
Non-technical summary

Research Question

In Germany industrial production has a remarkable share in the overall economic activ-

ity and thus plays an important role in the current macroeconomic analysis. Given its

monthly availability with a publication delay of about five weeks, industrial production

is also considered as a crucial indicator for the gross domestic product. Against this

background, reliable forecasts of industrial production are one of the key elements in the

short-term macroeconomic analysis and projections at the Bundesbank. This paper in-

troduces a parsimonious forecast model for industrial production in Germany. The aim of

the model is to feature a transparent approach and to improve the forecast performance,

especially for horizons longer than three months.

Contribution

Our approach introduces the idea of multicointegration to forecasting industrial produc-

tion. While standard vector error correction models are based only on the theoretical

relation between industrial production and new orders received, the multicointegration

framework allows for a second long-run relation in the model: the relation between in-

dustrial production and inventories and/or stock of orders. Moreover, we augment all

model classes with survey-based indicators specifically targeted at the industrial sector.

We consider both linear and threshold-type nonlinear specifications, and estimate the

models with Bayesian and frequentist methods. For the Bayesian method we extend the

long-run priors of Giannone, Lenza, and Primiceri (2016) to the multicointegrated case.

Results

Our results based on a real-time forecast evaluation between 2006 and mid-2017 point

out that the parsimonious forecast routine with around ten models can reduce the root

mean squared forecast errors by up to 30% over a 12-month forecast horizon against the

random-walk benchmark.



Nicht-technische Zusammenfassung

Fragestellung

In Deutschland hat die Industrieproduktion einen bemerkenswerten Anteil an der ge-

samtwirtschaftlichen Aktivität und spielt damit eine wichtige Rolle bei der aktuellen

makroökonomischen Analyse. Angesichts seiner monatlichen Verfügbarkeit mit einer Pu-

blikationsverzögerung von etwa fünf Wochen gilt die industrielle Produktion auch als

entscheidender Indikator für das Bruttoinlandsprodukt. Vor diesem Hintergrund sind

verlässliche Prognosen der Industrieproduktion eines der Schlüsselelemente der kurzfris-

tigen makroökonomischen Analyse und Projektionen bei der Bundesbank. In diesem Bei-

trag wird ein sparsames Prognosemodell für die industrielle Produktion in Deutschland

vorgestellt. Ziel des Modells ist es, einen transparenten Ansatz zu verfolgen und die Pro-

gnosegüte vor allem für Horizonte länger als drei Monate zu verbessern.

Beitrag

Unser Ansatz stellt die Idee der Multikointegration zur Prognose der Industrieproduktion

vor. Während die Standardvektorfehlerkorrekturmodelle nur auf der theoretischen Bezie-

hung zwischen der Industrieproduktion und den neuen Aufträgen basieren, ermöglicht

der Multikointegrationsansatz eine zweite Langzeitbeziehung im Modell: das Verhältnis

zwischen Industrieproduktion und Lagerbestand und/oder Bestandsaufträgen. Darüber

hinaus ergänzen wir alle Modellklassen mit umfragebasierten Indikatoren, die speziell auf

den industriellen Sektor ausgerichtet sind. Wir betrachten sowohl lineare als auch nicht-

lineare Spezifikationen und schätzen die Modelle mit Bayesianischen und frequentistischen

Methoden. Für die Bayesianische Methode erweitern wir die Langzeitprioren von Gian-

none et al. (2016) auf den multikointegrierten Fall.

Ergebnisse

Unsere Ergebnisse, die auf einer Echtzeit-Prognosebewertung zwischen 2006 und Mit-

te 2017 basieren, weisen darauf hin, dass die sparsame Prognoseroutine mit rund zehn

Modellen die durchschnittlichen quadratischen Prognosefehler um bis zu 30% über einen

12-monatigen Prognosehorizont gegenüber der random-walk Benchmark reduziert.
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1 Introduction

In Germany industrial production has a remarkable share in the overall economic activ-
ity and thus plays an important role in the current macroeconomic analysis. Given its
monthly availability with a publication delay of about five weeks, industrial production is
also considered a crucial indicator for gross domestic product. Against this background,
reliable forecasts of industrial production are of paramount interest and one of the key
elements in the short-term macroeconomic analysis and projections in Germany.

However, the literature on forecasting industrial production is quite sparse despite its
importance in understanding and predicting German business cycles. A first set of papers
like Osborn, Heravi, and Birchenhall (1999), Heravi, Osborn, and Birchenhall (2004)
and Hassani, Heravi, and Zhigljavsky (2009) study the seasonality properties and focus
on forecasting the major components of industrial production in Germany, France and
the UK. While Osborn et al. (1999) attribute seasonality a significant share in monthly
growth rates of the selected series, Heravi et al. (2004) and Hassani et al. (2009) suggest
choosing the model depending of the type of the forecast, such as monthly growth rates
or directional change. Another set of papers, Fritsche and Stephan (2002), Hüfner and
Schröder (2008) and Robinzonov and Wohlrabe (2008), among others, are in search of
leading indicators for the economic activity which is measured by industrial production in
Germany. Consequently, these papers commonly indicate that the forecasting ability of
selected indicators may depend on the forecast setting. In a more recent paper, Ulbricht,
Kholodilin, and Thomas (2017) study the predictive power of media data in forecasting
German industrial production and show that it may improve forecast accuracy in the 10- to
12-month horizons. While these studies provide forecasters with a valuable insight on the
characteristics of potential leading indicators for industrial production, they do not make
an attempt to build a forecast model for industrial production. Against this backdrop, we
aim to fill this gap in the related literature and propose a model for predicting German
industrial production which can also be extended with various leading indicators.

