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Abstract

Starting from the dynamic factor model for non-stationary data we derive the

factor-augmented error correction model (FECM) and, by generalizing the Granger

representation theorem, its moving-average representation. The latter is used for the

identification of structural shocks and their propagation mechanisms. We show how to

implement classical identification schemes based on long-run restrictions in the case of

large panels. The importance of the error-correction mechanism for impulse response

analysis is analysed by means of both empirical examples and simulation experiments.

Our results show that the bias in estimated impulse responses in a FAVAR model

is positively related to the strength of the error-correction mechanism and the cross-

section dimension of the panel. We observe empirically in a large panel of US and

Euro area data that these features have a substantial effect on the responses of several

variables to the identified real shock.
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1 Introduction

Large dimensional factor models have received considerable attention in the recent econo-

metric literature, starting with the seminal papers by Forni, Hallin, Lippi and Reichlin

(2000) and Stock and Watson (2002a, 2002b). While the early applications were mostly re-

duced form analyses, following the publication of Bernanke, Boivin and Eliasz (2005) more

and more attention has been devoted to structural analyses based on Factor Augmented

VARs (FAVARs) - see also Stock and Watson (2005).

With few notable exceptions, such as Bai (2004), Bai and Ng (2004) and Barigozzi,

Lippi and Luciani (2014) 1, this entire literature does not take account of the possibility of

cointegration among the variables under study. Banerjee and Marcellino (2009) suggested

including factors extracted from large non-stationary panels in small scale error correction

models (ECMs) to proxy for the missing cointegration relations. They labelled the re-

sulting model as the Factor Augmented ECM (FECM). Banerjee, Marcellino and Masten

(2014a) showed that FECMs often outperform both FAVARs and standard small scale

ECMs in terms of forecasting macroeconomic variables, given the property that FECMs

nest both FAVARs and ECMs.

In this paper we focus on the use of FECMs for structural analysis. We start from

a dynamic factor model for nonstationary data as in Bai (2004), and show it can be

reparameterized to yield a FECM. Bai’s asymptotic results can also be applied in our

context, when a mixture of I(1) and I(0) factors is allowed, for both the identification of

the factor spaces and the estimation of the factors.

We then extend the Granger representation theorem (see, e.g., Johansen,1995) to derive

the moving-average representation of the FECM. The latter can be used to identify struc-

tural shocks and their propagation mechanism, using similar techniques as those adopted

in the structural VAR literature. In particular, our paper provides the first analysis of the

long-run scheme for identification of structural shocks in nonstationary panels.2

When assessing the properties of the FECM with respect to the FAVAR, we focus

on the effects that including the error-correction terms have on the impulse response

functions. Using simulation experiments with a design similar to the estimated model in

the empirical applications, we consider which features increase the bias in the impulse

responses of the FAVAR with respect to those from the FECM. Not surprisingly, the

strength of the error-correction mechanism matters. Moreover, as we show in the paper,

since the FECM can be approximated to some extent by the FAVAR with a large lag

order, over-parameterization and the associated estimation uncertainty also play a role.

1In the concluding paragraph of Section 2 of our paper we provide a brief comparison of our work with
the results contained in Barigozzi et al. (2014).

2Forni et al. (2009) provide an empirical illustration of the stochastic trends analysis of King et al.
(1991) in the context of large stationary panels. Eickmeier (2009) works with a nonstationary panel and
identification of structural shocks with sign restrictions. The FECM model is also related to the framework
used recently to formulate testing for cointegration in panels (see for example Bai, Kao and Ng (2009) and
Gengenbach, Urbain and Westerlund (2008).
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Finally, we develop two empirical applications where we use our proposed long-run

restrictions to identify structural stochastic trends and the effects of their associated shocks

on a large set of US and euro area economic variables. Results indicate important effects of

omitting the error-correction terms in the FAVAR. Moreover, the FECM impulse responses

are broadly in line with economic theory and comparable to the responses to permanent

productivity shocks obtained from an estimated DSGE model (Adolfson, Laseen, Linde

and Villani, 2007).

The rest of the paper is structured as follows. In Section 2 we discuss the representation

of the FECM and its relationship with the FAVAR. In Section 3 we derive the moving-

average representation of the FECM and discuss structural identification schemes. In

Section 4 we deal with estimation. In Section 5 we present the results of the Monte Carlo

experiments. In Section 6 we discuss the two empirical applications. Finally, in Section 7

we summarize the main results and conclude. Appendices A to C present, respectively, an

analytical example comparing the FAVAR and FECM responses, results from additional

Monte Carlo experiments assessing the finite sample performance of FECM estimators,

and a comparison of the empirical FECM and DSGE based responses.

2 The Factor-augmented Error-Correction Model (FECM)

Consider the following dynamic factor model (DFM) for the I(1) scalar process Xit:

Xit =

p∑
j=0

λijFt−j +
m∑
l=0

φilct−l + εit

= λi(L)Ft + φi(L)ct + εit, (1)

where i = 1, ..., N , t = 1, ..., T , Ft is an r1-dimensional vector of random walks, ct is

an r2-dimensional vector of I(0) factors, Ft = ct = 0 for t < 0, and εit is a zero-mean

idiosyncratic component. Both Ft and ct are latent, unobserved variables. λi (L)and

φi (L) are lag polynomials of finite orders p and m respectively.3

The loadings λij and φij are either deterministic or stochastic and satisfy the following

restrictions. For λi = λi(1) and φi = φi(1) we have E ‖λi‖4 ≤M <∞, E ‖φi‖4 ≤M <∞,

and 1/N
∑N

i=0 λiλ
′
i, 1/N

∑N
i=0 φiφ

′
i converge in probability to positive definite matrices.

Furthermore, we assume that E (λijεis) = E (φijεis) = 0 for all i, j and s.

As in Bai (2004), the idiosyncratic components εit are allowed to be serially and weakly

cross correlated:4

3Our model is capable of accommodating some I(0) Xit. In such a case the corresponding λijs would be
zero, but the main assumptions of the model would still be valid and the theoretical results unaltered. In
the simulation experiment in Appendix A we address explicitly the small sample properties of the estimator
of model (1) in presence of some Xit being I(0).

4In Section 4.3 we discuss the strict factor model assumption needed to undertake feasible estimation of
the parameters of the FECM equation by equation. The consequences of assuming a strict factor structure
are noted in Section 4.4, based on a small scale simulation study presented in Appendix A.
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εt = Γ(L)εt−1 + vt,

where εt = [ε1t,..., εNt]
′, and the vector process vt = [v1t,..., vNt]

′ is white noise.

To derive the FECM and discuss further assumptions upon the model that ensure

consistent estimation of the model’s components, it is convenient to write first the DFM

in static form. To this end, we follow Bai (2004) and define

λ̃ik = λik + λik+1 + ...+ λip, k = 0, ..., p.

Let us in addition define

Φ̃i = [φi0, ..., φim] .

We can then obtain a static representation of the DFM which isolates the I(1) factors from

the I(0) factors:

Xit = ΛiFt + ΦiGt + εit, (2)

where

Λi = λ̃i0,

Φi =
[
Φ̃i,−λ̃i1, . . . ,−λ̃ip

]
,

Gt =
[
c′t, c

′
t−1, ..., c

′
t−m,∆F

′
t , ...,∆F

′
t−p+1

]′
.

Introducing for convenience the notation Ψi = [Λ′i,Φ
′
i]
′, the following assumptions are

needed for consistent estimation of both the I(1) and I(0) factors: E ‖Ψi‖4 ≤ M < ∞
and 1/N

∑N
i=0 ΨiΨ

′
i converges to a (r1(p + 1) + r2(m + 1)) × (r1(p + 1) + r2(m + 1))

positive-definite matrix.

Grouping across the N variables we have

Xt = ΛFt + ΦGt + εt (3)

where Xt = [X1t, ..., XNt]
′,Λ = [Λ

′
1, ...,Λ

′
N ]′,Φ = [Φ

′
1, ...,Φ

′
N ]′ and εt = [ε1t, ..., εNt]

′.

As noted above, the idiosyncratic component in (3) is serially correlated. This serial

correlation can be eliminated from the error process by premultiplying (2) by

I − Γ (L)L

where

Γ (L) =


γ1 (L) · · · 0

...
. . .

...

0 · · · γN (L)

 .
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Following this transformation, we obtain

Xt = (I − Γ (L)L) ΛFt + (I − Γ (L)L) ΦGt + Γ (L)Xt−1 + vt.

Note that Γ (L) can be conveniently factorized as

Γ(L) = Γ(1)− Γ1(L)(1− L), (4)

which allows us to rewrite the previous expression as

Xt = ΛFt + ΦGt − (Γ(1)− Γ1(L)(1− L))(ΛFt−1 + ΦGt−1)

+ (Γ(1)− Γ1(L)(1− L))Xt−1 + vt. (5)

With further manipulation we get

Xt = ΛFt + ΦGt − Γ(1)ΛFt−1 + Γ1(L)Λ∆Ft−1 − Γ(1)ΦGt−1

+ Γ1(L)ΛΦ∆Gt−1 + Γ(1)Xt−1 − Γ1(L)∆Xt−1 + vt (6)

or

∆Xt = ΛFt + ΦGt − Γ(1)ΛFt−1 + Γ1(L)Λ∆Ft−1 − Γ(1)ΦGt−1

+ Γ1(L)Φ∆Gt−1 − (I − Γ(1))Xt−1 − Γ1(L)∆Xt−1 + vt (7)

The ECM form of the DFM, i.e., the factor-augmented error-correction model (FECM),

then follows directly as

∆Xt = −(I − Γ(1))(Xt−1 − ΛFt−1)︸ ︷︷ ︸
Omitted in the FAVAR

+ Λ∆Ft + Γ1(L)Λ∆Ft−1

+ ΦGt − Γ(1)ΦGt−1 + Γ1(L)Φ∆Gt−1 − Γ1(L)∆Xt−1 + vt. (8)

Equation (8) is a representation of the DFM in (1) in terms of stationary variables.

