampling period. Hence, these companies
are eliminated from the dataset. Since we are looking at a narrow window of the �rst
�ve-minute return of each post-event day, stocks that in general are illiquid and trade
very little in that �ve minutes may behave undesirably and contaminate our results.
By de�ning an illiquid stock as one that is traded less than �ve times on average in
the �rst �ve minutes, we �nd that nine companies are �illiquid�, and they are excluded
as well. Furthermore, due to uncontrolled factors in the numerical estimation of the
GARCH model, some coe�cients obtained for the GARCH coe�cients contribute to
forecasting negative volatilities, which are not feasible to proceed with. As a result,
the involved compnanies (11 in total) are taken out. Therefore, in the end we have
291 companies and 2410 pair of observations to run the analysis.
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Chapter 4

Estimation Results

We use S+ to estimate the coe�cients of the Random E�ect Model. t∗ is the time
when the price hits the limit.

[R
obs(ij)
t∗+k+1]

2 = (β̄1 + θ1
i ) ∗ E[(R

hyp(ij)

t8+k+1)
2|Ft∗ ] + (β̄2 + θ2

i ) ∗ E[(R
hyp(ij)
t∗,t∗+k)

2|Ft∗ ] + εij (4.1)

According to Swamy's test statistic in equation (1.18), we �rst show that the random
e�ects are signi�cant and cannot be explained by a �xed coe�cient regression.

Table 4.1: Random Coe�cient VS. Fixed Coe�cient
Model AIC BIC loglik Test L. Ratio p-value

Random Coef. 19045.67 29083.50 -14516.84
Fixed Coef. 29092.47 29117.69 -14542.24 1 vs 2 50.798 <0.0001

Second, we run a random e�ect model with a free intercept and �xed slopes:
[R

obs(ij)
t∗+k+1]

2 = α + ηi + β1 ∗E[(R
hyp(ij)
t∗+k+1)

2|Ft∗ ] + β2 ∗E[(R
hyp(ij)
t∗,t∗+k)

2|Ft∗ ] + εij. The results
are shown in the next page.

Under the null hypothesis, the intercept should be zero, and the �xed slope co-
e�cients should be one. However, from the table we �nd the intercept is signi�-
cantly larger than zero, and the slope coe�cients are larger than one. Third, we
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Table 4.2: Random E�ect Model by Comp. � Intercept
Random Part StdDev
Intercept ηi 4.188
Residual εij 12.052

Fixed Part Value Std. Error t-value vs. 0 t-value vs. 1
Intercept α 5.856 0.838 6.988
Slope β1 1.666 0.307 5.421 2.169
Slope β2 1.147 0.041 28.595 3.585

run a random e�ect model with both intercept and slopes being free: [R
obs(ij)
t∗+k+1]

2 =

α + ηi + (β̄1 + θ1
i ) ∗ E[(R

hyp(ij)
t∗+k+1)

2|Ft∗ ] + (β̄2 + θ2
i ) ∗ E[(R

hyp(ij)
t∗,t∗+k)

2|Ft∗ ] + εij.

Table 4.3: Random E�ect Model by Comp. � Intercept and Slope
Random Part StdDev
Intercept ηi 2.348
Slope θ1

i 1.331
Slope θ2

i 0.249

Fixed Part Value Std. Error t-value vs 0 t-value vs 1
Intercept α 5.693 0.871 6.531
Slope β̄1 1.705 0.351 4.869 2.009
Slope β̄2 1.173 0.047 24.955 3.681

Again, all the �xed parts of the slope coe�cients are signi�cantly larger than
one. The intercept is greater than zero. It indicates for each observation, the total
spillover e�ect on volatility is elevated by a �xed amount. Therefore, we reject the
null hypothesis and conclude that the price limits have a signi�cant spillover e�ect on
the opening return of the next day, and such e�ect is not explained by the mechanical
leverage revealed in equation (1.3).

Fourth, we group the companies by sector and examine whether there are sig-
ni�cant discrepencies among sectors. Totally we have 17 sectors, s=1,2,...17, as-
suming each group is a random draw from the population. For model [R

obs(sj)
t∗+k+1]

2 =
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α + ηs + β1 ∗ E[(R
hyp(sj)
t∗+k+1)

2|Ft∗ ] + β2 ∗ E[(R
hyp(sj)
t∗,t∗+k)

2|Ft∗ ] + εsj.

Table 4.4: Random E�ect Model by Sector � Intercept
Random Part StdDev
Intercept ηs 2.399
Residual εsj 12.431

Fixed Part Value Std. Error t-value vs 0 t-value vs 1
Intercept α 6.308 0.986 6.398
Slope β1 1.704 0.288 5.918 2.444
Slope β2 1.165 0.039 29.148 4.231

For model: [R
obs(sj)
t∗+k+1]

2 = (α + ηs) + (β̄1 + θ1
s) ∗ E[(R

hyp(sj)
t∗+k+1)

2|Ft∗ ] + (β̄2 + θ2
s) ∗

E[(R
hyp(sj)
t∗,t∗+k)

2|Ft∗ ] + εsj.