This paper introduces a parsimonious forecast model for industrial production in Ger-
many. The aim of the model is to feature a transparent approach and to improve the
forecast performance for horizons up to twelve months. Our framework is based on the
combination of point and density forecasts obtained from a pool with a relatively low
number of models capturing, in particular, the long-run dynamics of industrial produc-
tion. The model pool consists of three model classes: two of them, vector AR and error
correction models, are fairly standard and one is novel. Our novel approach introduces
the idea of multicointegration to forecasting industrial production. While standard vector
error correction models are based “only” on the theoretical relation between industrial
production and new orders received, the multicointegration framework allows for a second
long-run relation in the model: the relation between industrial production and invento-
ries and/or stock of orders. Moreover, we augment all model classes with survey-based
indicators specifically targeted at the industrial sector.

Furthermore, we consider both linear and threshold-type nonlinear specifications, and
estimate the models with Bayesian and frequentist methods. For the Bayesian method
we extend the long-run priors of Giannone et al. (2016) to the multicointegrated case.
At a final step we combine the point and density forecasts in various ways. Our results
based on a real-time forecast evaluation between 2006 and mid-2017 point out that the
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parsimonious forecast routine with less ten models can reduce the root mean squared
forecast errors by up to 30% over a 12-month forecast horizon against the random-walk
benchmark.

The remainder of this paper is set out as follows. Section 2 describes the data and
provides a preliminary analysis. Section 3 introduces the forecasting framework, while
Section 4 discusses the empirical findings. Section 5 concludes.

2 Data and preliminary analysis

We employ monthly real-time data to forecast industrial production in Germany over the
period from January 1995 to June 2017, while the forecast evaluation sample spans from
July 2006 to June 2017 due to data availability. We use calender and seasonally adjusted
time series for industrial production and new orders received in the manufacturing sector.
Moreover, we adjust industrial production with ice-, bridge- and vacation days in order to
account for the impact of non-working days on the production. The industrial production
and new orders received volume indices are given in logarithms and denoted by variables
ipt and ort, respectively. Figure 1 plots the time series data over the period considered in
our study. Moreover, log growth rates of industrial production and new orders received
are given in percentage points and calculated as ∆ipt = ipt− ipt−1 and ∆ort = ort−ort−1,
respectively. All time series have been obtained from the Bundesbank statistical database.

Figure 1: Industrial production and new orders received
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Notes: The graph plots monthly industrial production (solid black line) and new orders received (solid
grey line) in logarithms over the period January 1995 − June 2017.

Moreover, we also make use of sentiment indicators with focus on industrial sector in
Germany. Specifically, we use various survey-based ifo indicators, such as the assessment
of the current business situation, expectations with regard to business development in the
next 6 months, assessment of finished goods inventory, assessment of orders on hand and
expectations with regard to production activity in the next three months. Related time
series are rescaled and given in logs and denoted by variables ifoc, ifoe, ifolb, ifoab and
ifopp, respectively. Figure 2 plots the ifo indicators used in our study.
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Figure 2: Ifo survey indicators

95Q1 97Q1 99Q1 01Q1 03Q1 05Q1 07Q1 09Q1 11Q1 13Q1 15Q1 17Q1
-60

-40

-20

0

20

40

60

Notes: The graph plots ifo current situation (ifoc, solid black line), ifo business expectations (ifoe, solid
dark grey line), the assessment of the finished goods inventory (ifolb, dashed black line), and that of
the orders in hand (ifoab, dashed grey line) and production plans (ifopp, dotted grey line), respectively
over the period January 1995 − June 2017.

3 Econometric methodology

Our econometric framework is based on the combination of point (and density) forecasts
obtained from a pool with a relatively low number of models capturing, in particular,
the long-run dynamics of industrial production. The model pool consists of three model
classes, vector AR, vector error correction and multicointegration models. First, we use
simple AR models and vector autoregressions (VAR) with up to four variables: industrial
production, new orders received as well as the assessment of the current situation and/or
business expectations according to ifo surveys. Moreover, we employ vector error cor-
rection models (VECM) in order to capture the long-run relationship between industrial
production and new orders received. Finally, we consider multicointegration models allow-
ing for a second long-run relationship between industrial production and inventory/stock
of orders.

We consider both linear and threshold-type nonlinear specifications, and estimate the
models with Bayesian and frequentist methods. For the Bayesian method we extend the
long-run priors of Giannone et al. (2016) to the multicointegrated case. At a final step
we combine the point and density forecasts in various ways.