It contains the error-correction term, −(I − Γ(1))(Xt−1 −ΛFt−1), which is omitted in the

standard FAVAR model that therefore suffers from an omitted variable problem, similar

to the case of a VAR in differences in the presence of cointegration.

Note that it follows from (3) that

Xt−1 − ΛFt−1 = ΦGt−1 + εt−1, (9)

such that it would appear at first sight that the omitted error-correction terms in the

FAVAR could be approximated by including additional lags of the I(0) factors. However,
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by substituting the previous expression into (8) and simplifying we get

∆Xt = Λ∆Ft + Φ∆Gt + ∆εt, (10)

which contains a non-invertible MA component. This is problematic from two points

of view. Firstly, the structural identification schemes analyzed by Stock and Watson

(2005) (see also the survey in Luetkepohl, 2014) rely on inverting the MA process in the

idiosyncratic component, and on estimation of vit, the i.i.d. part of the idiosyncratic

component. In the presence of a non-invertible MA process, the parameters of the FAVAR

model and vit cannot be estimated consistently. Secondly, even if the identification of

structural shocks is based only on innovation to the factors and does not require estimation

of vit, as in Bernanke et al. (2005), inversion of the MA component is needed to get the

endogenous lags in equations for ∆Xit. These capture the variable-specific autoregressive

dynamics that is unrelated to the common factors, but it affects the impulse responses of

∆Xti.

To elaborate this point further consider the following example. Representation (10)

can be alternatively written as

∆Xt = Λ∆Ft + Φ(Gt −Gt−1) + εt − εt−1,

which, by using (9) becomes

∆Xt = −(Xt−1 − ΛFt−1) + Λ∆Ft + ΦGt + εt. (11)

At first sight, this is a model that contains an error-correction term, but has a much

simpler structure than the FECM in (8). If the identification of structural shocks would

be based on innovation to dynamic factors, then such a model would appear to account for

the omitted error-correction term in the FAVAR. Note, however, that in order to compute

consistent impulse responses to innovations either to Ft or Gt, one still needs to invert

the process εt so as to get the variable-specific autoregressive dynamics. By doing so, one

obtains the FECM representation (8).

In sum, whenever we deal with I(1) data, and many macroeconomic series exhibit

this feature, the standard FAVAR model potentially produces biased impulse responses

unless we use an infinite number of factors as regressors, or account explicitly for the

non-invertible MA structure of the error-process.5 The analytical example in Appendix A

elaborates this point further, and our simulation and empirical analyses below confirm that

the omission of the ECM term in the FAVAR may potentially have an important impact

on the impulse response functions obtained in typical macroeconomic applications.

To complete the model, we assume that the nonstationary factors follow a vector

5For example, our empirical application below is based on the dataset used by Bernanke et al., 2005).
They treat 77 out of 120 series as I(1) and use a FAVAR with these variables in differences.
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random walk process

Ft = Ft−1 + εFt , (12)

while the stationary factors are represented by

ct = ρct−1 + εct , (13)

where ρ is a diagonal matrix with values on the diagonal in absolute term strictly less

than one. εFt and εct are independent of λij , φij and εit for any i, j, t. As in Bai (2004),

it should be noted that the error processes εFt and εct need not necessarily be i.i.d.. They

are allowed to be serially and cross correlated and jointly follow a stable vector process:[
εFt

εct

]
= A(L)

[
εFt−1

εct−1

]
+

[
ut

wt

]
, (14)

where ut and wt are zero-mean white-noise innovations to dynamic nonstationary and

stationary factors, respectively. Under the stability assumption, we can express the model

as [
εFt

εct

]
= [I −A(L)L]−1

[
ut

wt

]
. (15)

Using (12), (13) and (15) we can write the VAR for the factors as[
Ft

ct

]
=

[[
I 0

0 ρ

]
+A(L)

][
Ft−1

ct−1

]
−A(L)

[
I 0

0 ρ

][
Ft−2

ct−2

]
+

[
ut

wt

]
(16)

= C(L)

[
Ft−1

ct−1

]
+

[
ut

wt

]
,

where the parameter restrictions imply that C(1) is a block-diagonal matrix with block

sizes corresponding to the partition between Ft and ct.

The FECM is specified in terms of static factors F and G, which calls for a corre-

sponding VAR specification. Using the definition of Gt and (16) it is straightforward to
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get the following representation

I 0 . . . . . . 0

0 I . . . . . . 0
...

...
...

...

0 . . . I 0 . . . 0

−I . . . 0 I 0 . . . 0

0 . . . 0 0 I . . . 0
...

...

0 . . . . . . . . . I





Ft

ct

ct−1

...

ct−m

∆Ft

∆Ft−1

...

∆Ft−p+1



=



C11(L) C12(L) 0 . . . . . . 0

C21(L) C22(L) 0 . . . . . . 0

0 I 0 . . . . . . 0
... . . . . . .

...

0 . . . . . . I 0 . . . 0

−I . . . . . . . . . 0

0 . . . I . . . 0
...

...

0 . . . . . . I 0





Ft−1

ct−1

ct−2

...

ct−m−1

∆Ft−1

∆Ft−2

...

∆Ft−p



+



I 0

0 I

0 0

...
...

...
...

0 0



[
ut

wt

]
(17)

Using the definition of Gt, the VAR for the static factors, and premultplying the

whole expression by the inverse of the initial matrix in (17), the factor VAR can be more

compactly written as[
Ft

Gt

]
=

[
M11(L) M12(L)

M21(L) M22(L)

][
Ft−1

Gt−1

]
+Q

[
ut

wt

]
, (18)

where the (r1(p + 1) + r2(m + 1)) × (r1 + r2) matrix Q accounts for dynamic singularity

of Gt. This is due to the fact that the dimension of the vector process wt is r2, which is

smaller than or equal to r1p + r2(m + 1), the dimension of Gt. Let us assume that the

order of the VAR in (18) is n.

To conclude this sub-section, it is convenient to compare our model with that in

Barigozzi et al. (2014), who also deal with cointegration in dynamic factor models.

We argue that there are a number of important differences between our framework and

the model used by Barigozzi et al. (2014).

First, they work with a static version of the model, with I(1) factors only:

Xit = λijFt + εit, (19)

7



which is a constrained version of (1) in its specification of the common part of the processes.

The assumption of only I(1) factors may simplify substantially the treatment of the model,

in particular as far as estimation is concerned, since no attention needs to be paid to

separately identifying and estimating the I(1) and I(0) factors, both of which are present

in our formulation of the model. However, as we will discuss in more detail in Section 4.1,

in order to separately identify and estimate the I(1) and I(0) factors, we need to assume

that the idiosyncratic errors are I(0), while this is not necessarily the case with I(1) factors

only. Therefore, the restriction involved in considering a simplification of the model to

allow only I(1) factors may be offset by a less restrictive assumption on the error processes.

It is an empirical issue to determine which is the more restrictive set of assumptions.

As we show in our empirical examples (see Section 4.2), the assumption of I(0) id-

iosyncratic errors, as well as the presence of I(0) factors, are well supported by the data,

making our formulation more relevant to the identification, estimation and structural

analysis undertaken in the paper.

Second, they work with the model written as in (10) and focus on how shocks to

the common factors propagate to the variables. As mentioned previously, the FAVAR

representation in differences with non-invertible errors is not ideal to handle the general

structural identification schemes of, e.g., Stock and Watson (2005).

Finally, they assume that the factors Ft follow a VAR model and show that their first

differences admit a finite order ECM representation. In order for this representation to

be valid they require the existence of cointegration among the I(1) factors.6 They then

combine the latter with (19) to assess how shocks to the factors are transmitted to the

variables. Given our focus on modelling the levels of variables, instead of deriving an ECM

representation in the unobservable or latent variables, we develop the ECM representation

for the variables in (8) and assume, in line with the cointegration literature, that the factors

are random walks, possibly with some correlations in the driving errors as in (14).

3 Moving-average representation of the FECM and the Struc-

tural FECM

The identification of structural shocks in VAR models usually rests on imposing restrictions

upon the parameters of the moving-average representation of the VAR and/or the vari-

ance covariance matrix of the VAR errors. An analogous approach is used in the FAVAR

model, where the moving-average representation is for both the observable variables and

the factors (Stock and Watson, 2005; Lütkepohl, 2014). For vector-error correction mod-

els, the derivation of the moving-average representation uses the Granger representation

theorem (see, e.g., Johansen, 1995). The FECM is a generalization of error-correction

6This is a requirement for which no further clear motivation - beyond theoretical necessity - is presented
in their paper, and is in any case unnecessary since it is allowed by the more general Bai (2004) formulation
of the model (see page 153) where stationary linear cominations of Ft can always be included as part of
Gt.
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models to large dynamic panels. For this reason, we first provide a generalization of the

Granger representation theorem for nonstationary panels that exhibit cointegration. Then

we discuss shock identification.

3.1 The MA representation of the FECM

To start with, we conveniently reparameterize the factor VAR process (18). It contains

exactly r1 unit roots pertaining to Ft.
7 (18) can then be rewritten in differenced form as[

∆Ft

∆Gt

]
=

[
0

αM

] [
0 Ir2

] [ Ft−1

Gt−1

]
+

[
M∗11(L) M∗12(L)

M∗21(L) M∗22(L)

][
∆Ft−1

∆Gt−1

]
+Q

[
ut

wt

]
,

(20)

where the coefficient matrices of the matrix polynomials M∗ij(L) are defined from the

coefficient matrices in (18) as:

M∗ijl = −(Mijl+1 + ...+Mijn), l = 1, . . . , n− 1. (21)

and αM = − [Ir2 −M22 (1)] . With this we can state the following theorem.

