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Abstract

We study optimal debt management in the face of shocks that can drive the economy into a

liquidity trap and call for an increase in public spending in order to mitigate the resulting recession.

Our approach follows the literature of macroeconomic models of debt management, which we extend

to the case where the zero lower bound on the short-term interest rate may bind. We wish to identify

the conditions under which removing long-maturity government debt from the secondary market

can be an optimal policy outcome. We show that the optimal debt-management strategy is to issue

short-term debt if the government faces a sizable exogenous increase in public spending and if its

initial liability is not very large. In this case, our results run against the standard prescription of

the debt-management literature. In contrast, if the initial debt level is high, then issuing long term

government bonds is optimal.

Finding the portfolios requires to solve the model using global numerical approximation meth-

ods. As a methodological contribution, we propose numerical procedures within the class of pa-

rameterized expectations algorithms (PEA) to solve the nonlinear model subject the zero lower

bound.
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1 Introduction

A prominent characteristic of the latest global recession was the sharp decline in short-term nominal

interest rates, which reached their zero lower bound (ZLB), a situation referred to as the liquidity trap

(LT). One of the main policy responses during this episode has been the buy-backs of long maturity

debt from the secondary market, widely known as unconventional monetary policy. This intervention

has received considerable attention in recent academic and policy work. On the empirical side, a large

body of literature has shown that removing long debt from the hands of the private sector, reduces

long interest rates, potentially leading to higher demand for consumption and investment goods. On

the theoretical side, Vayanos and Vila (2009), Chen, Curdia and Ferrero (2012), Gibaud, Nosbusch and

Vayanos (2013) (among many others) propose microfoundations that can explain the effects of buy-backs

on bond prices.

In this paper, we approach public debt management in a LT from a different perspective than

these recent papers. We follow the trail of a literature that analyzes optimal government portfolios

in macroeconomic models (initiated by the work of Angeletos (2002) and Buera and Nicolini (2004),

hereafter ABN) and which shows that appropriately choosing the maturity structure of public debt

can help the government ‘hedge’ its intertemporal budget. Existing macroeconomic models of debt

management have, however, completely abstracted from disturbances that may drive the economy into

a LT. Whereas LTs have been quite rare since the Great Depression, there is a growing concern that such

episodes may become recurrent events in the future.1 The purpose of this paper is to offer an alternative

benchmark to evaluate the recent changes in the maturity structure in industrialized economies. We

ask: is reducing the amounts of long-maturity debt held by private agents optimal during LTs?

A well known conclusion of the ‘fiscal-hedging’ approach to debt management is that governments

should issue only long-term debt.2 Under this presumption, the recent policy interventions in the

secondary market have driven the maturity structure of public debt further from its optimum. We

wish to evaluate whether this conclusion persists when economic shocks can drive interest rates to their

ZLB, or whether there are conditions under which removing long-maturity government debt from the

secondary market can be an optimal policy outcome in such circumstances.

The model we construct is broadly similar to Schmitt-Grohé and Uribe (2004, SGU), and Faraglia,

Marcet, Oikonomou and Scott (2013, FMOS): It is an economy with monopolistic competition and

sticky prices and with monetary and fiscal policies which are coordinated; a benevolent planner with

full commitment controls inflation and distortionary taxes. Moreover, following several papers (e.g.

Eggertsson and Woodford (2003, 2006, EW) and Christiano, Eichenbaum and Rebelo (2011, CER)

among others), we assume that LT episodes occur after shocks to preferences raise the discount factor

and induce agents to postpone consumption. We study separately cases where these shocks are the only

source of uncertainty in the economy, and cases where they are accompanied by a simultaneous increase

1Indeed, many observers believe that the global economy has entered an era of secular stagnation, in which growth will
be anemic and interest rates persistently low. See for example Baldwin and Teulings (2014).

2ABN were the first to show that governments want to issue long bonds to hedge against exogenous spending and
productivity shocks. Faraglia, Marcet and Scott (2010) extend ABN’s model by introducing habit preferences and capital
accumulation and show that their result remains. Nosbusch (2008) and Lustig, Sleet and Yeltekin (2008) assume incomplete
markets; their conclusion is (again) that long-term debt is optimal.
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in public spending to mitigate the effects of the recession. With the latter scenario, we seek to capture

another well known characteristic of the recent downturn, namely the large public deficits and mounting

debt levels in industrialized economies.

Our key finding is that issuing only long term debt is not always the optimal policy. Instead,

depending on the magnitude of the spending shocks and the initial debt level of the government, it may

be that short term financing is optimal. In particular, when the initial liability of the government is

low and the increase in public spending that occurs when the economy enters the LT is substantial,

the government prefers to issue short bonds. However, if at the beginning of the planning horizon, the

government has to refinance a large stock of debt, then issuing only long bonds may be optimal.

To understand these findings, note that when preference shocks hit the economy long bond prices

increase. Therefore, a government that issues long term debt experiences an increase in its outstanding

liability. Whether or not is optimal to incur the loss in the value of the portfolio depends on the

response of current and future primary surpluses to preference and spending shocks. There are two

effects in the model. First, sizable increases in spending levels tend to put the intertemporal budget of

the government into deficit. Second, since preference shocks tend to lower future interest rates, they

also tend to increase the present value of the future surpluses to which the government must commit in

order to repay a positive (and high) initial debt level. If the first effect prevails, then short term debt is

optimal. In contrast, if the second force is the dominant one, financing with long bonds is the optimal

strategy.

We show that these results hold under a variety of different parameterizations of the model, when

we make alternative assumptions over the specification of preferences, the degree of price stickiness in

the economy and the duration of the LT episodes. Moreover, our results hold ex ante (prior to the

realization of the shocks) but also ex post, when the economy has entered the LT, and uncertainty

evolves around the duration of the episode. This is also a key finding, that the (qualitative) features of

the optimal portfolio, do not vary across a range of parameters which maybe hard to measure in the

data. The optimal policy is a function whose most crucial arguments are the initial debt level and the

level of spending during the LT.

As ABN, this paper studies optimal debt management assuming that the government can complete

the market through a portfolio of long and short bonds. It is well known (see for example Lucas and

Stockey (1983), Marcet and Scott (2009)) that when markets are complete, the optimal allocation is

history independent in the sense that only the current values of the disturbances influence consumption,

hours and taxes. However, history independence does not hold in our context; this is a standard

implication of optimal policy problems under the ZLB constraint (e.g., EW (2003, 2006)). Finding

the optimal portfolio requires to solve the model using global numerical approximation methods. In

Section 3 of the paper, we discuss extensively the challenges of doing so when the history of shocks

matters for allocations. We show that, in a special case, when the utility is linear in consumption (e.g.

Aiyagari, Marcet, Sargent and Seppälä (2002, AMSS) and FMOS (2016)) the difficulty is not severe; the

multiplier associated with the ZLB constraint, which summarizes the history, remains constant through

time. In this case, we can solve the model using a procedure very similar to the algorithms proposed by

FMS (2010) and FMOS (2014) for standard complete market models (with history independence). In
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the more genereal case (where utility is not quasi-linear), however, the numerical approximation is not

trivial because the value of the multiplier shifts over time. The problem then needs to be dealt with

methods suitable to solve models of government debt and incomplete financial markets (for instance

AMSS, FMOS (2015)); these models also feature time varying multipliers, which summarize histories

and policy commitments. We propose an algorithm based on parameterizing expectations and which

extends the algorithms of FMOS (2014, 2015) to the binding ZLB. This is a separate contribution of

our paper.

There is a long stream of papers which characterize optimal fiscal and monetary policies under the

ZLB. Prominent examples are Eggerston and Woodford (2003, 2006), Adam and Billi (2006), Werning

(2011), Schmidt (2013), Jung et al (2013), and Nakata (2013). Whereas these papers typically study

policy choices during LTs using linearized versions of the new-Keynesian model (allowing only for the

nonlinear effects exerted by the ZLB constraint), we solve a fully non-linear new-Keynesian model and

propose stochastic simulation algorithms to do so.3 Moreover, in Section 3 of our paper we consider

several model versions which enable us to derive the optimal tax schedule analytically. We use these

expressions to build our numerical algorithms but also to provide insights on the effects of current and

lagged shocks on the sequence of taxes and inflation. Some of the analytical expressions and results

contained in Section 3 are new and complement previous findings in the literature.

Our analysis is also complementary to the theoretical models that link asset purchases and bond

yields, which were previously mentioned (e.g. Vayanos and Vila (2009), Chen, Curdia and Ferrero

(2012), Gibaud, Nosbusch and Vayanos (2013)). These papers construct models with ‘bond clienteles’,

that is, groups of investors with preferences over specific maturities, and study the effects of shocks to

the demand or the supply of a particular maturity on the yield curve.4 Relative to these papers, we

build a standard macro model with one infinitely lived household, and therefore we do not delve in issues

related to the market microstructure. Moreover, our model brings together fiscal and monetary policies

under a consolidated intertemporal budget, meaning that purchases of long term debt by either the

’Fed’ or the ’Treasury’ have identical impacts on economic outcomes.5 On the other hand, we emphasize

a different and crucial role of debt management during LTs: If the government is to depart from the

optimal maturity that is uniquely pinned down in the model, markets become incomplete and this in

3Our algorithms are suitable to deal with large scale versions of the new-Keynesian model. These applications are
not pursued here but we refer the reader to Judd et al (2011) for a discussion on this issue. Previous papers that study
optimal policies under the ZLB use methods which suffer from the ’curse of dimensionality’ as the state space expands.
For example, Adam and Billi (2006) derive a Bellman equation following the arguments of Marcet and Marimon (2009).
Schmidt (2013) solves his model using a collocation method which approximates the policy rules as functions of the state
variables. Both approaches become impractical quickly when state variables are added to the models. This problem
however, will be less felt in our model which assumes a simple structure of shocks and complete markets. It becomes
severe in models with commitment, incomplete markets and long term government bonds (e.g. FMOS (2015)).

Finally, Nakata (2015) solves a nonlinear model with optimal government spending, using a shooting algorithm. His
is basically a non-stochastic environment whereby the preference parameter drops in the initial period and subsequently
reverts gradually to the long run value. Ours is a stochastic model with uncertainty over the duration of the LT episode.

4Vayanos and Vila (2009) assume exogenously the clienteles and add risk averse arbitrageurs in the bond market. In
Gibaud, Nosbusch and Vayanos (2013) bond clienteles arise endogenously in an overlapping generations model. Chen,
Curdia and Ferrero (2012) build a DSGE model in which a fraction of agents holds only long term debt and the remaining
agents hold both short and long bonds subject to transaction costs.

5Put differently, in our model transactions between the central bank and the Treasury have no direct effect on the
private sector’s behavior.
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turn implies that the distortionary impacts of taxes, debt and inflation are exacerbated in both the long

and the short run. The interplay between the forces we identify and the recent literature on government

debt buybacks remains to be explored.

This paper proceeds as follows: Section 2 presents the model and the planning program. Section

3 discusses the properties of equilibria, with analytical results and numerical algorithms. Section 4

discusses the results on optimal debt management based on the numerical solution of the model. Section

5 extends the baseline model and presents several robustness exercises. Section 6 estimates the welfare

impact of optimal debt management in the model. A final section concludes.

2 Model

2.1 Agents

2.1.1 Preferences

We consider an infinite horizon economy, populated by a representative household with preferences

defined by

(1) E0

[ ∞∑
t=0

βt
(
ũ(ct, ξt) + ṽ(ht, ξt)

)]
,

where ct denotes consumption, ht denotes hours, and β is the discount factor. The term ξt represents a

shock to preferences that we will model as in EW. We assume that preferences are such that ũ(ct, ξt) =

ξtu(ct) and ṽ(ht, ξt) = ξtv(ht). A drop in ξt relative to ξt+j, j = 1, 2... implies that the household wants

to postpone consumption (and leisure) to the future.

2.1.2 Firms

The consumption good is produced by a representative, perfectly competitive, final-good producer using

a Dixit-Stigltiz aggregator of a continuum of differentiated intermediate products. The production of

a generic intermediate product i is carried out by a monopolistically competitive firm using a linear

technology yi,t = hi,t. The demand for product i is given by Ytd(Pi,t/Pt), where Pi,t is the price of

intermediate product i, Pt is the price of the composite final good, and Yt is output in the final-good

sector. The demand function, d, satisfies additional assumptions that guarantee the existence of a

symmetric equilibrium, namely, d(1) = 1 and d′(1) ≡ η < −1.

We assume that the prices of intermediate goods are costly to adjust. Following Rotemberg (1982),

adjustment costs are given by θ
2
(
Pi,t
Pi,t−1

− 1)2, where θ ≥ 0 governs the degree of price stickiness. When

θ = 0, prices are fully flexible. When θ →∞, prices will remain constant through time.

Intermediate-good producers seek to maximize

(2) Et

∞∑
j=0

βj
uc(ct+j)ξt+j
uc(ct)ξt

{
Pi,t+j
Pt+j

Yt+jd

(
Pi,t+j
Pt+j

)
− wt+jhi,t+j −

θ

2

(
Pi,t+j
Pi,t+j−1

− 1

)2
}
,
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subject to the constraint hi,t+j = Yt+jd(Pi,t+j/Pt+j). The first-order condition with respect to Pi,t is

given by

1

Pt
Ytd

(
Pi,t
Pt

)
+
Pi,t
P 2
t

Ytd
′
(
Pi,t
Pt

)
− wtYtd′

(
Pi,t
Pt

)
1

Pt
− θ

(
Pi,t
Pi,t−1

− 1

)
1

Pi,t−1

+βEt
uc,t+1ξt+1

uc,tξt
θ

(
Pi,t+1

Pi,t
− 1

)
Pi,t+1

P 2
i,t

= 0,

where uc,t ≡ u′(ct).

This equation forms the Phillips curve, describing the inflation output trade-off in our model. Im-

posing a symmetric equilibrium (all firms set the same price) gives

(3) (πt − 1)πt =
η

θ

(
1 + η

η
− wt

)
Yt + βEt

uc,t+1ξt+1

uc,tξt
(πt+1 − 1)πt+1,

where πt ≡ Pt
Pt−1

denotes gross inflation.