3.1 VARs and VECMs

Our first model class is a simple vector autoregression. Accordingly, the conditional mean
equation can be written as1

∆yt = µ+

p∑
i=1

Ψi∆yt−i +

q∑
j=1

Φj∆xt−j + εt (1)

with yt and xt being n× 1 and m× 1 vectors of endogenous and exogenous variables,

1The reader is referred to Hamilton (1994) and Lütkepohl (2005) for a more detailed overview of VAR
and VEC models.
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respectively. The model reduces to a simple AR for yt = ipt and all elements of Φj being
equal to zero. Moreover, µ is a vector of intercept terms and Ψi and Φj are the n×n and
n×m coefficient matrices for the ith and jth lagged values of endogenous and exogenous
variables, respectively. Finally, εt ∼ N(0,Σε) is the n-dimensional innovation vector with
zero mean and covariance matrix Σε.

As a second model class we include vector error correction models, based on Engle and
Granger (1987), in our model pool in order to model the long-run relationship between
industrial production and new orders received. Accordingly, the VECM takes following
form:

∆yt = µ+αzt−1 +

p∑
i=1

Ψi∆yt−i +

q∑
j=1

Φj∆xt−j + εt (2)

where α is the vector consisting of adjustment coefficients toward the long-run equi-
librium which is denoted by the error correction term zt−1. Note that we model the
cointegration relationship in Eq. (2) as zt = ipt − βort without any deterministic term
and further endogenous variables in order to capture the long-run equilibrium between in-
dustrial production and new orders received only. However, we estimate the β-coefficient
in the cointegrating equation to account for cancellations in new orders received as simi-
larly done in related studies.

3.2 Multicointegration models

One core element of the industrial production model proposed here that distinguishes
it from many other forecasting models is the idea of multicointegration. In comparison
with conventional VECMs, multicointegration is a more elaborate concept: it allows for
a second long-run relationship between stock and flow variables in the model. The de-
velopment of the multicointegration framework has been twofold: (i) Granger and Lee
(1989) and Lee (1992, 1996) extend Engle and Granger (1987)’s two-step least square es-
timation method into multicointegration framework, (ii) Engsted and Haldrup (1999) and
Paruolo (2000) build on the Johansen (1995) methodology. While we estimate the mul-
ticointegration models based on Granger and Lee (1989) framework with the frequentist
approach, we extend the long-run priors of Giannone et al. (2016) to multicointegration
models based on Engsted and Haldrup (1999) for Bayesian estimations.

3.2.1 Multicointegration: Frequentist approach

The underlying economic theory behind the idea of multicointegration suggests that
firms may want to maintain two equilibria at the same time: one between flow vari-
ables (e.g., production and orders) and another between stock and flow variables (e.g.,
inventory/backlog of orders and production/orders). While conventional cointegration,
denoted as Eq. (3), captures the former, the latter equilibrium is captured by the multi-
cointegration relation. That is why, from a theoretical point of view, the multicointegra-
tion model should draw a more complete picture of the entire production process. The
hope is that this may translate into a better forecasting model.

According to Engle and Granger (1987) two I(1) variables, production and orders, are
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cointegrated if their linear combination

zt = ipt − βort (3)

is I(0). Suppose that ipt and ort are I(1) and zt is I(0), then it follows that the
cumulative sum of zt written as

St =
t∑
i=0

zt−i (4)

will also be an I(1) variable. Moreover, if St and ipt are cointegrated ipt and ort
are called multicointegrated as introduced by Granger and Lee (1989). Hence, second
cointegration relationship in the model, also referred to as multicointegration relationship,
takes the following form

ut = St − ω0 − δipt (5)

with ω0 being the intercept and when it follows that ut ∼ I(0). Note that, as opposed
to Eq. (3), we include a constant in Eq. (5) in order to capture firms’ inventory behaviour.
Against this backdrop, the multicointegration model can be specified as

∆yt = µ+αzt−1 + γut−1 +

p∑
i=1

ψi∆yt−i +

q∑
j=1

Φj∆xt−j + εt (6)

where yt and xt are the vectors of endogenous and exogenous variables and zt and
ut are specified as in Eq. (3) and (5), respectively. The multicointegration model can
easily be estimated stepwise in a manner similar to Engle and Granger (1987) two-step
least square method. First, the cointegration and multicointegration relationships are
determined. Then, the Eq. (6) can be estimated with a classical maximum likelihood or
ordinary least square method.

Economically, zt represents excess production or excess orders per month depending
on its sign. A positive zt would indicate that in a given period production is more than
required by the orders received. In contrast, a negative sign of zt points at orders that
are not processed in the same month. Accordingly, St, the cumulative sum of zt, can be
considered, if positive, as the stock of inventory, and, if negative, as the backlog of orders
which has to be processed in the future. This suggests that production may also depend on
the state of new orders received providing economic support for the inclusion of a second
long-run equilibrium in the model and hence for the multicointegration framework.

