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Abstract

A large theoretical literature emphasizes the importance of financial networks, but

empirical studies remain scarce. Due to overlapping bank portfolios, the syndicated loan

market provides a natural setting to study financial networks. We exploit the tiered

structure of syndicated loans to construct such a network and characterize quantitatively

its evolution over time. A spatial autoregressive model provides an ideal methodological

framework to estimate spillovers from this financial network to lending rates and quanti-

ties. We find that these spillovers are economically large, time-varying and can switch sign

after major economic shocks. Moreover, we find that network complexity and uncertainty

rise after a large negative shock. Counterfactual experiments confirm the quantitative

importance of spillovers and network structure on lending rates and quantities and can be

used to disentangle the effects arising from spillovers versus changes in network structure.
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1 Introduction

A large theoretical literature is associated with understanding financial networks and how

network interactions might affect the real economy (for instance, Allen and Gale (2000),

Freixas, Parigi and Rochet (2000), Acemoglu, Ozdaglar and Tahbaz-Salehi (2015)).1 De-

spite the importance of this theoretical literature in understanding potential propagation

channels of macroeconomic shocks through bank interconnectedness, empirical work in-

vestigating how network structure might affect lending rates and quantities is relatively

scant.2

Empirical work is scant partly because of the difficulty in building an empirically plau-

sible financial network.3 One major obstacle arises from the confidentiality of bilateral

bank exposure data from the inter-banking market (Elsinger, Lehar and Summer, 2006).

We instead use publicly available data from the syndicated loan market to construct such

a financial network. Our key insight is that the syndicated loan market, a dominant source

of corporate credit, enables a natural interaction between financial institutions. Equiva-

lently, banks interact not only directly through interbank connections, but also through

indirect connections due to, for example, investment in common syndicated loans. This

market provides a natural source of overlapping portfolios across banks and can be used to

create a loan network that measures proximity in terms of similarity in sectoral investment

exposure between individual banks.4

Even after addressing the data availability issues, mapping the syndicated loan market

1One major view in the literature is that diversification has a beneficial effect and more diversified
(integrated) systems are more resilient. For instance, Allen and Gale (2000) theoretically analyze the
implications of different network structures on financial stability and show that denser interconnections
between banks can mitigate systemic risk. In contrast, Wagner (2010) and Tasca, Battiston and Deghi
(2017) find conditions under which diversification may have undesired effects (U-shaped) on the propagation
of financial contagion by making systemic crises more likely. Blume, Easley, Kleinberg, Kleinberg and Tardos
(2011) also suggest that denser interconnections can act as a destabilizing force, illustrating that the details
of network structure can be important in the propagation of shocks. In a similar spirit, Acemoglu, Ozdaglar
and Tahbaz-Salehi (2015) point out that the precise propagation depends on both network structure and
the size of shocks hitting the economy.

2Benoit, Colliard, Hurlin and Perignon (2016) survey the literature on systemic risk with the aim of
discussing the mapping between theories, empirical measures and regulatory reforms.

3Iyer and Peydro (2011) provide empirical evidence on interbank contagion, without using a network
structure, from a large bank failure in India.

4The paper also contributes in part to the study of the problem of overlapping portfolios previously
theoretically considered in the literature. Gai and Kapadia (2010), Gai, Haldane and Kapadia (2011),
Allen, Babus and Carletti (2012) and Amini, Cont and Minca (2016), consider for instance the situation
where one asset is held by banks engaged in interbank lending. In these models contagion occurs because
of fire-sales (asset commonality) and/or counter-party loss.
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data to quantitative measures of a financial network remains challenging. To this end,

we use the fact that a syndicated loan is originated by one or more lead banks that sell

portions of the loan to other participants. Therefore, by construction, the syndicate struc-

ture contains two different levels of decision making: one at the firm (loan) level and one

at the bank level. By analogy, we create a loan network following a two-step approach

that takes into account this syndication process. In the first step, we follow Cocco, Gomes

and Martins (2009), Giannetti and Yafeh (2012), and Cai, Saunders and Steffen (2016) to

calculate a bank’s sectoral exposure in each area of specialization according to industry

portfolio weights (the share of lending of each bank to different sectors). The bilateral

distance between these bank sectoral exposures is used as a measure of banks’ similari-

ties. This distance measure accounts for the information overlap that influences lending

practices. In the second step we rely on these bilateral bank distances to create the loan

network as the loan “similarity” based on the banks that participate in the syndicated

loan. We thus incorporate private information spillovers that can cause lending rates and

quantities to be different from those determined by fundamentals alone. The focus on loan

interconnectedness is a distinguishing feature of our approach, i.e. we conduct a loan level,

rather than bank level, analysis.

An example can illustrate the intuition underlying the loan network construction. Sup-

pose we are in an economy with only three loans, `1, `2 and `3, and three banks, say

Citibank (C), JP Morgan (JPM) and Bank of America (BoA). The three banks have dif-

ferent sectoral loan exposures as a proportion of their balance sheet. Loans `1 and `3

are both shared by C and JPM, while `2 is shared by JPM and BoA. An intuitive net-

work construction procedure should realize that loans `1 and `3 must have a stronger link

than the other pairs (`1, `2) and (`2, `3), because they are shared by the same bank pair

(C, JPM). Moreover, stronger bank similarity through higher exposure to the same sec-

tor should also be taken into account when constructing the loan network. Our two-step

procedure is built on this idea. In the first step, we compute pairwise distance measures

between C, JPM and BoA based on their sectoral specializations, before the loan issuance

in the syndicated loan market. As a result, banks with higher specializations in the same

sector (as a proportion of their total loan exposure) are more similar, a feature that can

arise from common soft information channels. In the second step, we use both the ob-

served syndicated loan participation decision and the sectoral exposures from the first step

to construct a measure of loan similarities. The resulting loan network presents a direct

measure of interconnectedness; more interconnected loans have more similar banks (across
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sectors) and more common exposures (participation in syndicated loans). The decision to

participate in different loans per industry is a source of information about the firm and

industry cash flows, and plays an important role in assessing the behaviour of other rival

banks.5

This two-step approach in constructing the loan network offers crucial advantages.

First, aggregation at the loan level (within loan) replicates the syndicate structure and can

be directly mapped to our data set. Second, by aggregating from the bank-level to the

loan-level, measurement error is averaged out. Third, the second step can also reduce the

bias introduced by the endogeneity of the bank’s participation decision (Hanushek, Rivkin

and Taylor, 1996). This aggregation step reduces omitted variable bias because omitted

variables have their clearest effects on estimates when the data are not aggregated to the

level of the omitted factors (such as when factors affecting a bank’s participation decision

are neglected).

To implement our empirical analysis we use data from three different sources. Specifi-

cally, we use the syndicated loan market that includes corporate loans to US firms in the

30 years between 1987 and 2016. To enrich the information at the bank level, we match

the loan-level data from Dealscan with Call Reports, with the help of coding from Call

Reports and a hand-matching process. We can do the same for firms, by matching our

end sample with Compustat. Our final sample consists of large US corporate loans from

specific US banks (lead arrangers and participants) to specific US firms (excluding utilities

and financial companies).

A key question of interest is whether loan rates and quantities are correlated with loan

interconnectedness. A natural way to empirically test for the presence of spillover exter-

nalities is to estimate a spatial autoregressive (SAR) model with simultaneous network

interactions. The syndicated loans market, with its overlapping portfolios through con-

nected banks, is uniquely suited to the application of such techniques. This framework has

been used widely in other areas like geography, trade, regional science and urban economics

(Case, 1991; Conley and Ligon, 2002; Pinkse, Slade and Brett, 2002; Conley and Dupor,

2003). A political economy application is given in König, Rohner, Thoenig and Zilibotti

(2017), who implement empirically a model of networks using conflict data and estimate a

5Helwege and Zhang (2016) observe that interconnectedness causes negative externalities through coun-
terparty and information contagion and highlight the role of exposures to common shocks. They find that
externalities that arise from counterparty exposures are small, especially among banks that face diversifi-
cation regulations, and do not typically cause a cascade of failures.
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SAR model with network interactions given by allegiances of participants. However, to the

best of our knowledge it has never been used with syndicated loans data.6 Our aim is to as-

sess the role of loan similarity in cross-loan linkages in the syndicated loan market. Spatial

models offer the advantage of allowing us to directly detect patterns of co-movements in

lending rates and quantities. Consequently, we can assess whether co-movements, on top of

fundamental characteristics, are economically significant and time-varying in determining

lending rates and quantities.

What are our main empirical findings? First, we characterize the evolution of the finan-

cial network and find a noticeable variation in network density over time. This is visible in

both the number of syndicated loans arranged, as well as the number of connections that

form between these loans. Moreover, during large crisis periods like the 2007-09 recession,

we observe a sizeable drop in the number of connections and the number of loans arranged.

This offers a visual validation of the two-step procedure in constructing the network since

the density of connections rises as 2007 approaches and markedly decline during the Great

Recession, and rises again thereafter. Quantitative measures of network density confirm

these visual impressions.

Second, we find strong evidence for the economically important existence of spillovers

in lending rates and quantities, beyond the effect of fundamentals. These spillovers can be

interpreted as capturing the complex interactions across banks, which are reflected in their

lending decisions in the syndicated loan market. Moreover, our empirical specification uses

a particular linear parameterization of Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and

how spillovers might arise from the actions of other network members. Our results provide

empirical support for such a specification.

Third, we characterize the evolution of spillovers over time. We find an economically

and statistically significant positive co-movement in lending rates during expansionary

periods. This co-movement becomes zero at the peak of the 2007-09 financial crisis, and

after the crisis we observe a switch in the sign of the co-movement. During good times,

when shocks are fewer and smaller, we find that a one standard deviation increase in the

rates charged by a loan’s neighbours in the network leads to an increase in its own rate

by 7.32 basis points (bps), amounting to a nearly 4% increase in the average loan rate

in our sample. On the other hand, during bad times, with large and numerous shocks,

6The model that we use is similar to those used in the social interactions literature (Sacerdote, 2001;
Topa, 2001; Durlauf and Ioannides, 2010), but is less likely to suffer from the ‘reflection problem’, see e.g.
Lee (2007), Pinkse and Slade (2010) and de Paula (2017) and the more detailed discussion in footnote 17.
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a one standard deviation increase in the rates charged by a loan’s neighbours leads to a

fall in its own lending rates of 3.95 bps, around a 2.1% drop for the average loan. We

also analyze loan quantity spillovers. We find that in good times banks that participate

in more interconnected loan networks increase their lending quantities, while in bad times

the response is economically very weak.

Fourth, we explicitly test and find supportive evidence for an increase in network com-

plexity and/or uncertainty during the financial crisis of 2007-09. In our model, unobserved

spatial heterogeneity between loans can be interpreted as a measure of network complex-

ity and our framework allows us to explicitly test for the presence of network spillovers

in unobserved characteristics. We find evidence for an increase in network complexity

and/or uncertainty during large recessions, consistent with recent theoretical predictions

of increase in network complexity (Caballero and Simsek, 2013) and empirical results of

increases in counterparty uncertainty (Ivashina and Scharfstein, 2010) during recessions.

In interpreting these empirical findings, a policy maker would be interested to know

whether lending rates change due to loan network evolution or due to the evolution of

spillover effects. In a counterfactual experiment using our constructed network and es-

timated spillovers, we find that a networked economy with time evolving network struc-

ture has lending rates and quantities that are significantly different from non-networked

economies. Our largest estimated positive spillover suggests that the networked economy

has lending rates (quantities) that are 5.54% (20.59%) higher, on average, than the non-

networked economy. If, on the other hand, the network is assumed to stay the same over

time and remains always the same as during the peak of the financial crisis in 2008, we find

that the difference between lending rates and quantities in networked versus non-networked

economies is no longer as large. For the same estimated spillover that led to 5.54% (20.59%)

higher lending rates when the network evolves over time, the lending rates (quantities) are

only 1.18% (4.02%) higher on average in the static 2008-networked economy. This em-

pirical finding supports the theoretical findings relating to collapse of financial networks

during major crises, e.g. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015).

To control for unobserved heterogeneity, we use the multi-level structure of our data

set (multiple loans by the same lender and to the same borrower) to mitigate omitted-

variable bias in a fashion similar to Jiménez, Ongena, Peydró and Saurina (2014, 2017)

and Delis, Kokas and Ongena (2017). We acknowledge that it is challenging to control

for all (observed and unobserved) firm and bank heterogeneity, which stems from banks’

participation decisions and firms’ exposure to systemic and idiosyncratic risk. However,
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our sample allows the inclusion of firm, bank, year and bank × year fixed effects. These

fixed effects saturate our analysis from other within firm (time invariant demand side),

year (common shocks) and within bank-year (supply-side) effects. We find that including

bank or bank × year fixed effects does little to change either our parameter estimates or

the goodness-of-fit, thus further supporting the claim that observed or unobserved supply

fundamentals are uncorrelated with the financial-loan network. More precisely, we analyze

whether the estimated spillover is different from one estimated in a regression without

bank fixed effects to verify that unobserved bank-specific credit supply shocks are not

correlated with the loan interconnectedness (Altonji, Elder and Taber, 2005; Khwaja and

Mian, 2008). This provides a safeguard that variation in the co-movement of the lending

rates and quantities is due to the loan network’s structure rather than any heterogeneity

in size, leverage, fundamentals, among other variables.