2.1.3 Government and markets

The government engages in two activities — it levies taxes on the household’s labor income and trades

with the household in bond markets to finance a spending process {gt}∞0 . We denote labor-income taxes

by τt. Moreover, let Bj
t be the quantity of a bond issued in period t that promises to pay a unit of

income in t + j. Let the price of such a bond be qjt . For simplicity, denote by J the set of available

maturities.6

Following ABN, we study an economy in which government bonds can complete the market. That

is, there exists a portfolio of bonds that perfectly insures the government’s budget at any period and

for every realization of the shocks, given qjt and τt. Under complete markets, it becomes immaterial

whether the government redeems the outstanding bonds at maturity or whether it buys back debt in

every period and then reissues. The latter assumption is followed by many papers in the literature (see,

for example, ABN, FMOS (2015), among others). For simplicity, we will also follow this setup. The

government budget constraint can be written as

(4)
∑
j∈J

qjtB
j
t =

∑
j∈J

qj−1t Bj
t−1 + Pt(gt − τtwtht).

The initial debt level of the government will be denoted by B−1.

6Notice that even though we can have J ≡ {1, 2, ..., j}, that is, allow the government to trade with any maturity
ranging from one period to some maximum length j, in practice, we will not need all of these trades to be realized. Since
there will be only two states of shocks, it suffices to have J = {1, N} (a one-period bond and an N -period bond). This
structure is standard in the macro debt-management literature.
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2.1.4 Household optimization

Given the policies described above, the household maximizes utility (1) subject to the sequence of budget

constraints

(5)
∑
j∈J

qjtB
j,H
t =

∑
j∈J

qj−1t Bj,H
t−1 + Pt(1− τt)wtht − Ptct + Π̃t,

where Bj,H
t represents the quantity of debt of maturity j demanded by the household in t and Π̃t denotes

profits of the firms operated by the household. From the household’s optimization, we can derive the

following optimality conditions:

(1− τt)wt = −vh,t
uc,t

,

which gives the tax rate as one minus the marginal utility ratio and

qjt = βjEt
uc,t+jξt+jPt
uc,tξtPt+j

,

which equates the bond price with the marginal utility growth divided by the price ratio. Moreover, it

holds that q0t = 1. Notice further that since we assume a representative household, the prices qjt are also

the prices of bonds in the secondary market. When the government buys back outstanding debt in the

market it has to pay qj−1t for the j − 1 maturity as is evident from equations (4) and (5).

2.2 Uncertainty

Our goal is to determine debt-management policies both before and during the LT. We therefore assume

that, in period 1, the economy can be hit by a shock that lowers ξ1 to a value ξ < ξ = ξ0. This shock

occurs with probability equal to ω. If the shock is realized then the value of the preference parameter

remains equal to ξ with probability φ in each period until another shock arrives (at rate 1 − φ) and

thereafter ξt = ξ for all t. In other words, following a shock that lowers the value of ξ1 the preference

parameter is a first order Markov process with the transition matrix

Pξ ≡

[
1 0

(1− φ) φ

]
.

In the case where the shock to preferences does not occur in period 1 (probability 1− ω) we set ξt = ξ

for all t.

Allowing for the value of ξt to drop in period 1 is not sufficient for the economy to fall in a LT.

It must be that the drop is large enough so that the zero lower bound is violated and policy reacts to

satisfy the constraint. Because we will use a variety of different setups, it is not possible to find sufficient

conditions under which the difference between ξ and ξ is such that the constraint binds. For each of

the versions of the model we will consider, we will report the required value ξ that gives persistent LTs
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according to the process defined previously.

Turning to the process of government spending, which is assumed exogenous to the model, we let

gt = g (the steady-state value) in periods where the ZLB is not binding. When the economy is in the LT,

we will set gt = g ≥ g. Preference shocks will be, in some parameterizations of the model, accompanied

by increases in spending levels that will last for as long as the economy remains in the LT.

2.3 The Ramsey problem

We assume that the government maximizes the household’s utility under full commitment as in ABN,

SGU, FMOS. We follow the primal approach; we eliminate the tax rate and the bond prices from the

program using the equilibrium expressions for these objects.

Let c denote the sequence of consumptions [c0, c1, ...] and similarly for the other variables of the model.

A competitive equilibrium is a feasible allocation c,h,g, a price system w,q, π and a government policy

g, τ, π,b such that given prices and the policy, c,h, π solve the firms’ and household’s maximization

problem and satisfy the sequence of government budget constraints.

The Ramsey program chooses τ, π,b selecting the competitive equilibrium that maximizes (1). As

is well known, under complete markets, this is equivalent to choosing c,h, π,w to the maximize the

household’s utility subject to the following date 0 implementability constraint (e.g. Chari and Kehoe

(1999), FMS (2010)):7

(6) E0

∞∑
t=0

βt
uc,tξt
uc,0ξ0

[
−gt +

(
1 +

vh,t
uc,twt

)
wtht

]
= B−1,

together with the Phillips curve (3), the resource constraint,

(7) ct + gt +
θ

2
(πt − 1)2 = ht.

Notice, however, that in our economy maximizing welfare subject to (3), (6) and (7) does not suffice

to find an equilibrium policy that also satisfies the ZLB on the nominal interest rate. Therefore, the

optimal allocation also needs to satisfy

(8) q1t ≡ βEt
uc,t+1ξt+1

uc,tξtπt+1

≤ 1,

for all t, to ensure that the competitive equilibrium selected by the planner gives a sequence of short

term rates it = 1
q1t
− 1 bounded from below by zero.

7Notice that (6) is the intertemporal budget of the government and be easily derived by iterating forward on equation
(4).
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Let (λs, λp,t, λf,t, λZLB,t) be the vector of Lagrange multipliers; we formulate the Lagrangian as:

L = E0

∑
t

βt
{
u(ct)ξt + v(ht)ξt + λf,t

(
ht − ct − gt −

θ

2
(πt − 1)2

)
− λZLB,t

(
uc,tξt − βEt

uc,t+1ξt+1

πt+1

)
−λp,t

(
uc,tξtπt(πt − 1)− η

θ
htuc,tξt

(
1 + η

η
− wt

)
− βEtuc,t+1ξt+1πt+1(πt+1 − 1)

)}
−λs

[
E0

∞∑
t=0

βtuc,tξt

[
−gt + (1 +

vh,t
uc,twt

)wtht

]
− uc,0ξ0B−1

]
.(9)

2.3.1 Optimality

Denoting by st ≡ −gt + (1 +
vh,t
uc,twt

)wtht the per-period government’s surplus the first-order conditions

for the optimum can be written as

uc,tξt − λf,t + λp,t
η

θ
htucc,tξt

(
1 + η

η
− wt

)
− ucc,tξt

(
λZLB,t − λZLB,t−1

1

πt

)
− λsξt (ucc,tst + uc,tsc,t)

+λsuc,0ξ0B−1It=0 = 0,(10)

vh,tξt + λf,t − λsuc,tξtsh,t + λp,t
η

θ
uc,tξt

(
1 + η

η
− wt

)
= 0,(11)

−θλf,t(πt − 1)− λZLB,t−1
uc,tξt
π2
t

= 0,(12)

−λssw,t − λp,t
η

θ
ht = 0,(13)

where sc,t ≡ −vh,t
u2c,t
ucc,tht and sh,t =

vhh,t
uc,t

ht +
(

1 +
vh,t
uc,twt

)
wt, and sw,t = ht.

(10) is the first order condition for consumption in t. I denotes the indicator function, and therefore

the last term in this equation applies solely in period 0 and if the outstanding liability of the government

B−1 is non-zero.8 (11) and (12) are the first order conditions with respect to hours and inflation. From

(13), the first order condition with respect to wages, we get that λp,t = −λs θη (constant).

Finally, from complementary slackness, we have

λZLB,t

(
uc,tξt − βEt

uc,t+1ξt+1

πt+1

)
= 0.

Together with the constraints from the planner’s program, these equations yield the system that needs

to be solved to obtain the optimal allocation.

2.4 Optimal Debt Management

Given the solution to the planner’s program we follow the approach of ABN and FMS (2010) to recover

the optimal portfolio of the government. Since in our model there are two states of the world in every

period the optimal portfolio can be found as a combination of two different maturities provided that

8In the case of positive initial debt levels this term captures the incentive of the government to manipulate interest
rates through changes in taxes (see FMOS (2016)).
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these assets give us a matrix of returns that is of full rank. As is standard in the literature, we consider

a short bond, of one period maturity, and a long bond of maturity equal to N periods.

Let xt = ((ξ0, g0), ..., (ξt, gt)) denote the history of shocks until t and let (b1t , b
N
t ) denote the optimal

portfolio of the real value of short and long bonds issued in t. (b1t , b
N
t ) can be found as a solution to the

following system of equations:

(14)

 1

π(xt,(ξ,g))
1

π(xt,(ξ,g))
qN−1t+1

(
xt, (ξ, g)

)
1

π(xt,(ξ,g))
1

π((xt,(ξ,g))
qN−1t+1

(
xt, (ξ, g)

)
 · [ b1t

bNt

]
=

[
St+1

(
xt, (ξ, g)

)
St+1

(
xt, (ξ, g)

)] .
where St+1

(
xt, (ξ, g)

)
is the present discounted value of the government surplus when the economy

remains in the LT, meaning that following history xt we have (ξt+1, gt+1) = (ξ, g).9 Analogously,

St+1

(
xt, (ξ, g)

)
is the surplus when the economy experiences in t + 1 an increase in the value of ξt

and permanently escapes the LT.

According to (14) the government issues a portfolio in period t that ensures that the intertemporal

constraint is satisfied with equality in both states in t+1 given the future policies for taxes and inflation.

System (14) has a unique solution if and only if qN−1t+1

(
xt, (ξ, g)

)
6= qN−1t+1

(
xt, (ξ, g)

)
. Note further that

it is meaningful to use (14) to obtain (b1t , b
N
t ) only in cases where the risk of falling (remaining) in the

LT in the next period is present. When ξt+1 = ξ and given how uncertainty enters in the model, there

are no further gains from debt management, and the government will be able to accomplish the same

outcomes when it issues one type of bond as when it issues any combination of the two bonds. In our

subsequent analysis we will therefore characterize the government’s portfolio at t = 0 and in during LT

episodes.

3 Solving the Model: Analytics and Algorithms

This section characterizes the solution of the optimal policy in the model. In Section 3.1 we focus on

the long run properties of policy and allocations; we show that following any history of shocks, taxes,

inflation, and all other model variables return to constant long run values. In Section 3.2, we consider

the short run properties of the solution to the planner’s program and propose numerical algorithms to

globally approximate the equilibrium.

3.1 Long Run Distortion smoothing

Given the structure of shocks described in Section 2.2, if we simulate the model many times, the duration

of LT episodes will vary across the samples. We consider one realization of these simulations whereby

the economy enters in the LT in period 1 and period T > 1 is the last period where ξt = ξ. Thereafter,

ξt = ξ. Notice that T is a random variable; in our analysis we use a generic value T .

Proposition 1. Consider a history of preference and spending shocks xT for T > 1 and let xT+1 = (ξ, g).

9Recall that it is possible to get (ξt+1, gt+1) = (ξ, g) as a non-zero probability event if and only if ξt = ξ for t > 0.
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After period T + 1 i) the optimal inflation rate is 0. ii) the optimal tax rate equals τ and the debt level

equals B (constants). iii) τ and B are independent of xT and T .

Proof. i) follows from equation (12) and the fact that λZLB,T+1 = λZLB,T+2 = λZLB,T+3... = 0 (from

complementary slackness). Then, we have that

−θλf,t(πt − 1) = 0→ πt = 1.

To show ii) first note that since inflation equals zero for t > T + 1, wt = 1+η
η

. From (10) and (11),

and replacing gt = g, we have

uc,t + vh,t − λsuc,t
[
vhh,t
uc,t

ht +

(
1 +

vh,t
uc,t

η

1 + η

)
1 + η

η

]
− λsucc(ct)

[
−g +

(
1 +

vh,tη

uc,t(1 + η)

)
1 + η

η
ht

]
+λsuc(ct)

(
−vh,t
u2c,t

ucc,tht

)
= 0,(15)

where ct + g = ht.

Notice that (15) defines an nonlinear equation in consumption that applies in all periods after T + 1.

The solution defines a constant consumption level c and since hours are also constant, taxes are constant.

The per-period surplus, st, is therefore also constant (equal to s).

Turning to the debt levels and recalling that once uncertainty is removed from the model, a short

bond is sufficient to complete the markets, we have

B1
t−1 =

∞∑
j=1

βj−1
uc,t+j
uc,t

[
−g +

(
1 +

vh,t+jη

uc,t+j(1 + η)

)
1 + η

η
ht+j

]
=

s

1− β
= B,

for t = T + 2, T + 3, ....

iii) follows easily from the above derivations. �

Under complete markets, all the distortions stemming from price rigidity and taxation are eliminated

in the long run when the ZLB ceases to bind. The objective of debt management therefore is to construct

a portfolio of government bonds that achieves price stability and tax smoothing once the economy exits

the LT. This objective is common with the models of ABN.

3.2 Short-run properties of the planner’s solution and algorithm

The previous subsection demonstrated that in our model the long run allocation is history independent;

following a sequence of preference and spending shocks {xt}T1 = {(ξ, g), ..., ξ, g)}, the long run values

of consumption, hours, inflation and taxes are independent of the random variable T . This property is

convenient; in this section we will construct numerical algorithms to approximate the solution of the

planner’s program, and the algorithms will be based on model simulations; long run history indepen-

dence relieves us from the task of finding terminal conditions separately, for each sample, based on the

realization of T .