However, the implementation of multicointegration models for forecasting industrial
production in Germany is not as straightforward as economic theory might suggest. First,
the time series for industrial production and new orders received need to be provided in
levels and in nominal terms. However, industrial production and news orders received are
both indexes, set to 100 in a specific base year (currently 2010) regardless of their initial
nominal levels. Therefore, above (below) equilibrium values of zt should be interpreted as
changes in the stock of inventory (backlog of orders) rather than positive (negative) values,
because the long-run equilibrium between industrial production and new orders received
must not necessarily hover around zero due to data construction and firms’ inventory
behaviour.
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Moreover, the time series for industrial production and new orders received are also
constructed in slightly different ways with respect to their definition and weighting schemes.
While the index for industrial output focuses merely on the industrial production, the time
series for new orders received takes also order-related services into account. In addition
to that these indices do not necessarily cover same industrial sectors with same weights.
In fact, industrial sectors are aggregated according to their shares of value added in base-
year to compose the industrial production index, whereas new orders are weighted on the
basis of the sector-specific order volumes to form the overall new orders received index.
Last but not least, weights of different sectors in both indices change with the base-year
over time as these are calculated with the nominal data in the base-year. Consequently,
the differences in data construction, sectoral coverage and weighting may lead to different
trend profiles in both indices.2

Finally, a preliminary analysis shows that, since the early 1990s until the mid-2000s,
industrial production in Germany was much higher than the level that new orders re-
ceived would imply. However, industrial output did not grow at the same pace as new
orders received during the same period. By contrast, the two time series started to move
much closer toward each other since the mid-2000s which is also in line with the economic
theory. As a result, the discrepancy between industrial production and new orders re-
ceived disappeared gradually during the first half of our sample period. Indeed, Seiler,
Wohlrabe, and Wojciechowski (2014) show that both, intermediate products as well as
finished goods inventory, have decreased since the early 1980s, whereas the range of the
stock of orders in the German manufacturing sector has increased during the 2000s. On
top of that, the authors explain the negative correlation between inventory behaviour (of
both intermediate products as well as finished goods) and the range of the stock of orders
with a transition to “just-in-time” production the manufacturing sector exhibited around
the turn of the millennium. Against this backdrop, on-demand production is supposed to
make firms less dependent on the inventory and may thus indicate that the relationship
between production and inventory has been changed during this transition period.

Econometrically, this may be consistent with structural breaks in the long-run equilib-
ria, i.e., in the cointegration relationships of industrial production with new orders received
as well as with inventory/backlog of orders. Note that proper modelling of the cointe-
gration relationship between production and new orders received is of paramount interest
due to its direct impact on the multicointegation relationship. A straightforward way to
account for such changes in the long-run equilibria would be to allow for structural breaks
in related cointegration relationships. While this approach may be easily implemented in
an ex-post perspective, the real-time detection of such breaks in the long-run equilibria
of the model may not be so simple. Therefore, we extend the initial multicointegra-
tion framework considering the specific requirements of forecasting industrial production.
First, we propose to approximate the multicointegration relationship with survey-based
ifo indicators focusing on the assessment of the finished goods inventory and of the orders
in hand as well as on production plans instead of building it as in equations (4) and (5).
Second, we estimate the multicointegration models with Bayesian estimation methods in
order to implement our prior beliefs in long-run equilibria of the model. Therefore, we
extend the long-run priors of Giannone et al. (2016) to the multicointegrated case. The

2See the Deutsche Bundesbank (2007) Monthly Report February p. 52-53 for more details on this
matter.
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two extensions are briefly introduced in the next subsections.

3.2.2 Multicointegration: Approximation with ifo indicators

Instead of specifying the multicointegration relationship as in equations (4) and (5), we
propose to approximate it with survey-based ifo indicators focusing on the assessment of
the finished goods inventory and of the orders in hand as well as on production plans.
Specifically, we replace the accumulated error term of the first cointegration equation,
formerly defined as St, in Eq. (5) with ifo indicators on the assessment of the finished
goods inventory (ifolb) and of the orders in hand (ifoab) as well as on production plans
(ifopp), while we keep the remainder of the cointegration equation unchanged as built in
Eq. (3). Hence, the multicointegration equation takes the following form:

ui,t = ifoi,t − ω0 − δipt (7)

for i = lb, ab, pp. The first specification ulb,t = ifolb,t − ω0 − δipt aims at capturing
the long-run relation between industrial production and inventories, while the second one
uab,t = ifoab,t − ω0 − δipt models the interaction between ipt and the stock of orders in
hand. These specifications may be able to model the second equilibrium which firms may
want to maintain in the long-run in addition to the first one between production and new
orders received. Moreover, we also consider the linkage between actual production and
production plans in the third specification upp,t = ifopp,t−ω0−δipt in order to incorporate
forward-looking production adjustments.