The paper is organized as follows. In Section 2, we describe data sources and the

construction of the final sample used in our analysis. Section 3 details the construction of

the bank distances and loan network that we have discussed above. As the loan network

we construct is dynamic, we devote Section 4 to study its evolution over time. Section 5

introduces the econometric model that we employ and describes the estimation procedure.

The key empirical results are presented and discussed in Section 6, clearly demonstrating

both the effect of spillovers in lending rates and quantities and their time-varying nature.

In addition, in Section 7, we show that network complexity and uncertainty rises after

major economic shocks. In Section 8 we conduct a counterfactual simulation study that

combines the networks created in Section 3 and the spillovers estimated in Section 6 to

examine the quantitative difference in lending rates and quantities between networked and

non-networked economies, as well as static and dynamic networks. Section 9 concludes

the paper. Three appendices illustrate the financial network construction, provide more

details about the econometric model that we use and further examine the implications of

the estimates that we obtain.

2 Data

We begin with a brief description of the syndicated loan market (see, for instance, Sufi

(2007); Delis, Kokas and Ongena (2017) for further details). Syndicated loans are granted

by a group of banks to a single borrower. Loan syndication allows banks to compete

with capital markets in the generation of relatively large transactions that a sole lender
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would not otherwise be able (or willing) to undertake due to internal and regulatory re-

strictions. These loans combine features of relationship and transactional lending (Dennis

and Mullineaux, 2000) and apportion credit risk between financial institutions without the

disclosure and marketing burden that bond issuers face.

The syndication process works as follows. The borrowing firm signs a loan agreement

with the lead arranger specifying the loan characteristics (collateral, loan amount, covenant,

a range for the interest rate, etc.). The members of the syndicate fall into three groups:

the lead arranger or co-leads, the co-agents, and the participant lenders. The first group

consists of senior syndicate members and is led by one or more lenders, typically acting as

mandated arrangers, arrangers, lead managers or agents. If two or more lead arrangers are

identified, they are then co-leads. Lead arrangers coordinate the documentation process,

choose whom to invite to participate in the loan syndicate and may delegate certain tasks

to the co-agents. In addition, the lead arranger receives a fee (paid by the borrower) for

arranging and managing the syndicated loan.

The co-agents collaborate with the lead arranger in administrative responsibilities as

well as in screening and monitoring efforts. The lenders with neither lead nor co-agent roles

are classified as participant lenders. These lenders can provide comments and suggestions

when the syndication occurs prior to closing. However, they are not generally involved in

the negotiations or the information sharing between the borrower and the lead arrangers

(or the co-agents if applicable). The price and the structure of the loans are determined in

a bargaining process that takes place between the lead bank and the potential participants

after the non-price characteristics of the loan are set.

We obtain data on syndicated loan deals from Dealscan. This database provides detailed

information on the loan deal’s characteristics (amount, maturity, collateral, borrowing

spread, performance pricing, etc.), as well as more limited information for the members of

the syndicate, the lead bank, the share of each bank in the syndicate (which is important

in the construction of the loan network) and the firm that receives the loan.7

7We apply two selection rules to avoid bias in our sample. This is an essential part of the sample-
selection process that is absent from most empirical studies using the Dealscan database (for a similar
strategy see Lim, Minton and Weisbach (2014)). First, we disentangle banks from non-banks. We consider
a loan facility to have a non-bank institutional investor if at least one institutional investor that is neither
a commercial nor an investment bank is involved in the lending syndicate. Non-bank institutions include
hedge funds, private equity funds, mutual funds, pension funds and endowments, insurance companies, and
finance companies. To identify commercial bank lenders, we start from lenders whose type in Dealscan is
US Bank, African Bank, Asian-Pacific Bank, Foreign Bank, Eastern Europe/Russian Bank, Middle Eastern
Bank, Western European Bank, or Thrift/S&L. We manually exclude the observations that are classified
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To obtain information for the financial statements of the banks we match these data

with the Call Reports. We hand-match Dealscan’s lender ID with the commercial bank

ID (RSSD9001) from the Call Reports. This process yields a unique identity for each

lender. In turn, we link the lenders at their top holding company level (RSSD9348) to

avoid losing observations. Because these reports are available on a quarterly basis, we

match the origination date of the loan deal with the relevant quarter. For example, we

match all syndicated loans that were originated from April 1st to June 30th with the second

quarter of that year of the Call Reports. Similarly, we obtain annual information for the

financial statements of firms from Compustat.

The matching process yields a maximum of 52,810 loans originated by 823 banks involv-

ing 7,511 non-financial firms spanning 1987-2016. This sample is a so-called ‘multi-level’

data set, which has observations on banks and firms (lower level) and loan deals (higher

level). Table 1 formally defines all variables used in the empirical analysis and Table 2

offers summary statistics. The all-in-spread drawn (AISD) is one of our main dependent

variables and is defined as the sum of the spread over LIBOR plus the facility fee (bps).

The average of AISD in our sample is 187 bps, while the standard deviation indicates size-

able variation (146 bps). The mean of our second main dependent variable (Deal amount)

is around 625 ($M), confirming the large transaction size.

We now briefly discuss the control variables used in our analysis. Consistent with

previous studies (e.g., Sufi (2007); Ivashina and Scharfstein (2010)), we include several loan-

level, bank-level, and firm-level control variables to rule out other possible explanations for

our results. At the loan level, we use a dummy that equals one if the loan is linked with

financial covenants to control for unobservable borrower risk factors (Carey and Nini, 2007);

a dummy that equals one if the loan is a revolver (credit line), and a series of dummy

variables describing a number of loan-quality characteristics. Specifically, we include a

dummy variable equal to one if the loan is secured to control for problems of information

asymmetry; a dummy variable equal to one when the loan has a guarantor to control for

risk in case of adverse developments for the borrower; a dummy variable equal to one

if performance pricing is included in the loan contract to control for borrower’s business

prospects (Ross, 2010); and a dummy equal to one if a loan refinances a previous loan.

Concerning the bank-level control variables, we use non-performing loans as a measure

as a bank by Dealscan but actually are not, such as the General Motors Acceptance Corporation (GMAC)
Commercial Finance. We went through all the syndicated loans manually, one-by-one. Second, we exclude
loans granted to utilities or to financial companies.
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of ex-post bank credit risk; the ratio of interest expenses to total assets (interest expenses)

to control for interest coverage and bank efficiency in managing core liabilities; and the

natural logarithm of real total assets (bank size). At the firm level, we control for firm

size, measured by the natural logarithm of total assets; the amounts ($M) of syndicated

loans that a firm has received during the last five years as a proxy for useful information

to participant banks; a dummy variable that equals one if the firm has a previous lending

relationship with the lead arranger in the last five years; firm tangibility measured by the

ratio of tangible assets over total assets to control for asset turnover; the natural logarithm

of market-to-book (Tobin’s q) as a proxy for the cost of equity; and the ratio of net income

over total assets (ROA) to control for profits (Adams and Ferreira, 2009).

3 Construction of the financial network W

Our construction of the network is based on a two-step approach following the structure

of the syndicate. The first step involves constructing a distance measure between banks

based on their sectoral exposures, while the second aggregates these interbank connections

at the syndicated loan level to obtain a distance measure between loans. The resulting

loan network (W ) is a key input in the econometric analysis.

3.1 Bank’s bilateral distance

We construct a measure of investment similarity at the bank level to capture possible

common information sharing channels. We therefore do not interpret proximity as closeness

in terms of physical distance, but instead as similarity or dissimilarity regarding investment

exposure, i.e. asset exposure, of banks. Specifically, to measure the proximity between

individual banks within a year we compute a distance measure between banks. Each

bank’s similarity with other banks is given by the Euclidean distance from other banks

within a year based on their sectoral loan portfolio weights.8 The smaller (higher) the

distance, the more similar (dissimilar) are the banks that are being compared. Let wBb1,b2,t
be the distance between bank b1 and bank b2 at time t, where superscript B emphasizes

that this is a bank distance. Let Loanb→s be the amount (in millions of dollars) lent by

bank b to sector s at time t and Total Loanb→S be the total amount (in millions of dollars)

8The Euclidean distance measure is employed by Giannetti and Yafeh (2012) to measure cultural dif-
ferences between lead arrangers and borrowers in loan syndicates and also in Cai, Saunders and Steffen
(2016) to measure the bank interconnectedness in the syndicated loan market.
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that bank b has lent during the same year to the total number of sectors (S). For each

bank pair (b1, b2), we compute the normalized Euclidean distance as follows:

wBb1b2,t =

√√√√∑S
s=1

(
wsb1,t − w

s
b2,t

)2

2
, (1)

with

wsb,t =
Loanb→st

Total Loanb→St

, for any bank b.9

Thus wBb1b2,t is the distance between banks b1 and b2 on Euclidean S-dimensional space

at time t and lies in [0, 1]. It is also evident that wBb1b2,t = wBb2b1,t, i.e. equation (1) is a

symmetric distance. Furthermore, note that, for all banks b,
∑S

s=1w
s
b,t = 1. From equation

(1), it is clear that bank similarity (wBb1b2,t) measures how similar the sectoral exposures of

banks b1 and b2 are.

Table (A1) provides an example of how the composition of industry investments per

bank, wsb,t, is constructed (for the two-digit SIC industry)10 and also the computation of the

Euclidean distance based on SIC industry division among the top three arrangers in 2015

(JPMorgan Chase (JPM), Bank of America (BoA), and Citigroup (C), in this example).

We observe that the allocation of funding between these banks differs. More precisely,

JPM invests heavily in loans related to manufacturing (47.58%) and transportation &

communication (27.89%). BoA invests more than half of its total funding in manufacturing

(51.5%) and allocates similar weights between transportation & communication (17.58%)

and retail trade (15.58%). In contrast, C invests 35.86% in manufacturing, 29.31% in

transportation & communication and 19.70% in retail trade. The weights per industry

reveal banks’ preferences to invest and therefore their sectoral specialization. As a result,

the distance between JPM and BoA is smaller compared to the other bilateral distances

(0.2167). Thus, JPM and BoA are more similar to each other, in terms of sectoral exposure.

On the other hand, BoA and C are less similar because they have a higher distance (0.3816).

9Cocco, Gomes and Martins (2009) use a similar weight to measure the intensity of lending activity in
the interbank market.

10We have constructed similar measures for the one, three and four-digit SIC industry.
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3.2 Loan network

Bank exposures to each industry, or similarities (wBb1b2,t), are not necessarily an appropriate

measure of bank preferences to do business with other banks because, for example, banks

are engaged in other markets like interbank or secondary markets. However, in the context

of the syndicated loan market, banks can be ‘aggregated’ into the loans they participate

in. In other words, each bank may be treated as being comprised of a number of loans,

or equivalently, participation decisions. This loan level participation decision is a more

appropriate measure of a bank’s connection to other banks, because loan making is the

basic granular decision of a bank. In addition, the structure of the syndicate lends itself

naturally to our two-step approach because we observe banks and loans (firms) at two

different levels (see Figure 1). The first level computes bank similarity by comparing

bank sectoral exposures as a proportion of their total loan exposure (below dotted line in

Figure 1). The second level uses this information to construct loan similarity based on

both participation in a syndicated loan and the constructed bank similarity measure. We

can therefore use the inter-bank distances to construct inter-loan distances that explicitly

account for syndicated loan portfolio overlaps. This second-stage aggregation at the loan

level yields distances that form the loan network (above dotted line in Figure 1).

We first illustrate the procedure theoretically and then provide a specific example to

flesh out the intuition. Suppose that we observe Bt banks and Lt loans at time t, t =

1, . . . , 30. Let WB
t be a symmetric Bt × Bt matrix whose (b1, b2)-th element is wBb1b2,t as

defined in equation (1). We then use the entries of WB
t to construct a symmetric Lt × Lt

matrix WL
t whose (i, j)-th element wLij,t, where superscript L emphasizes that this is an

inter-loan distance, is a measure of interconnectedness of loan i and loan j at time t. Denote

by Bijt the set of all the banks that share loan i and j at time t. Define the elements of

WL
t by

wLij,t =
1

P {Bij,t}
∑

(b1,b2)∈Bij,t

(
wBb1b2,t

)−1
, i 6= j, (2)

where P {Bij,t} is the number of bank ‘pairs’ formed in Bij,t. Note that our analysis will

assign a greater interconnection measure to loans that are ‘closer’ to each other, hence the

use of inverse distances in the sum in equation (2). More similar banks have a bigger effect

on each other and therefore we need to convert the sectoral distances to loan similarities by

inverting and standardizing bank sectoral distances (wBb1b2,t).
11 Loan interconnectedness

11An aspect that arises in the computation of equation (2) is the possibility of wB
b̃1 b̃2,t

= 0 for some
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ranges between zero and one, with zero corresponding to lack of interconnectedness and

larger values reflecting stronger interconnectedness.