11



Notice further that the derivations in Section 3.1 can be used to shed light on the properties of the

complete market allocation in the absence of the ZLB constraint. If we ignored the constraint (8), then

inflation would equal zero in every period. Moreover, from equation (15) (and replacing g with gt) it

follows easily that consumption is a function of the spending level in t solely. These properties are

standard and well known to the literature (see for example Lucas and Stockey (1983) and Marcet and

Scott (2009)). When markets are complete, the government does not have to use inflation to stabilize

public debt (as it does for example in the incomplete market models of SGU (2004), Lustig et al (2008)

and FMOS (2013)). Instead, it can exploit variations in bond prices to smooth tax distortions in the

short run, as in ABN. Since inflation bestows a welfare loss to society, using it to reduce the real payout

of debt is completely wasteful. Moreover, since period t spending levels are the only force behind short

run variations in the level of consumption (and hence also hours and taxes) the optimal allocation is

history independent.

History independence is, however, only a long run property in our model with the ZLB constraint.

In the short run, the presence of the constraint makes the history of shocks matter for the allocation;

this can be easily seen by noticing the presence of the lagged value of the multiplier λZLB,t−1 in the first

order conditions. This property differentiates our model from the existing literature on optimal debt

management under complete markets, and introduces an important element of complexity in the global

approximation of the equilibrium, as we will later argue.

In what follows, we assume that preferences are of the form:

(16) u(ct) + v(ht) =
c1−γct − 1

1− γc
− ψ h1+γht

1 + γh
,

where γc represents the relative risk aversion coefficient and γh is the inverse of the Frisch elasticity

of labor supply. In Section 3.2.1 we will consider the special case γc = 0 (quasi-linear preferences).

This case is convenient for two reasons: First, as we show below, the multiplier λZLB,t−1 is constant,

which greatly attenuates the influence of history dependence on the optimal allocation. Second, under

quasi-linear preferences, the model solution is tractable enough to allow for useful analytical insights on

optimal debt management. In Section 3.2.2, we study the (more plausible) case where γc > 0.

3.2.1 A special case: quasi-linear preferences

Under quasi-linear preferences (γc = 0) , the system of first order conditions becomes:

ξt = λf,t,(17)

vh(ht)ξt + ξt − λsξt
[
vhh(ht)ht +

(
1 + vh(ht)

1

wt

)
wt

]
+ λp

η

θ
ξt

(
1 + η

η
− wt

)
= 0,(18)

−θξt(πt − 1)− λZLB,t−1
ξt
π2
t

= 0,(19)
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and the slackness condition becomes

λZLB,t

(
ξt − βEt

ξt+1

πt+1

)
= 0.

Analytics The following Proposition explains the properties of inflation, hours and taxes in the model.

Proposition 2: Inflation, Hours and Taxes in Quasi-linear Utility Assume that preferences are

of the form (16) with γc = 0. Assume ξt = ξ for t = 1, 2, .., T and ξt = ξ for t ≥ T + 1.

i) The optimal path of inflation is given by:

(20) πt =


1 t = 0, 1 and t = T + 2, T + 3, ...

β
φξ+(1−φ)ξ

ξ
≡ π t = 2, 3, ..., T + 1

ii) Hours are constant over time so that ht = h. The optimal tax rate satisfies:

(21) τt =



ωλs (1− λsγh − η̃) t = 0, t ≥ T + 2

ωλs

(
1− λsγh − 1

1+η
η

+κπ2(π−1) [1 + λsκπ
2(π − 1)]

)
t = 1

ωλs

(
1− λsγh − 1

1+η
η

+κπ(π−1)2 [1 + λsκπ(π − 1)2]

)
t = 2, 3, ....T

ωλs

(
1− λsγh − 1

1+η
η
−κπ(π−1) [1− λsκπ(π − 1)]

)
t = T + 1

where ωλs ≡ 1
1−λs(1+γh)

and η̃ = η
1+η

. Moreover, κ = θ
ηh
.

Proof: Towards i): From equation (19), the optimal inflation satisfies −θ(πt−1)π2
t = λZLB,t−1. Inflation

differs from zero whenever the ZLB has binded in the previous period. Moreover, πt+1

(
xt, (ξ, g)

)
=

πt+1

(
xt, (ξ, g)

)
. If the economy has just escaped the LT, the inflation rate remains equal to the level it

would be if the economy remained in the trap for a one more period.

From the ZLB constraint we have:

βEt
ξt+1

ξt

1

πt+1

= 1,

for t = 1, 2, ...T . Since πt+1 is not random (conditional on date t information) we have

πt+1 = βEt
ξt+1

ξt
= β

φξ + (1− φ)ξ

ξ
,

for t = 1, 2, ...T . For t = 0 we have −θ(π1 − 1)π2
1 = λZLB,0 = 0 and therefore π1 = 1.

13



To show ii) first note that combining (17) and (18) together with λs = −η
θ
λp, we get that

(22) vh,t + 1− λs (vhh,tht + vh,t) + λp
1 + η

θ
= 0,

which gives ht = h. Moreover, noting that under preferences (16) we have vhh(ht)ht = γhvh(ht), it

follows that:

(23) τt(1− λs(1 + γh)) =

(
1− λsγh −

1

wt

)
+
λs
wt

(
1 + η

η
− wt

)
.

When inflation equals zero (and therefore
(

1+η
η
− wt

)
= 0), we have τt

ωλs
= (1− λsγh − η̃). For periods

t = 1, 2, ..T + 1 we can use the Phillips curve (3) and substitute the process of inflation, to complete the

derivation of (21). For the sake of brevity the algebra is relegated to the appendix.�

Several comments are in order: Notice first that under quasi-linear utility it suffices to pin down hours

inflation and taxes in order to compute the equilibrium. Since u(ct) = ct consumption levels have no

influence on the nominal interest rate and therefore the value of ct does not need to be considered when

finding the equilibrium in this model; ct is a residual that is set to satisfy the resource constraint.10

Second, notice that under preferences (16), the optimal tax rate would be constant if we assumed

perfect competition in the goods sector (i.e. η = −∞). Under perfect competition, the real wage

remains constant thereby implying that taxes are also constant.11 In contrast, under finite η taxes move

to compensate for the movements in wages, which may rise or fall depending on whether the government

raises inflation today, or plans to do so in the next period.

Solving the model with quasi-linear preferences Under γc = 0 inflation is the only policy margin

that can adjust to satisfy constraint (8). Since inflation is exogenously given and ucc,t = 0, the value

of λZLB,t is not at all important for the computation of the equilibrium in the model. From previous

derivations we have that λZLB,t−1 = −θπ2(π − 1) remains constant when the ZLB is binding. This is

an example where the dependence of the system of first order conditions on the term λZLB,t−1 does

not significantly impact the optimal allocation. Hours are constant over time as is the case in models

without the ZLB constraint and complete markets.

Though our previous derivations may have given to the reader the impression that this model admits

a closed form solution, in practice it does not. We still have to recover the value of λs that satisfies the

intertemporal budget constraint with equality. λs enters in a nonlinear fashion in the expressions we

derived previously. The model needs to be solved with numerical methods.

10Practically, the problem is not defined if we assume that θ → ∞, since in this case utility diverges to minus infinity.
Large values of θ could give us that ct < 0 for some t. Here, we have not imposed non-negativity constraints on
consumption; we verify that the value of θ we pick when we calibrate the model always gives us a consumption level
exceeding zero.

11See for example Scott (2008). Under complete markets, taxes are affected by the shocks when the value of the elasticity
of labor supply changes over the cycle. But under preferences (16) the elasticity is constant and so the planner commits
to a constant tax schedule. To see this, notice that because hours are constant and uc(ct) = 1, the labor-supply condition
is given by ψh

γh
= wt(1− τt). Under perfect competition, the real wage remains constant thereby implying that taxes are

also constant.
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To formally state the task, let us define by s, s, s and s the 4 values of the government surplus (st

for t = 0, 1 1 < t < T + 1 and t = T + 1 respectively) that derive from (21). We can show that

st ≡ τtwth = h

(
wt −

1 + η

η

)
+ h

1 + η

η

(
1− ψhγh η

1 + η

)
≡ h

(
wt −

1 + η

η

)
+ s.

In other words, the surplus in t is equal to the long run value s plus the term h

(
wt − 1+η

η

)
, which

measures the deviation of wages in t from their long run value 1+η
η

. Given λs we have

(24) st =



s(λs), t = 0, t ≥ T + 2

s ≡ s(λs) + θ
η
π2(π − 1)− (g − g), t = 1

s ≡ s(λs) + θ
η
π(π − 1)2 − (g − g), t = 2, 3, ....T

s ≡ s(λs)− θ
η
π(π − 1), t = T + 1

The following numerical procedure can be utilized to approximate the equilibrium in the model:

Algorithm 1

• Step 1 Guess a value for λs = λ0s. Solve equation (24) and formulate the expected present value

of the surplus in period 0 as follows:

S0 = (1− ω)
s

1− β
+ ω

[
s+ β

ξ

ξ

(
s+

βφ

1− βφ
s

)
+
β2(1− φ)

1− βφ

(
s+

β

1− β
s

)]
.

• Step 2 If |S0 −B−1| > ε (where ε is a pre-specified tolerance level) update the value λ0s and return

to Step 1. Iterate to convergence.

3.2.2 CRRA Preferences

In this section we show that assuming γc > 0 complicates considerably the task of finding equilibria

under complete markets. We demonstrate this property using a simple example that establishes that the

multiplier λZLB,t cannot be constant in equilibrium. With time varying multipliers, history dependence

exerts a more significant influence, and the model cannot be solved using standard numerical algorithms

of complete market models. We propose a numerical procedure based on the incomplete market model

algorithms of FMOS (2014, 2015).

To demonstrate the above analytically, we assume θ = ∞. In this case the government will never

want to use inflation when the ZLB constraint binds and therefore, policy adjustments are made solely

through taxes. To satisfy (8) the government will engineer a recession through a rise in the tax rate in
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periods where ξt = ξ and commit to a boom through a subsequent fall in the tax rate when the economy

escapes from the LT.

The system of first order conditions becomes:

uc,tξt − λf,t − ucc,tξt∆λZLB,t − λsξt (ucc,ts(t) + uc,tsc,t) + λsuc,0ξ0B̃−1It=0 = 0,(25)

vh,tξt + λf,t − λsuc,tξtsh,t = 0,(26)

where sc,t ≡ −vh,t
u2c,t
ucc,tht and sh,t =

vhh,t
uc,t

ht +
(

1 +
vh,t
uc,t

η
1+η

)
1+η
η
, and sw,t = ht.

Analytics The following proposition shows the properties of the tax schedule in the model

Proposition 3 Assume that γc > 0, B̃−1 = 0 and θ =∞. The optimal tax rate is given by:

(27)

τt =
1

1+η
η

(1− λs(1 + γh))

[(
1 + η

η
− 1

)
− (λsγh + 1)

1 + η

η
+
λsucc,tgt
uc,t

(
1 + η

η
− 1

)
+
ucc,t
uc,t

∆λZLB,t

]
.

Proof : See Appendix.12

Impossibility of having a constant λZLB,t under γc > 0. Since under the assumptions of Propo-

sition 3 it holds that τt = 1 − ψ(ct + gt)
γhct, equation (27), together with the ZLB constraint, define a

system of 2 equations in ct and λZLB,t. Let us assume that in equilibrium we have λZLB,t = λZLB < 0

for t = 1, 2, .., T (constant). From (27) it is obvious that the model can be resolved through finding 4

values for ct: c, c, c and c for t = 0, t = 1, T ≥ t > 1 and t = T + 1 respectively, independent of the

duration T . These values must be such that the ZLB is satisfied in t ≥ 1 and t ≤ T .

Let us conjecture that such a path is consistent with optimization. Then from (27) we have c < c.

Consumption is lower in period 1 than in t = 2, 3, ..., T because λZLB,0 = 0 by definition. The zero lower

bound constraint is satisfied with equality in t = 2, 3, ..., T if

β
u′(c)ξ(1− φ) + u′(c)ξφ

u′(c)ξ
= 1.

Moreover, in t = 1 we have

β
u′(c)ξ(1− φ) + u′(c)ξφ

u′(c)ξ
< β

u′(c)ξ(1− φ) + u′(c)ξφ

u′(c)ξ
= 1,

which contradicts that λZLB,1 < 0.

12Notice that the assumption B−1 = 0 made in Proposition 3 is simply for convenience. Assuming B−1 > 0 would
require to characterize a separate tax schedule for t = 0 following the argument of FMOS (2016). Since our focus is on
the properties of the optimal allocation when the ZLB binds (after period 0) we simplify the analysis assuming zero initial
debt.
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The above result shows that when solving the model with γc > 0 we need to confront the fact that

it is not possible to find solutions where the influence of the history is limited, so that the duration T

is irrelevant for the allocation (as in the previous model with quasi-linear utility).13 We next propose

a numerical procedure based on the Parameterized Expectations Algorithm of den Haan and Marcet

(1990) to solve the model taking into account explicitly that the profiles of the endogenous variables

vary with T .

Solving the model with CRRA preferences Algorithm 2

• Step 1. Guess an initial value for λs = λ0s.

• Step 2. Formulate an approximation of the conditional expectations Et

(
uc,t+1ξt+1

πt+1

)
≈ Φ(λZLB,t)

and Et (uc,t+1ξt+1πt+1 (πt+1 − 1)) ≈ Ψ(λZLB,t) for the periods that the economy is in the LT.14

Φ and Ψ are polynomials of the state variable λZLB,t when the ZLB binds.

• Step 3. Simulate a large number of samples for the preference and spending shocks under the

Markov process defined previously. As T varies across samples the realized values of the multipliers

and consumption should also vary. To obtain (ct, πt, λZLB,t)

– if the ZLB binds in t use uc,t = β
ξ
Φ(λZLB,t) for ct, (12) to get πt and (10) to get λZLB,t.

– in t = T + 1: Set λZLB,t = 0 and use (12) and (10) to obtain πt and ct.

– in t = 0 or t > T + 1 solve the static (history independent) problem setting λZLB,t = 0 and

πt = 1.

Use the simulation data to regress uc,t+1ξt+1

πt+1
and uc,t+1ξt+1πt+1 (πt+1 − 1) on the state variable λZLB,t

(on the level, square, cube and so on depending on the order of the approximation). Update the

coefficients of the polynomials Φ and Ψ and iterate to convergence.