Theorem 1 (Granger representation for the FECM) Given the error-correction rep-

resentation of the dynamic factor model (8), the moving-average representation of the

factor-augmented error-correction model is
Xt

Ft

Gt

 =


Λ

Ir1

0r2×r1

ω t∑
i=1

ui + C1(L)


vt + [Λ,Φ]Q[u′t, w

′
t]
′

Q

[
ut

wt

]  . (22)

A necessary and sufficient condition for the existence of this representation is |Ir1 −M∗11(1)| 6=
0.

Proof. The FECM (8) can be rewritten as

∆Xt = α̃ (Xt−1 − ΛFt−1 − ΦGt−1) + Λ∆Ft + Φ∆Gt

+ Γ1 (L) (Λ∆Ft−1 + Φ∆Gt−1)− Γ1 (L) ∆Xt−1 + vt, (23)

where α̃ = −(I − Γ(1)). Using (20) we can stack the equations for ∆Xt and the factors

7As noted above, cointegration among Ft is ruled out as we can always include the stationary linear
combinations of Ft in Gt.
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into a single system of equations as
∆Xt

∆Ft

∆Gt

 = αβ′


Xt−1

Ft−1

Gt−1

+


−Γ1(L) B1(L) B2(L)

0 M∗11(L) M∗12(L)

0 M∗21(L) M∗22(L)




∆Xt−1

∆Ft−1

∆Gt−1



+


vt + [Λ,Φ]Q[u′t, w

′
t]
′

Q

[
ut

wt

]  (24)

where B1(L) = ΛM∗11(L)+ΦM∗21(L)+Γ1(L)Λ and B2(L) = ΦM∗22(L)+ΛM∗12(L)+Γ1(L)Φ

and

α
N+r1+r2×N+r2

=


α̃ ΦαM

0 0

0 αM

 and β′

N+r2×N+r1+r2

=

[
I −Λ −Φ

0 0 I

]
.

We can observe that (24) has a structure similar to a standard ECM model with some

restrictions imposed. There are N + r1 + r2 variables driven by r1 common stochastic

trends and therefore there are N + r2 cointegration relationships. The model conforms

with the assumptions of the Johansen’s version of the Granger representation theorem

(Johansen, 1995). In particular

β⊥ =
[
Λ′, Ir1 , 0r1×r2

]′
, α⊥ =


0N×r1

Ir1

0r2×r1

 , Ξ = IN+r1+r2−


−Γ1(1) B1(1) B2(1)

0 M∗11(1) M∗12(1)

0 M∗21(1) M∗22(1)


and

ω
r1×r1

=
(
α′⊥Ξβ⊥

)−1
= [(Ir1 −M∗11(1))]−1

is a full rank matrix by the assumption that the data are at most I(1).8 Then the generic

moving-average representation by the Granger representation theorem can be written as
Xt

Ft

Gt

 = C
t∑
i=1

ui + C1(L)


vt + [Λ,Φ]Q[u′t, w

′
t]
′

Q

[
ut

wt

]  ,
with

C = β⊥
(
α′⊥Ξβ⊥

)−1
,

which simplifies to (22).

8If Xit were I(2) processes, ω would be singular. We leave the I(2) case for future research.
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3.2 Structural FECM

Our model contains I(1) and I(0) factors with corresponding dynamic factors innovations.

From the moving-average representation (22) we can observe that the innovations in the

first group have permanent effects on Xt, while the innovations in the second group have

only transitory effects. The identification of structural dynamic factor innovations can be

performed separately for each group of structural innovations or on both simultaneously.

As is standard in SVAR analysis, we assume that structural dynamic factor innovations

are linearly related to the reduced-form innovations

ϕt =

[
ηt

µt

]
= H

[
ut

wt

]
, (25)

where H is a full-rank (r1 +r2)× (r1 +r2) matrix. ηt are r1 permanent structural dynamic

factor innovations and µt are r2 transitory structural dynamic factor innovations. It is

assumed that Eϕtϕ
′
t = I such that HΣu,wH

′ = I.

The moving average representation of the FECM in structural form can be obtained

by inserting the two linear transformations above of reduced-form innovations to dynamic

factors into the moving-average representation of the FECM given by (22).

3.3 Long-run restrictions

The three most common classes of identification restrictions in the SVAR literature are

contemporaneous restrictions, long-run restrictions and sign restrictions.9 In this paper

we focus on long-run restrictions. Specifically, we extend the analysis of structural com-

mon stochastic trends of King, Plosser, Stock and Watson (1991) to the case of large

nonstationary panels.10

The identification of structural innovations with long-run restrictions can be obtained

by imposing restrictions on the matrices Λ and ω in the moving-average representation of

the FECM (22). By doing this, we replace the long-run effects of reduced-form innovations

to factors ut, i.e.,

Λω

t∑
i=1

ui,

9The analysis of monetary policy shocks with the FECM using conteporaneous restrictions as in
Bernanke et al. (2005) is provided by Banerjee, Marcellino and Masten (2013, 2014b). While there is
broad coherence in terms of the basic shape of the impulse responses between the FECM and the FAVAR,
the responses may quantitatively differ significantly due to the error-correction terms. The responses of
the industrial production, the CPI and wages are very similar. Quite significant differences are observed
for money and the yen-dollar exchange rate. The same is true for measures of private consumption.

10Barigozzi et al. (2014) also provide an empirical example of a long-run identification scheme in a
large-scale modeling framework. However, given that their study does not consider cointegration between
the factors and the observable variables, their identification scheme does not therefore consider long-run
restrictions on the effects on observable variables.
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with the long-run effects of structural innovations denoted ηt, i.e.,

Λ∗ω∗
t∑
i=1

ηi,

where the matrices Λ∗ and ω∗ contain restrictions motivated by economic theory.

A common economically motivated identification scheme of permanent shocks, origi-

nally proposed by Blanchard and Quah (1989), uses the concept of long-run money neu-

trality. In this respect, their identification scheme distinguishes real from nominal shocks

by imposing zero long-run effects of the nominal shock on real variables.

In a cointegration framework such an identification approach was formalized by King

et al. (1991) (see also Warne, 1993). King et al. (1991) analyzed a six-dimensional system

of cointegrated real and nominal variables. By imposing a particular cointegration rank,

they determined the subset of innovations with permanent effects. Within this subset, they

restricted the number of real stochastic trends to one, and identified it by imposing zero

restrictions on real variables of all other permanent shocks in the subset. The remaining

permanent shocks were allowed to have non-zero effects only on the subset of nominal

variables in the cointegrated VAR. We extend the identification approach of King et al.

(1991) to large-dimensional panels of non-stationary data using the FECM.

The FECM contains r1 stochastic trends. Consider the case where r1 = 2. We have

two I(1) factors and want to identify one as a real stochastic and the second as a nominal

stochastic trend. Accordingly, partition the variables in Xt such that N1 real variables

are ordered first and the remaining N2 = N − N1 nominal variables are ordered last.

The group of real variables contains various measures of economic activity measured in

levels, e.g. indexes of industrial production, which are treated as I(1). The identifying

restrictions would thus be that the nominal stochastic trend has a zero long-run effect on

these variables. Since nominal variables, for example, the levels of different price indexes

and nominal wages, are grouped at the bottom of the panel, the restricted loading matrix

Λ∗ would have the following structure:

Λ∗ =

[
Λ∗11 0

Λ∗21 Λ∗22

]
,

where Λ∗11 is N1 × 1 and Λ∗21 and Λ∗22 are N2 × 1. More generally, if the objective were

to identify only the real stochastic trend with r1 > 2, the dimension of Λ∗22 would be

N2 × (r1 − 1).

The matrix Λ∗ can be identified in the following way. First, the real stochastic trend is

allowed to load on all observable variables. This implies that Λ∗11 and Λ∗21 can be identified

as loadings to the first factor - F rt - extracted from the whole dataset. Second, we can

estimate the residuals from a projection of Xt on F rt . Denote these as εrt . Then Λ∗22 is

identified as the loadings to the (r1 − 1) factors - denoted Fnt - extracted from the lower
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N2-dimensional block of εrt .

Note that block diagonality of Λ∗ alone does not ensure that nominal shocks do not

load to real variables, but we also need (block) diagonality of ω∗. Note also that it is the

product Λ∗ω∗ that determines the overall long-run effects, implying that zero long-run

effect restrictions require Λ∗ω∗ to be lower block diagonal, which is achieved by imposing

lower (block) diagonality of ω∗ in addition to lower (block) diagonality of Λ∗.

The matrix ω∗ can be obtained from the estimates of the VAR model (20). Specifically,

we can identify ω∗ from the long-run covariance matrix

ωE(uFt u
F ′
t )ω′ = ω∗E(ηtη

′
t)ω
∗′ = ω∗ω∗′ (26)

where ηt = [ηr′t , η
n′
t ]′ are the structural innovations and ω∗ is lower block diagonal. Em-

pirically, given the definition of ω, it can be replaced by its estimated counterpart, i.e.,

ω̂ =
[(
Ir1 − M̂∗11(1)

)]−1
.

4 Estimation of the FECM

4.1 Order of integration of idiosyncratic errors

For the representation theory, in general the FECM accommodates both I(0) and I(1)

idiosyncratic errors. This can be seen from the FECM representation (23). In this form

the stationary factors Gt enter the error-correction terms. To estimate the error-correction

terms it is thus sufficient to estimate the space spanned by the true factors, which can be

achieved under a general specification of the idiosyncratic components.