We will use the same example as in the previous subsection to clarify the loan network

construction. The procedure is illustrated in Panel A of Table A2, where Loan `1 is

shared by banks JPM, C, Loan `2 by banks JPM, BoA and Loan `3 by banks JPM, C.

In Panel B, we observe bank similarities by using the inverted and standardized inter-

bank distances. A higher value reflects greater similarity between banks. We observe that

JPM and the BoA are more similar (0.6592), in terms of their investment preferences, in

contrast with JPM and C (0.4818) or BoA and C (0.3749). In panel C, we show how we have

constructed the interconnectedness between loans. For example, for loan `1 and loan `2 the

interconnectedness (wL2,1) is equal to the inverse of the bilateral bank exposures divided by

the number of pairs. In this example, the pairs are [(JPM,JPM), (JPM,BoA), (C,JPM),

(C,BoA)] yielding 0.6290. As expected, loan `1 and `3 have the biggest interconnection

(wL3,1) because they are shared by the same bank pair. However, the loan interconnectedness

is close, but not equal to one, because these banks differ in sectoral exposures.

To obtain W , we use each wLij,t computed above in the block-diagonal matrix

W ∗ =


WL

1 0 0 . . . 0

0 WL
2 0 . . . 0

...
...

...
...

...

0 0 . . . 0 WL
30

 . (3)

The block diagonal assumption in (3) captures the variation between loan networks but not

between years.12 Finally, with ‖W ∗‖ denoting the largest eigenvalue of W ∗, we normalize

the distances in W ∗ as

W =
W ∗

‖W ∗‖
. (4)

pair b̃1 and b̃2. This entails an exact overlap of portfolios between banks b̃1 and b̃2 and therefore implies
that these banks are very ‘close’, in fact arbitrarily so. We cannot use the inverse of wB

b̃1 b̃2,t
in this case,

but assign instead the value max
b1,b2;w

B
b1b2,t

6=0

(
wB

b1b2,t

)−1

+ 1. In other words, we assign the largest possible

interconnection measure i.e. the inverse of the smallest possible nonzero bank distance for year t, plus one.
12Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012) use a similar assumption about idiosyncratic

shocks at the firm or sectoral level that can propagate over input-output linkages within the economy.
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4 Characterizing the loan network evolution

MatrixW forms a network of loans made up of a set of 30 square matricesWL
t , t = 1, . . . , 30,

providing a loan network evolution between 1987 and 2016. In Table 3 we provide summary

statistics for each of the networks WL
t . The second column, titled “Connections”, lists the

number of bilateral loan relationships per year. This is computed as the number of nonzero

off-diagonal entries in each WL
t .13 Greater numbers of “Connections” reveal two features:

more loans in the network and more interaction between these loans. Since connections

are an absolute measure, we also construct a measure relative to network size. The third

column displays a measure called “Density” defined as #(nonzero off-diagonal elements of

WL
t )/#(off-diagonal elements of WL

t ), i.e. the proportion of nonzero off-diagonal elements

of WL
t .

Connections are quite similar in number from 2006 to 2007, but the density in 2007 is

less than in 2006, reflecting the onset of the crisis during the latter half of the year. In

2008 the number of connections falls dramatically, and then even more so in 2009. This

is caused by the collapse of the syndicated loan market in the aftermath of the crisis.

However, density shows signs of recovery from 2007, indicating that while the number of

connections is small, the proportion of connections has increased. The remaining columns

of the table provide mean, standard deviations and quantiles for the nonzero elements of

the WL
t matrices.

Figures 2-8 provide a graphical illustration of both the dynamic evolution of the net-

work, as well as the loan network construction procedure. Our discussion in the previous

section describes how we construct the loan network via bank participation in multiple

loans in the syndicated loan market. In Figure 2 we show the structure of the syndicated

loan network in 1987 at two levels. The purple nodes correspond to banks and the or-

ange nodes correspond to individual loans. A line from a purple node to an orange node

indicates that the bank represented by the former is a member of the loan syndicate of

the latter, while larger purple nodes indicate banks that are involved in a greater number

of loan syndicates. This figure forms the basis for the construction of the WL
t matrices

defined above.

Figure 3 is a particular example showing the part of WL
1 for 10 loans in 1987. We

again reserve orange nodes to correspond to individual loans, while the thickness of the

13In networks terminology, a nonzero off-diagonal entry corresponds to an “edge” between the corre-
sponding “nodes” and the magnitude of this entry is the “edge weight”.
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line joining the nodes reflects the magnitude of the corresponding element of WL
1 . The

thicker the line, the greater the element and thus the larger the interconnection. We can

see that loans 1 and 6 have the greatest interconnection, in other words the banks that are

members of the syndicates for these loans have the greatest average pairwise similarity (by

our aforementioned similarity measure (1)) of all the loans in the figure. On the other hand,

note that loans 3 and 4 and loans 4 and 5 have no interconnecting lines. This means that

they do not influence each other (or, in network terms, there is no edge between nodes 3

and 4 and nodes 4 and 5) and thus have corresponding WL
1 elements equal to zero because

these loans have no banks in common in their syndicates. Furthermore, loans 3, 4, 5 and 7

have few connections, while loans 1, 2, 6, 8 and 10 have more. In peer effects terminology,

the latter group of loans is ‘more social’ relative to the former group.

Focussing again on Figure 2, we can also use network figures to examine the evolution

of the syndicated loan market. In our data there are 575 syndicated loans in 1987, and 155

banks are involved in loan syndicates. By 2006, with the financial crisis looming, loans in

the syndicated loan market rose to 2106 and banks to 176. This constitutes an increase of

366% in the number of loans and 13.5% in the number of “players” (banks). This is clearly

visible in Figure 4, which replicates the way we generate Figure 2, but now for 2006. We

can see a much denser diagram with many more loans and players.

Next, we show the corresponding diagram for 2009 in Figure 5, in the aftermath of the

crisis. By this time the syndicated loan market was down to 799 loans with 137 banks

involved in syndication, and this is evident in Figure 5. The network appears much more

sparse as compared to the one in 2006 and there are less than half as many orange nodes,

corresponding to loans, and fewer purple nodes (banks). Finally, in Figure 6 we plot the

network for 2010, when the syndicated loans market showed some signs of recovery. It was

now up to 1288 loans involving 163 banks. Figure 6 illustrates clearly this aspect. The

network is denser than the one for 2009 in Figure 5 but not as much as the one for 2006

in Figure 4.

Our empirical analysis will be based on loan similarity, and we can also depict the

evolution of this measure over time. We focus on 2007 (during the crisis) and 2011 (after

the crisis). Not only do we know that there were only 799 loans in 2007 as opposed to

1837 in 2011, we can also use the loan networks (WL
t ) corresponding to these years to

illustrate the density of the interconnections. Because connections form via the banks in

the syndicates, fewer connections imply a breakdown in both bank participation in the

market as well as the connections between the banks themselves. The “Density” column in
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Table 3 ranges from 67.89% (in 2007), the smallest number in the whole period, to 94.12%

(in 1999). In 2011 the value is 87.8%. Thus, if we plot the network links we would expect

the 2007 ones to show a sparser set of edges than the 2011 ones. Due to the sheer number

of loans and connections it is neither feasible nor informative to plot the entire network

for these years, and we therefore focus on a plot for a subset of 150 loans for each year.

These representations are shown in Figures 7 for 2007 and 8 for 2011, where once again

orange nodes are individual loans and node size corresponds to how “social” the loans are.

Comparing the two figures shows that in 2011 (Figure 8) the loan network has a much

denser set of connections than 2007 (Figure 7), implying a greater degree of interaction as

the market regains its vigour after the crisis.

5 Empirical specification and estimation

To analyze how the structure of the constructed loan network affects lending rates and

quantities we use the following spatial autoregressive (SAR) model:

y = λ(Wy) +Xβ + ε. (5)

A vector of actions y (loan spreads or lending quantities) depends not only on own charac-

teristics (Xβ), but also on the actions of other connected individuals via the financial-loan

network W , which determines the intensity of connections.14 One key parameter of interest

is λ which can be interpreted as a spillover, or peer effect, following the social interactions

literature. As explained below, equation (5) can be viewed as a particular case of the linear

interaction function used in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015).15

Our financial network is similar to the setup in Acemoglu, Ozdaglar and Tahbaz-Salehi

(2015). Like them we assume that wLii,t = 0 for all i, wLij,t = wLji,t (symmetry) and a

normalization of the network given in equation (4).16 In their terminology, W is an in-

teraction network, while the interaction function is parameterized to be a linear function

with unknown parameters λ and β, as in equation (5).

14Appendix B contains a discussion, with key references, of the SAR model.
15The scaling in equation (4) stems from the fact that without any normalization, λ in (5) is not

identified. In the absence of normalization we could simply replace W by cW for any c ∈ (0,∞) and then
λ† = λ/c would give the same data generating process. Given its necessity, the question arises as to which
normalization is most appropriate. We follow here the recommendation in Gupta (2017) and choose (4).

16Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) use row-normalization.
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Equation (5) features three main building blocks. The first block involves the construc-

tion of a financial network (W ) using bilateral exposure from the syndicated loan market,

as we have done in Section (3). The second block involves a procedure to estimate and

monitor the magnitude of network spillovers (externalities) on economic variables like loan

spreads and quantities. This is captured by λ. The third block is the loan-level shock

ε, which captures stochastic disturbances emerging from financial uncertainty or network

complexity that banks face when they make loan participation decisions.

In this model, the dependent variables corresponding to loan i depend not only on bank-

firm-loan characteristics and aggregate fundamentals, but also on those loans that banks

participate in with an overlapping pattern via an interaction network. Writing equation

(5) translates to an empirical model of the following form:

yi,t = αf + λ

 Lt∑
j=1,j 6=i

wLij,tyj,t

+ β1Bi,t−1 + β2Fi,t−1 + β3Li,t + εi,t (6)

In equation (6), the cost of lending or the lending quantity, labelled yi,t, for loan i

at time t is regressed on the key independent variable
∑Lt

j=1,j 6=iw
L
ij,tyj,t (we will call this

regressor the financial-loan network), which measures the financial network dependence

between loan i and other loans at time t, a vector of weighted banks’ characteristics B at

t−1, a vector of firm characteristics F at t−1 and a vector of loan characteristics L at t. λ

measures the spillover or the co-movement in the lending rates or quantities between loan

i and other loans at time t. αf denotes a vector of fixed effects, while εi,t is an ‘loan-level’

shock, which captures stochastic disturbances to loan i.17

In equation (6) we are interested in determining whether a correlation between the

constructed loan network and individual loan rates and quantities exists. We control for

17Our model in equation (6) is of the form

yi,t = λ

 Lt∑
j=1,j 6=i

wL
ij,tyj,t

+ x′i,tγ + εi,t.

Denoting by Eloc(·) an expectation conditional on the process generating the observation locations, the
‘reflection problem’ of Manski (1993) occurs when in fact the model is of the form

yi,t = λEloc (yi,t) + x′i,tγ + εi,t,

and the term
∑Lt

j=1,j 6=i w
L
ij,tyj,t is treated like a nonparametric estimate of Eloc (yi,t). This issue typically

does not arise in spatial econometrics because, as pointed out for instance by Lee (2007) and Pinkse and
Slade (2010), the actual intended regressor is

∑Lt
j=1,j 6=i w

L
ij,tyj,t and not Eloc (yi,t).
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reverse causality by lagging all the right-hand side variables except for loan characteris-

tics. To control for omitted variable bias, our analysis accounts for potential unobserved

variables, especially the bank- and firm-level ones that might bias the coefficient estimates

on the loan network. Specifically, our dataset’s structure allows us to include a number of

fixed effects (bank, firm, year, loan type, loan purpose) because the individual loan facili-

ties are non-repeated but the lenders originate multiple loans within a year. Among these

fixed effects, the bank and firm fixed effects are particularly important because we control

for time-invariant bank-and-firm characteristics that could lead to correlation between the

financial network
(∑Lt

j=1,j 6=iw
L
ij,tyj,t

)
and εi,t in equation (6).18 To capture the systemic

risk component, we use year fixed effects. The inclusion of year fixed effects accounts for

annual common shocks across all banks and firms (e.g., the effect of the subprime crisis).

We also use loan type and loan purpose fixed effects to insulate our model from differences

in syndicate structure due to loan type or purpose (for more extensive definitions, see Table

1).