• Step 4. Formulate the expected present discounted value of the government’s surplus S0. Update

the value of λ0s and iterate to convergence.

3.3 Summary

A key condition to solve dynamic models using the Bellman equation is that only past variables influence

the set of feasible current actions. This condition is obviously violated in all the models studied in this

13Since we assumed θ =∞, we may have given to the reader the impression that the above result is not general enough
to allow for positive inflation. It is; under a constant λZLB,t, inflation is also constant and the above contradiction still
applies.

14Notice that the state vector does not include the spending shocks, this property derives from the simple structure for
uncertainty we have assumed. In an alternative setup where shocks to spending are not perfectly correlated with shocks to
preferences, gt needs to be included in the list of state variables. It is straightforward to extend the algorithms proposed
to this case.
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paper; it is also violated in the complete markets optimal policy problem without the ZLB constraint.

In all of these cases the presence of future expected variables (in either (6) or (8)) implies that the whole

history of past shocks may matter for the allocation (see for example Marcet and Marimon (2009) and

the references therein).

In the standard model of complete markets (without the ZLB constraint) this problem is practically

not felt. The history of shocks turns out not to matter for the allocation and, in this case, one basically

needs to solve a sequence of ’static’ first order conditions to recover the endogenous variables. In contrast,

when markets are incomplete (for example AMSS, SGU, FMOS (2015, 2016) among many others), then

(6) is no longer sufficient for the equilibrium. Rather, the entire (infinite) sequence of intertemporal

budget constraints needs to be included in the program and the associated multipliers are not constant

through time.15 As is well known, the history of shocks then influences the optimal policies chosen by

the government.

The previous subsections draw this analogy for constraint (8). We have seen that under quasi-linear

preferences, λZLB,t is constant through time and the optimal policy program admits a simplistic solution

that can be summarized in a few values for taxes and st, independent of the duration of the shocks T .

Algorithm 1 is very similar to the numerical procedures used by FMOS (2014, 2015) to solve models

of optimal policy under complete markets, without the ZLB constraint. In contrast, in the case where

γc > 0, λZLB,t is not constant over time and as we have seen, the optimal allocation is no longer

independent of the realization of T . Algorithm 2 adds two further steps to the computation of the

equilibrium (to approximate the conditional expectation terms with the polynomials Φ and Ψ). It is

very similar to the numerical procedures used by FMOS (2014, 2015, 2016) to solve models of optimal

fiscal policy under incomplete financial markets.

Finally, a key finding that emerges from the analysis of this section is that the presence of the

future expected variables in equation (8) bestows an important influence of the history of shocks to

the allocation only when consumption enters significantly in the ZLB equation. In other words, the

presence of future inflation alone is not sufficient for the history of shocks to exert a significant effect.

This finding appears new to the literature.

4 Optimal Fiscal Policy and Debt Management

4.1 Some analytical results

In this section we describe our findings for optimal debt management. Before proceeding to the numerical

experiments we provide insights on the optimal debt management strategy, assuming that γc = 0 and

φ = 0. Though this parameterization of the model is far from the calibrated values we will later adopt,

it enables us to derive analytical expressions that show the forces that determine the optimal portfolios.

Recall also that when φ = 0 debt management only needs to be determined in period 0. Therefore, in

15For example, under incomplete markets and short term debt λs follows a risk adjusted random walk process in AMSS.
In models with long term debt this multiplier could display more complex dynamics depending on the characteristics of
long debt (see for example FMOS (2015, 2016)).
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this section we study the optimal policy at t = 0.

Under the assumptions employed here, we can easily show that π2 = π = β ξ
ξ
. Moreover, the long

bond prices in period 1 are given by: qN−11

(
x0, (ξ, g)

)
= βN−1

π
ξ
ξ

= βN−2, if the economy falls in the LT,

and qN−11

(
x0, (ξ, g)

)
= βN−1, if the preference shock does not occur in t = 1.

We can derive the present discounted value of the government’s surplus in each of the two possible

states in t = 1 as:

(28) S1

(
x0, x1

)
=


s

1−β x1 = (ξ, g)

s+ β ξ
ξ

(
s+ β

1−βs
)

x1 = (ξ, g)

From (14) the optimal portfolio is given by:

(29) b10 =
βN−2S1

(
x0, (ξ, g)

)
− βN−1S1

(
x0, (ξ, g)

)
βN−2(1− β)

and bN0 =
−S1

(
x0, (ξ, g)

)
+ S1

(
x0, (ξ, g)

)
βN−2(1− β)

,

showing that the signs of the bond positions (b10, b
N
0 ) hinge crucially on the relative magnitudes of

S1

(
x0, (ξ, g)

)
and S1

(
x0, (ξ, g)

)
. As can be easily seen from (29), whenever the present value of the

surplus increases during LT episodes, the government will issue long bonds and the standard results of

the debt management literature will apply in our model. However, the opposite holds if during LTs

fiscal revenues decrease and the intertemporal budget goes into deficit.

To gain insights on how S1 is impacted by the preference shock note that combining (24) and (28)

yields

(30) S1

(
x0, (ξ, g)

)
= s+ β

ξ

ξ

(
s

1− β

)
− (g − g).

Let us use (30) to study the following scenarios:

1. Assume that B−1 = 0 and g = g. It then holds that s = 0.16 (29) gives us b10 = bN0 = 0.

Why is it optimal to not issue any long or short debt at all? Suppose that the government had

chosen bN0 > 0 and b01 < 0. Since qN−11

(
x0, (ξ, g)

)
= βN−2 > qN−11 x

(
0, (ξ, g)

)
= βN−1, the real

payout of government debt in t = 1 would increase in state (ξ, g). Then the government would

have to commit to increase taxes (permanently) to finance the debt. The opposite holds bN0 < 0

and b10 > 0. Portfolios different from (0, 0) give rise to unnecessary fluctuations in the tax schedule.

2. Assume that B−1 = 0 and g > g. Assume further that the shock to spending is sufficiently small

16The present value of the surplus at date 0 is s+ β
[
ωS1

(
x0, (ξ, g)

)
+ (1− ω)S1

(
x0, (ξ, g)

)]
. It must be that s = 0 to

satisfy the intertemporal budget at date zero. The value of λs will be pinned down accordingly.
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so that s ≈ 0. (29) gives:17

(31) b10 ≈
β(g − g)

1− β
> 0 and bN0 ≈ −

(g − g)

βN−2(1− β)
< 0.

Therefore, the government optimally issues short term debt (financed through long term savings)

in period 0.

Since bond prices rise during LTs, taxes will be smoother if the value of debt depreciates when

the government’s budget goes into deficit. By holding long private bonds and issuing short term

debt, the government can benefit from the capital gain.

3. Finally, consider the case where B−1 > 0 and g = g. We now have s > 0 to finance the initial debt

level. Moreover, S1

(
x0, (ξ, g)

)
> S1

(
x0, (ξ, g)

)
. By (29), we obtain bN0 > 0.

When the initial debt level is positive, the government commits to a sequence of positive surpluses

in future periods to repay the debt. Since ξ
ξ
> 1, s+ β ξ

ξ

(
s

1−β

)
exceeds s

1−β and therefore, during

the LT, the present value of the future surpluses increases. Unless bN0 > 0 the government would

have to reduce taxes following the shock in preferences, and increase taxes if the shock does not

occur.

To summarize, the optimal portfolio is determined through the balance of the following forces. When

the preference shock hits, long bond prices increase. Governments that issue long-term debt in period 0

suffer a capital loss. Whether or not it is optimal to incur this loss depends on the behavior of the present

value of the surplus. When S1

(
x0, (ξ, g)

)
< S1

(
x0, (ξ, g)

)
(as in the case where spending increases and

B−1 = 0) the optimal debt management strategy is to hold long term savings. However, when debt is

positive there is a second force that makes issuing long debt optimal. Due to the ‘discounting impact’ of

the fall in interest rates, we may have S1

(
x0, (ξ, g)

)
> S1

(
x0, (ξ, g)

)
; to stabilize taxes the government

must issue long debt.

4.2 Calibration

In order to solve the model numerically we need to give values to the structural parameters. Each period

represents a quarter, and therefore we set β = 0.99. We set γh = 1 so that the Frisch elasticity of labor

supply is equal to 1, and choose ψ so that in the deterministic steady state, the household spends 20

percent of its unitary time endowment in market work. Notice that the value of ψ depends on the initial

debt level assumed. We will study cases where B−1 = 0 as in ABN, but also cases where the initial debt

is positive. In each case we adjust the value of ψ to hit the hours target. Finally, we treat γc = 1 as our

benchmark. In Section 5 we will experiment with higher values of the risk aversion coefficient.

To calibrate η and θ, we follow SGU (2004) and choose values of −6 and 17.5, respectively. In the

deterministic steady state, the level of public expenditure is set to 20% of output and therefore we have

17Given the previous derivations a shock in spending in period 1 will give us s > 0. From section 3.2.1 we know that
the equilibrium value λs will adjust to have S0 = B−1 = 0. The deficit during the liquidity needs to be compensated with
a (small) positive surplus in other periods.
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g = 0.04. In the numerical experiments we will consider values for g ∈ {1, 1.04, 1.08}g.18

To calibrate the preference shock process, we proceed as follows: First, we set, φ = 0.8. This gives

us an average duration of LT episodes equal to 5 quarters, well within the range of values considered

in the literature. Second, we normalize ξ = 1. Third, to calibrate ξ, we take the following steps: For

each version of the model that we solve, we compute the optimal allocation in an economy without

preference shocks. Denote the short bond price that derives from this (history independent) allocation

by qHI = β (1−φ)uLc +φuHc
uHc

where uLc (uHc ) denotes the marginal utility of consumption when spending is at

g (g). We then find the value of ξ such that q̃ ≡ β
(1−φ)uLc +φuHc ξ

ξuHc
= 1 + ε, where ε = 0.0011.19

Finally, we set ω = 0.5 in our benchmark calibration. In Section 6 we will show that our results are

robust to alternative calibrations for ω. Table 1 summarizes the parameter values discussed above.

4.3 Behavior of Endogenous Variables

Figure 1 traces the behavior of consumption, taxes, inflation and λZLB after the preference shock in

period 1. The top left panel plots consumption during the LT. The middle top panel plots consumption

in T + 1. The top right and bottom left panels plot taxes (during the LT and in T + 1) and the middle

bottom panel traces the behavior of inflation. Each graph shows simulations over 15 model periods.

Moreover, each plot shows three curves. The solid curve is the case where g = g, the dashed line,

g = 1.04g and the crossed line, g = 1.08g.

Notice that consumption levels, both during the LT episode but also in period T + 1, converge

(monotonically) to constant values. The planner decreases consumption below the steady state when

the shocks hit in t = 1 and commits to gradually increase consumption over time if the LT persists.20 The

ZLB constraint is satisfied along the optimal path because the planner also increases the consumption

level at the ’exit’ (period T + 1, middle panel). The responses are similar to the analogous objects in

EW (2003, 2006).

Turning to the top right and bottom left panels we see that the adjustment of consumption to the

shocks, is explained by the adjustment in taxes. During the LT, taxes increase initially and then drop

gradually as the episode persists. In the absence of any shocks to spending (solid line) taxes return to

their long run value after roughly 10 periods, whereas when spending levels rise during the LT, the tax

rates, following their initial rise, will drop below their long run levels. This model property is consistent

with equation (27). Finally, the optimal policy at the ’exit’, is to reduce the tax rate, and thus engineer

18To pick these values, we followed FMOS (2013) and SGU. In these papers, the log of government spending has first
order autocorrelation equal to 0.9 and the standard deviation of the shocks is 0.03. We assume that our spending process
derives from the same long run distribution, however, the serial correlation now is 0.8. The conditional standard deviation
is therefore 0.04. This gives the 1 and 2 standard deviations values above the mean close to 4 and 8 percent above g.

19To clarify the above, note that for different parameterizations of the spending process, we need to assume different
values for ξ to make the ZLB bind when γc > 0. Since spending shocks will lower bond prices, ξ needs to drop with the
difference g − g. Moreover, as we have seen, the value of the preference shock is irrelevant if the ZLB constraint does not

bind. This makes finding uLc and uHc sufficient to pin down q̃.

Clearly, under γc = 0 the short bond price is always β
(1−φ)+φξ

ξ and therefore, the parameterization of spending is

irrelevant for ξ. We find ξ = 0.9469 in this case. When γc = 1 we have ξ = 0.9430 (0.9391) when g = 1.04g (g = 1.08g).
20To construct Figure 1, we assumed that the initial debt level is equal to zero. The long run steady state of the model

(i.e., after uncertainty is removed) gives the same consumption level as in period 0.
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the consumption boom.

The middle-bottom panel shows the response of the (annualized) inflation rate in percentage points.

Notice that inflation displays very little volatility under the benchmark calibration of the model. This

property can be traced to the (high) value of θ we have assumed in the calibration. As is well known,

models of optimal policy that feature a Phillips curve consistent with the US macro data, require

large price adjustment costs and as a result, predict larger welfare losses from inflation than from tax

variability (see for example SGU and FMOS (2013)). This also holds in our context when γc > 0.21 Our

model predicts that in response to the binding ZLB constraint, most of the policy adjustment comes

from taxes and consumption, inflation exerts a relatively minor role. In Section 5 we will introduce

changes to the calibration of the model, to increase the importance of inflation.

Furthermore, notice that the bottom-middle graph shows that the response of inflation to the pref-

erence shock is strikingly similar between the version of the model without spending shocks and the

versions with positive spending shocks. Indeed, as we have seen, government spending shocks will not

result in changes in the level of inflation under complete markets. Inflation only responds to λZLB,t,

and the behavior of this variable is very similar across models (e.g. bottom right panel). As described

previously, we adjust the value ξ downwards when we introduce spending shocks to the model. In all

cases the ZLB constraint is ’just binding’, this explains the ’similarity’ in the values of λZLB,t across the

three model versions.

The findings of this section demonstrate the properties of key endogenous variables that will be

useful to understand the optimal debt management policy of the government. The qualitative features

of the responses of consumption, taxes and inflation to the preference and spending shocks we studied in

Figure 1, will be preserved in all the parameterizations of the model that we will subsequently assume.