The idiosyncratic components εit are allowed to be serially and weakly cross correlated

as in Bai (2004). Specifically, along the time series dimension, εit = γi(L)εit−1 + vit. If

γi(L) contains a unit root for some i, for those i, Xit and Ft do not cointegrate. Note that

the factorization of Γ (L) in (4) is also valid in the case it contains unit roots, and the

potential presence of I(1) idiosyncratic errors εit can therefore be accommodated. Hence,

the derivation of the FECM does not need the assumption of stationary idiosyncratic

components.

The consequence of some of the εit being I(1) would be the (I−Γ(1)) matrix containing

rows of zeros for all those variables with I(1) idiosyncratic components. The result is

expected. A non-stationary idiosyncratic component implies no cointegration between the

corresponding Xit and Ft. In such a case, there is also no corresponding error-correction

mechanism in the equation for ∆Xit in (8) for those i whose γi(L) contain a unit root.

In such a case, consistent estimation of the factor space and the corresponding loading

matrices can proceed as in Bai and Ng (2004). The remaining parameters of the FECM
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can be then estimated as discussed below.

For our structural analysis, some other considerations are relevant. Note that under a

specification of εit as given in the previous paragraph, the number of I(1) factors r1 can

in principle be determined by the MQ statistics proposed by Bai and Ng (2004), but the

estimation of the factor space that would split it into r1-dimensional space of I(1) and

(r−r1)−dimensional space of I(0) factors is not feasible. Since differentiating between the

I(1) and I(0) factors is crucial for the application of our long-run identification scheme of

structural shocks, we pay central attention to the alternative assumption that the roots

of γi(L) are inside the unit disc for each i.11 This assumption implies that Xit and Ft

cointegrate for all i. It is very important to note that this does not however by any means

imply that all bivariate pairs of variables Xit and Xjt, j 6= i, cointegrate mutually.12

Moreover, with Ft and Gt identified separately, we have E
∥∥εFt ∥∥4 ≤M <∞, which im-

plies that 1/T 2
∑T

t=1 FtF
′
t , 1/T

∑T
t=1GtG

′
t, and the cross-product matrices 1/T 3/2

∑T
t=1 FtG

′
t

and 1/T 3/2
∑T

t=1G
′
tFt converge. The elements of the matrix composed of these four ele-

ments jointly converge to form a positive definite matrix, allowing us to apply Bai’s (2004)

consistency results on factor estimation based on principal components.

In sum, there are several reasons, both theoretical and empirical, for working with the

hypothesis of I(0) idiosyncratic errors. First, from an economic point of view, integrated

errors are unlikely as they would imply that the integrated variables can drift apart in

the long run, contrary to general equilibrium arguments. Integrated variables that drift

apart are likely to be of marginal importance, and as such they do not contain essential

information and can be dropped from the analysis. Second, the basic aim of the paper

is to model cointegration in large datasets and to develop long-run identification schemes

in this context, see Section 3 above. The proposed scheme requires to estimate the space

spanned by the I(1) factors, and this can be consistently done only under stationarity of

εit and application of the principal component estimator to the data in levels (Bai, 2004).

Eventually, whether the idiosyncratic errors εit are stationary or not is an empirical is-

sue. Below we present two empirical applications. The first one uses a monthly US dataset

for the period 1959 - 2003 taken from Bernanke et al. (2005). The authors treat 77 series

as I(1). By applying the ADF unit root test to the estimated idiosyncratic components

(see details on estimation below), the unit-root null is rejected at 5% significance level for

most of the series and at 10% for the remaining few. The second dataset is composed of

the Euro area quarterly variables used in Fagan et al. (2001), updated to cover the period

1975 - 2013. It contains 32 I(1) series. The same procedure as in the case of the US dataset

results in rejections of the unit-root null at 5% significance level for all 32 idiosyncratic

11Different identification schemes that do not rely on distinguishing between I(1) and I(0) factors, such
as restrictions on contemporaneous effect of structural shocks, can be analyzed in the FECM without
assuming I(0) idiosyncratic errors.

12The assertion that stationary idiosyncratic components for all i implies bivariate cointegration between
all Xit, Xjt pairs - limiting the applicability of the Bai (2004) framework - is made by Barigozzi et al.
(2014). However their illustration only applies to the case of one integrated factor and does not generalize
in the absence of implausible restrictions.
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components. The panel unit root test (Bai and Ng, 2004) applied to our datasets also

reject the null of no panel cointegration between Xit and Ft for both datasets.

Overall, it appears that our assumption of stationary idiosyncratic errors fits the prop-

erties of representative macroeconomic datasets. Moreover, it is not restrictive for the

derivation of the FECM. As mentioned, the assumption is only required to consistently

estimate the I(1) factors (and the corresponding number r1) as required by the iden-

tification scheme of structural shocks discussed in this paper. In other applications of

the FECM, including forecasting applications, the assumption of stationary idiosyncratic

errors would not be necessary.

4.2 Estimation of the FECM with stationary idiosyncratic components

With stationary idiosyncratic component the FECM model is consistent with the specifica-

tion of the dynamic factor model analyzed by Bai (2004) that accommodates the presence

of I(0) factors along with I(1) factors in the factor model. Our assumptions are consistent

with Bai’s (2004) and we can therefore rely on Bai’s (2004) results on the asymptotic

properties of the principal component based factor (and loadings) estimators.

Specifically, the space spanned by the factors can be consistently estimated using

principal components. The estimators of Ft are the eigenvectors corresponding to the

largest r1 eigenvalues of XX ′ normalized such that F̃ ′F̃ /T 2 = I. The stationary factors

Gt can be estimated as the eigenvectors corresponding to the next q largest eigenvalues

normalized such that G̃′G̃/T = I (Bai, 2004). Corresponding estimators of the loadings

to I(1) factors are then Λ̃ = X ′F̃ /T 2, and those to the I(0) factors Φ̃ = X ′G̃/T.13

Using the estimated factors and loadings, the estimates of the common components

are Λ̃F̃t, Φ̃G̃t, Λ̃∆F̃t and Φ̃∆G̃t, while for the cointegration relations it is Xt−1 − Λ̃F̃t−1.

Replacing the true factors and their loadings with their estimated counterparts is permit-

ted under the assumptions discussed above and in Bai (2004) (see Bai (2004) Lemmas 2

and 3) so that we do not have a generated regressor problem.14

The estimated common components and cointegrating relations can be then used in

(8) to estimate the remaining parameters of the FECM by OLS.

Finally, the number of I(1) factors r1 can be consistently estimated using the criteria

developed by Bai (2004) applied to data in levels. The overall number of static factors

r1(p+ 1) + r2(m+ 1) can be estimated using the criteria of Bai and Ng (2002) applied to

the data in differences.

13In a model similar to ours, Choi (2011) analyzes the generalized principal components estimator that
offers some efficiency gains over the classic principal components estimator. Simulation evidence presented
below, however, shows that Bai’s estimator performs very well even with small sample sizes. For this
reason we stick to the standard principal components estimator in this paper.

14These assumptions are essentially (1) the common factor structure of the data, (2) heterogeneous
loadings with finite fourth moments, (3) mutual orthogonality between ut, wt, εit, λit and φit,, (4) weak
dependence of idiosyncratic errors, and (5) N large compared with T for the I(0) factors (

√
T/N → 0).
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4.3 Strict factor model

The FECM specification we have considered so far is heavily parameterized, leading to the

curse of dimensionality. To render the estimation empirically feasible, we need to further

restrict the idiosyncratic component εit. In particular, we assume (1) to be a strict factor

model: E (εit, εjs) = 0 for all i, j, t and s, i 6= j. This assumption enables the empirical

estimation of the FECM parameters equation by equation by OLS.

The strict factor model assumption is clearly less realistic than stationarity of the

idiosyncratic components alone and may be empirically rejected. This implies that we are

potentially omitting lags of Xjt from the equations for variables Xit.
15 In this respect it

is important to note that Xjt has a factor structure. Consequently, the effects of lags of

Xjt on Xit can be efficiently approximated by including lags of Ft and Gt into the Xit

equations. This is the approach that we follow in our empirical applicatons. Moreover, the

same problem applies also to FAVAR models analyzed, for example, in Stock and Watson

(2005) or Lütkepohl (2014). These models, however, relative to the FECM, additionally

omit the error-correction terms from the Xit equations.

The consequences of assuming a strict dynamic factor model structure are analyzed

by means of a simulation experiment, whose main findings we summarize in the next

subsection.

4.4 Finite sample properties

Small sample properties of the estimation procedure are analyzed by means of simulation

experiments whose details are presented in Appendix B. With these simulation experi-

ments we assess the general small sample properties in presence of I(0) factors and I(0)

variables and the effects of an incorrect strict dynamic factor model assumption. In either

case, we analyze the small-sample properties of estimated factors and impulse responses

generated by the FECM model.

Our simulation experiments indicate that principal component based estimators can

recover very well the factor space spanned by a mixture of I(1) and I(0) factors even for

N and T less than 50. Moreover, using the estimated factors in the factor VAR replicates

accurately the true impulse responses of factors to factor innovations. Finally, inserting

the estimated factor responses in the FECM, in combination with the FECM parameters

estimated as discussed above, delivers estimated structural impulse responses very close

to the true ones.