Table 4.5: Random E�ect Model by Sector � Intercept and Slope
Random Part StdDev
Intercept es 2.135
Slope θ1

s 0.765
Slope θ2

s 0.134

Fixed Part Value Std. Error t-value vs 0 t-value vs 1
Intercept α 6.291 0.955 6.586
Slope β̄1 1.647 0.367 4.482 1.763
Slope β̄2 1.201 0.057 21.207 3.526

We also apply the random e�ect model within each individual sector and do not
�nd signi�cant di�erences between sectors in terms of the spillover e�ect. In other
words, the e�ect is robust and a�ects individual sector as well as company. There is
no sector-speci�c e�ect involved. See Table 4.6.

Fifth, to further check robustness, we group the companies by liquidity levels. In
this paper, the liquidity for each company is de�ned as the daily mean of dollar trad-
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ing volumes (MDTV). We roughly separate all the companies into three quantiles:
low liquidity (MDTV<25.78 million), mid liquidity (25.78<MDTV<79 million) and
high liquidity (MDTV>79 million), and each category includes about 804 observa-
tions. See Table 4.7 and Table 4.8. t values against 1 instead of 0 are reported in all
tables.

Table 4.6: Random E�ect Model for Individual Sector
�x slope random slope

Sector β̂1 std(β̂1) β̂2 std(β̂2) Sector β̄1 θ1 β̄2 θ2
1 4.419 2.184 2.088 0.539 1 4.419 0.005 2.089 0.002
2 1.243 1.233 1.133 0.157 2 1.994 1.446 1.158 0.263
3 2.889 1.291 0.971 0.139 3 2.498 0.836 0.914 0.089
4 3.394 0.417 1.456 0.125 4 4.386 0.486 1.423 0.137
5 4.493 1.727 1.256 0.200 5 5.157 1.778 1.265 0.127
6 2.086 0.832 1.647 0.241 6 2.494 0.989 1.688 0.104
7 3.719 1.714 1.198 0.198 7 3.664 1.717 1.222 0.197
8 1.814 0.003 2.268 0.365 8 1.849 0.037 2.246 0.196
9 1.963 0.971 1.119 0.341 9 2.275 0.721 1.499 0.586
10 2.636 1.015 0.854 0.151 10 2.587 0.628 0.975 0.409
11 3.829 1.021 1.157 0.204 11 4.134 1.007 1.140 0.116
13 1.838 0.628 1.021 0.069 13 1.822 1.069 1.038 0.284
14 3.492 0.948 1.224 0.127 14 3.481 1.719 1.219 0.194
15 3.424 0.969 1.189 0.234 15 2.675 1.304 1.494 0.352
16 3.344 1.465 2.221 0.746 16 3.345 1.465 2.220 0.747
17 3.449 0.564 1.393 0.181 17 3.727 1.800 1.462 0.424
18 4.758 2.337 1.582 0.520 18 5.187 1.212 1.634 0.451

For stocks with a mean daily dollar trading volume smaller than 79 million, the
slope coe�cient of the forecasted volatility during the halt is signi�cantly greater than
one in both random e�ect models. For stocks with mean daily dollar trading volume
larger than 79 million, the slope coe�cient of the forecasted volatility during the halt
is not di�erent from one. On the other hand, the slope coe�cient of the estimated
�rst 5-minute return volatility is not di�erent from one in all the regressions. There-
fore, the spillover e�ect varies depending on the liquidity level of stocks, but there is
no cooling o� e�ect at any level identifed.

Sixth, as discussed in Chapter 1, we also want to test the spillover e�ect for the
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Table 4.7: Random E�ect Model by Liquidity. � Intercept

low liquidity mid liquidity high liquidity
Random Part StdDev #Firms StdDev #Firms StdDev #Firms
Intercept ηi 2.262 811 4.175 804 2.674 796
Residual εij 12.958 12.356 10.655
Fixed Part Value t-value-1 Value t-value-1 Value t-value-1
Intercept α 8.687 4.234 3.362
Slope β̂1 1.395 0.859 2.501 0.821 1.377 0.777
Slope β̂2 1.279 4.026 1.130 1.97 0.953 0.67

Table 4.8: Random E�ect Model by Liquidity. � Intercept and Slope

low liquidity mid liquidity high liquidity
Random Part StdDev #Firms StdDev #Firms StdDev #Firms
Intercept ηi 1.289 811 2.222 804 2.076 796
Slope θ1

i 1.164 0.910 1.053
Slope θ2

i 1.362 0.215 0.268
Fixed Part Value t-value-1 Value t-value-1 Value t-value-1
Intercept α 8.238 4.379 3.966
Slope β̄1 1.462 0.9096 2.481 2.31 1.167 0.278
Slope β̄2 1.362 4.701 1.112 1.604 0.938 0.713

�rst 15, 30, 60 minute returns based on the same dataset as that of the �rst 5 minute
return, and the results are summarized in Table 4.9 and Table 4.10.