4.4 Optimal Portfolios

We now show our main results for debt management. In Table 2, we consider the case of zero initial

debt. The table is divided in two panels. The top panel shows the key moments of debt management

under γc = 0, and the bottom panel under γc = 1. Moreover, each panel reports separately portfolios

when g = g, g = 1.04g and g = 1.08g. Columns 2-3 show the optimal mixture between short and long

bonds expressed as percentages of steady state GDP; Columns 4-5 show the price of long term debt

under xt+1 = (ξ, g) (Column 4) and xt+1 = (ξ, g) (Column 5). Finally, Columns 6-7 report the present

discounted value of the surplus.

Notice that in the case γc = 1, we report the above quantities over 4 different periods. At t = 0 we

report the optimal portfolio that is determined prior to the realization of the preference shock. We also

report the prices and the surpluses that will prevail in t = 1, depending on the state of the economy

in that period. The remaining rows report the portfolios in t = 1, 4, 9 and the prices and surpluses in

t = 2, 5, 10 respectively. Our goal is to identify changes in the optimal debt management policy during

LT episodes. Under γc = 0 the portfolios do not change after t = 1, since the bond prices and the

21Recall that when we assume quasi-linear preferences, the adjustment of inflation to the preference shocks is independent
of θ. In this case we obtain an inflation rate 10 times as high as under γc = 1.
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surpluses remain constant. Therefore, we only report model quantities at t = 0, 1.

Model without spending shocks. Consider first the case gt = g. The values of short and long bond

positions are close to zero. This holds for all periods reported, both under quasi-linear utility and in

the case where γc = 1.

These predictions are consistent with our previous theoretical findings. As reported in the last two

columns of the table, it holds that S
(
xt, (ξ, g)

)
≈ S

(
xt, (ξ, g)

)
≈ 0 in all periods. It is trivial to show

that the solution to (14) will give us long and short term debt close to zero.

A well known prediction of the debt management literature is that governments take positions in

the bond market that are several multiples of GDP. This is shown in several papers (e.g. ABN, FMS

(2010), Nosbusch (2008)) that study optimal portfolios assuming that government debt is initially zero.

The intuition is that government spending shocks change significantly the present value of the surplus,

however, they do not impart a large effect on bond prices. In the case of preference shocks, however,

the opposite holds. Bond prices show considerable variability; the intertemporal value of the surplus,

does not.

Model with spending shocks. We now turn to the case where g > g. Table 2 shows that (b1t , b
N
t )

equals (76.7%, -82.4%) in t = 0 when γc = 1 and spending increases by 4 percent during the LT. In

t = 1, 4, 9 we have (75.8%, -81.5%), (74.5%, -80.3%) and (74.0%, -79.8%) respectively. As explained

above, governments want to issue short term debt when corr(qN−1t+1 , St+1) < 0 (where corr denotes the

correlation coefficient). The numbers reported in Columns 4-7 show that this property holds in the

model when we introduce spending shocks. Bond prices increase in periods when xt = (ξ, g) (to roughly

0.956) and drop (to around 0.914) when the economy escapes from the LT. Due to the rise in public

spending the government runs a deficit during the LT.

Notice further that when we increase the variance of the spending shocks, we find even larger positions

of short debt and long savings. When g is 8% higher than in the steady state the optimal portfolios

are (153.4%, -164.8%), (151.6%, -163.0%), (149.2%, -160.5%) and (148.3%, -159.6%) for t = 0, 1, 4, 9

respectively. This may seem surprising if we expect that the larger variability of spending shocks, should

bring us closer to the ABN benchmark, where long debt is optimal. The reason this does not occur in

our simulations is that while preference shocks generate large swings in asset prices, spending shocks do

not.22 Instead, spending shocks impact considerably the intertemporal budget of the government, and

the larger they are the larger the deficit during the LT. Under zero initial debt, in the presence of both

preference and spending shocks, governments will always want to issue short debt.

Finally, the patterns we documented above are preserved in the quasi-linear utility case. In this case

we observe that the size of the positions that the government takes in the bond market is smaller than

under γc = 1 and across all specifications of positive spending shocks. As we will later demonstrate

quasi-linear preferences is indeed a ’special case’ in terms of the quantitative impact of the shocks;

assuming γc > 0 always gives us very similar results to the γc = 1 model. Recall that under quasi-linear

22This property would obtain even if we kept ξ constant across simulations. The property that preference shocks
generate large variability in interest rates is discussed (for example) in Ravenna and Seppälä (2006).
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preferences, taxes are not used to influence the behavior of consumption, and inflation is 10 times more

volatile than in the benchmark. These differences explain the findings documented in Table 2.

Portfolio rebalancing (under zero initial debt). A key property that emerges clearly from Table

2 is that the government does not change considerably its debt management strategy over time. This is

not surprising under quasi-linear utility where the value of the surplus and the bond prices are constant

after t = 1, but as the table shows, the property holds also when γc = 1. The results reported in Table 2

suggest that substantial revisions of the debt management strategy are not needed to deal with further

shocks during LTs when we assume B−1 = 0.

Recall that a well known prediction of macroeconomic models of debt management is that the

optimal portfolio is constant over time. This is the case in standard models in which allocations are

history independent. However, as we have seen, history independence does not hold under the ZLB,

this leads to considerable changes in consumption, and taxes over time under positive risk aversion. As

Table 2 shows, these changes do not impart a large effect on bond prices and on the present value of

the surplus. This property explains the limited portfolio rebalancing we find in this section.

5 Sensitivity and Extensions

5.1 Positive Government Debt

Our benchmark model (following most papers in the optimal debt management literature) assumed that

initial government debt is equal to zero.23 We now consider the more empirically plausible scenario of

positive government debt. In Table 3, we assume that B−1 is 60% of GDP at the annual horizon (240%

at the quarterly horizon).

Notice first that with positive initial government debt, the optimal debt management strategy changes

dramatically relative to previous findings. We now find that the government prefers to issue long-term

debt. For example, when γc = 1 and g = g, the optimal portfolio is (-29.3%, 304.6%) at t = 0. Moreover,

when g is 4% above the steady-state value, we have (b10, b
N
0 )=(46.4%, 223.5%).

Our previous remarks can explain the changes in the optimal debt management strategy. When initial

debt is positive, the government must commit to run positive surpluses on average in order to redeem

its initial liability. When the preference shock hits the economy in period 1, the value of S increases

when government spending does not rise considerably, due to the discounting effect of interest rates on

the future primary surpluses. As the table shows, in all cases we have St+1

(
xt, (ξ, g)

)
> St+1

(
xt, (ξ, g)

)
,

and hence corr(qt+1, St+1) > 0. As in ABN, the government prefers to ‘finance long’.

The relative positions of short and long bonds hinge on the magnitude of the spending shocks.

Larger shocks lead to a more balanced portfolio since they lower the impact of the preference shocks

on St+1

(
xt, (ξ, g)

)
and therefore the covariance of qt+1 and St+1. When spending shocks are 8 percent

above the steady state, for example, the optimal portfolio becomes (122.0%, 142.4%) in t = 0. The share

of short-term debt in the total market value of government debt is now nearly 50 percent.

23The positive debt case is analyzed in Nosbusch (2008). He finds that the optimal portfolio continues to feature only
long term debt.
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Notice that, hypothetically, we can obtain portfolios under positive initial debt, whereby the gov-

ernment holds long private bonds; however, this in practice requires to assume incredible increases in

government spending (so as to reverse the sign of corr(qt+1, St+1)) and as explained previously, assuming

an 8 percent increase in g, is already two standard deviations above the initial value. Moreover, were

we to increase spending by 10 or 12 percent above the steady state, we would continue to find that the

government optimally issues some long term debt. We thus conclude that reasonably calibrated values

of g and B−1 yield the prediction that issuing long term debt is optimal.

Portfolio rebalancing (under positive initial debt). Consider the evolution of the optimal

portfolios with t. As Columns 2 and 3 of the table show, the government revises the optimal debt

management strategy over time. For example, when γc = 1 and in the case of no spending shocks, the

portfolio changes from (-29.3%, 304.6%) in t = 0, to (-20.3%, 295.1%) in t = 1 and (-3.2%, 277.1%)

in t = 9. The government reduces its short term savings by roughly 26 percent of GDP within 10

quarters and also reduces its long term debt issuance by roughly 27 percent of GDP. These numbers are

considerable, however, the qualitative features of the optimal policy are stable. We do not (for example)

observe ’reversals’ in the portfolio, whereby the government initially issues only long bonds and after a

few periods issues mostly short term debt. The active management of the maturity structure during the

LT when B−1 > 0 can be explained from the behavior of consumption. As we have seen, consumption

in T +1 gradually increases during the LT, above the long run value. As a result, the present discounted

value St+1

(
xt, (ξ, g)

)
increases over time, since the government runs positive surpluses in the long run

to balance the budget. These changes explain the findings of this subsection. 24

5.2 Risk Aversion

How sensitive are the above findings to higher values of the risk aversion coefficient? We have seen

that moving from γc = 0 to γc = 1 changes quantitatively the impact of the shocks on the optimal

debt management strategy. However, quasi-linear preferences were used here mainly to derive analytical

results for the optimal portfolios, and therefore the quantitative impact of varying γc from 0 to 1 offers

little guidance to policy. A more instructive exercise is to vary the risk aversion coefficient between 1

and 5 (since this is widely viewed as a reasonable range for the parameter) in order to gauge the effect

that preferences exert on the optimal portfolio. We consider here the case where γc = 5.

The results are reported in Table 4. The top panel corresponds to zero initial debt and the bottom

panel to positive debt. For brevity, we only show the portfolios in the table. Notice when B−1 = 0, risk

aversion does not influence our results. We continue to obtain that short term debt is optimal and the

size of the bond positions are very similar to the case γc = 1. However, under the case of positive initial

debt, the optimal portfolio varies somewhat with the risk aversion coefficient; at higher values for γc we

observe that long term debt is lowered. For example, consider the case g = g. The value of long bonds

24Let uc denote the marginal utility in t > T + 2. We have ST+1

(
xT , (ξ, g)

)
= sT+1 + β uc

uc,T+1

s
1−β , which clearly rises

with the level of cT+1 when s > 0. From Table 3 we see that the changes in St+1

(
xt, (ξ, g)

)
are not large, yet the optimal

portfolio displays considerable sensitivity to the changes. This finding is similar to FMS (2010) who document that debt
management under complete markets features excess sensitivity to small changes in the underlying economic environment.
Here, the changes in the properties of consumption derive from the history dependence property of the optimal allocation.

25



equaled 304.6% in the γc = 1 economy, it now equals 261.8%. Long term debt is reduced by roughly 40

percentage points of GDP.

What explains this property? We find that the higher degree of risk aversion has almost no effect

on long bond prices. This in turn is explained by the fact that long term interest rates in the model

are approximately equal to the product of expected future short term rates. Again, since short rates

are expected to equal 0 for many periods, the value of the risk aversion coefficient does not exert an

important influence. Instead, the most noticeable impact of γc is on the term St+1

(
xt, (ξ, g)

)
. Since the

government must to commit to a positive surplus value in the long run, the optimal consumption level

at the ’exit’ exerts an influence on the present value S. When we increase risk aversion the government

commits to a smaller increase in cT+1 relative to the long run value and (we find that) uc,T+1 increases

by less than when γc = 1. The discounting impact on ST+1

(
xT , (ξ, g)

)
= sT+1 + β uc

uc,T+1

s
1−β is more

moderate.

5.3 Price Stickiness

We now show that our results are robust towards lowering the value of θ. To build intuition we first

provide an analytical result using the examples of Section 4.1.

Result 1: Assume γc = 0 and φ = 0, B−1 = 0 and g > g. i) For any θ > 0 the optimal portfolio

(b10, b
N
0 ) is given by (31). ii) Under θ = 0 the optimal portfolio is indeterminate and one of the solutions

is (31).

Proof. See appendix.25

The above result should not be surprising since from previous derivations we know that under γc = 0

inflation and the present value of the surplus, are independent of θ, when θ > 0. Under θ = 0 the

ZLB constraint does not ’really bind’ in the sense that the optimal allocation is not impacted by the

preference shocks and λZLB,t = 0. In this case the government can set inflation in t = 1 at an even

higher levels than β 1
ξ

and choose, for each level of inflation, the portfolio that is consistent with constant

taxes for all t. Since inflation is indeterminate, so is the optimal portfolio.

The above properties hold approximately in the case where γc > 0; To discern the impact of lower

price adjustments costs, we assume in Table 5, that θ = 5.8333. This value is chosen as follows: SGU

show that with θ = 17.5 the linearized version of equation (3) gives a new-Keynesian Phillips curve fits

the US macro data and is consistent with on average 3 quarters of sticky prices (i.e. when the price

adjustment friction is as in Calvo (1983)). When we divide θ by three, we target one quarter of price

stickiness, this number is consistent with recent micro studies on the frequency of price adjustments

(e.g. Bills and Klenow (2004)). Notice that the optimal portfolios in the zero initial debt case, shown

in Table 5 do not change considerably relative to the benchmark. Lowering price adjustment costs has

only minor effects on bond prices (since prices are pinned down by future rates, which are zero anyway)

and do not exert a significant influence on the values of S. As we saw previously, government spending

shocks and the initial debt level are the most important factors that influence S, the tax adjustments we

25As discussed above, when the planner sets same inflation rate so that the ZLB constraint is satisfied, for any θ > 0.
This makes bond prices not depend on the price adjustment costs. Moreover, when φ = 0 inflation costs cancel out in the
calculation of the surplus, and hence, the optimal portfolio is essentially independent of θ.
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documented in Figure 1 have only minor effects on the intertemporal surplus. This explains the findings

of this section.

In the online appendix we illustrate that these properties hold also for the positive debt case. We

conclude that θ is not a crucial parameter for our results.