As for the assumption of strict DFM, we considered as the data-generating process an

approximate factor model with cross-correlation structure modelled as in the simulation

experiments of Stock and Watson (2002) (see Appendix B for details of the DGP). On

generated data we estimated the FECM as discussed above, i.e. by incorrectly assuming a

15On a monthly US dataset, similar to the one we use below, Stock and Watson (2005) show that the
strict factor model assumption is generally rejected but is of limited quantitative importance.
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strict factor model structure. Our simulation results reveal only a marginal deterioration

of finite sample properties of the estimated impulse responses relative to the case where the

DGP is a strict DFM. Based on this, we conclude that the proposed estimation procedure

of the FECM is valid in empirical applications.

5 An evaluation of the effects of the error-correction terms

on impulse response analysis

In this section we analyze the effects of omitting the error-correction terms on impulse

response analysis by means of simulation experiments, focusing on the role of the strength

of error correction and of the sample size, along both the time series and cross section

dimensions. In the design of the data-generating process we draw from the empirical

analysis of real stochastic trends that is presented in detail in the next section. The

estimated responses to a permanent real shock reveal some significant differences between

the FECM and the FAVAR. Given that the two models are set up such that the only

difference between the two is the presence of the error-correction terms, the simulation

evidence presented in this section also facilitates the discussion of the empirically observed

differences.

The experiment is designed as follows. We estimate model (23) for the subset of

I(1) variables in the US data panel and use the estimated parameters as DGP. The only

exceptions are the loading coefficients of the cointegration relations, α. These are drawn

from a uniform distribution around mean values as specified below, in order to assess

the effects of a different error correction strength. The idiosyncratic components of the

data are treated as serially independent and bootstrapped from empirical residuals. The

data are driven by factors simulated with the parameters from the estimated factor VAR,

combined with bootstrapped factor VAR residuals.

Identification of the real trend requires a division between real and nominal variables

in the panel. Our panel contains 55% of real variables and 45% of nominal variables. This

relative share is also preserved in the artificially generated data, i.e. out of N generated

variables, 55% have parameters that are randomly drawn from the parameters pertaining

to real variables. The rest are randomly drawn from the parameters of the subset of

nominal variables.

We consider five different parameter configurations. The benchmark sample setup is

with T = 500 and N = 100, which corresponds to the dataset from which the parameters

used in the DGP are estimated. The mean value of the error-correction coefficient α is set

to -0.50.

We consider three deviations from this parameter setup. The first is the variation in

the strength of error correction, with mean α set to -0.25. The remaining two modifications

alter the sample size. First, we halve the time series dimension to 250, and second we
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halve the cross-section dimension to 50.

For each parameter set we take 100 random draws of the parameter set and factor

process. Within each of these random draws, the confidence intervals of the impulse

responses are estimated through 100 bootstrap replications. The confidence intervals are

used to measure the differences between the estimated impulse responses computed with

the FAVAR model and those with the FECM. The results of the Monte Carlo experiment

are presented in Table 1.

Table 1: Importance of the error-correction term - results of the Monte Carlo experiment
(1) (2) (3) (4) (5) (6) (7) (8)

α -0.50 -0.25 -0.50 -0.50
T 500 500 250 500
N 100 100 100 50

% of FAVAR responses outside the FECM conf. intervals
Confidence interval coverage (%)

Horizon 67 90 67 90 67 90 67 90
3 57.44 39.22 51.28 31.34 48.29 28.40 60.12 40.32
6 53.25 34.47 53.03 33.82 43.31 24.13 53.56 35.24
12 42.98 24.03 45.38 27.09 31.42 15.21 39.38 20.76
18 43.14 25.47 42.86 24.10 29.22 13.45 38.24 20.34
24 39.69 22.04 40.31 22.07 28.22 12.85 34.68 17.60
36 35.21 17.20 37.60 20.04 28.43 12.87 30.98 14.52
48 35.26 16.99 37.74 19.53 29.29 14.03 31.14 14.96
60 35.99 18.27 40.44 21.55 28.63 13.58 34.52 16.72
any 89.12 67.74 86.37 62.84 80.44 54.59 88.80 65.70

The simulation results show that in the basic specification of our empirically-motivated

data generating process the effects of omitting the error-correction term are sizeable. At

short horizons over 50% of FAVAR responses lie outside the FECM 67% confidence in-

tervals. The share decreases with the horizon, but stabilises above 35%. The respective

figures for 90% confidence interval are 30% and 17%. The bottom line of the table tells us

that almost 90% of FAVAR impulse responses lie outside 67% FECM confidence interval

for at least one period at any horizon. For the 90% confidence interval the share is roughly

two thirds. Across the modifications that we consider to the basic data-generating process

the shares vary, but they still remain of similar magnitude.16

The effect of the strength of the error-correction can be evaluated by comparing the

benchmark parameter specification in columns 1 and 2 to columns 3 and 4 that report the

simulation results with weaker degree of error correction. The occurrence of significant

differences in the estimated impulse responses is smaller at shorter horizons and somehow

higher at longer horizons, but the differences are more pronounced at shorter horizons.

The share of the FAVAR impulse responses that are different for at least one period at

any horizon decreases with weaker error-correction. These results suggest that the effect

of omitted error-correction mechanism on impulse response analysis is positively related

to the strength of the error-correction on average, but the fact that this is not uniform

16The FECM in the simulation experiment contains 3 endogenous lags (uniform across equations), while
the factors enter contemporaneously and with one lag. We repeated the same experiment also with one
and three of both endogenous lags and lags of factors. The results, available upon request, are robust and
fully in line with those presented in Table 1.
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across the horizon suggests that the effect remains important also with relatively weak

error-correction mechanism.

The effect of a smaller time series dimension of the panel is not uniform across the

time elapsed after the shocks. Within the first 12 periods, the differences are less frequent.

At longer horizons, however, the frequency increases.

The effect of the cross-section dimension is opposite to what we observe for the effect of

the time series dimension. With fewer series in the panel, obtaining statistically different

impulse responses between the FAVAR and the FECM becomes slightly more probable at

short horizons (below 6) and less probable at longer horizons. This is again an indication

that the error-correction mechanism might be empirically important for impulse response

analysis even at moderate sample sizes.

Overall, this simulation experiment confirms the relevance of the inclusion of error

correction terms in FAVAR models, suggesting that their omission can have sizeable effects,

also in rather small panels and with error-correction mechanisms of moderate strength.

Additional simulation experiments reported in Appendix B instead provide support for a

good finite sample performance of the FECM based estimated impulse responses.

6 Empirical applications

In this section we illustrate the identification of permanent productivity shocks and their

effects in the context of two empirical applications. In both we focus on the empirical

importance of the error-correction mechanism for the analysis of structural shocks.

The first application uses the dataset of Bernanke et al. (2005). It contains 120

variables for the US, spanning the period 1959 - 2003 at monthly frequency. 77 variables

are treated by the authors as I(1) (see data description in Appendix 1 of Bernanke et al.,

2005).

The second application is to the Euro area (EA) and is based on quarterly data for

the period 1975 - 2013, an updated version of the dataset used by Fagan et al. (2001). It

contains 38 macroeconomic series, of which 32 are I(1).17 Data are seasonally adjusted at

source. The only exception is the consumer price index, which we seasonally adjust using

the X-11 procedure.

The Bai (2004) IPC2 information criterion indicates r1 = 2 for both the US and EA

datasets. The choice of the total number of estimated factors r is based on Bai and

Ng (2004). Their PC3 criterion indicates 4 factors in total for the EA dataset. For

the US dataset none of the Bai and Ng (2004) criteria gives inconclusive evidence. For

comparability with the EA dataset and our previous analysis with US data in Banerjee,

Marcellino and Masten (2014a), we set also the total number of factors for the US dataset

to 4.

17The data and the corresponding list of variables can be downloaded from the Euro area business cycle
network webpage (www.eabcn.org/area-wide-model).
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Both datasets therefore contain both I(1) and I(0) variables, which we model in the

following way. Denote by X1
it the I(1) variables and by X2

it the I(0) variables. Naturally,

the issue of cointegration applies only to X1
it. As a consequence, the I(1) factors load only

to X1
it and not to X2

it. In other words, the fact that X2
it are assumed to be I(0) implies

Λ2
i = 0, which is a restriction that we take into account in model estimation.

Our empirical FECM is then

∆X1
it = αi(X

1
it−1 − ΛiFt−1) + Λ1

i (L)∆Ft + Φ1
i (L)Gt + Γ1(L)∆X1

it−1 + v1
it (27)

X2
it = Φ2

i (L)Gt + Γ2(L)∆X2
it−1 + v2

it (28)

The model for the I(1) variables in (27) is the FECM, while the model for the I(0)

variables in (28) is a standard FAVAR with the restrictions that I(1) factors do not load

onto I(0) variables.

The FAVAR model is as follows:

∆X1
it = Λ1

i (L)∆Ft + Φ1
i (L)Gt + v1

it (29)

X2
it = Λ2

i (L)∆Ft + Φ2
i (L)Gt + v2

it (30)

(29) differs from (27) in that it does not include the error-correction term. (30) differs

from (28) by not taking into account the restriction Λ2
i = 0.

The lag structure of the models is the following. Both the FAVAR model and the FECM

contain three endogenous lags, while the factors enter contemporaneously and with one

additional lag. This additional lag of factors serves to proxy for potentially omitted lags

of Xj variables in equations for Xi, i 6= j. Robustness of the results has been checked

by varying the number of endogenous lags from 1 to 6, and lags of factors from 0 to 3.

Results turn out to be robust and are available upon request.

The lag structure of the FECM equations is common for the US and EA datsets. The

specification differs for the factor VAR. For the US data we follow Bernanke et al. (2005)

and Stock and Watson (2005) and set the number of lags to 13. For the EA data, which

is on quarterly frequency, we set the number of lags to 6.