Moreover, unobserved heterogeneity is mitigated by our two-step loan network con-

struction procedure involving two stages of aggregation. The first stage is illustrated in

equation (1), where aggregation takes place over sectors. The second stage is shown in

equation (2), where aggregation is over bank pairs. These aggregation procedures will

mitigate the effect of unobserved heterogeneity at sectoral and bank-pair level, alleviating

endogeneity concerns arising from these sources. To be precise, suppose that inter-bank

inverse distances are given by

(
wBb1b2,t

)−1
=
(
w̃Bb1b2,t

)−1
+ ηb1,b2,t,

where ηb1,b2,t is unobserved heterogeneity relating to the portfolio overlap between banks

b1 and b2 at time t. Our aggregation in equation (2) implies that

wLij,t =
1

P {Bij,t}
∑

(b1,b2)∈Bij,t

(
w̃Bb1b2,t

)−1
+

1

P {Bij,t}
∑

(b1,b2)∈Bij,t

ηb1,b2,t, i 6= j. (7)

Assuming that unobserved heterogeneity ηb1,b2,t is a random variable with zero mean,

the sample average (P {Bij,t})−1∑
(b1,b2)∈Bij,t

ηb1,b2,t will approach zero, thus eliminating

18In Table 7, we show that our findings are robust to the analysis being conducted for bank × year fixed
effects.

18



endogeneity from this source.19

We use the Gaussian quasi maximum likelihood (QMLE) (see e.g. (Lee, 2004)) to

estimate the parameters λ and β in (6). This estimator uses a likelihood based on Gaussian

ε, although Gaussianity is nowhere assumed. The intuition is that we can identify λ and

β via the first two moments of y, so that an approach based on Gaussianity, even if

misspecified, will work. Writing S(λ) = In−λW and taking E(εε′) = σ2In (In denotes the

n× n identity matrix), the negative likelihood function is

log (2πσ2)− 2n−1 log |S (λ)|+ σ−2n−1 ‖S (λ) y −Xβ‖2 . (8)

We concentrate out β and σ2. For given λ, (8) is minimized with respect to β and σ2 by

β̄ (λ) =
(
X ′X

)−1
X ′S (λ) y, (9)

σ̄2 (λ) = n−1y′S′ (λ)MS (λ) y, (10)

with M = In − X (X ′X)−1X ′. The QMLE of λ is λ̂ = arg minλ∈ΛQ (λ), where Q (λ) is

the concentrated likelihood function,

Q (λ) = log σ̄2 (γ) + n−1 log
∣∣S−1 (λ)S−1′ (λ)

∣∣ , (11)

and Λ is a compact subset of (−1, 1). The QMLEs of β and σ2 are defined as β̄
(
λ̂
)
≡ β̂

and σ̄2
(
λ̂
)
≡ σ̂2 respectively. We report standard errors assuming homoskedasticity as

well as heteroskedasticity robust versions.20

19A similar analysis can be carried out for unobserved heterogeneity at sectoral level in equation (1).
20Note that in general the QMLE is not consistency-robust to unknown heteroskedasticity, as noted

by Lin and Lee (2010). However, Liu and Yang (2015) point out that the QMLE can remain consistent
despite unknown heteroskedasticity under conditions that seem appropriate in our setting. Furthermore, the
inconsistency is related to the sparsity, or the number of zero elements, of W or, in our block-diagonal case,
the sparsity of WL

t , t = 1, . . . , 30. In particular, the less sparse each WL
t is the less acute the asymptotic bias.

Our WL
t matrices are not sparse and thus the use of heteroskedasticity-consistent standard errors in our

setting is further justified. Standard errors computed using the ‘sandwich’ covariance matrix give similar
results, again because lack of sparsity mitigates the effect of the misspecification part of the covariance
matrix.
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6 Empirical results

Having characterized the evolution of the loan network over time, we can now discuss

the estimates for λ in equation (6). Of particular importance is whether there exists any

evidence for spillover effects, whether such effects vary over time and whether such effects

also exist in the residual, signifying time-varying trends in network uncertainty.

6.1 Baseline results on lending rates

Table 4 reports our baseline results for the AISD using bank-loan-firm level variation.

The first two columns in Table 4 report results from network specifications that do not

include year fixed effects to control for common shocks. Thus, in these specifications the

effect of the structure of the loan network is identified from the cross-sectional differences

between loans in Column I (loan-purpose and loan-type fixed effects (FE)) and between

banks that participate in each loan in Column II (Bank FE). We add bank FE to control

for bank-specific supply shocks. In this case the heterogeneity comes from comparing the

cost of lending across banks, implying that λ is identified from the variation stemming

between banks. The coefficient estimate λ̂ of the financial-loan network (recall that this is

the regressor
∑Lt

j=1,j 6=iw
L
ij,tyj,t in equation (6)) is statistically significant at the 1% level,

indicating that one standard deviation change in the interconnectedness between loans

(based on the specifications in column II and measured by σ
(∑30

t=1

∑Lt
j=1,j 6=iw

L
ij,tyj,t

)
=

84.12bps) increases the AISD by approximately 7.32 basis points (calculated from the

product 0.087×84.12). Economically this effect is large: for the average loan in our sample

(having an AISD equal to 187.11), this implies an increase in AISD by approximately 4%

(calculated from (7.32/187.11)× 100). Similarly, this represents around 5% of its standard

deviation.

The general finding, without controlling for common shocks, is that the financial-loan

network positively, and both statistically and economically, affects lending rates, providing

evidence for the existence of spillovers from the loan network to lending rates. Moreover,

the difference between the estimates with bank FE (Column II) and without (Column I)

is almost zero in magnitude (0.002). This suggests that unobserved bank-specific credit

supply shocks are not correlated with the changes in the λ̂ (Jiménez, Ongena, Peydró and

Saurina (2017)), mitigating endogeneity concerns.

Columns III and IV show the network effect after controlling for common shocks by

adding year FE to the regressions reported in Columns I and II, respectively. Relative

20



to Columns I and II, λ̂ is determined from the banks in which we observe a change in

loan participation decision due to common shocks. In Column IV we also add firm FE

to exclude other firm time-invariant reasons as potential omitted-variables, as long as

these variables do not change in the same period with the financial-loan network. In the

presence of common shocks the results in Columns III and IV show that the effect of the

financial-loan network changes sign and becomes negative and statistically significant at

the 1% level. Based on the results from the regression including all fixed effects (Column

IV), a one standard deviation (84.12 bps) increase in the financial-loan network yields a

decrease in loan spreads by approximately 3.95 basis points (calculated from the product

0.047× 84.12). Economically this is a large effect, equal to a 2.1% decrease for the average

loan in our sample.

Since the empirical evidence suggests that the inclusion of common shocks might re-

verse the sign or the magnitude of the financial loan network spillover, the next step is to

investigate further the transition of shocks between loans. In Table 6, we report results

from estimating equation (6) with the full set of control variables as in Table 4, sequentially

adding year fixed effects to control separately for the common shocks per year. The depen-

dent variable in panel A is AISD. The coefficient on the financial-loan network is positive

and statistically significant at 1% level until 2007. However, from 2005-2007 the magnitude

of λ̂ decreases. This decline culminates in a financial-loan network spillover that is statis-

tically insignificant and close to zero in 2008, at the peak of the crisis. However, after 2008

the coefficient turns negative and statistically significant at 1% level (except in 2009, when

the significance level is 5%). The evolution of λ̂ as we sequentially add year fixed effects

to the specification can also be illustrated graphically (Figure 9). The blue dashed lines

trace out a 95% confidence interval based on standard errors assuming homoskedasticity

and the green dashed lines trace out heteroskedasticity robust 95% confidence intervals.

The blue and green stars denote the respective confidence interval bounds, while the black

circles mark the point estimates, which we also trace out with a solid black line. The

figure illustrates quite clearly the decline of the spillover as the crisis approaches, and the

subsequent negative value that it takes.

Our results in Columns I and II provide the first important empirical finding of the

paper, namely evidence for the existence of spillovers on lending rates via a loan network.

These findings are consistent with the interpretation that the syndicated loan market allows

for asset commonality between different banks and reduces banks’ information production.

Acharya and Yorulmazer (2007) and Farhi and Tirole (2012) argue that banks choose to
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correlate their risk exposure by investing in the same assets (herding). A positive cor-

relation between lending rates suggests that banks participating in the syndicate might

treat rates as strategic complements, with benefit of charging a higher spread increasing

with the spread neighbours charge.21 Other examples of such complementary interactions

include network interactions in micro-economic shocks (Acemoglu, Ozdaglar and Tahbaz-

Salehi, 2015), municipalities’ state capacity choices (Acemoglu, Garcia-Jimeno and Robin-

son, 2015) and peer effects and education decisions in social networks (Calvó-Armengol,

Patacchini and Zenou, 2009; Blume, Brock, Durlauf and Jayaraman, 2015).

Our results in Columns III, IV and V, but also in the graphical illustrations, show

that the spillover estimates can vary over time and this change in spillover sign happens

during large turmoil periods. A theoretical finding of Acemoglu, Ozdaglar and Tahbaz-

Salehi (2015) is that networks can act as shock propagators when the number of shocks is

large, or when a large, single shock occurs.22 Given that the financial crisis of 2007-09 is a

large single financial shock, the observed change in spillover sign is empirically consistent

with Acemoglu, Ozdaglar and Tahbaz-Salehi (2015). To confirm this, in Column V we

add the full set of fixed effects but exclude the crisis FE. We observe a switch in the

sign of the co-movement with, and without, the crisis FE. The baseline results clarify that

increasing the size (by adding year FE) of the shocks yields a shift from positive to negative

co-movement in the lending rates, thus reversing the role of the network in curtailing or

causing financial spillovers. These empirical findings are similar to the reversal pattern in

federal fund market rates during the crisis (Afonso, Kovner and Schoar, 2011).

Our results are also consistent with findings in the peer-effects literature, and thus

can also be imbued with a behavioural flavour. This literature observes that negative

peer effects (in our setting this means λ̂ < 0) result when individuals seek status by

differentiating themselves from their peers (Ridgeway, 1978; Akerlof, 1997; Ahern, Duchin

and Shumway, 2014). During times of financial distress, such as a major financial crisis,

there is a trust deficit in the economy, and signals of quality become important. One

channel through which such a signal can be sent is the “differentiation” channel, in which

banks attempt to assert their quality by behaving differently from their peers. Another

strand of the peer-effects literature emphasizes also the presence of negative co-movements

when confirmation bias leads to polarized attitudes (Lord, Ross and Lepper, 1979). This

21Recall that “neighbour” is defined via W .
22Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) find a change in sign in the comparative statics with

respect to the network structure when common shocks are large.
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study stresses that individuals with very strong opinions on social issues interpret evidence

not on its own merit but rather on whether it conforms with their initial belief. This

generates further polarization, i.e. negative co-movement, taking place as all individuals

“draw undue support” for their initial positions from mixed information. We conjecture

that credit markets during a grave financial crisis, when information is unreliable and

emotions run high, are ripe environments for such mistrust and polarization, reflected in

negative spillovers in interest rates.

[Please insert Table 4 about here]

[Please insert Table 6 about here]

6.2 Baseline results on loan amounts

In Columns I-V of Table 5, we replicate the analysis as in Table 4, but this time the de-

pendent variable is the Deal amount. The general finding is that λ̂ is economically large

and statistically significant at 1% (and 5% in Column III) when we do not control for

common shocks (year FE). The estimate of the financial-loan network indicates that a one

standard deviation (σ
(∑Lt

j=1,j 6=iw
L
ij,tyj,t

)
= 479.18($M)) increase in the interconnected-

ness between loans (based on the specifications in column II) increases the Deal amount

by approximately 129.37 $M (calculated from the product 0.270 × 479.18). Economically

this is a large effect; for the average loan in our sample (having an Deal amount equal to

479.18), this implies an increase in Deal amount by approximately 27% (calculated from

(129.37/479.18)× 100). Including year FE (Column V) reduces the economic magnitude

and the financial loan network becomes statistically insignificant. The results remain qual-

itatively similar to the ones in Table 4 showing that changes in the magnitude of spillovers

can also take place for other variables like loan quantities.

As in the previous subsection, we can examine the time-series evolution of the estimated

spillover λ̂ in Deal amount as we add, sequentially, year fixed effects. Table 6, Panel B

reports the results when the dependent variable is Deal amount. We again observe that

the magnitude of λ̂ decreases as we approach the financial crisis, and while statistical

significance at 5% is present, this ultimately finally dies out as the 2013 fixed effect is

added. In tandem with results observed in columns IV and V of Table 5, where the

inclusion or exclusion of the 2007-09 fixed effects drives the significance or insignificance of

the spillover, we confirm the crucial role of the crisis. The graphical illustration is provided
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in Figure 10 where, as before, the blue dashed lines trace out a 95% confidence interval

based on standard errors assuming homoskedasticity and the green dashed lines trace out

heteroskedasticity robust 95% confidence intervals.