5.4 Persistent LTs

In the baseline calibration of the model, we chose φ = 0.8 so that LT episodes last on average for 5

quarters. We now set φ = 0.9, targeting an average duration of 10 quarters. The results are shown in

Table 6. For brevity, we consider the case of zero initial government debt and report the values of the

portfolios in the table. The case of positive initial debt is shown in the online appendix.

The key property that emerges from the table is that when we increase φ, the government fans out

its positions to hedge against spending and preference shocks. For example, when g = 1.04g we find

that optimal short term debt in t = 0 increases by roughly 25 percentage points of GDP when γc = 1.

The rise is close to 50 percentage points when g = 1.08g. We obtain similar changes when we increase

the risk aversion coefficient (see the bottom panel in Table 6).

These findings can be explained as follows. First, long bond prices increase more following the

preference shock, owing to the fact that the persistence of the shock increases. Since the variability of

interest rates across states increases, this impact tends to reduce the size of the bond positions that

the government must take in the market to insure. Second, under positive spending shocks, the term

St+1

(
xt, (ξ, g)

)
during the LT episode becomes more negative, since in our parameterization, spending

shocks have the same persistence as preference shocks. This effect tends to increase the magnitude of

the difference between St+1

(
xt, (ξ, g)

)
and St+1

(
xt, (ξ, g)

)
and hence, increase the absolute values of

the positions. The numbers reported in Table 6 show that the second effect overpowers the first. As a

result, the optimal portfolio features a higher issuance of short-term debt and a more negative position

in the long bonds.

5.5 LTs as rare events

In the baseline calibration of the model, we had set ω = 0.5. Though we are not aware of any empirical

evidence that supports this choice, the value was chosen so that the exercise focuses on cases where the

LT episode is very likely. The reader is reminded that the debt management literature has assumed

ω = 0, and therefore completely abstracted from shocks to preferences as a source of variability in the

economy. At the opposite end, recent papers that study LTs assume ω = 1 (e.g. CER, EW (2006)) to

focus on the effect of the shocks to preferences.

We now show that the value of ω is not at all important for our results. We set ω = 0.005 so

that at the beginning of the planning horizon, the probability that the economy falls into a LT is

0.5% as opposed to 50%. Again, for the sake of brevity, we report results in Table 7 only for the case

B−1 = 0. Notice that the optimal portfolios are almost identical across the two calibrations of ω. For

example, consider the case γc = 1 in t = 0. We have (b1t , bN) = (79.8%,−85.8%) under ω = 0.5 and

(b1t , bN) = (79.9%,−87.5%) under ω = 0.005. In t = 9 we have (79.6%,−85.87%) and (79.7%,−87.3%)
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respectively. The findings are similar when γc = 0 or 5. The results for the positive initial debt case

were also found to be very similar. For the sake of brevity we leave them outside the tables.

5.6 Summary and Discussion

Our analysis has two important and related goals. First we ask whether the complete market approach

to debt management is suitable to offer offers a robust/useful benchmark to debt managers during LT

episodes. Second, we seek to assess whether the recent shortening of the maturity structure in the hands

of the private sector witnessed in developed countries, brings us closer to or takes us further from the

optimal strategy identified in the model.

We have shown that the optimal policy is robust across a number of different specifications of the

model. In particular, the degree of risk aversion, the degree of price stickiness, and the likelihood of

falling in a LT are of little relevance for the portfolios. The optimal portfolios are more sensitive to the

duration of LTs in absolute levels, but the qualitative features of the solution are preserved. The reader

should note that the above elements (perhaps with the exception of price stickiness) are also the ones that

are more difficult to be accurately pinned down from the data.26 LTs have been quite rare historically,

though many economists believe that they will be recurrent events in the future. Moreover, evidence

on the duration of the episodes is hard to come by. Finally, any value for the risk aversion coefficient

within the interval [1,5] is considered plausible in the literature. Had our results varied considerably

across these parameters, there would be little we could say about optimal debt management. A positive

note therefore is that our model’s predictions are robust across a number of parameters that are not

easy to measure.

In contrast, we found that government portfolios vary considerably with the initial debt level, and

the level of spending in the LT. These elements are determined as initial conditions and government

policies. Debt managers surely know the initial value of debt, and may have a good view of what

spending policies are likely to be pursued by the government at the ZLB.27

We emphasize that our goal here is not to find an exact value for the optimal portfolio and suggest it

to debt managers, or (even) come up with a formula that translates model numbers into portfolios.28 We

are obviously aware of the numerous simplifications our modelling approach brings to the very complex

interactions between monetary and fiscal policies and financial markets. The Ramsey outcome derives

from a frictionless market, where the costs of debt issuance and portfolio rebalancing are zero. Still, were

we to posit that these costs are positive, the complete market approach to debt management remains

an instructive tool. Consider the previous cases where the government issues only long term debt (e.g.,

when B−1 > 0). As in Lustig et al (2008), assume that to lend the short bond to the private sector is

very costly so that b1t ≥ 0 is a further constraint in the Ramsey program.29 Then, the optimal policy

26If price adjustment costs are a proxy for the government’s ability to generate positive inflation during the LT, it is
clear that also this parameter is debatable.

27Had we modelled ’optimal spending’ explicitly, we would obtain values of g very close to g (see for example Nakata
(2015)).

28In practice it even formula (14) maybe of limited use since the discounted value S is difficult to estimate. See the
considerable literature on the fiscal theory of the price level.

29This for example, can be the case if holding negative amounts of some maturity exposes the government to the risk
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will be to issue only long debt and set b1t = 0 for all t. In this case, markets are incomplete, and yet

taxes are much smoother than if b1t > 0. In other words, if in the frictionless market, it is optimal to

issue only long debt, it remains optimal when we account for financial frictions as previous papers, in

the macro debt management literature, have.

Whether these conclusions also generalize to the more recent literature on ’Quantitative Easing’

remains to be explored. As discussed in the ’Introduction’ this literature builds models with segmented

markets, in which groups of agents have preferences over different maturities. In these models govern-

ments may not want to issue only long or only short debt, however, if the ’tax smoothing’ objective of

debt management, studied here, is properly accounted for, then governments will face a tradeoff between

satisfying the demand for a particular maturity and using the maturity to smooth tax distortions over

time. We believe that this tradeoff is interesting and merits to be studied separately in future work.

6 Welfare Analysis

How large is the welfare gain from completing the market when the economy is in the LT? In this section

we compare welfare outcomes between our benchmark model and a model where the government has

to balance the budget in every period (autarky). A well known result from the previous literature, is

that the welfare gains from debt management are moderate, even when comparing with the autarky

outcome (see for example Nosbusch (2008)).30 We investigate whether this property also holds in our

model where debt is optimal during the LT.

As discussed previously, when governments can issue debt in different maturities, distortions are

smoothed over time. Moreover, during the LT tax adjustments accompany changes in inflation to

satisfy the ZLB constraint. The government increases taxes during the trap and lowers them when the

economy exits from the trap, to engineer a recession and an expected recovery that increases the real

interest rate. Under financial autarky such adjustments may not be feasible, and therefore a larger

burden may fall on inflation to satisfy the ZLB constraint in equilibrium.

Solving the model under financial autarky To solve the optimal allocation under financial autarky

we basically use the same program as previously. However, we now need to have the government balance

its budget and therefore, we replace the intertemporal constraint (6) with the following equation

gt = wtht

(
1 +

vh,t
uc,twt

)
,

of private sector default (See Lustig et al (2008) and FMOS (2015)).
30AMSS compare the welfare outcomes under complete and incomplete markets (when the government can issue short

debt). Nosbusch (2008) makes a comparison between the complete market and the financial autarky allocations. We
follow the latter paper for two reasons: First, to characterize the upper bound on welfare gains that the economy may
experience from debt issuance. Second, because recent research has shown that fiscal policy outcomes under incomplete
markets, hinge crucially on the types of short or long bonds that governments issue. Recall that under complete markets,
it is innocuous whether the government buys back its debt in every period and then reissues (as we have assumed). When
markets are incomplete this is not the case (see FMOS (2015)). We leave to future work the task of characterizing welfare
outcomes under incomplete markets.
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which needs to hold for every t. In the appendix we state the program formally. We show that the

first order conditions are the essentially the same as in equations (10) to (13), the only difference is

that now the multiplier λs is not constant over time. This property should follow immediately from

the previous discussion; through removing optimal debt management, we are in a world of incomplete

financial markets; it is no longer sufficient to maximize the household’s preferences subject to a single

implementability constraint (6), so that the excess burden of taxation, λs, is constant over time.31 A

numerical procedure similar to Algorithm 2 (Steps 2-3) can be used to solve the model under autarky

(see appendix).

Welfare criterion To compute the welfare effects we adopt the following criterion:

u(cA0 (1 + µ)) + v(hA0 ) +
∞∑
T=1

(1− φ)φT−1
[ T∑
j=1

(
βjξu(cAj (1 + µ)) + v(hAj )

)
+ βT+1

(
u(cAT+1(1 + µ)) + v(hAT+1)

)]
=

u(cR0 ) + v(hR0 ) +
∞∑
T=1

(1− φ)φT−1
[ T∑
j=1

(
βjξu(cRj ) + v(hRj )

)
+ βT+1

(
u(cRT+1) + v(hRT+1)

)]
,(32)

where A denotes the autarky allocation and R is the Ramsey outcome under complete markets.

Note that in (32) we compute the increment in consumption µ needed to make the agent as well off in

autarky as under the complete market, from period 0 to the random period T +1. Since our model does

not possess a full blown stochastic environment, we do not want to underestimate the welfare effects

from debt management by including periods in which there are no further shocks to the economy. In

these periods the structure of the financial market will not matter for allocations.32 This justifies using

(32) as an appropriate welfare criterion in our model.

Welfare comparisons The results from the welfare analysis are reported in Table 8. The second and

third columns in the table present the welfare levels under complete markets and autarky and Column

4 reports the value of µ. The second row shows the results under the assumption that g = g. Notice

that in this case, the welfare increment from completing the market is essentially equal to zero. This

prediction of the model should not be surprising. As we have seen, though the government uses taxes

to impact the interest rate, the deficit does not increase substantially during the LT. In Section 4.3 we

documented that as a result, the optimal portfolio features both long and short debt very close to zero.

The autarky outcome is very close to the complete market.

The third and fourth rows of the table document the consumption increments when we add shocks

to government spending. We now find that ’complete markets’ generates a consumption increment equal

to 0.1937% when g = 1.04g and 0.3966% when g = 1.08g. The first number is similar to the analogous

finding in Nosbusch (2008).

31This argument is explained in AMSS. What is different here (relative to AMSS) is that since the government does not
issue debt, the first order conditions from the planner’s program will not give us a risk adjusted random walk for λs,t.

32To see this assume that B−1 = 0; note that this is the only ’sensible’ case we can consider since under autarky debt
by definition equals zero. It is then easy to show that cAt = cRt , t = 0 and t > T + 1. These equalities carry over to the
remaining endogenous variables. If we extend the welfare calculation beyond the LT, the welfare increment will be lower
relative to a full blown model where LTs are recurrent events over the infinite horizon.
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In Figure 2 we show the behavior of consumption taxes and hours worked in 4 different versions of

the models. The solid (blue) line corresponds to the complete markets model and the dashed (green) line

to the autarky model when g = g. The crossed (red) line and the dashed-dotted (black) line correspond

to complete markets and autarky under g = 1.08g. The welfare effects documented in Table 8 can be

explained through using the behavior of the variables shown in Figure 2. Notice that without spending

shocks the response of the endogenous variables is indeed very similar between autarky and complete

markets. However, when spending levels increase during the LT, consumption drops considerably in

autarky, and continues to be below the steady state even when the economy escapes from the LT (e.g.

middle top panel). Taxes too display considerable variability. These differences explain the welfare

patterns discussed above.

7 Conclusion

A model of optimal government portfolios, under complete financial markets, and with shocks that can

drive the economy to a liquidity trap, was presented in this paper. The theoretical model predicts

that it is optimal to finance short when the initial debt level of the government is low. Under this

condition, government portfolios do not have to be rebalanced throughout the LT, and are not affected

by the specification of preferences or the degree of price stickiness in the economy. However, when initial

government debt is high, the optimal strategy is to issue long debt, the conclusion we reach is similar

to that of preexisting models of government debt management. On the methodological side this paper

discusses how to solve models of optimal portfolios with liquidity traps using a global approximation

method.

Our findings should be viewed as a useful benchmark for the optimal maturity structure of debt

during liquidity traps. Recent interventions by central banks in the bond market, have decreased the

amounts of long term government in the hands of the private sector when interest rates hit the zero lower

bound. This paper identifies the conditions under which such a policy is optimal in a frictionless financial

market and under the assumption that fiscal, monetary and debt management authorities coordinate in

the Ramsey policy. The main takeaways and insights from this paper, however, apply broadly to models

with frictions, including the recent literature on Quantitative Easing. Future research should embed

the ’fiscal hedging approach’ to debt management in models with segmented bond markets, transaction

costs, and separate monetary and fiscal policies.
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Contingent Debt”, Journal of Political Economy, 110, 1220–1254.

31



[3] Angeletos, G-M. (2002) “Fiscal Policy with Non-contingent Debt and Optimal Maturity Structure”,

Quarterly Journal of Economics, 27, 1105–1131.

[4] Baldwin, R. and Teulings, C. (2014) Secular Stagnation: Facts, Causes and Cures.

[5] Buera F. and Nicolini, J.P. (2006) “Optimal Maturity of Government Debt with Incomplete Mar-

kets”, Journal of Monetary Economics, 51, 531–554.

[6] Chen, H., Curdia, V. and Ferrero, A. (2012) “The Macroeconomic Effects of Large-scale Asset

Purchase Programmes”, Economic Journal, 122, 289-315.

[7] Christiano L., Eichenbaum M. and & S. Rebelo (2011) “When Is the Government Spending Mul-

tiplier Large?” Journal of Political Economy, 119, 78-121.

[8] Curdia, V. and Woodford, M. (2011) “The Central Bank Balance Sheet As An Instrument of

Monetary Policy”, Journal of Monetary Economics, 58, 54-79.