To provide prima facie evidence of the importance of the error-correction terms in

(27) we tested their significance with a standard t-test equation by equation. In the US

dataset 63 out 77 equations have a statistically significant αi at the 5% significance level.

The average partial R2 of these terms is 2.8%, while the maximum reaches 23.4%. In

the EA dataset 27 out of 32 I(1) variables have a statistically significant αi at the 5%

significance level. The average partial R2 is 1.6%, while the maximum reaches 8.2%.

These figures confirm the importance of including the error-correction term in modelling

variables that are originally I(1), but are modelled in differences in FAVAR applications.

The average size of the partial R2 implies a limited partial contribution of the error-
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correction term to the goodness of fit of the estimated equations. However, even in such

circumstances omitting the error-correction terms could lead to significant distortions in

estimated impulse responses.

The space spanned by Ft and Gt is estimated by the principal components on the data

in levels (Bai, 2004). Our simulations reported in Appendix B give us confidence that this

space is estimated consistently. Our assumption of cointegration between Xit and Ft is

valid if the εit series is stationary. The panel unit root test (Bai and Ng, 2004) applied to

our datasets rejects the null of no panel cointegration between Xit and Ft (see also results

reported in penultimate paragraph of Section 4.1).

6.1 Results for the US

We first present the analyisis of structural permanent productivity shocks based on US

data. The impulse responses to an identified permanent real shock are presented in Figure

1. The top left panel contains the responses of the real permanent trend (factor), the

remaining variables are those for which Bernanke et al.(2005) report results.18 Each sub-

plot contains the impulse responses obtained with the FECM (solid line) and the FAVAR

(dashed line) together with 90% bootstrapped confidence intervals of the FECM impulse

responses.19

The impulse responses are broadly in line with economic theory. Along the adjustment

path the real factor exhibits a hump-shaped response and after three years it levels off

at the new higher steady state. Similar in shape are the positive responses of industrial

production and measures of real private consumption. Prices decrease, but only temporar-

ily. This effect is considerably larger in the FECM than in the FAVAR. The feature is

exhibited also for other prices in the panel, but the corresponding impulse responses are

not presented in Figure 1. Interest rates gradually increase, reflecting an increase in real

rates associate with an increase in productivity. Moreover, while the short rate returns to

equilibrium, the effect on the 5-year rate is positive, which implies a slightly steeper yield

curve. The responses of money related variables are negative and again considerably more

so for the FECM. Consistently with higher interest rates, the dollar appreciates. Employ-

ment temporarily increases along the adjustment path, while unemployment decreases.

The initial response of the average wage rate is negative and turns positive only gradually

and with a significant lag. Such a response is an indication of a skill-biased technologi-

cal change. Consistent with theory are also the responses of housing starts, orders and

dividends.

Figure 1 does not give a full account of the effects of the error-correction term on

impulse responses. The differences in the responses between the FAVAR and the FECM for

18Impulse responses for the remaining 101 variables of the panel are available upon request.
19Concerning the estimation of the FAVAR, it is worth mentioning that in the present application, which

serves to illustrate the method, we do not consider the potential dynamic singularity in the variance-
covariance matrix of stationary factors Gt. A more general treatment is at present beyond the scope of
this paper.
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Figure 1: Impulse responses to real stochastic trend in the US- FAVAR Vs FECM
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I(0) variables in the figure are not due to the error-correction term, but due to restrictions

the FECM contains (see (28) and (30)). Full account of the empirical effect of the error-

correction term is given in Table 2. It reports the percentage of variables (out of 77 I(1)

variables in the panel) for which the impulse response obtained with the FAVAR model lie

outside the confidence interval of the FECM impulse responses at different horizons. In

addition to the results for all 77 variables, we also group the variables according to their

economic meaning.

Taking into account all 77 I(1) variables, we observe that within the first 6 months after

the shock only a limited number of impulse responses differ significantly. At the 12-month

horizon roughly a third of impulse responses differ at 67% confidence level, and 11% at

90%. For the three-year horizon, these shares increase to 44% and 30% respectively and

remain stable at longer horizons.

Looking across categories of variables, we can group the variables in three groups

according to the size of the effect of the error-correction terms. The strongest effect is ob-

served for money aggregates, prices and wages. For theses categories the share of different

impulse responses can exceed 50% according to the 90% confidence interval of the FECM

responses. In the second group we have private consumption and orders, for which the

shares of different responses exceed 50% if we consider narrower, 67% confidence inter-

vals. For output, exchange rates and stock prices we observe that neglecting cointegration

between variables and factors has only a limited effect on the impulse responses analysis.

Finally, when in Section 4.3 we discussed the implications of the strict factor model
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Table 2: Percentage of FAVAR responses outside the FECM confidence intervals
Variables Horizon

CI coverage 3 6 12 24 36 48 60 72 84 96
All 67 0.0 14.3 31.2 41.6 44.2 44.2 41.6 44.2 45.5 45.5

90 0.0 0.0 11.7 27.3 29.9 28.6 31.2 31.2 24.7 27.3
Output 67 0.0 0.0 11.1 16.7 16.7 16.7 16.7 27.8 27.8 27.8

90 0.0 0.0 0.0 11.1 11.1 11.1 11.1 11.1 16.7 27.8
Employment 67 0.0 0.0 5.9 17.6 17.6 17.6 11.8 17.6 17.6 11.8

90 0.0 0.0 0.0 11.8 11.8 5.9 5.9 5.9 5.9 11.8
Consumption 67 0.0 0.0 40.0 60.0 60.0 60.0 60.0 60.0 60.0 80.0

90 0.0 0.0 0.0 20.0 20.0 0.0 20.0 20.0 20.0 20.0
Orders 67 0.0 0.0 50.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0

90 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0
Exchange Rates 67 0.0 0.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0 50.0

90 0.0 0.0 0.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Stock Prices 67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Money 67 0.0 11.1 22.2 44.4 66.7 66.7 66.7 55.6 55.6 66.7

90 0.0 0.0 0.0 22.2 33.3 44.4 55.6 55.6 55.6 55.6
Wages 67 0.0 50.0 100.0 100.0 100.0 100.0 50.0 50.0 50.0 50.0

90 0.0 0.0 50.0 50.0 50.0 50.0 50.0 50.0 0.0 0.0
Prices 67 0.0 60.0 86.7 100.0 100.0 100.0 93.3 93.3 93.3 86.7

90 0.0 0.0 53.3 73.3 86.7 86.7 86.7 86.7 53.3 46.7

assumption for estimation, we noted that the omission of cross-equation terms can be

proxied by the inclusion of lagged factors. Hence, to assess the robustness of our results,

we have considered alternative specifications of the lag structure of the FECM and the

FAVAR, with combinations of zero and three lags of factors. Specifications with more

than three lags of factors were not considered in order to avoid overfitting.20 Results

obtained with the alternative lag structures (available upon request) show a great degree

of similarity to the results presented in Table 2 and Figure 1.

6.2 Results for the euro area

The stochastic trend analysis for the euro area variables is summarized in Figure 2. In

the top left corner we see that a shock to the real stochastic trend leads to its permanent

increase and levels off at the new equilibrium level after 7 years. Unlike the US, its re-

sponse is not hump-shaped. Key measures of output and private economic activity - GDP,

private consumption, imports and exports - respond positively and are significantly differ-

ent from zero at new equilibrium levels. The impulse responses obtained for output and

consumption variables with the FAVAR are quite similar, which is in line with responses

for the US. Prices also respond positively. The unemployment rate gradually declines.

Employment initially declines and improves only with a significant lag. The responses of

interest rates are positive, but with a significant lag, which is not present in the FAVAR

responses. Both the nominal and the real exchange rate appreciate.

The differences in responses between the FECM and the FAVAR model are less pro-

nounced than in the case of the US model. Such a result is fully expected given the outcome

of our simulation experiments in Section 5. The Euro area dataset is considerably smaller

20Because the model contains four factors, including up to three lags in addition to contemporaneous
terms implies sixteen terms with factors in each equation.
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Figure 2: Impulse responses to real stochastic trend in the Euro area - FAVAR Vs FECM
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than the US dataset, especially in the cross sectional dimension. The simulation results

show that in such a case the differences between the two models become more difficult to

detect.

To facilitate a structural interpretation of the identified real stochastic trend, we com-

pare our impulse responses with the impulse responses reported by Adolfson et al. (2007)

for an estimated DSGE model of the Euro area. The model of Adolfson et al. (2007)

contains a stochastic productivity trend, which allows them to estimate the model on raw,

non detrended data. Their impulse responses to a positive and permanent productivity

shock, reproduced in Appendix C, share a great degree of similarity with our impulse

responses. The signs of responses are matched for most of the variables we report in Fig-

ure 2. Measures of economic activity respond positively, as do prices and interest rates,

wages increase and, finally, the real exchange rate appreciates. The only notable difference

between our and their application is the response of the labor market. While a negative

response of unemployment is fully consistent with theory, the initial decline and only grad-

ual recovery of employment is at odds with the theoretical model. We observe also some

differences in terms of the shape of the responses, which are more delayed and persistent

in our case. In other words, our impulse responses level off at new equilibrium levels more

gradually than in the DSGE model of Adolfson et al. (2007).

The stochastic trend response for the US case is different in its basic shape, namely,

hump-shaped, but conditional on this feature, the adjusting dynamics of other variables

are very comparable.The only notable difference in the US case is a temporary negative
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response of prices and wages. For the remaining variables, real output, private consump-

tion, interest rates and the real exhange rate, the responses are consistent with the DSGE

evidence. Such direct comparability of basic shapes of the responses allows us to inter-

pret the stochastic real trend identified with our approach as the structural stochastic

productivity trend.