[Please insert Table 5 about here]

Our results on loan quantities are also consistent with the theoretical results in Ace-

moglu, Ozdaglar and Tahbaz-Salehi (2015) where a large shock can lead to a network

propagating rather than absorbing shocks through the change in the spillover magnitude.

Moreover, the positive co-movement in both lending rates and quantities during good pe-

riods is consistent with Acharya and Yorulmazer (2007) and Farhi and Tirole (2012), who

argue that banks choose to invest in the same assets (herding) and increase their exposure

to the same risk. Thus, banks increase their participation in the syndicated loan market

(reflected in higher deal amounts) in order to correlate their portfolios with a common set

of borrowers.

6.3 Robustness tests

We now present some robustness tests for our empirical results. In the specification of Table

7, we report results from three alternative measures for the cost of lending (Columns I-

VI) and one other measure of lending amount (Columns VII-VIII). We observe equivalent

results in the AISU for the full set of fixed effects (Column I) and when excluding the

crisis FE (Column II). We find that in Column I the effect of the financial-loan network

for AISU is negative but statistically insignificant, while when we exclude the crisis FE

(Column II) we observe a positive and statistically significant effect at 1% level. Based on

the specification in column II, the λ̂ indicates that one standard deviation (7.93 bpt) change

in loan interconnectedness increases the AISU by approximately 0.7 bps. This represents

an increase in the average AISU in our sample by 4.2%. A similar interpretation holds for

the Spread and the letter-of-credit fees.23 Regarding the lending quantities (Deal amount),

we observe equivalent results for the amount of the letter-of-credit. More precisely, when

we control for common shocks (column VI), a one standard deviation (18.87 $M) change

in loan interconnectedness increases the LOC by approximately 2.58 $M. This represents

an increase in the average LOC in our sample of 14%.

The set of fixed effects that we have previously used control for time-invariant unob-

served variables that may simultaneously affect the financial-loan network and the lending

23For the alternative proxies of the cost lending, we rely on Berg, Saunders and Steffen (2016).

24



rates or quantities. In Column IX and X, we replicate the baseline results of Column IV

of Tables 4 and 5 but now with additional bank × year FE.24 The inclusion of the bank ×
year FE allows to saturate the model from an alternative within bank-year (supply-side)

explanation of our findings.25 More precisely, we account for changes in bank behaviour

that affect the terms of lending or the lending quantities. Furthermore, it is important to

note that we are primarily interested in the effect of the financial-loan network on loan

rates and quantities, once these banks have made their participation decision.

Our analysis has focussed on the estimates of λ, but the coefficients on other control

variables have the expected signs, with spreads being a function of borrower and loan risk.

For instance, loan deals that refinance a previous loan and incorporate internal guarantees

tend to be more risky and therefore have higher spreads, while secured facilities tend to

be more risky, and hence have higher spreads.26 Loans with performance-related pricing

provisions (this is an indicator takes the value one if the spread is adjustable based on

pre-defined performance metrics) and covenants tend to have lower spreads (Ioannidou

and Ongena, 2010; Lim, Minton and Weisbach, 2014). Concerning the firm-level variables,

larger firms, with higher Tobin’s q (market-to-book ratios), and higher volumes of tangible

assets pay lower spreads. Also, firms that had at least one previous relationship with

the lead arranger in the past five years receive a lower spread because there is a smaller

deviation from the “soft information” (Delis, Kokas and Ongena, 2017). A similar analysis

holds for the amount ($M) of loans that a firm has received over the last five years. These

results are intuitive given the share and reputation of larger firms and the adverse effects

of firm risk on obtaining cheaper loans. Firms perceived as less risky have loan deals

with lower spreads, and a firm’s profitability in the form of ROA is associated with lower

spreads. The bank-level control characteristics exhibit similar features. Banks with higher

exposure to interest expenses and provisions will tend to charge higher spreads, in contrast

with larger banks.

[Please insert Table 7 about here]

24The structure of our dataset is a multi-level dataset with the different levels stemming from the fact
that multiple loan deals are given by the same bank within a year.

25Our dataset lacks sufficiently many firms that receive more than one loan within one year, ruling out
the inclusion of firm×year FE. Furthermore, this effect almost completely identifies equation (6) and may
not add much to the empirical strategy, given that the bank-loan-firm level controls and the bank and firm
FE already incorporate the information defining the bank-firm relationship.

26Security by itself lowers the risk of a loan. However, secured loans tend to be issued by younger, riskier
firms with lower cash flows, so the positive relation with spreads likely reflects this additional risk. See
Berger and Udell (1990).
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7 Testing for complexity and uncertainty

In the aftermath of Lehman Brother’s bankruptcy there was a substantial dry-up of liq-

uidity in the syndicated loan market. One interpretation is that participants face a game

of strategic substitutes (Acemoglu, Ozdaglar and Tahbaz-Salehi, 2015) to avoid being con-

nected to one another because market participants are aware that overlapping portfolios

could deteriorate their positions and make them over-exposed to their counter-parties.

More precisely, the participation in the syndicated loan market decreases, the higher the

initial intensity of participation of the connected banks. That is, the pay-off for each

bank depends not only on loan’s and borrower’s characteristics, but also on those of their

connected partners. In the admittedly extreme but still suggestive case of the Lehman

Brothers failure, banks that were participating in syndicated loans with them during 2008

suffered more in the period after their collapse (Ivashina and Scharfstein, 2010). This was

mainly due to the fact that these banks had to complement the Lehman Brothers share in

existing credit-lines and, thus, to reduce the financing of new projects. One interpretation

of these facts is that uncertainty rises has real effects through a financial network after a

negative shock. Another interpretation is that a central factor behind this uncertainty lies

in the complexity of the linkages among modern banks (Caballero and Simsek, 2013).

In our model, the structure of the error term that captures all unobserved spatial het-

erogeneity between loans, can be interpreted as a measure of network complexity (Caballero

and Simsek, 2013) and/or counterparty uncertainty (Ivashina and Scharfstein, 2010). More-

over, our framework allows us to therefore explicitly test for the presence of network

spillovers in the error term. We describe the technical details below but the basic idea

is to use a spatial analog of the Durbin-Watson serial correlation testing procedure famil-

iar from time series analysis.

More specifically, we analyse the cross-sectional correlation via W in the disturbances

ε of equation (6). In particular we are seeking to test the null hypothesis

Hε
0 : ρ = 0 (12)

in the specification

ε = ρWε+ η, (13)

where η is a disturbance. (13) captures the spatial complexity and/or uncertainty and

a failure to reject (12) can be interpreted as evidence consistent with the existence of
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complexity and/or uncertainty in the network.

Moran’s I statistic, due to Moran (1950) is a way to test the null hypothesis Hε
0 against

the alternative of cross sectional correlation, i.e. ρ 6= 0. The statistic is given by

I =
ε̂′Wε̂

n−1σ̂2
√

2trace (W 2)
, (14)

where ε̂ = y − λ̂Wy −Xβ̂, i.e. the QMLE residuals. Kelejian and Prucha (2001) showed

that I is asymptotically standard normal under reasonable regularity conditions. A large

absolute value of I leads to rejection of Hε
0 and thus evidence of the presence of a network

effect, via W , in the errors ε. On the other, small absolute values give evidence of the

absence of a network effect, via W , in ε.

Tables 4 and 5 also display the I test-statistic for various specifications and for both

choices of dependent variable. For both dependent variables, the statistic is large when year

fixed effects are not included. Including year fixed effects makes the statistic negative, but

still significant when bank or bank and loan purpose fixed effects are included, indicating

the presence of negative spillovers, i.e. ρ < 0 in (13). However, when we control for

firm fixed effects together with year fixed effects, the I statistic becomes less than 1.96 in

absolute value, leading to a failure to reject (12) at the 5% significance level. In other words,

the loan network collapses when all these effects are controlled for. When the dummies

for 2007, 2008 and 2009 are excluded from the specification, the I statistics become large

again and imply that (12) is rejected. Thus this loan network collapse is clearly driven by

the crisis. It is noteworthy that the same pattern is evident for both lending rates and deal

amount as the the response variables.

8 Networked versus non-networked economies: a counter-

factual evaluation

In this section we conduct a simulation study to quantify the difference between an economy

in which interest rates or lending amounts are determined independently of the interaction

network W , and economies in which the interaction network plays a role in the determina-

tion of interest rates. Specifically, imagine that there are four economies, each with 52,810

loans (as in the data), in which an underlying stochastic process ζ determines the interest
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rates charged.27. In economy E0, λ = 0 and interest rates y0 are determined as y0 = ζ: this

is an economy with no network effects (and therefore no spillovers). On the other hand, in

economies E1, E2 and E3 the network W determines interest rates in the following way

y1 = λ1Wy1 + ζ = λ1Wy1 + y0, (15)

y2 = λ2Wy2 + ζ = λ2Wy2 + y0, (16)

y3 = λ3Wy3 + ζ = λ3Wy3 + y0, (17)

where each λ 6= 0. In keeping with our empirical results, we choose λ1 = 0.087, λ2 = 0.062

and λ3 = −0.05 (the largest and smallest positive values of λ as well as the negative value

with largest magnitude from our results in Table 4). Note that we can write (15)-(17) as

yi = (I − λiW )−1 y0 =

( ∞∑
`=0

λ`iW
`

)
y0 = y0 +

( ∞∑
`=1

λ`iW
`

)
y0, i = 1, 2, 3. (18)

The extra term on the farthest RHS of (18) shows transparently what distinguishes economies

E1, E2 and E3 from economy E0. Our simulation procedure is to generate the 52,810 dimen-

sional vector ζ as the average of 500 replications from a uniform distribution with mean

187.5, to match the mean of AISD in the summary statistics of Table 2. After doing this

we compute

aE0E1 = (52810)−1
52810∑
k=1

(
y2
k − y0

k

y0
k

)
− 1,

aE0E2 = (52810)−1
52810∑
k=1

(
y3
k − y0

k

y0
k

)
− 1,

aE0E3 = −(52810)−1
52810∑
k=1

(
y4
k − y0

k

y0
k

)
− 1,

with the k subscripts denoting k-th element of the vector. Notice that aE0E1 is a measure of

the average difference in the interest rates between economies E0 and E1, as a percentage of

the interest rates in economy E0. In other words, it is a measure of the average percentage

change in interest rates due to the presence of a spillover λ1 = 0.087 and the interaction

27Of course interest rates may be determined by many fundamentals, but as our aim is to quantify the
effect of the interaction network we abstract away from this in the interests of simplicity.
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network. Analogous interpretations of aE0E2 and aE0E3 follow. We find that

aE0E1 = 5.54%, aE0E2 = 3.86%, aE0E3 = −2.81%.

Thus, a spillover of λ1 = 0.087 leads to interest rates that are 5.54% higher, on average, in

the networked economy E1 as compared to the baseline economy E0. On the other hand,

a smaller positive spillover of λ2 = 0.062 implies that interest rates are 3.86% higher in

economy E2 compared to economy E0. When the spillover is negative, i.e. λ3 = −0.05, we

find that, on average, interest rates are 2.81% lower in economy E3 as compared to economy

E0. From this experiment we can conclude that network spillovers play an important role

in determining the pricing of loans in credit markets.

We can, however, go a step further. In section 4, we studied the evolution of the

loan networks WL
t over time and concluded that certain changes take place during the

financial crisis of 2007-09. The preceding simulation took this evolution into account. But

can we conduct a counterfactual simulation that allows us to determine what might have

happened had the loan network remained constant over time? Even more specifically, can

we determine how interest rates in economy E0 compare with those in a networked economy

for which the the network structure remained constant over 30 years?