[9] Del Negro, M., Eggertsson, G., Ferrero, A. and Kiyotaki, M (2016) “The Great Escape? A Quan-

titative Evaluation of the Fed’s Liquidity Facilities”, American Economic Review, fortcoming

[10] den Haan, W., and Marcet, A (1990) “Solving the Stochastic Growth Model by Parameterizing

Expectations”, Journal of Business & Economic Statistics, 8, 31-34.

[11] Eggertsson G.B. and Woodford M. (2003) “The Zero Bound on Interest Rates and Optimal Mone-

tary Policy?”, Brookings Papers on Economic Activity, 119.

[12] Eggertsson G.B. and Woodford M. (2006) “”Optimal Monetary and Fiscal Policy in a Liquidity

Trap””, NBER Chapters, in: NBER International Seminar on Macroeconomics 2004, pages 75–144.

[13] Faraglia, E., Marcet, A., and Scott, A. (2010), ”In Search of a Theory of Debt Managament”,

Journal of Monetary Economics, 57, 821–836.

[14] Faraglia, E., Marcet, A., Oikonomou, R. and Scott, A. (2014) “Optimal Fiscal Policy Problems

Under Complete and Incomplete Markets: A Numerical Toolkit ”, London Business School mimeo.

[15] Faraglia, E., Marcet, A., Oikonomou, R. and Scott, A. (2015) “Government Debt Management:

The Long and Short of It ”, London Business School mimeo.

[16] Faraglia, E., Marcet, A., Oikonomou, R. and Scott, A. (2016) “Long Term Government Bonds ”,

London Business School mimeo.

[17] Gertler, M. and Karadi, P. (2011) “A Model of Unconventional Monetary Policy” Journal of Mon-

etary Economics, 58, 17-34.

[18] Guibaud, S., Nosbusch, Y. and Vayanos, D. (2013) ”Bond Market Clienteles, the Yield Curve and

the Optimal Maturity Structure of Government Debt,”Review of Financial Studies, 26, 1914–1961.

32



[19] Judd, K., Maliar, L. and Maliar, S. (2011) ”Numerically Stable and Accurate Stochastic Simulation

Approaches for Solving Dynamic Economic Models, ”Quantitative Economics, 2, 173-210.

[20] Jung, T., Teranishi, Y., and Watanabe, T., (2005), ”Optimal Monetary Policy Policy at the Zero-

interest-rate Bound”, Journal of Money, Credit and Banking, 37, 813–835.

[21] Lucas, R.J., and Stokey, N.L., (1983) “Optimal fiscal and monetary policy in an economy without

capital”, Journal of Monetary Economics 12, 55–93.

[22] Lustig, H., Sleet, C., and Yeltekin, S., (2009) “Fiscal Hedging with Nominal Assets”, Journal of

Monetary Economics 55, 710–727.

[23] Marcet, A. and Marimon, R. (2009) “Recursive Contracts ”, mimeo, IAE.

[24] Marcet, A. and Scott, A. (2009) “Debt and Deficit Fluctuations and the Structure of Bond Markets”,

Journal of Economic Theory 144 (2009) 473–501.

[25] Nakata, T. (2013). “Optimal fiscal and monetary policy with occasionally binding zero bound

constraints”, Finance and Economics Discussion Series 2013-40.

[26] Nosbusch, Y. (2008) “Interest Costs and the Optimal Maturity Structure of Government Debt”,

Economic Journal, 118, 477–498.
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Figure 1: Responses of endogenous variables to the preference shocks: various values of g.
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Notes: The figure shows the adjustment of consumption, taxes and inflation to the preference shock under the
ZLB constraint. The solid line corresponds to the case g = g, the dashed line to g = 1.04g and the crossed (red)
line to g = 1.08g. The top left panel shows the response of consumption during the LT episode. The middle
top, shows the response at the ’exit’ from the LT (period T + 1). The top right and bottom left show responses
of taxes (during and right after the LT respectively). The middle bottom panel shows inflation and the bottom
right traces the behavior of λZLB,t.
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Figure 2: Responses of endogenous variables to the preference shocks: complete markets
vs. autarky
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Notes: The figure shows the adjustment of consumption, taxes and hours to the preference and spending shocks
under complete markets and financial autarky. The solid (crossed) lines show the complete market allocation
without (with) spending shocks. The dashed (dashed-dotted) lines represent the autarky model without (with)
g shocks. The top left panel shows the response of consumption during the LT and the middle-top the response
at the ’exit’ (period T + 1). The top right (bottom left) panel shows taxes in the LT (’exit’) and finally, the
middle-bottom and bottom right panels show hours in the LT and in period T + 1 respectively.
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Table 1: Calibrated Parameters

Symbol Value Description

β 0.99 Discount factor

γc 1 Relative risk aversion
η

1+η
1.2 Gross value added markup

θ 17.5 Degree of price stickiness

γh 1 Inverse elasticity of labor supply

ω 0.5 Probability ξ1 = ξ

φ 0.8 Persistence of preference shock

ḡ 0.04 Steady state government spending

h̄ 0.2 Steady state hours worked

c̄ 0.16 Steady state consumption

Notes: The table reports parameter values under the benchmark calibration of the model. See text for further
details.

36



Table 2: Optimal portfolios for γc = 0 and γc = 1 when B̃−1 = 0

[γc = 0]

Period b1t bNt qN−1t+1

(
xt
(
ξ, g
))

qN−1t+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

g1 = g
0 0.000 0.000 0.953 0.914 -0.003 0.000
> 0 0.000 0.000 0.953 0.914 0.000 0.003

g1 = g × 1.04
0 0.176 -0.188 0.953 0.914 -0.005 0.004
> 0 0.176 -0.188 0.953 0.914 -0.006 0.007

g1 = g × 1.08
0 0.351 -0.377 0.953 0.914 -0.006 0.007
> 0 0.351 -0.377 0.953 0.914 -0.011 0.010

[γc = 1]

Period b1t bNt qN−1t+1

(
xt
(
ξ, g
))

qN−1t+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

g1 = g
0 0.000 0.000 0.956 0.914 0.000 0.000
1 -0.001 0.000 0.956 0.914 0.000 0.000
4 -0.003 0.000 0.957 0.913 -0.001 -0.001
9 -0.003 0.000 0.957 0.913 -0.001 -0.001

g1 = g × 1.04
0 0.767 -0.824 0.956 0.914 -0.004 0.003
1 0.758 -0.815 0.956 0.914 -0.004 0.003
4 0.745 -0.803 0.957 0.913 -0.005 0.002
9 0.740 -0.798 0.957 0.913 -0.005 0.002

g1 = g × 1.08
0 1.534 -1.648 0.956 0.914 -0.008 0.006
1 1.516 -1.630 0.956 0.914 -0.009 0.005
4 1.492 -1.605 0.957 0.913 -0.009 0.005
9 1.483 -1.596 0.957 0.913 -0.009 0.005

Notes: The top panel shows the optimal portfolios for γc = 0, whilst the bottom panel considers the
case of γc = 1. Columns 2-3 show the optimal mixture between short and long bonds; Columns 4-5 show
the price of long term debt under xt+1 =

(
ξ, g
)

(Column 4) and xt+1 =
(
ξ, g
)

(Column 5); Columns 6-7
report the present discounted value of the surplus. In the first set of rows of each panel uncertainty is
only driven by preference shocks, whilst in the remaining set of rows a spending shock is added which
drives g 4% higher than g (second set) and g 8% higher than g (third set). Initial debt is zero.
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Table 3: Optimal portfolios for γc = 0 and γc = 1 when B̃−1 = 60%

[γc = 0]

Period b1t bNt qN−1t+1

(
xt
(
ξ, g
))

qN−1t+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

g1 = g
0 -0.108 0.644 0.953 0.914 0.002 0.481
> 0 -0.108 0.644 0.953 0.914 0.506 0.484

g1 = g × 1.04
0 0.068 0.456 0.953 0.914 0.000 0.484
> 0 0.068 0.456 0.953 0.914 0.501 0.487

g1 = g × 1.08
0 0.244 0.267 0.953 0.914 -0.002 0.488
> 0 0.244 0.267 0.953 0.914 0.495 0.491

[γc = 1]

Period b1t bNt qN−1t+1

(
xt
(
ξ, g
))

qN−1t+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

St+1

(
xt
(
ξ, g
))

g1 = g
0 -0.293 3.046 0.956 0.914 0.524 0.498
1 -0.203 2.951 0.956 0.914 0.524 0.499
4 -0.078 2.819 0.957 0.913 0.524 0.499
9 -0.032 2.771 0.957 0.913 0.524 0.500

g1 = g × 1.04
0 0.464 2.235 0.956 0.914 0.520 0.501
1 0.544 2.150 0.956 0.914 0.520 0.502
4 0.656 2.032 0.957 0.913 0.520 0.502
9 0.697 1.989 0.957 0.913 0.520 0.503

g1 = g × 1.08
0 1.220 1.424 0.956 0.914 0.516 0.504
1 1.294 1.347 0.956 0.914 0.516 0.505
4 1.396 1.240 0.957 0.913 0.516 0.506
9 1.434 1.200 0.957 0.913 0.517 0.506

Notes: The top panel shows the optimal portfolios for γc = 0, whilst the bottom panel considers the
case of γc = 1. Columns 2-3 show the optimal mixture between short and long bonds; Columns 4-5 show
the price of long term debt under xt+1 =

(
ξ, g
)

(Column 4) and xt+1 =
(
ξ, g
)

(Column 5); Columns 6-7
report the present discounted value of the surplus. In the first set of rows of each panel uncertainty is
only driven by preference shocks, whilst in the remaining set of rows a spending shock is added which
drives g 4% higher than g (second set) and g 8% higher than g (third set). Initial debt is 60% at annual
horizon.s
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Table 4: Optimal portfolios for γc = 5

[B̃−1 = 0]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.001 0.742 -0.798 1.484 -1.596
1 -0.001 0.001 0.733 -0.789 1.468 -1.579
4 -0.003 0.001 0.720 -0.777 1.444 -1.555
9 -0.003 0.001 0.715 -0.772 1.435 -1.545

[B̃−1 = 60%]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -0.234 2.618 0.496 1.839 1.225 1.059
1 -0.154 2.533 0.568 1.762 1.291 0.990
4 -0.038 2.411 0.673 1.652 1.385 0.892
9 0.007 2.362 0.714 1.608 1.422 0.853

Notes: The table reports optimal portfolios for the case of γc = 5. The top panel shows the optimal
portfolios for B̃−1 = 0, whilst the bottom panel considers the case of B̃−1 = 60% of GDP at annual
horizon. Columns 2-3 show the optimal mixture between short and long bonds under preference shocks.
In Columns 4-5 a spending shock is added which drives g 4% higher than g, whilst in Columns 6-7 a
spending shock is added which brings g 8% higher than g.
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Table 5: Optimal portfolios for θ = 5.833 when B̃−1 = 0

[γc = 0]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.000 0.176 -0.188 0.351 -0.377
> 0 0.000 0.000 0.176 -0.188 0.351 -0.377

[γc = 1]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.000 0.776 -0.835 1.552 -1.668
1 -0.001 0.000 0.766 -0.825 1.533 -1.649
4 -0.002 0.000 0.753 -0.812 1.509 -1.623
9 -0.003 0.000 0.749 -0.807 1.501 -1.615

[γc = 5]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.001 0.743 -0.799 1.487 -1.599
1 -0.001 0.001 0.734 -0.790 1.470 -1.582
4 -0.003 0.001 0.721 -0.778 1.446 -1.557
9 -0.003 0.001 0.717 -0.774 1.437 -1.548

Notes: The top panel shows the optimal portfolios for γc = 0, the middle for γc = 1 and the bottom
panel considers the case of γc = 5. Columns 2-3 show the optimal mixture between short and long bonds
under preference shocks. In Columns 4-5 a spending shock is added which drives g 4% higher than g,
whilst in Columns 6-7 a spending shock is added which brings g 8% higher than g. Price stickiness is
lower (θ = 5.833). Initial debt is zero.
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Table 6: Optimal portfolios for ϕ = 0.9 when B̃−1 = 0

[γc = 0]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.000 0.234 -0.249 0.468 -0.498
> 0 0.000 0.000 0.234 -0.249 0.468 -0.498

[γc = 1]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.001 1.031 -1.097 2.060 -2.193
1 -0.001 0.001 1.021 -1.089 2.042 -2.176
4 -0.004 0.001 1.005 -1.074 2.014 -2.147
9 -0.006 0.001 0.997 -1.066 1.999 -2.132

[γc = 5]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.001 0.993 -1.057 1.987 -2.117
1 -0.002 0.001 0.983 -1.049 1.970 -2.099
4 -0.005 0.001 0.967 -1.034 1.940 -2.070
9 -0.006 0.001 0.959 -1.026 1.924 -2.054

Notes: The top panel shows the optimal portfolios for γc = 0, the middle for γc = 1 and the bottom
panel considers the case of γc = 5. Columns 2-3 show the optimal mixture between short and long bonds
under preference shocks. In Columns 4-5 a spending shock is added which drives g 4% higher than g,
whilst in Columns 6-7 a spending shock is added which brings g 8% higher than g. The persistence of
preference shocks is higher (ϕ = 0.9). Initial debt is zero.
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Table 7: Optimal portfolios for ω = 0.005 when B̃−1 = 0

[γc = 0]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.000 0.176 -0.193 0.353 -0.386
> 0 0.000 0.000 0.176 -0.193 0.353 -0.386

[γc = 1]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.000 0.769 -0.841 1.537 -1.683
1 -0.001 0.000 0.759 -0.832 1.519 -1.664
4 -0.003 0.000 0.745 -0.818 1.493 -1.637
9 -0.003 0.000 0.740 -0.813 1.483 -1.627

[γc = 5]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 0.000 0.000 0.743 -0.814 1.487 -1.628
1 -0.001 0.000 0.734 -0.805 1.470 -1.610
4 -0.003 0.000 0.721 -0.792 1.445 -1.584
9 -0.003 0.000 0.715 -0.787 1.435 -1.574

Notes: The top panel shows the optimal portfolios for γc = 0, the middle for γc = 1 and the bottom
panel considers the case of γc = 5. Columns 2-3 show the optimal mixture between short and long bonds
under preference shocks. In Columns 4-5 a spending shock is added which drives g 4% higher than g,
whilst in Columns 6-7 a spending shock is added which brings g 8% higher than g. The probability of
the economy falling into the LT is lower (ω = 0.005). Initial debt is zero.