3.2.3 A Bayesian perspective on the long run

While in the two previous subsection we were explicitly estimating the long-run rela-
tionships, we now fix the multi-cointegrating vectors a-priori based on our theoretical
considerations. Specifically, in the “cumulated” version of the orders/production VAR,

∆xt = ct + Π

[
Xt−1

xt−1

]
+

p−2∑
i=1

Ψi∆xt−i + ut, (8)

with Xt =
[∑t

j=0 orj
∑t

j=0 ipj

]′
and xt = [ort ipt]

′ we elicit a prior for Π guided by

economic theory.
Following Giannone et al. (2016), and extending their ides to the multicointegation

casre, we introduce an additional matrix H whose rows contain what theory tells us about
the long-run relationship between production and orders. The VAR above can then be
rewritten as

∆xt = ct + ΛH̄ ′H

[
Xt−1

xt−1

]
+

p−2∑
i=1

Ψi∆xt−i + ut, (9)

in which H̄ = (HH ′)−1H. Eliciting a prior for Π in (8) has now transformed into choosing
a prior for the “adjustment” coefficient Λ, conditional onH. The idea behind the approach
of Giannone et al. (2016) is that rows in H representing some sort of error correction
mechanisms are a-priori more likely to have adjustment coefficients differenct from one
(i.e. less shrinkage). Likewise, rows in H containing non-stationary linear combinations
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of the variables call for more shrinkage toward zero on the elements of the corresponding
columns of Λ.

In the orders/production example our choice of the long-run matrix consistent with
multi-cointegration is

H =

[
1 1 0 0
1 −1 −δ −δ

]
, (10)

in which the first row contains the I(2) trend and the second one the multi-cointegration
relationship. For the multi-cointegrating parameter δ, theory would tell us to set it such
that the linear combination in the second row will be close to zero. How we pick a specific
value for δ will become clear momentarily.

Giannone et al. (2016) suggest to operationalize the idea of a prior for the long run in
the following way:

vec(Λ)|H,Σ ∼ N

0, diag


 λ2

i(
H1.

[
X̄ ′0 x̄′0

]′)2 , · · ·
λ2
i(

Hn.

[
X̄ ′0 x̄′0

]′)2


⊗ Σ

 , (11)

in which Hn. denotes the n-th row of H. The column vectors X̄0 and x̄0 contain the
average of the initial p observations. In our specific example with n = 2 and H as in (10)

we then choose δ such that H2.

[
X̄ ′0 x̄′0

]′
=
[
1 −1

]
x̄0. Admittedly, this formulation

is fairly ad-hoc, but all we want to ensure a-priori is that there is less shrinkage on the
loadings in Λ associated with the stationary multi-cointegrating relation than with the
non-stationary I(2) trend.

Since the prior is conjugate it can be implemented with dummy observations in a
cumulated-level VAR and it is easy to combine with other priors, such as the Minnesota
prior.3 Because of conjugacy the marginal likelihood can be compute in closed form which,
in turn, implies that the hyperparameters λ can be estimated as in Giannone, Lenza, and
Primiceri (2015).

In the forecast exercise below we also compare our multi-cointegrating prior with the
original long-run prior of Giannone et al. (2016) using only the “simple” cointegrating
relationship between orders and production to elicit the prior (the VAR is then specified
in levels) and the standard sum-of-coefficients prior (VAR specieifed in first differences).

3.3 Asymmetric adjustment

Macroeconomic time series may exhibit asymmetric characteristics over the business cy-
cles. In an earlier paper Neftçi (1984) points out that the US unemployment shows
asymmetric behaviour over the course of the business cycles. Moreover, Teräsvirta and
Anderson (1992) find evidence for nonlinearities in industrial production in various de-
veloped countries. Against this background, Sichel (1993) characterises nonlinearities of
business cycles with deep (troughs are further below the long-term average than peaks
are above it) and sharp (downturns are steeper than expansions) cycles and finds evi-
dence for deepness for industrial production, while Ramsey and Rothman (1996) show

3Given we specify the VAR in cumulated levels, the I(2) nature of the cumlated variables suggests a
prior of 2 on the AR(1) coefficients and −1 on the AR(2) coefficients.
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that industrial production exhibits sharpness-type of asymmetries.
Against this background, linear cointegration models implicitly assuming a symmetric

adjustment toward the long-run equilibrium may fail to capture nonlinear dynamics of the
macroeconomic time series under consideration. For this reason, we also consider error
correction models allowing for an asymmetric adjustment toward the long-run equilibrium.
Specifically, we adopt the threshold cointegration framework of Balke and Fomby (1997)
with asymmetric error correction such as in Granger and Lee (1989). Accordingly, our
threshold vector error correction and multicointegration models with asymmetric error
correction are constructed as

∆yt = Iz,tα
+zt−1 + (1 − Iz,t)α

−zt−1 + µ+

p∑
i=1

Ψi∆yt−i +

q∑
j=1

Φj∆xt−j + εt (12)

and

∆yt = Iz,tα
+zt−1 + (1 − Iz,t)α

−zt−1 + Iu,tγ
+ut−1 + (1 − Iu,t)γ

−ut−1+

µ+

p∑
i=1

Ψi∆yt−i +

q∑
j=1

Φj∆xt−j + εt
(13)

respectively with the indicator functions being

Iz,t =

{
1 if zt−1 ≥ τz

0 if zt−1 < τz
Iu,t =

{
1 if ut−1 ≥ τu

0 if ut−1 < τu
(14)

where α+,γ+ and α−,γ− are vectors of adjustment coefficients for above- and below-
average error correction terms, respectively. Moreover, τz and τu are the threshold values
for the first and second cointegration relations. As far as estimation is converned, we
follow Tsay (1998)’s stepwise modelling procedure for threshold models. First, we set
the deviations from the long-run equilibria, i.e., zt and ut, as threshold series. Then,
we estimate both threshold values, τz and τu, with Chan (1993)’s grid search method
minimising the sum of squared residuals in both regimes; see also Enders and Granger
(1998) and Enders and Siklos (2001). Finally, threshold-VEC and -multicointegration
models are estimated with classical methods such as maximum likelihood and ordinary
least square estimators.