7 Conclusions

In this paper we analyse the implications of cointegration for structural FAVAR mod-

els. Starting from a dynamic factor model for non-stationary data, we derive the factor-

augmented error-correction model (FECM), its moving-average representation, and discuss

estimation of the model parameters and of the impulse response functions, relying on the

asymptotic theory developed in Bai (2004).

Our simulation experiments indicate that principal component based estimators (with

a mixture of I(1) and I(0) factors) can recover very well the factor space. Moreover, using

the estimated factors in the factor VAR replicates accurately the true factor responses.

Finally, inserting the estimated factor responses in the FECM, in combination with the

estimated FECM parameters delivers estimated structural impulse responses very close to

the true ones.

Structural analysis in the FECM can be conducted as in structural VARs. We provide

the first analysis of long-run restrictions to identify a permanent productivity shock in the

context of large cointegrated panels. Accounting for cointegration has important effects

on the impulse responses to this shock as it reveals significant differences between the

FECM and the FAVAR. Moreover, the FECM generates responses broadly in line with

the theoretical DSGE analysis of, e.g., Adolfson et al. (2007).

The relevance of the error correction terms to avoid biases in FAVAR responses to

shocks are also confirmed by means of simulations experiments. Simulation results show

that the differences between the impulse response functions obtained by the FECM and the

FAVAR are on average more pronounced the higher is the strength of the error-correction

and the higher are the cross-section and the time series dimensions of the panel. Moreover,

the differences in impulse responses are frequent also in samples of moderate size and with

moderate strength of the error-correction mechanism.

Overall, these results suggest that the FECM that exploits the information in the levels

of nonstationary variables to explicitly model cointegration provides an empirically impor-

tant extension of classical FAVAR models for structural modelling. Other identification

schemes such as sign restrictions could be also adopted in a FECM context. A detailed

analysis of these is beyond the scope of this paper but provides an interesting topic for

further research.
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Appendix A: Impulse response analysis in the FECM and

FAVAR - an analytical illustration

We illustrate analytically the computation of structural responses using the FECM rather

than the FAVAR with a simple but comprehensive example. The example may easily be

seen to be a special case of the general specification introduced in the main text, obtained

by restricting the dimension of the factor space and of the variables of interest studied.

We suppose that the large information set available can be summarized by one I(1)

common factor, f , and that the econometrician is particularly interested in the response of

one of the many variables, x1, and that she can choose any of the three following models.

First, a FECM, where the explanatory variables of the FAVAR are augmented with a term

representing the (lagged) deviation from the long run equilibrium of x1 and f . Second, a

FAVAR model where the change in x1 (∆x1) is explained by an infinite number of its own

lags and by lags of the change in f . And, third, the same model but with a finite number

of lags. We want to compare the differences in IRFs resulting from the three models.

To start with, let us consider a system consisting of the two variables x1 and x2 and

of one factor f . The factor follows a random walk process,

ft = ft−1 + εt, (31)

where εt is a structural shock and we are interested in the dynamic response to this shock.

The factor loads directly on x2,

x2t = ft + ut, (32)

while the process for x1 is given in ECM form as

∆x1t = α (x1t−1 − βft−1) + γ∆ft−1 + vt, α < 0. (33)

or

∆x1t = α (x1t−1 − βft−1) + γεt−1 + vt. α < 0 (34)

Here the processes εt and vt are assumed i.i.d.(0, IN ), while ut is allowed to have a moving

average structure, i.e. ut = u∗t / (1− ηL) , |η| < 1 and u∗t is i.i.d.(0, σ2
u∗) Hence, the DGP

is a FECM.
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Note that the moving-average representation of x1t can be written as

x1t = (1 + α)hx1t−h

+ (1 + α)h−1(−αβ(εt−h + εt−h−1 + ...+ ε−h) + +γεt−h + vt−h+1)

+ (1 + α)h−2(−αβ(εt−h+1 + εt−h + ...+ ε−h+1) + γεt−h+1 + vt−h+2)

...

− (αβ(εt−1 + εt−2 + ...+ ε1) + γεt−1 + vt.

Based on this, the impulse response function takes the following form:

∂∆x1t+h

∂εt
=
∂x1t+h

∂εt
− ∂x1t+h−1

∂εt
= −(1 + α)h−1αβ + α(1 + α)h−2γ.

The FECM representation of x1 can also be written as a FAVAR. In fact, since the

error-correction term x1t − βft evolves as

x1t − βft = (α+ 1) (x1t−1 − βft−1) + γ∆ft−1 + vt − βεt

=
γ∆ft−1

1− (α+ 1)L
+

vt − βεt
1− (α+ 1)L

,

we can re-write equation (33) as

∆x1t = γ∆ft−1 +
αγ∆ft−2

1− (α+ 1)L
+ vt +

α (vt−1 − βεt−1)

1− (α+ 1)L
, (35)

which is a FAVAR of infinite order. The corresponding moving-average representation

then follows directly as

∆x1t = γεt−1 +
αγεt−2

1− (α+ 1)L
+ vt +

α (vt−1 − βεt−1)

1− (α+ 1)L
. (36)

This implies that the impulse responses of the infinite-order FAVAR model would be

∂∆x1t+h

∂εt
= −(1 + α)h−1αβ + α(1 + α)h−2γ.

We therefore see that only using a FAVAR with an infinite number of lags allows us to

recover the same IRFs as in the FECM. However, in practice, a short lag length is used in

the FAVAR, so that the resulting responses will be different from those from the FECM,

the more so the poorer the finite lag approximation is to the infinite order FAVAR.

A simulation experiment whose design is based on a frequently-used panel of US

macroeconomic data, presented in Table 1 in Section 5, reveals that the differences in

the impulse responses obtained by the FECM and the (finite order) FAVAR can be sub-

stantial.
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8 Appendix B: Finite sample properties of the FECM esti-

mators

With the simulation experiments reported here we address three questions related to

the finite sample properties of the FECM estimators. First, we investigate whether the

principal component based estimator efficiently estimates the space spanned by both the

I(1) and I(0) factors. The second issue is concerned with retrieving the impulse responses

to innovations to dynamic factors conditional on sample size. The third issue is related

to estimation of the FECM under the strict DFM assumption when the data generating

process is an approximate DFM.

The exact theoretical structure of (17) is rather specific. Given that the factors esti-

mated by principal components are only a rotation of the true factors, fitting a VAR to

them will not retrieve the theoretical structure given by (17) directly. This is however

unnecessary, and with the simulation experiment we address two questions which enable

us to attack the issue of consistency indirectly but completely. The first is how precisely

PCA retrieves the space spanned by the factors in finite samples. Bai (2004) provides

simulation evidence for the case with I(1) factors only and shows that the method works

well also for relatively small panels. Our setting explicitly allows for both I(1) and I(0)

factors and verifies the Bai simulation results in this more general scenario. Second, we

test whether the impulse responses obtained from the VAR based on the estimated factors

correspond to the true impulse responses obtained with the true model (17) and (8).

The design of the Monte Carlo experiment is the following. The factors are generated

by a VAR such as (16) with one I(1) and one I(0) factor and two lags of each factor. The

sum of the autoregressive coefficients for the I(0) factors is set to 0.7. The two factors are

independent, i.e. the VAR coefficients matrices are diagonal and ut and wt are independent

N(0, 1) processes. Ft and ct enter (1) contemporaneously and with one lag, i.e. p = m = 1.

The loadings λij , φij , j = 0, 1, are drawn from a standard normal distribution. Finally,

the idiosyncratic component is serially correlated. This is modelled by setting the order

of γi(L) to two and drawing the values of γi1 and γi2 from N(0.4, 0.01) and N(0.2, 0.01)

respectively.21

The factors are estimated from the generated Xs in levels by principal components,

imposing the true number of factors. It follows from the representation of the FECM that

there is one I(1) factor - Ft, and three I(0) factors - ∆Ft, ct and ct−1.

To check whether the principal components retrieve the space spanned by the factors

we follow Bai (2004) and estimate the following projection[
F 0
t

c0
t

]
= δ

[
F̂t

ĉt

]
+ vt

21We conducted also robustness checks by varying the persistence in the idiosyncratic components.
Results, available from the authors upon request, exhibit high degree of robustness.
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where F 0
t , c

0
t denote true factors and F̂t, ĉt the estimated factors. We then rotate the

estimated factors towards the true factors by[
F̃t

c̃t

]
= δ̂

[
F̂t

ĉt

]
.

The correlation between F̃t and F 0
t , and c̃t and c0

t indicates how precisely PCA estimates

the space spanned by the factors.

Using F̃t and c̃t we then fit a VAR of order two and estimate the parameters of the

FECM given by (8). The estimated VAR is then used to obtain the impulse responses of

rotated factors to unit shocks to F̃t. The resulting responses, combined with the estimated

parameters of the FECM, yield the impulse responses of the Xs.

Table 3: Correlation between true and estimated factors
(1) (2) (3) (4) (5) (6)

Correlation between

F̃t and F̂t c̃t and ĉt F̃t and F̂t c̃t and ĉt
T N I(1) variables I(1) and I(0) variables

30 50 0.989 0.964 0.995 0.986
50 50 0.995 0.975 0.993 0.989
50 100 0.998 0.989 0.995 0.990
50 250 0.999 0.997 0.997 0.997
50 500 0.999 0.998 0.999 0.998

100 250 0.999 0.998 0.999 0.997
100 500 1.000 0.998 1.000 0.999
100 1000 1.000 0.999 1.000 0.999
250 500 1.000 0.999 1.000 0.999
250 1000 1.000 0.999 1.000 0.999
500 100 1.000 0.993 0.999 0.994
500 250 1.000 0.997 1.000 0.998
500 500 1.000 0.999 1.000 0.999

Notes: Panel with only I(1) data in columns 3 and 4. Panel
with I(1) and I(0) data in columns 5 and 6.