Table 8: Welfare. Zero initial debt

Complete Autarky µ
g = g -14.9350 -14.9350 0.00%

g = 1.04g -14.9728 -14.9857 0.1937%
g = 1.08g -15.0107 -15.0372 0.3966%

Notes: The table reports welfare outcomes, measured as the increment in consumption µ which is needed to
make the agent as well off in autarky as under the complete market. Initial debt is zero.
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A Appendix

A.1 Derivations

Proposition 2 The optimal tax schedule can be derived as follows: From (17) and (18) we have

vh,t + 1− λs
[
γhvh,t +

(
1 +

vh,t
wt

)
wt

]
− λs

(
1 + η

η
− wt

)
= 0.

Dividing by wt and rearranging, we obtain

vh,t(ht)

wt
+ 1 +

1

wt
− 1− λsγ

[
h

(
vh,t(ht)

wt
+ 1

)
− γh +

(
1 +

vh,t
wt

)]
− λs
wt

(
1 + η

η
− wt

)
= 0,

or

τt(1− λs(γh + 1)) = 1− 1

wt
− λsγh +

λs
wt

(
1 + η

η
− wt

)
.

From (3) and making use of the fact that ht = h we have

(33) 0 =
η

θ

(
1 + η

η
− wt

)
h+ β(π − 1)π2,

at t = 1,

(34) (π − 1)π =
η

θ

(
1 + η

η
− wt

)
h+ β(π − 1)π2,

for 1 < t ≤ T and

(35) (π − 1)π =
η

θ

(
1 + η

η
− wt

)
h,

for t = T + 1. Using the above expressions we can get (21). �

Proof of Proposition 3 Combining (25) and (26) and assuming B−1 = 0 we get

uc,t + vh,t − λsuc,tsh,t − ucc,t∆λZLB,t − λs (ucc,ts(t) + uc,tsc,t) = 0

where sc,t ≡ −vh,t
u2c,t
ucc,tht and sh,t =

vhh,t
uc,t

ht +
(

1 +
vh,tη

uc,t(1+η)

)
1+η
η

. (25) can be written as:

1+
vh,t
uc,t
−λs

(
γh
vh,t
uc,t

+
1 + η

η
+
vh,t
uc,t

)
−λs

[
ucc,t
uc,t

(
−gt +

1 + η

η
ht +

vh,t
uc,t

ht

)
− vh,t
uc,t

ucc,t
uc,t

ht

]
=
ucc,t
uc,t

∆λZLB,t.

Rearraging and dropping the terms that cancel out, we get:

vh,t
uc,t

[1− λs(1 + γh)] + 1− λs
1 + η

η
− λs

ucc,t
uc,t

(
−gt +

1 + η

η
ht

)
=
ucc,t
uc,t

∆λZLB,t.
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Using ct + gt = ht and ucc,t
uc,t

ct = −1 we get

[
1 +

vh,tη

uc,t(1 + η)

]
[1− λs(1 + γh)]

1 + η

η
=

[1− λs(1 + γh)]
1 + η

η
− 1 + λs

1 + η

η
+ λs

ucc,t
uc,t

gt

(
1 + η

η
− 1

)
− λs

1 + η

η
+
ucc,t
uc,t

∆λZLB,t,

or

τt [1− λs(1 + γh)]
1 + η

η
=(

1 + η

η
− 1

)(
1 + λs

ucc,t
uc,t

gt

)
− λs(1 + γh)

1 + η

η
+
ucc,t
uc,t

∆λZLB,t,

which is equation (27) in Proposition 3. �

Proof of Result 1. To prove i) holds, first note that with θ > 0 the planner will set the inflation rate

π = β ξ
ξ
. If π1 > π then (19) does not hold and welfare decreases due to ’wasteful’ inflation. Then from

(30) S1

(
x0, (ξ, g)

)
is independent of θ since s does not depend on θ. Moreover, q1

(
(ξ, g)

)
= βN−2 also

does not depend on θ. Under s ≈ 0 (31) continues to hold.

ii) When θ = 0 (19) does not constrain π1 to equal β ξ
ξ
. Therefore, we may have π1 > π in which case

we will get λZLB,1 = 0. The bond price is given by q1
(
(ξ, g)

)
= βN−1 ξ

ξπ1
≤ βN−2. The optimal long and

short positions are given by

(36) b10 ≈
(g − g)

( ξ
ξπ1
− 1)

> 0 and bN0 ≈ −
(g − g)

βN−1( ξ
ξπ1
− 1)

< 0,

and they vary as π1 varies. �

The General Case of Quasi-linear Utility. We derive the present value of the government’s surplus

under quasi-linear preferences. Recall that we have 4 distinct values for st: s, s, s and s. Suppose first

that we are in period t > T +1. Then, trivially, the present value of the surplus is s
1−β ; from Proposition

1, the government sets the tax rate to a constant each period and spending equals g. Moreover, suppose

the economy has just escaped the LT (hence we are in period T + 1. Then the present value of the

surplus is s+ β s
1−β . The government sets s for one period and thereafter it commits to a surplus equal

to s.

Consider now period t = 2, 3, ... Recall that T is not known ex ante. The value of the surplus of the

government is given by the following recursive form:

ξS = ξs+ βφξS + β(1− φ)ξ

(
s+

β

1− β
s

)
,

or

S =
1

1− βφ

[
s+ β(1− φ)

ξ

ξ

(
s+

β

1− β
s

)]
.
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For period 1 if ξ1 = ξ, we get:

ξS1 = ξs+ βφξS + β(1− φ)ξ

(
s+

β

1− β
s

)
,

so that:

S1 = s+
βφ

1− βφ
s+

β(1− φ)

1− βφ
ξ

ξ

(
s+

β

1− β
s

)
.

Finally, in period zero we have:

S0 = (1− ω)
s

1− β
+ ω

[
s+ β

ξ

ξ

(
s+

βφ

1− βφ
s

)
+
β2(1− φ)

1− βφ

(
s+

β

1− β
s

)]
.

To derive the bond prices consider first period 0. If the LT shock does not occur we have that

qN−1
(
x0(ξ, g)

)
= βN−1. However, if the preference shock occurs we need to determine the price

qN−1
(
x0(ξ, g)

)
as the weighted sum of all future possible realizations of the quantity βN−1 ξN

ξ1

P1

PN
. We

therefore have: With probability 1 − φ the shock lasts for one period and we have: βN−1 ξ
ξ
1
π
. With

probability (1 − φ)φ the shock ends in period 3 and therefore βN−1 ξ
ξ

1
π2 . With probability (1 − φ)φN−2

we have βN−1 ξ
ξ

1
πN−1 and finally with probability φN−1 the shock does not end before period t + N and

therefore we have βN−1 1
πN−1 .

Put together the price equals

qN−1
(
x0, (ξ, g)

)
= βN−1

[
ξ

ξ

N−1∑
j=1

(1− φ)φj−1
1

πj
+

1

πN−1

]
,

which is the formula in text. We also have that qN−1
(
xt, (ξ, g)

)
= qN−1

(
x0, (ξ, g)

)
in every period t+ 1

that the LT shock persists.

We now determine the price qN−1
(
xt, (ξ, g)

)
when xt = (ξ, g) (when the economy is in the LT is t

but the in t+ 1 the LT ends. Since inflation is positive in t+ 1 but this does not impact the price qN−1t+1

we have that qN−1
(
xt, (ξ, g)

)
= βN−1.

Consider now system (14). In the case of quasi-linear preferences we can derive the optimal portfolios

as follows:[
1 βN−1

1 βN−1
(
ξ
ξ

∑N−1
j=1 (1− φ)φj−1 1

πj
+ 1

πN−1

)] · [ b10
bN0

]
=

[
1

1−βs

s+ β(1−φ)
1−βφ

ξ
ξ

(
s+ β

1−βs
)

+ βφ
1−βφs

]
,

for the ex ante portfolio in t = 0 and1 βN−1

π

1 βN−1

π

(
ξ
ξ

∑N−1
j=1 (1− φ)φj−1 1

πj
+ 1

πN−1

) · [ b1t
bNt

]
=

[
s+ β

1−βs
β(1−φ)
1−βφ

ξ
ξ
(s+ β

1−βs) + s
1−βφ

]
,

for t > 0 and when ξt = ξ so that the economy remains in the liquidity trap.
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A.2 Autarky Allocation

To solve the model under autarky we formulate the Lagrangian as:

L = E0

∑
t

βt
{
u(ct)ξt + v(ht)ξt + λf,t

(
ht − ct − gt −

θ

2
(πt − 1)2

)
− λZLB,t

(
uc,tξt − βEt

uc,t+1ξt+1

πt+1

)
−λp,t

(
uc,tξtπt(πt − 1)− η

θ
htuc,tξt(

1 + η

η
− wt)− βEtuc,t+1ξt+1πt+1(πt+1 − 1)

)
−λs,tuc,tξt (st − 0)

}
.(37)

As discussed in text, in the Lagrangian (37) we have replaced the intertemporal constraint of the

government, with the sequence of constraints st = 0 (budget balance). The multiplier λs,t is now time

varying as in the incomplete market models of AMSS and FMOS (2013, 2015). The first-order conditions

for the optimum can be written as

uc,tξt − λf,t + λp,t
η

θ
htucc,tξt

(
1 + η

η
− wt

)
− ucc,tξt

(
λZLB,t − λZLB,t−1

1

πt

)
− λs,tξt (ucc,tst + uc,tsc,t)

−ucc,tξtπt(πt − 1)(λp,t − λp,t−1) = 0(38)

vh,tξt + λf,t − λs,tuc,tξtsh,t + λp,t
η

θ
uc,tξt

(
1 + η

η
− wt

)
= 0,(39)

−θλf,t(πt − 1)− λZLB,t−1
uc,tξt
π2
t

= 0,(40)

−λs,tsw,t − λp,t
η

θ
ht = 0.(41)

Notice that these equations show that the optimal allocation depends on the value of λZLB,t−1

but also on the value of λp,t−1 (equivalently on λs,t−1). Therefore, in theory, to solve the mod-

el under γc > 0 we need to formulate the approximating polynomials for the terms Et
ξt+1uc,t+1

πt+1
and

Etξt+1uc,t+1 (πt+1 − 1) πt+1 as Φ (λZLB,t, λs,t) and Ψ (λZLB,t, λs,t). However, given our assumptions over

how uncertainty enters in the model, λs,t will not exert any influence on the allocation in t+ 1 beyond

what is summarized by λZLB,t. The reader can be sure of this by noting first that in models under

autarky and without the Phillips curve, λp,t−1 (and hence λs,t−1) will not appear in the FOCs. Second,

we know that in models without the ZLB, inflation does not respond to government and preference

spending shocks. This continues to hold in the autarky allocation, because debt is zero and the govern-

ment cannot use inflation to reduce the real payout of debt (as for example in SGU and FMOS (2013)).

For these reasons λZLB,t is the only Lagrange multiplier that needs to be stored in the state vector under

autarky. Steps 2 and 3 of Algorithm 2 can be applied to solve the model.
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B Online Appendix- Additional Tables

Table 9: Optimal portfolios for ϕ = 0.9 when B̃−1 = 60%

[γc = 0]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -0.277 0.831 -0.043 0.583 0.191 0.334
> 0 -0.277 0.831 -0.043 0.583 0.191 0.334

[γc = 1]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -1.325 4.186 -0.312 3.111 0.703 2.035
1 -1.225 4.081 -0.219 3.014 0.787 1.947
4 -1.064 3.913 -0.070 2.859 0.924 1.806
9 -0.985 3.830 0.004 2.783 0.991 1.736

[γc = 5]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -1.109 3.587 -0.137 2.562 0.836 1.537
1 -1.016 3.489 -0.051 2.471 0.914 1.455
4 -0.857 3.323 0.095 2.319 1.048 1.316
9 -0.771 3.232 0.175 2.236 1.121 1.240

Notes: The top panel shows the optimal portfolios for γc = 0, the middle for γc = 1 and the bottom
panel considers the case of γc = 5. Columns 2-3 show the optimal mixture between short and long bonds
under preference shocks. In Columns 4-5 a spending shock is added which drives g 4% higher than g,
whilst in Columns 6-7 a spending shock is added which brings g 8% higher than g. The persistence of
preference shocks is higher (ϕ = 0.9). Initial debt is 60% og GDP at annual horizon.
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Table 10: Optimal portfolios for θ = 5.833 when B̃−1 = 60%

[γc = 0]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -0.108 0.644 0.068 0.456 0.244 0.267
> 0 -0.108 0.644 0.068 0.456 0.244 0.267

[γc = 1]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -0.336 3.093 0.430 2.271 1.196 1.451
1 -0.249 3.002 0.507 2.191 1.264 1.379
4 -0.139 2.885 0.605 2.088 1.353 1.287
9 -0.104 2.848 0.635 2.056 1.380 1.258

[γc = 5]

Period
g1 = g g1 = g × 1.04 g1 = g × 1.08

b1t bNt b1t bNt b1t bNt
0 -0.239 2.623 0.492 1.843 1.223 1.062
1 -0.159 2.539 0.564 1.767 1.287 0.994
4 -0.045 2.418 0.667 1.658 1.380 0.897
9 -0.001 2.372 0.707 1.616 1.415 0.860

Notes: The top panel shows the optimal portfolios for γc = 0, the middle for γc = 1 and the bottom
panel considers the case of γc = 5. Columns 2-3 show the optimal mixture between short and long bonds
under preference shocks. In Columns 4-5 a spending shock is added which drives g 4% higher than g,
whilst in Columns 6-7 a spending shock is added which brings g 8% higher than g. Price stickiness is
lower (θ = 5.833). Initial debt is 60% og GDP at annual horizon.
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