When we allow both the intercept and slopes to be random, the slope coe�cient
of the estimated volatility during halt is greater than one in all three cases of di�erent
time horizon, indicating the price limit has a signi�cant leverage e�ect on the volatil-
ity. For the slope coe�cient of the estimated overnight volatility, it is not di�erent
from one in all three cases. Therefore, the mechanical e�ect still exists, but is not
enlarged. Moreover, it is noted that the intercept is always greater than zero, and
hence we have an overwhelmingly rejection to the null hypothesis. We conclude that
the spillover e�ect varies depending on the time horizon we look at, and the e�ect
is signi�cant with no cooling o� e�ect at any level to be identi�ed. In summary,
we examine the spillover e�ect of price limits on the opening returns (over various
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Table 4.9: Random E�ect Model by Time Interval. � Intercept
15 min 30 min 60 min

Random Part StdDev StdDev StdDev
Intercept ηi 4.559 4.485 4.862
Residual εij 12.879 12.869 15.581
Fixed Part Value t-value-1 Value t-value-1 Value t-value-1
Intercept α 8.823 8.268 10.979
Slope β̂1 1.041 0.26 0.862 1.150 1.129 1.142
Slope β̂2 1.113 2.63 1.110 2.62 1.038 0.745

Table 4.10: Random E�ect Model by Time Interval. � Intercept and Slope
15 min 30 min 60 min

Random Part StdDev StdDev StdDev
Intercept ηi 3.898 3.421 5.881
Slope θ1

i 1.223 0.920 1.009
Slope θ2

i 0.256 0.252 0.305
Fixed Part Value t-value-1 Value t-value-1 Value t-value-1
Intercept α 7.436 6.784 9.541
Slope β̄1 1.355 1.571 1.105 0.618 1.288 1.756
Slope β̄2 1.157 3.204 1.155 3.163 1.095 1.890

time spans) of the next day. We �nd signi�cant evidence for this e�ect as well as the
mechanical e�ect, after controlling for a company's speci�c overnight characteristics.
Contrary to what might be expected after the emergence of a consensus price, the pe-
riod immediately after a trading cessation is characterized by higher levels of volatility.
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Chapter 5

Conclusion

We use 5-minute intra-day price data from the Tai Wan stock exchange(TSE),
where a daily price limit of 7% is imposed for all traded stocks, to study the impact
of price limits on volatility. Our null hypothesis of interest is that knowing whether
or not the price reaching the limits and staying there till the end of the day has no
spillover e�ect on the return volatility of the next day. The empirical test of this
hypothesis is implemented by cross sectional random e�ect regression model, and the
expected volatility during the halt is obtained by GARCH forecasting and simulation.

If the null hypothesis is true, slopes β1 for the estimated overnight volatility, and
β2 for the estimated volatility during a halt in the cross sectional regression should
be one. If on the contrary the price limits elevate return volatility on the following
day, slopes should be greater than one. The third case where βs are smaller than one
then indicates cooling o� e�ect.

The cross sectional random e�ect model �tted by company has a slope β2 of the
estimated volatility during a halt signi�cantly larger than one, in either case where
only the intercept is allowed to be random, or both the intercept and slopes are al-
lowed to be random. The cross sectional random e�ect model �tted by sector delivers
the same result. We further test the null hypothesis within each sector and �nd that
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out of 17 sectors, 15 have β2 larger than one.

In the next step, we classify the companies into three di�erent liquidity levels
and ensure the number of companies in each category about the same. We �nd the
test results are slightly varied according to liquidity level, with the highest liquidity
companies corresponding to β values not di�erent from one, and both mid and low
liquidity companies corresponding to β values larger than one. There is no cooling
o� e�ect identi�ed. In addition, we test the null hypothesis using the �rst 15-minute,
30-minute and 60-minute opening returns following trading cessations. The results re-
veal that as the time window examined being extended, the magnitude of the spillover
e�ect decays slightly. Overall, the slope coe�cient (β2) of the estimated volatility dur-
ing a halt is signi�cantly greater than one; the slope coe�cient (β1) of the estimated
overnight volatility is not di�erent from one; and the intercept is greaer than zero.
Again, there is no cooling o� e�ect at any level identi�ed. In the end, we conclude
that the daily price limits in TSE are ine�ective in preventing over-reaction. Price
limits either mechanically increase the volatility of the opening return in a post-event
day, or, they additionally have spillover e�ect that elevates the volatility to a even
higher level. We recommend the policy makers to remove the price limits on the Tai
Wan Stock Exchange.
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