3.4 Forecast combination

As mentioned before, our parsimonious forecast combination approach is based on a rel-
atively small pool of models which consists of three model classes: (vector) AR and
error correction as well as multicointegration models. We augment selected models with
survey-based ifo indicators targeted at the industrial sector and also consider linear and
threshold-type nonlinear specifications of related models. We estimate the models with
Bayesian and frequentist methods. At a final step we combine the point and density fore-
casts using equal and/or performance based weighting schemes. Table 1 presents selected
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model specifications in the model pool.

Table 1: Forecast models

Adjustment

# Model Variables Lags Vacation Bridge Weather

1 AR ip 1 off off off
2 AR ∆ip 1 off off off
3 VAR ∆ip, ∆or 1 off off off
4 VAR ∆ip, ∆or 4 off off off
5 MCOINT ∆ip, ∆or 4 on on on
6 VECM ∆ip, ∆or, ∆ifoc, ∆ifoe 4 on on on
7 TVECM ∆ip, ∆or 4 off off off
8 TVECM ∆ip, ∆or 4 on on on
9 V2ECM ∆ip, ∆or, ∆ifoc, ∆ifopp 4 on on on
10 V2ECM ∆ip, ∆or, ∆ifoe, ∆ifoab 4 on on on
11 TV2ECM ∆ip, ∆or, ∆ifoc, ∆ifopp 4 on on on
12 TV2ECM ∆ip, ∆or, ∆ifoe, ∆ifoab 4 on on on
13 BVAR (pfr) ip, or, ifoc, ifoe 12 on on on
14 BVAR (psf)

∑
ip,

∑
or,

∑
ifoc,

∑
ifoe 12 on on on

Table 1 provides an overview of the selected model specifications in our model pool.
While (V)AR and VECM stand for (vector) autoregressive model and vector error correc-
tion model, respectively, MCOINT denotes the baseline multicointegration model. More-
over, V2ECM represents the approximation of MCOINT with various ifo indicators, while
T denotes the threshold-type nonlinear specifications of the respective models. Finally,
multivariate models have either two or four variables. The variable selection is based
on the theoretical relationship between industrial production and new orders received as
well as on the forward-looking properties of the survey-based ifo indicators focusing on
the industrial sector in Germany. Note that we do not include any exogenous variables
and hence the term

∑q
j=1 Φj∆xt−j drops from our multivariate model specifications.

Moreover, except in the (V)AR models and one TVECM specification, the industrial pro-
duction series is adjusted for bridge-, ice- and vacation days. The latter variables are
calculated as monthly deviations from their long-run averages in respective months. Fo-
cusing on such a parsimonious model pool, coupled with a small number of variables in
multivariate specifications, hopefully improves the transparency of our projections.

Considering survey-based ifo indicators introduces the well-known ragged-edge feature
to our dataset. While these indicators provide us with timely information on the indus-
trial sector, industrial production and new orders received both have a publication delay
of about five weeks. Consequently, ifo indicators have a one- or two-observation lead,
depending on the time of the forecast, vis-à-vis industrial production and new orders
received. In order to make use of this information we follow the conditional forecasting
approach developed by Waggoner and Zha (1999) assuming that these indicators only
have an indirect simultaneous impact on the industrial production.

Last but not least, we consider two weighting schemes in order to pool individual
forecasts: (i) equal weighting and (ii) performance based weighting scheme. While the
former is a simple mean of point forecasts, the latter assigns more weight to models which
performed relatively better for a given period of time in the recent past. Specifically, the
weight for model i in period t is inversely proportional to its RMSFEs for a given horizon
h computed over a specific period in the past, i.e. three months. Note that one needs to
normalise the weights in order for them to sum up to one. Accordingly, it can be written
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as

ω̂
(h)
i,t =

(1/RMSFE
(h)
i,t )∑N

j=1(1/RMSFE
(h)
j,t )

(15)

where N stands for the number of models.4 For now, however, we mainly emphasise
results based on the equal weighting scheme, as performance-based weights were found to
perform rather slightly poorly for industrial production in preliminary analyses.5

4 Empirical results

For the evaluation of our parsimonious forecast combination approach we use relative
RMSFEs as the main measure for comparison. We report RMSFEs of selected models and
our forecast exercise relative to the random-walk benchmark. We consider two periods:
(i) July 2006 - December 2010, covering the pre-crisis period and the Great Recession,
and (ii) January 2011 - June 2017, representing the post-crisis period.