The answer is yes, and we proceed as follows. First, imagine nine new networked

economies in which the loan network remains constant over all 30 years. These economies

are defined by the same three values λ1 = 0.087, λ2 = 0.062 and λ3 = −0.05 that we

used previously, but also by three choices of fixed network, corresponding to those for

2006 (identified by superscript BC), 2008 (superscript C) and 2011 (superscript AC), re-

spectively. The years are chosen to correspond to just before the financial crisis (hence

BC), the peak of the financial crisis (C) and after the financial crisis (AC). We de-

note these economies as EBC1 , EBC2 , EBC3 , EC1 , EC2 , EC3 , EAC1 , EAC2 and EAC3 , with the

subscripts signifying the values of λ as before. Thus, for example, economy EC3 has

λ3 = −0.05 and W = diag
[
WL

22, . . . ,W
L
22

]
while economy EAC1 has λ1 = 0.087 and

W = diag
[
WL

25, . . . ,W
L
25

]
. We generate ζ as in the preceding paragraph, and the in-

terest rates in these new economies analogously to equation (18). Carrying out a similar

computation to the paragraph above we find

aE0E1,BC = 7.35, aE0E2,BC = 5.12, aE0E3,BC = −3.7,

aE0E1,C = 1.18, aE0E2,C = 0.83, aE0E3,C = −0.64,

aE0E1,AC = 8.38, aE0E2,AC = 5.84, aE0E3,AC = −4.21.
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In the results displayed above, we define the aE0·,· as before, except we now have more cases

with the nine difference types of economies to be compared to E0. If the loan network had

been the one for 2006 in every year, then the corresponding economies (EBC1 , EBC2 , EBC3 )

would have interest rates that are 7.35% higher, 5.12% higher and 3.7% lower, on average,

than those prevalent in E0. On the other hand, as we observed in section 4, the network for

2008 is much ‘weaker’, with the crisis at its peak. With this network governing interactions

over all 30 years the same range of λ values yield interest rates that are only 1.18% higher,

0.83% higher and 0.64% lower, on average, than in E0. The network recovers vitality in

2011, however, as the effects of the crisis are left behind. Indeed, if such a network had

been in operation over all 30 years, the corresponding interest rates, on average, are 8.38%

higher, 5.84% higher and 4.21% lower than in economy E0.

We therefore conclude that economies with financial networks have lending rates that

are substantially higher (lower) depending on whether the spillover through the network is

positive (negative), as opposed to economies with no such networks. Furthermore, for the

same spillover magnitude, the network structure can evolve sufficiently to quantitatively

change the conclusions from relying on a static network. Network structure can undergo

particularly stark changes and can be especially visible after large shocks like the 2008

crisis.

A similar analysis holds for lending amounts. The procedure follows exactly as above,

except we now generate the 52,810 dimensional vector ζ as the average of 500 replications

from a uniform distribution with mean 625 to match the mean of Deal Amount in Table

2. We now choose λ1 = 0.278, λ2 = 0.083 and λ3 = 0.006, according to Table 5, obtaining

the following results:

aE0E1 = 20.59, aE0E2 = 5.27, aE0E3 = 0.36,

aE0E1,BC = 27.59, aE0E2,BC = 6.99, aE0E3,BC = 0.47,

aE0E1,C = 4.02, aE0E2,C = 1.12, aE0E3,C = 0.08,

aE0E1,AC = 31.49, aE0E2,AC = 7.97, aE0E3,AC = 0.54.

As for lending rates, the first row above corresponds to a time-varying network, while

the next three correspond to static networks for 2006, 2008 and 2011 respectively. Thus,

a spillover of λ1 = 0.278 leads to lending amounts that are 20.59% higher, on average, in

the time-varying networked economy E1 as compared to the baseline economy E0, while a

smaller positive spillover of λ2 = 0.083 implies that amounts are 5.27% higher in economy

E2 compared to economy E0. When the spillover is close to zero, i.e. λ3 = 0.006, we find
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that, on average, amounts are only 0.36% higher in economy E3 as compared to economy

E0.

If the loan network had been static, taking the form of the network for 2006 in every

year, then the corresponding economies (EBC1 , EBC2 , EBC3 ) would have lending amounts that

are 27.59%, 6.99% and 0.47% higher, on average, than those prevalent in E0. As above,

with the static 2008 network, lending amounts are only 4.02%, 1.12% and 0.08% higher, on

average, than in E0. With the recovered network of 2011, the corresponding amounts, on

average, are 31.49%, 7.97% and 0.54% higher than in economy E0, signifying the regained

strength of the financial network.

9 Conclusion

We use the syndicated loan market to construct a dynamic loan network that measures

proximity in terms of sectoral investment exposure between individual banks, and char-

acterize its evolution over time. The key insight is that banks interact not only through

direct interbank connections, but also through indirect connections due to, for example,

investment in common syndicated loans. The way that we have developed the loan network

is a direct measure of interconnectedness: less interconnected loans have less similar banks

and less common exposure.

Using a spatial autoregressive model that allows direct network interactions, we find

strong spillovers from the financial network to lending rates and quantities. These spillovers

are economically large, time varying and can switch sign after major economic shocks.

The switch from positive to negative co-movements in lending rates during and after the

financial crisis of 2007-09 signifies that the loan network is acting as a shock propagator

rather than an absorber in periods of greater turmoil. The baseline findings are therefore

consistent with Acemoglu, Ozdaglar and Tahbaz-Salehi (2015), who observe a switch in

sign in comparative statics with respect to the network structure when common shocks are

large.

Our approach also allows us to explicitly test for the presence of cross-sectional network

spillovers in the error term. Such a test provides evidence for network complexity and

uncertainty rising after a large negative shock, consistent with recent theoretical network

models (Caballero and Simsek, 2013). Given this empirical support, one interesting area

for future research is to better understand models with differential bank participation in

financial networks and subsequently construct structural models that can also allow for
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non-linear externalities.
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Figure 2: Bank and loan network for 1987. Purple nodes indicate banks while orange nodes
are loans. A line from a purple node to an orange node means that the bank represented by
the purple node is a member of the loan syndicate for the loan represented by the orange
node. The larger a purple node, the more loan syndicates the bank is a member of.
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Figure 3: Illustration of loan network for 10 loans in 1987. Thicker lines indicate stronger
interconnection, larger orange nodes indicate greater number of connections.
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Figure 4: Bank and loan network for 2006. Purple nodes indicate banks while orange nodes
are loans.
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Figure 5: Bank and loan network for 2009. Purple nodes indicate banks while orange nodes
are loans. A line from a purple node to an orange node means that the bank represented by
the purple node is a member of the loan syndicate for the loan represented by the orange
node. The larger a purple node, the more loan syndicates the bank is a member of.
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Figure 6: Bank and loan network for 2010. Purple nodes indicate banks while orange nodes
are loans. A line from a purple node to an orange node means that the bank represented by
the purple node is a member of the loan syndicate for the loan represented by the orange
node. The larger a purple node, the more loan syndicates the bank is a member of.
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Figure 7: Loan network for 2007, 150 loans. Larger orange nodes indicate loans with a
greater number of connections.
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Figure 8: Loan network for 2011, 150 loans. Larger orange nodes indicate loans with a
greater number of connections.
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Figure 9: λ̂ (black circles) with lending rates (AISD) as dependent variable as we add
year fixed effects sequentially. We also trace out the 95% confidence interval assuming
homoskedasticity (blue stars) and the heteroskedasticity robust 95% confidence interval
(green stars).
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Figure 10: λ̂ (black circles) with deal amount as dependent variable as we add year fixed
effects sequentially. We also trace out the 95% confidence interval assuming homoskedas-
ticity (blue stars) and the heteroskedasticity robust 95% confidence interval (green stars).
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Tables

Table 1: Variable definitions and sources

Name Description Source

Dependent variables:

AISD All-in-spread-drawn, defined as the sum of the spread
over LIBOR plus the facility fee (bps).

Dealscan

AISU All-in-spread-undrawn, defined as the sum of the fa-
cility fee and the commitment fee (bps).

Dealscan

Spread Spread over LIBOR (non-LIBOR-based loans are ex-
cluded from the sample) paid on drawn amounts on
credit lines (bps).

Dealscan

LOC fee Fee paid on drawn amounts on the letter-of-credit sub-
limit (bps).

Dealscan

Deal amount ($M) The loan amount in $M held by each lender. Dealscan
LOC ($M) Letter of credit in $M. Dealscan
Main explanatory variable:

Bank’s weights wsb,t =
Loanb→s

t

Total Loanb→S
t

, the amount ($M) lent by bank b

to sector s at time t over the total amount ($M) that
bank b has lent during the same year.

Own calculations

Banks’ sectoral exposure wBb1b2,t =

√∑S
s=1

(
ws

b1,t
−ws

b2,t

)2
2 is the Euclidean dis-

tance between banks b1 and b2 on an S-dimensional
space at time t.

Own calculations

Financial-loan network wLij,t = 1
P{Bij,t}

∑
(b1,b2)∈Bij,t

(
wBb1b2,t

)−1
, i 6= j, where

P {Bij,t} is the number of bank ‘pairs’ formed in Bij,t.
Note that our analysis will assign a greater inter-
connection measure to loans that are ‘closer’ to each
other.

Dealscan

Loan-level explanatory variables:

Secured Dummy variable equal to one if the loan is secured
and zero otherwise.

Dealscan

Refinancing Dummy variable equal to one if the loan is refinancing
a previous loan.

Dealscan

Covenants Dummy variable equal to one if the loan has covenants
and zero otherwise.

Dealscan
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Guarantee A facility backing the assumption of accountability
for payment of a debt or performance of a person or
entity obligation if the liable party fails to comply
with expectations.

Dealscan

Performance pricing Dummy variable equal to one if the loan has perfor-
mance pricing provisions and zero otherwise.

Dealscan

Loan default A dummy variable equal to one if the S&P loan credit
rating change to “D” within the life of loan and zero
otherwise.

Dealscan

Loan purpose Set of dummy variables describing the loan’s primary
purpose.

Dealscan

Revolver Dummy equal to one if the loan type is a revolver loan
(credit line) such as Revolver/Line, 364-Day Facility
or Limited Line.

Dealscan

Term Dummy equal to one if the loan type is a term loan
such as term loan A, B, C, D or E.

Dealscan

Bridge loan Dummy equal to one if the loan type is a bridge loan. Dealscan
Firm-level explanatory variables:

Tobin’s q The natural logarithm of market-to-book value. Compustat
ROA Return on Assets Compustat
Firm size The natural logarithm of total assets. Compustat
Relationship lending Dummy variable equal to one if the lender lent to the

same borrower in the past five years and zero other-
wise.

Dealscan

Tangibility The ratio of tangible assets to total assets. Compustat
Number of loans The total amount ($M) of syndicated loans that a firm

has received in the past five years.
Dealscan

Firm opacity Dummy for firms’ investment grades by S&P. Dealscan
Bank-level explanatory variables:

Interest expenses The ratio of interest expenses to total assets weighted
by the shares of each bank in the syndicated loan.

Call Reports

Loan-loss provisions The ratio of loan-loss provisions to total loans. Call Reports
Bank size The natural logarithm of total assets weighted by the

shares of each bank in the syndicated loan
Call Reports
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Table 2: Summary statistics

Percentile Distribution

Variables Level Obs. Mean Std. Dev. 25th Median 75th

AISD Loan 52,810 187.116 145.999 72.500 175.000 275.000
AISU Loan 52,810 16.599 22.698 0.000 6.500 27.500
Spread Loan 52,810 168.767 161.367 50.000 150.000 250.000
Letter-of-credit (LOC) fee Loan 52,810 42.546 89.239 0.000 0.000 0.000
Deal amount ($M) Loan 52,810 624.795 1,722.658 55.000 200.000 600.000
Letter-of-credit ($M) Loan 52,810 18.517 104.529 0.000 0.000 0.000
Secured Loan 52,810 0.519 0.500 0.000 1.000 1.000
Refinancing Loan 52,810 0.519 0.500 0.000 1.000 1.000
Covenants Loan 52,810 0.477 0.499 0.000 0.000 1.000
Guarantee Loan 52,810 0.061 0.240 0.000 0.000 0.000
Performance pricing Loan 52,810 0.336 0.472 0.000 0.000 1.000
Tobin’s q Firm 52,810 1.375 1.671 0.000 1.307 1.886
ROA Firm 52,810 0.009 0.440 0.000 0.022 0.057
Firm size Firm 52,810 5.714 3.080 4.181 6.269 7.889
Relationship lending Firm 52,810 0.444 0.497 0.000 0.000 1.000
Tangibility Firm 52,810 0.008 0.043 0.000 0.000 0.000
Number of loans Firm 52,810 499.290 2,077.151 35.000 150.000 450.000
Interest expenses Bank 52,810 0.008 0.016 0.000 0.000 0.011
Loan-loss provisions Bank 52,810 0.002 0.010 0.000 0.000 0.002
Bank size Bank 52,810 4.505 6.627 0.000 0.000 9.072

Summary statistics for the variables used in the empirical analysis. The variables are defined in
Table 1.
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Table 3: Summary Statistics for the financial-loan network