Table 2 presents relative RMSFEs of various model specifications for horizons 1, 3, 6
and 12 months for both sub-samples with an information lead of the sentiment indicators
of 1 month.6 We refer to point forecasts of our approach as Fcomb with mean, median
and msfe indicating the simple average, median forecast and performance based weight-
ing scheme as in the Eq. (15), respectively. The Bayesian VARs are denoted by BVAR
with the letters d, l and c referring to specifications estimated in first differences, levels
and cumulative levels. While MCOINT stands for the multicointegration model, V2ECM
represents the approximation of multicointegration models with ifo indicators as intro-
duced in Subsection 3.2.2. Moreover, the letter T stands for threshold-type nonlinear
specification of related models. While numbers in parenthesis show the lag structure of
each model, on/off shows whether the data is adjusted for bridge-, ice- and vacation days.
Furthermore, ifo means both ifoc and ifoe are included in the model, whereas in case
of models with ifoi for i = lb, pp, ab ifoc or ifoe is replaced with related ifo indicators.
Considering the relative RMSFEs values less (greater) than one imply that the selected
forecast model makes, on average, less (more) error than the benchmark. Moreover, p-
values for the Diebold and Mariano (1995) tests are given in brackets. Finally, bottom
line of Table 2 provides absolute values of the RMSFEs for the random walk benchmark
as scale reference.

The top line in Table 2 presents that our parsimonious forecast combination approach
with an equal-weighting scheme is able to reduce the RMSFEs by up to 30% over a
12-months forecast horizon in the post crisis period. However, its forecast accuracy de-
teriorates at the long-end of the forecast horizon when the first sub-period is considered.
While Fcomb (median) and Fcomb (msfe) show similar patterns as the simple average in first
sub-sample, the performance of the three combination schemes diverge from each other in

4See Stock and Watson (2006) and Timmermann (2006) for more details on forecast combination.
5See Claeskens, Magnus, Vasnev, and Wang (2016), Genre, Kenny, Meyler, and Timmermann (2013)

and Smith and Wallis (2009) for possible explanations on this forecast combination puzzle.
6Results of the forecast comparison based on a 2-months information lead of the ifo indicators remain

mainly unchanged. Hence, they will not be presented here for brevity. All results are available from the
authors on request.
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Table 2: Forecast comparison

Relative RMSFEs

(Pre) Crisis1, h = . . . Post Crisis1, h = . . .

1 3 6 12 1 3 6 12

A: Information lead of the ifo indicators – 1 month
RMSFEs relative to RW
Fcomb (mean) 0.78 0.75 0.89 0.97 0.75 0.80 0.80 0.70

(0.03) (0.09) (0.24) (0.70) (0.00) (0.01) (0.00) (0.00)
Fcomb (median) 0.77 0.73 0.90 0.97 0.75 0.83 0.82 0.74

(0.06) (0.12) (0.29) (0.62) (0.00) (0.02) (0.01) (0.01)
Fcomb (msfe) 0.76 0.74 0.91 0.99 0.75 0.78 0.85 0.80

(0.04) (0.12) (0.33) (0.82) (0.00) (0.00) (0.04) (0.03)

BVAR(12) / d / soc / on / ifo 0.72 0.69 0.77 0.80 0.96 0.97 1.09 1.22
(0.06) (0.15) (0.18) (0.03) (0.53) (0.78) (0.55) (0.11)

BVAR(12) / l / plr / on / ifo 0.83 0.77 0.87 0.93 0.77 0.87 0.90 0.99
(0.08) (0.15) (0.31) (0.39) (0.01) (0.17) (0.27) (0.99)

BVAR(12) / c / psf / on / ifo 0.75 0.71 0.91 1.05 0.84 0.87 0.92 1.14
(0.09) (0.16) (0.56) (0.77) (0.07) (0.23) (0.41) (0.28)

TV2ECM(4) / on / ifoLB 0.75 0.71 0.92 1.03 0.85 0.92 0.93 0.98
(0.07) (0.15) (0.57) (0.84) (0.09) (0.37) (0.42) (0.85)

TV2ECM(4) / on / ifoPP 0.76 0.66 0.82 0.99 0.82 0.89 0.89 1.07
(0.09) (0.14) (0.25) (0.98) (0.05) (0.30) (0.23) (0.48)

TV2ECM(4) / on / ifoAB 0.75 0.72 0.88 0.97 0.81 0.88 0.97 0.93
(0.07) (0.13) (0.27) (0.58) (0.04) (0.21) (0.78) (0.56)

V2ECM(4) / on / ifoLB 0.76 0.70 0.89 1.03 0.84 0.92 0.94 0.95
(0.07) (0.14) (0.48) (0.86) (0.07) (0.31) (0.44) (0.56)

V2ECM(4) / on / ifoPP 0.76 0.65 0.79 0.92 0.81 0.88 0.88 0.86
(0.08) (0.11) (0.15) (0.35) (0.04) (0.29) (0.17) (0.10)