Percentile Distribution

Variables Connections Density Mean Std. Dev. 25th Median 75th

1987 135,384 0.820 0.109 0.360 0.049 0.066 0.088
1988 592,796 0.778 0.034 0.192 0.017 0.024 0.030
1989 470,986 0.772 0.037 0.172 0.015 0.022 0.029
1990 438,868 0.737 0.048 0.204 0.020 0.032 0.044
1991 449,703 0.737 0.040 0.194 0.016 0.024 0.031
1992 785,305 0.825 0.046 0.178 0.022 0.036 0.048
1993 1,222,989 0.837 0.027 0.104 0.015 0.022 0.028
1994 1,875,841 0.848 0.024 0.108 0.016 0.021 0.026
1995 1,960,685 0.880 0.045 0.087 0.029 0.040 0.049
1996 3,269,952 0.912 0.001 0.052 0.000 0.001 0.001
1997 4,276,647 0.889 0.028 0.077 0.019 0.026 0.032
1998 3,350,512 0.930 0.038 0.041 0.029 0.037 0.043
1999 3,133,673 0.941 0.034 0.042 0.026 0.031 0.037
2000 2,481,579 0.820 0.041 0.048 0.027 0.034 0.044
2001 2,286,081 0.803 0.041 0.042 0.028 0.039 0.049
2002 2,019,354 0.761 0.034 0.090 0.021 0.030 0.038
2003 1,964,372 0.790 0.004 0.070 0.002 0.003 0.004
2004 1,714,494 0.695 0.049 0.042 0.030 0.046 0.061
2005 1,830,760 0.702 0.025 0.073 0.009 0.018 0.027
2006 1,602,091 0.723 0.051 0.048 0.025 0.052 0.067
2007 1,456,653 0.679 0.042 0.075 0.019 0.041 0.053
2008 538,521 0.783 0.014 0.144 0.007 0.010 0.012
2009 248,942 0.781 0.124 0.186 0.067 0.116 0.146
2010 691,150 0.834 0.078 0.092 0.054 0.080 0.097
2011 1,480,782 0.878 0.055 0.028 0.042 0.056 0.068
2012 1,069,311 0.862 0.054 0.103 0.041 0.056 0.065
2013 1,039,918 0.864 0.001 0.099 0.000 0.000 0.000
2014 839,052 0.877 0.070 0.060 0.038 0.065 0.087
2015 684,351 0.926 0.078 0.052 0.062 0.077 0.090
2016 95,288 0.923 0.197 0.187 0.111 0.159 0.215

Summary statistics for the construction of the financial network wLij,t =

1
P{Bij,t}

∑
(b1,b2)∈Bij,t

(
wBb1b2,t

)−1
, i 6= j,. The variables are defined in Table 1. Den-

sity of wLt is defined as the proportion of nonzero off-diagonal elements.
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Table 4: Baseline results: Cost of lending (AISD)

I II III IV V

Financial-loan network 0.085*** 0.087*** -0.050*** -0.047*** 0.062***
[12.038] [11.645] [-4.859] [-4.732] [6.141]

Secured 97.459*** 92.834*** 90.145*** 59.261*** 3.911
[76.308] [72.201] [71.923] [41.084] [1.616]

Refinancing 20.724*** 18.684*** 4.156*** 4.086*** -13.003***
[15.240] [13.967] [3.436] [2.971] [-10.040]

Covenants -5.237*** -6.331*** -3.083* -1.612 60.445***
[-3.442] [-3.979] [-1.785] [-1.556] [39.702]

Guarantee 12.733*** 11.695*** 3.712* 2.002 4.023***
[5.475] [5.272] [1.927] [0.792] [2.725]

Performance pricing -25.356*** -20.395*** -14.387*** -11.930*** -7.342***
[-19.745] [-16.231] [-12.295] [-10.041] [-2.845]

Tobin’s q -2.488*** -3.184*** -2.443*** -5.695*** -24.600***
[-4.750] [-4.439] [-4.142] [-8.069] [-19.970]

ROA -19.005*** -16.609*** -15.326*** -6.601*** -3.273***
[-3.603] [-3.562] [-3.295] [-2.654] [-9.933]

Firm size -7.185*** -6.694*** -7.309*** -3.570*** 126.207
[-30.720] [-26.685] [-30.481] [-10.829] [1.326]

Tangibility -41.171*** -26.960*** -32.588*** -19.531* -0.001**
[-3.121] [-1.965] [-2.440] [-1.800] [-2.132]

Relationship lending -5.515*** -3.196*** -5.725*** -2.843*** -6.349***
[-4.929] [-2.913] [-5.053] [-2.895] [-8.771]

Number of loans -0.001*** -0.002*** -0.002*** -0.001** -3.437***
[-3.430] [-3.261] [-3.237] [-2.222] [-3.186]

Interest expenses 353.813*** 423.930*** 781.506*** 545.188*** -22.285
[5.839] [7.386] [12.496] [8.894] [-1.410]

Loan-loss provisions 441.970 317.794 103.640** -36.922 -0.661***
[1.355] [1.332] [1.982] [-0.470] [-5.040]

Bank size -0.748*** -0.882*** -1.430*** -0.784*** -39.497***
[-4.602] [-5.810] [-10.880] [-6.039] [-6.096]

Observations 52,810 52,810 52,810 52,810 52,810
Moran’s I 163.76 147.43 −2.53 −1.46 78.21
−Log likelihood 6.217 6.187 6.149 5.951 5.970

Loan-type FE Y Y Y Y Y
Loan-purpose FE Y Y Y Y Y
Bank FE N Y Y Y Y
Year FE N N Y Y N
Firm FE N N N Y Y
Year FE (exc. crisis FE) N N N N Y

The table reports coefficients and t-statistics (in brackets) from the estimation of equation (6),

which is given by yi,t = αf + λ
(∑Lt

j=1,j 6=iw
L
ij,tyj,t

)
+ β1Bi,t−1 + β2Fi,t−1 + β3Li,t + εi,t . The

cost of lending, labelled yi,t, for loan i at time t is regressed on the key independent variable∑Lt
j=1,j 6=iw

L
ij,tyj,t, which measures the financial network between loan i and loan j at time t, a

vector of weighted banks’ characteristics B at t−1, a vector of firm characteristics F at t−1 and
a vector of loan characteristics L at t. All variables are defined in Table 1. Each observation in
the regressions corresponds to a different loan facility. All regressions are estimated with QMLE
for SAR models and also include fixed effects as noted in the lower part of the table to control
for different levels of unobserved heterogeneity. Standard errors are heteroskedasticity robust.
The *,**,*** marks denote the statistical significance at the 10, 5, and 1% level, respectively.



Table 5: Baseline results: Deal amount ($M)

I II III IV V

Financial-loan network 0.278*** 0.270*** 0.039** 0.006 0.083***
[6.057] [5.952] [1.985] [0.358] [3.228]

Secured -27.174 -18.269 -25.185 -10.663** -13.683
[-0.773] [-0.524] [-0.709] [-2.179] [-0.615]

Refinancing 190.400*** 171.728*** 123.227*** 20.064*** 16.536
[9.258] [9.204] [7.303] [5.164] [0.811]

Covenants -55.125* -32.242 -3.892 46.962*** 42.598**
[-1.819] [-1.138] [-0.125] [4.165] [2.082]

Guarantee 52.847* 22.293 3.688 94.188 90.886***
[1.829] [0.832] [0.147] [0.441] [5.102]

Performance pricing -9.407 -6.143 21.102 -13.084 -14.270
[-0.581] [-0.355] [1.136] [-0.966] [-2.158]

Tobin’s q -19.158** -16.259** -14.364* -71.586*** -74.594***
[-2.283] [-2.145] [-1.947] [-3.863] [-4.889]

ROA -13.226* -11.376 -14.763 18.127* 6.525
[-1.791] [-1.449] [-1.630] [1.810] [0.821]

Firm size 62.590*** 57.088*** 61.689*** -587.385** -930.104*
[3.426] [3.311] [3.394] [-1.988] [-1.667]

Tangibility -189.661 -125.174 -221.267** 0.355* 0.355
[-1.303] [-1.002] [-2.225] [1.896] [1.736]

Relationship lending 117.710*** 108.746*** 61.223*** -32.188 -33.339***
[3.511] [3.539] [2.573] [-0.665] [-4.064]

Number of loans 0.451*** 0.443*** 0.437*** 11.412* 17.494
[2.491] [2.445] [2.404] [1.734] [1.152]

Interest expenses -1604.52 -1786.343** -1171.585* -197.607 -169.736
[-2.237] [-2.301] [-1.847] [-0.759] [-1.624]

Loan-loss provisions -225.475 -280.504 -579.147 1.7287 1.5412
[-1.254] [-1.303] [-1.404] [1.487] [0.919]

Bank size -0.669 0.853 -0.485 -1044.088 -328.386***
[-0.419] [0.478] [-0.2692] [-1.022] [-2.555]

Observations 52,810 52,810 52,810 52,810 52,810
Moran’s I 16.02 14.76 −4.13 −1.56 4.46
−Log likelihood 8.625 8.615 8.606 8.481 8.482

Loan-type FE Y Y Y Y Y
Loan-purpose FE Y Y Y Y Y
Bank FE N Y Y Y Y
Year FE N N Y Y N
Firm FE N N N Y Y
Year FE (exc. crisis FE) N N N N Y

The table reports coefficients and t-statistics (in brackets) from the estimation of equation (6),

which is given by yi,t = αf + λ
(∑Lt

j=1,j 6=iw
L
ij,tyj,t

)
+ β1Bi,t−1 + β2Fi,t−1 + β3Li,t + εi,t . The

Deal amount ($M), labelled yi,t, for loan i at time t is regressed on the key independent variable∑Lt
j=1,j 6=iw

L
ij,tyj,t, which measures the financial network between loan i and loan j at time t, a

vector of weighted banks’ characteristics B at t−1, a vector of firm characteristics F at t−1 and
a vector of loan characteristics L at t. All variables are defined in Table 1. Each observation in
the regressions corresponds to a different loan facility. All regressions are estimated with QMLE
for SAR models and also include fixed effects as noted in the lower part of the table to control
for different levels of unobserved heterogeneity. Standard errors are heteroskedasticity robust.
The *,**,*** marks denote the statistical significance at the 10, 5, and 1% level, respectively.



Table 6: Sequential inclusion of year fixed effects

Panel A Panel A

AISD Deal amount

Years Financial-loan t-statistic Financial-loan t-statistic

network (λ̂) network (λ̂)

1987 0.085*** 12.871 0.311*** 23.981
1988 0.086*** 13.012 0.312*** 24.027
1989 0.086*** 13.090 0.313*** 24.091
1990 0.086*** 13.096 0.313*** 24.101
1991 0.087*** 13.279 0.313*** 24.039
1992 0.087*** 13.247 0.311*** 23.790
1993 0.085*** 12.903 0.309*** 23.518
1994 0.077*** 11.601 0.305*** 22.992
1995 0.077*** 11.565 0.301*** 22.644
1996 0.046*** 6.614 0.297*** 21.795
1997 0.042*** 6.039 0.291*** 21.193
1998 0.053*** 7.677 0.288*** 20.888
1999 0.056*** 8.576 0.279*** 20.217
2000 0.065*** 9.301 0.269*** 19.387
2001 0.069*** 9.787 0.259*** 18.615
2002 0.069*** 9.796 0.230*** 16.261
2003 0.078*** 10.646 0.178*** 11.939
2004 0.079*** 10.739 0.152*** 10.110
2005 0.059*** 7.869 0.122*** 7.893
2006 0.049*** 6.665 0.117*** 7.544
2007 0.025*** 3.310 0.116*** 7.482
2008 0.006 0.740 0.078*** 4.820
2009 -0.024** -3.071 0.056** 3.444
2010 -0.048*** -6.109 0.040** 2.470
2011 -0.058*** -7.235 0.047*** 2.896
2012 -0.069*** -8.552 0.046*** 2.834
2013 -0.065*** -7.567 0.012 0.628
2014 -0.064*** -7.522 0.008 0.420
2015 -0.063*** -7.324 0.003 0.183

Estimated coefficients of the financial network (λ) and t-
statistics from the estimation of equation (6), i.e. yi,t = αf +

λ
(∑Lt

j=1,j 6=iw
L
ij,tyj,t

)
+β1Bi,t−1 +β2Fi,t−1 +β3Li,t + εi,t, when we

sequentially add year fixed effects. The dependent variables in
Panel A and B are the lending rate (AISD) and the Deal amount,
respectively. The *,**,*** marks denote statistical significance at
the 10, 5, and 1% level, respectively.
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A Financial network

Table A1: Illustration of banks’ sectoral exposure and Euclidean distance

SIC codes (2 digit division) JPM BoA C √ (J
P
M
−
B
oA

)2

√ (J
P
M
−
C

)2

√ (B
oA
−
C

)2

Mining (10-14) 2.09% 1.81% 4.41% 0.0027 0.0232 0.0259
Construction (15-17) 1.25% 1.00% 1.63% 0.0024 0.0038 0.0062
Manufacturing (20-39) 47.58% 51.50% 35.86% 0.0392 0.1172 0.1564
Transp. & Commun. (40-49) 27.89% 17.58% 29.31% 0.1030 0.0142 0.1173
Wholesale Trade (50-51) 2.96% 3.21% 0.00% 0.0025 0.0295 0.0321
Retail Trade (52-59) 9.00% 15.58% 19.70% 0.0657 0.1070 0.0412
Services (70-89) 9.23% 9.32% 9.09% 0.0008 0.0014 0.0023

Total 100.00% 100.00% 100.00% 0.2167 0.2965 0.3816

In the first three columns, we show banks’ weights (exposures) for JP Morgan (JPM), Bank
of America Merrill Lynch (BoA) and Citi (C), the top 3 U.S. lead arrangers in 2015. In the
last three, we show the computation of banks’ sectoral similarity by using the Euclidean

distance given by equation (1), i.e. wBb1b2,t =

√∑S
s=1

(
ws

b1,t
−ws

b2,t

)2
2 . The smaller (higher) the

value, the more similar (dissimilar) the two banks considered.
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Table A2: Illustration of loan interconnectedness

Panel A: Banks’ participation per loan

Loan `1 Loan `2 Loan `3

Banks: JPM JPM JPM
C BoA C

Panel B: Matrix for banks’ similarities
(
wBb1b2,t

)−1

JPM BoA C

JPM 1
BoA 0.6592 1
C 0.4818 0.3749 1

Panel C: Matrix for loan interconnectedness
(
wLi,j

)
Loan `1 Loan `2 Loan `3

Loan `1 wL1,1 =0

Loan `2 wL2,1 =0.6290 wL2,2 =0

Loan `3 wL3,1 =0.8272 wL3,2 =0.6290 wL3,3 =0

The table illustrates the procedure that we use to
measure loan interconnectedness. In Panel A, we
hypothesize banks’ participation decision with equal
shares for JP Morgan (JPM), Bank of America Mer-
rill Lynch (BoA) and Citi (C), the top 3 U.S. lead
arrangers in 2015. Therefore, loan `1 is shared be-
tween JP Morgan (JPM) and Citi (C), and analogously
for loan `2 and `3. In Panel B, we show bank sim-
ilarities by using the inverted and standardized inter-
bank distances. The higher the value, the more sim-
ilar the two banks considered. In Panel C, we show
the loan interconnectedness computed using equation

(2), i.e. wLij,t = 1
P{Bij,t}

∑
(b1,b2)∈Bij,t

(
wBb1b2,t

)−1
, i 6=

j, where P {Bij,t} is the number of bank ‘pairs’
formed in Bij,t (the set of banks that share loans
i and j). For example, loan interconnectedness be-
tween loan `1 and loan `2 (w2,1) is equal to bank
pairs [(JPM,JPM),(JPM,BoA),(C,JPM)(C,BoA)] yield-
ing 0.6290. Loan interconnectedness ranges between 0-1,
with the higher value reflecting higher loan interconnect-
edness.
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B Spatial Autoregressive (SAR) model

A natural method to estimate spillovers uses the spatial autoregressive (SAR) model due

to (Cliff and Ord, 1973). While initially confined to geographers and regional scientists,

the SAR model has also attracted the attention of economists. This is primarily due to

its ability to capture cross-sectional dependence parsimoniously, with only knowledge of

some economic distance required between units. The locations of the observations are not

restricted to be geographic, nor is the process generating them required to be known, so

‘spatial’ does not refer necessarily to geographic space. Instead the SAR model requires

some user-chosen distance measures contained in a spatial weights matrix, denoted W ,

with (i, j)-th element wij . wij is an (inverse) economic distance between the observations

indexed i and j, which may be a continuous measure or a binary one, and wii = 0 for every

i. An example of binary W would be a network ‘adjacency matrix’.

A clearer picture of the equation (5) may be obtained by writing it in scalar notation:

yi = λ
∑
j 6=i

wijyj + x′iβ + εi, (19)

where xi is the i-th column of X ′. As is apparent from equation (19), the SAR model

permits direct interaction between the yi through the elements of the spatial weights matrix

W and the strength of this interaction is measured by λ.

The model (5) can viewed as a generalization of time series autoregressive models,

which we would obtain by taking lower-triangular W . In keeping with this analogy, Wy

is termed a spatial lag of y. However, spatial or network data do not typically permit the

natural ordering of time series data, so W is usually not a triangular matrix. In keeping

with the time series analogy, one may see that (5) is a ‘dynamic’ model, in the sense that

each observation yi is determined simultaneously by other observations yj , j 6= i. However,

when the W is not triangular this simultaneous determination is both ‘backward’ and

‘forward’ looking. The end result of this general dynamic feature is that the spatial lag is

endogenous in general, and this aspect has meant that the literature on estimation of SAR

models has evolved as a separate field.

(Kelejian and Prucha, 1998) were the first to provide rigorous theory for the estimation

of the parameters of (5), in particular focussing on IV estimation. In a seminal paper, (Lee,

2004) established asymptic theory for a Gaussian quasi maximum likelihood estimator

(QMLE) and this is the estimator we choose in this paper. Gaussian QMLE has the well-
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known property of being efficient when ε is normal, but also having an easy to compute

covariance matrix when this is not the case. Other estimators include the GMM estimator

of (Kelejian and Prucha, 1999), the OLS estimator of (Lee, 2002) (in special cases where the

endogeneity of Wy vanishes asymptotically) and the ‘higher-order’ estimators of (Gupta

and Robinson, 2015, 2017).

C Further understanding spillover magnitude

The spatial autoregressive model that we use for our empirical analysis has another feature

that further illustrates the magnitude of the spillover λ. Due to the simultaneous inter-

actions that the model allows, we can write down the covariance matrix of the dependent

variable, AISD or Deal amount, explicitly as a function of λ and W . Because a spillover is

interpreted as a co-movement, it is natural to anticipate that the elements of this covariance

matrix will increase in magnitude with estimated spillover magnitude. In this subsection

we confirm this using the spillover estimates that we have obtained, and also understand

further the implications of changes both in spillover magnitude and sign.

Note that (5) has a reduced form

y = S(λ)−1 (Xβ + ε) , (20)

so the covariance matrix of y conditional on X is

cov(y) = σ2
(
S(λ)−1

)2
= σ2

(
(In − λW )−1

)2
= σ2

∞∑
j,k=0

λj+kW j+k, (21)

where n is our total sample size (52,810) and the infinite-series representation of the inverse

is guaranteed by taking |λ| < 1. Thus λ > 0 implies that all elements of cov(y) are positive,

while λ < 0 implies that most elements of cov(y) are negative. Thus the difference between

positive λ and negative λ is that the former implies positive co-movements between lending

rates or deal amounts always, according to what we choose y to be, whereas the latter

implies that most co-movements are negative while some are positive. Of course when

λ = 0, cov(y) is diagonal and we are in the state of no cross-sectional dependence in

lending rates or deal amounts.

The discussion above suggests a natural way to interpret the magnitude of λ via cov(y).

In Table C1 we analyze cov(y). Note that because W is block-diagonal, cov(y) is also a
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block-diagonal matrix with (ignoring the σ2 factor) typical diagonal block

Ct(λ) =
((
ILt − λWL

t

)−1
)2

=
∞∑

`,k=0

λ`+k
(
WL
t

)`+k
, t = 1, . . . , 30, (22)

where Lt denotes the number of loans in year t. In our results we obtain a number of

estimates of λ, with different magnitudes and signs. Denoting a generic estimate by λ̃,

we seek to explore the properties of the matrices Ct

(
λ̃
)

, t = 1, . . . , 30 as λ̃ varies. We

choose a range of values from Table 6, namely λ̃ = 0.087, 0.049, 0.006,−0.024,−0.069. For

positive λ̃ we report

a1t =
average (Ct(0.087))

average (Ct(0.049))
, a2t =

average (Ct(0.087))

average (Ct(0.006))
, t = 1, . . . , 30, (23)

m1t =
median (Ct(0.087))

median (Ct(0.049))
, m2t =

median (Ct(0.087))

median (Ct(0.006))
, t = 1, . . . , 30, , (24)

where the average and median is of all the matrix elements. Thus a1t and a2t (respectively

m1t,m2t) are ratios of average (respectively median) covariances for year t, for a large

positive value of λ̃ relative to a smaller one. An average or median may not be appropriate

when the elements of Ct

(
λ̃
)

are not of the same sign. Thus, for the two negative values of λ̃

we report as a scalar measure norm1t = ‖Ct (−0.024)‖ and norm2t = ‖Ct (−0.069)‖. Recall

that
∥∥∥Ct (λ̃)∥∥∥ is the largest eigenvalue of Ct

(
λ̃
)

. Finally, for the two negative λ̃ values

we also report the proportion of elements of Ct

(
λ̃
)

that are negative, these correspond-

ing to negative covariances. We denote these prop1t and prop2t for λ̃ = −0.024,−0.069,

respectively.

On average, the covariances are between 1.001 and 1.08 times larger for λ̃ = 0.087

as opposed to λ̃ = 0.049, and between 1.002 and 1.176 times larger for λ̃ = 0.087 as

opposed to λ̃ = 0.006. The differences in medians are larger still, ranging from factors

of 1.76 to 1.92 for m1t and between 15 and 20 for m2t. It is clear that economically

significant co-movements are generated even by fairly small values of λ̃. The variation in

the a1t, a2t,m1t,m2t between years is due to the differences in the WL
t .

Moving on to the negative values of λ̃, we note that ‖Ct(−0.024)‖ < ‖Ct(−0.069)‖
always, indicating stronger co-movements for a larger absolute value of λ̃. These co-

movements may be positive or negative, and from the last two columns of Table C1 we

observe that the proportion of negative covariances is quite similar for both negative values
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of λ̃. This similarity persists across years, so is not very sensitive to differences in WL
t .

Thus, on the basis of the last four columns of Table C1, we deduce that negative values of

λ̃ that are larger in magnitude do not necessarily generate a greater proportion of negative

covariance, but do generate covariances that are typically larger in absolute magnitude.
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Table C1: Year-by-year measures of covariance intensities implied by estimates of λ. Defi-
nitions of measures are explained in Appendix C.

Year a1 a2 m1 m2 norm1 norm2 prop1 prop2

1987 1.0436 1.0934 1.8757 17.5912 1.0451 1.1381 0.8173 0.8128
1988 1.0276 1.0589 1.8361 16.7284 1.0486 1.1497 0.7772 0.7731
1989 1.0281 1.0589 1.8441 17.1182 1.0464 1.1424 0.7651 0.751
1990 1.0335 1.0711 1.8962 17.951 1.0484 1.1491 0.7324 0.7258
1991 1.0276 1.0586 1.8546 17.2735 1.0487 1.15 0.7342 0.7273
1992 1.046 1.0979 1.8773 17.6703 1.0472 1.145 0.8218 0.8167
1993 1.0308 1.0666 1.8296 16.5235 1.0491 1.1512 0.8368 0.836
1994 1.0347 1.075 1.8274 16.5227 1.0495 1.1525 0.8495 0.8488
1995 1.0713 1.1551 1.9009 17.8203 1.0271 1.081 0.8804 0.8773
1996 1.0013 1.0029 1.768 15.3803 1.0436 1.1333 0.9117 0.9116
1997 1.0646 1.1406 1.8739 17.3882 1.0448 1.1371 0.8887 0.887
1998 1.08 1.1756 1.8838 17.5353 1.0167 1.0493 0.9296 0.9291
1999 1.0705 1.1533 1.8781 17.5152 1.0245 1.0729 0.9408 0.9382
2000 1.0709 1.1543 1.8921 17.7952 1.0281 1.0839 0.8203 0.8183
2001 1.0685 1.1486 1.8935 17.7931 1.0151 1.0443 0.8053 0.8049
2002 1.0516 1.1109 1.8731 17.3561 1.0456 1.1398 0.7614 0.7607
2003 1.0049 1.0106 1.7755 15.499 1.0476 1.1462 0.7911 0.7911
2004 1.0657 1.1421 1.9159 18.3365 1.0149 1.0438 0.6981 0.6979
2005 1.036 1.0756 1.8628 19.6593 1.0431 1.1316 0.6914 0.6779
2006 1.0672 1.1456 1.9192 18.3069 1.0172 1.0506 0.7228 0.7227
2007 1.0509 1.1093 1.8927 18.4579 1.0397 1.1208 0.6809 0.6767
2008 1.0106 1.0225 1.8072 16.2745 1.0446 1.1364 0.7842 0.7821
2009 1.0664 1.1439 1.9042 18.0159 1.0358 1.1082 0.7841 0.7837
2010 1.0718 1.1564 1.8877 17.67 1.0327 1.0985 0.8362 0.836
2011 1.0759 1.1659 1.8854 17.5961 1.0073 1.0212 0.8776 0.8776
2012 1.062 1.1349 1.8669 17.2789 1.0453 1.1388 0.8608 0.8607
2013 1.001 1.002 1.7667 15.3567 1.0495 1.1527 0.8636 0.8634
2014 1.0727 1.1585 1.896 17.8514 1.0135 1.0395 0.8762 0.8761
2015 1.0753 1.1644 1.879 17.4728 1.0139 1.0408 0.9257 0.9257
2016 1.071 1.1545 1.9052 18.0226 1.0164 1.0481 0.9207 0.9197
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