V2ECM(4) / on / ifoAB 0.74 0.68 0.87 1.01 0.80 0.88 0.98 0.92
(0.07) (0.13) (0.31) (0.93) (0.04) (0.21) (0.81) (0.40)

MCOINT(4) / on / ifo 0.74 0.68 0.83 0.92 0.80 0.93 1.05 1.49
(0.08) (0.15) (0.27) (0.13) (0.03) (0.42) (0.58) (0.00)

VECM(4) / on / ifo 0.78 0.73 0.87 0.92 0.82 0.93 0.98 0.93
(0.14) (0.15) (0.29) (0.25) (0.04) (0.40) (0.85) (0.38)

VAR(4) / on / ifo 0.70 0.72 0.87 0.87 0.96 0.98 1.09 1.15
(0.04) (0.16) (0.27) (0.13) (0.55) (0.88) (0.54) (0.10)

RW (abs.) 0.0248 0.0517 0.0841 0.1322 0.0175 0.0193 0.0248 0.0251

1 (Pre) Crisis = 2006 July to 2010 December; Post Crisis = 2011 January to 2017 June.

the aftermath of the Great Recession. While the performance-based combination scheme
(msfe) is slightly better at the short-end, both Fcomb (median) and (msfe) perform rather
poorly at forecast horizons longer than three months.

The middle panel shows the forecast performance of models proposed in this paper
relative to the random-walk. Moreover, we also include forecast performance of the con-
ventional multicointegration framework, denoted as MCOINT(4), as this model serves as
a reference for the Bayesian VARs and (T)V2ECMs. Overall, all proposed models with
some exceptions perform fairly well at the long-end of the forecast horizon compared to
the benchmark as well as to the conventional multicointegration framework. The im-
provement in forecast accuracy is even more pronounced for forecast horizons up to 3
months.

Considering the BVARs the results show that taking the long-run relation between
industrial production and new orders received into account reduces the forecast error in
the aftermath of the recent financial crisis, the BVAR in first differences is superior to
the other two Bayesian specifications in the first sub-sample. Moreover, the BVAR in
cumulative levels which extends the prior for the long-run of Giannone et al. (2016) to
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the multicointegration framework performs slightly better than the BVAR in levels at
the short-end of the forecast horizon before and during the crisis, its forecast accuracy
deteriorates for longer horizons in both sub-samples.

The linear approximations of the multicointegration model with various sentiment in-
dicators, denoted as V2ECMs, seem to reduce the forecast error compared to the bench-
mark as well as MCOINT remarkably, whereas the nonlinear specifications of these models
perform rather slightly poorer as often found in the related literature. The results indi-
cate that the improvement in forecast accuracy by including the second long-run relation
between production and inventory, stock of orders on hand or production plans into the
model is more pronounced at the short-end of the forecast horizon in the first sub-sample,
whereas the same holds for the long-end in the aftermath of the most recent global finan-
cial crisis.

Figure 3: Industrial production: realised vs. forecast
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Notes: The graphs plot realised industrial production (dotted black line) and the corresponding h-month-
ahead mean forecasts (solid grey line) over the period from July 2006 to June 2017. The shaded area
covers the min-max band of individual model forecasts.

While Table 2 provides the reader with a valuable insight on the relative forecast
performance of the new approach, it is not possible to trace if forecasts are biased, and if
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they are, in which direction. In addition, nothing can be derived about the uncertainty
associated with the new forecast combination approach. Against this background Figure
3 plots the time series for the realised industrial production together with the 1-, 3-, 6-
and 12-month-ahead point forecasts of the RFM as well as the min-max interval of the
individual model forecasts. This should provide us with an idea about the direction of
the forecast errors and the uncertainty around the point forecasts.

Overall, Figure 3 shows that forecast errors - with the exception of the period covering
the Great Recession - exhibit no clear pattern preventing our framework from being
systemically biased toward one direction.

5 Concluding remarks

In this paper we introduce multicointegration models to forecasting industrial produc-
tion in Germany. Moreover, considering country-specific characteristics we proposed two
extension of this model class: (i) Approximation of multicointegration equation with
ifo survey-based indicators, (ii) Extension of Giannone et al. (2016) to multicointegration
models. Furthermore, we include both linear and nonlinear specifications of selected mod-
els and estimate them with frequentist and Bayesian methods. Overall, real-time forecast
evaluation results revealed that our parsimonious forecast combination with around ten
models is able to reduce the forecast error by up to 30% compared to the random-walk
benchmark. Especially, for long forecast horizons, the forecast performance seems to
improve markedly when relying on our model.

While we focused on predicting the German industrial production, our framework can
be easily extended and implemented to other countries for which a similar dataset is
available.
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Hüfner, F. P. and M. Schröder (2008). Forecasting economic activity in Germany - how
useful are sentiment indicators? ZEW Discussion Paper No. 02-56.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive
Models. Oxford University Press.

Lee, T.-H. (1992). Stock-flow relationships in US housing construction. Oxford Bulletin
of Economics and Statistics 54 (3), 419–430.

Lee, T.-H. (1996). Stock adjustment for multicointegrated series. Empirical Eco-
nomics 21 (4), 633–639.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
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