The impulse responses are computed for 100 periods. The VAR for the factors is

estimated with the unit root imposed in the equation for F̃t.
22 In order to mimic the

practice in the empirical example, we do not impose the mutual independence of the

(dynamic) factors.

The experiment consists of 1000 replications. Within each iteration we generate a

new set of parameters and iterate 100 times on random draws of the error processes

ut, wt and vit to get the distribution of impulse responses. The confidence intervals of

the impulse responses are averaged over the 1000 replications and compared to the true

impulse responses.

Table 3 reports the correlation coefficients between the true and the estimated and

rotated factors for different combinations of T and N . As we can see, principal components

capture the space spanned by the factors quite successfully, even at moderate sample sizes.

The correlations increase with both T and N .

22The key results are unaltered if the unit root is not imposed in estimation. The only difference is to
be found in lower efficiency (as reflected in the width of the confidence intervals). Results available from
the authors upon request.
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Table 4 reports measures of coherence between true and estimated impulse responses

for the two factors. In particular, columns (3) and (4) contain the share of periods the

true impulse responses of both factors, either to a shock to the I(1) factors (upper panel)

or a shock to the I(0) factors (lower panel), are outside the bootstrapped 95% confidence

intervals. The results show that virtually no true impulse response is outside the confidence

interval of the responses to the shock to I(1) factors. The shares of responses outside the

confidence interval to a shock to the I(0) factor do not exceed the theoretical 5% level.

Columns (5) - (8) contain the differences between true impulse responses and the responses

averaged across the Monte Carlo replications, which gives a measure of the bias in finite

samples.23 Similar observations apply both to responses to a shock to the I(1) factor

(upper panel), and to a shock to the I(0) factor (lower panel). We can observe that

the impulse responses converge to the true responses quite fast with both T and N . As

expected, also the width of the confidence intervals generally decreases with both N and

T (while holding the other constant).

Table 4: Impulse responses of factors - strict DFM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

% of true IRs True IR - mean IR Conf. int. width
outside 95% CI at horizon at horizon

T N Ft ct 3 12 24 100 3 12 24 100
Responses of Ft to shock to Ft

30 50 0.0 0.0 -0.10 -0.10 -0.10 -0.10 1.42 1.47 1.47 1.47
50 50 0.0 0.0 -0.04 -0.03 -0.03 -0.03 1.03 1.03 1.04 1.04
50 100 0.0 0.0 -0.05 -0.04 -0.04 -0.04 1.06 1.08 1.08 1.08
50 250 0.0 0.0 -0.03 -0.03 -0.03 -0.03 1.03 1.06 1.06 1.06
50 500 0.0 0.0 -0.03 -0.02 -0.02 -0.02 1.03 1.04 1.04 1.04

100 250 0.0 0.0 -0.02 -0.02 -0.02 -0.02 0.93 0.94 0.94 0.94
100 500 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.92 0.93 0.93 0.93
100 1000 0.0 0.0 -0.02 -0.02 -0.02 -0.02 0.92 0.92 0.92 0.92
250 500 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.86 0.86 0.86 0.86
250 1000 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.86 0.85 0.86 0.86
500 100 0.0 0.0 -0.03 -0.04 -0.04 -0.04 0.90 0.90 0.90 0.90
500 250 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.85 0.84 0.84 0.84
500 500 0.0 0.0 -0.01 -0.01 -0.01 -0.01 0.84 0.83 0.83 0.83

Responses of ct to shock to ct
30 50 0.0 1 -0.04 -0.01 0.00 0.00 0.74 0.16 0.03 0.00
50 50 0.0 1 -0.09 -0.01 0.00 0.00 0.68 0.14 0.02 0.00
50 100 0.0 1 -0.09 -0.01 0.00 0.00 0.67 0.13 0.02 0.00
50 250 0.0 1 -0.07 -0.01 0.00 0.00 0.66 0.12 0.01 0.00
50 500 0.0 1 -0.08 -0.01 0.00 0.00 0.65 0.12 0.01 0.00

100 250 0.0 1 -0.10 -0.01 0.00 0.00 0.62 0.10 0.01 0.00
100 500 0.0 1 -0.10 -0.01 0.00 0.00 0.62 0.10 0.01 0.00
100 1000 0.0 1 -0.10 -0.01 0.00 0.00 0.62 0.10 0.01 0.00
250 500 0.0 3 -0.11 -0.01 0.00 0.00 0.58 0.07 0.00 0.00
250 1000 0.0 3 -0.11 -0.01 0.00 0.00 0.58 0.07 0.00 0.00
500 100 0.0 5 -0.14 -0.02 0.00 0.00 0.59 0.07 0.00 0.00
500 250 0.0 3 -0.12 -0.01 0.00 0.00 0.57 0.06 0.00 0.00
500 500 0.0 5 -0.12 -0.01 0.00 0.00 0.57 0.06 0.00 0.00

Notes: 1000 Monte Carlo replications

Corresponding to Table 4 for the factors, Table 5 reports equivalent results for impulse

responses of Xs. To facilitate presentation all statistics are averaged over N variables.

23Note that the generated factors are independent, but independence is not imposed when working
with estimated factors. Because of this, the cross-equation responses of factors are not zero, but still
quantitatively limited. For this reason and in order to save space, Table 4 reports only the responses of
factors to own shocks. Detailed results are available upon request.
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For the impulse responses of Xs we also observe that only a negligible share of impulse

responses deviates from the 95% confidence intervals. The largest shares reported in

column 3 are below 0.5%. These results suggest that the estimation method successfully

retrieves the impulse responses to shocks. Similar observations to those of factors about

the convergence of the impulse responses and their distribution apply also to the impulse

responses of Xs (see columns 4 - 11 in Table 5).

Table 5: Estimation of impulse responses of observable variables - average across Xs -
strict DFM

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
% of true True IR - mean IR Conf. int. width

IRs outside at horizon at horizon
T N 95% CI 3 12 24 100 3 12 24 100

Shock to Ft

30 50 0.00 0.10 0.14 0.15 0.14 5.25 4.05 4.03 4.03
50 50 0.00 0.07 0.08 0.09 0.09 3.01 2.02 2.01 2.00
50 100 0.00 0.07 0.05 0.06 0.06 2.81 1.99 1.98 1.97
50 250 0.00 0.08 0.04 0.05 0.05 2.75 1.88 1.88 1.87
50 500 0.00 0.08 0.03 0.04 0.04 2.71 1.83 1.82 1.83

100 250 0.00 0.10 0.02 0.03 0.03 1.36 0.76 0.76 0.76
100 500 0.00 0.10 0.01 0.02 0.02 1.30 0.70 0.69 0.69
100 1000 0.00 0.09 0.02 0.03 0.03 1.19 0.69 0.69 0.69
250 500 0.02 0.11 0.01 0.01 0.01 0.61 0.27 0.26 0.26
250 1000 0.03 0.10 0.01 0.01 0.01 0.64 0.27 0.27 0.27
500 100 0.13 0.09 0.04 0.05 0.04 0.34 0.19 0.19 0.19
500 250 0.34 0.11 0.01 0.01 0.01 0.44 0.17 0.17 0.17
500 500 0.39 0.11 0.01 0.01 0.01 0.42 0.16 0.16 0.16

Shock to ct
30 50 0.00 0.40 0.01 0.01 0.01 11.03 3.13 3.20 3.23
50 50 0.02 0.40 0.01 0.01 0.00 5.00 1.83 1.84 1.85
50 100 0.02 0.36 0.02 0.02 0.02 4.20 1.52 1.59 1.60
50 250 0.02 0.38 0.02 0.01 0.01 4.47 1.46 1.49 1.50
50 500 0.03 0.38 0.01 0.01 0.01 4.16 1.56 1.63 1.64

100 250 0.10 0.34 0.01 0.01 0.01 1.96 0.96 0.99 0.99
100 500 0.11 0.33 0.01 0.01 0.01 1.77 0.89 0.89 0.89
100 1000 0.11 0.33 0.02 0.01 0.01 1.94 0.95 0.97 0.97
250 500 0.49 0.34 0.01 0.00 0.00 0.86 0.54 0.54 0.54
250 1000 0.46 0.31 0.01 0.00 0.00 0.86 0.58 0.59 0.59
500 100 1.12 0.34 0.02 0.01 0.01 0.58 0.49 0.50 0.50
500 250 0.98 0.33 0.01 0.00 0.00 0.55 0.39 0.38 0.37
500 500 0.94 0.30 0.01 0.00 0.00 0.52 0.39 0.39 0.39

Notes: 1000 Monte Carlo replications. Results in the table refer to mean impulse
responses across N variables. Absolute deviations between true and estimated
impulse responses.

Motivated by the empirical applications in the paper, we next consider one modification

to the data generating process. Both datasets we use contain both I(1) and I(0) variables

and we want to investigate how the presence of I(0) variables affects the finite sample

properties of the estimated factors. The setting of the experiment can be easily adapted

by restricting some of the loadings of Ft to zero.

We focus on the US dataset, because of its larger dimensions. The dataset used in

contains 120 variables, 43 of which are treated as I(0). To replicate this feature we restrict

roughly 36% of the loadings of Ft to zero in each sample setup. The factors are extracted

from generated data using PCA without imposing the zero restrictions on the loadings.

Simulation results, presented in columns 5 and 6 of Table 3, reveal that the presence of

I(0) variables in the panel does not have a detrimental effect on estimation since even at

33



moderate sample sizes PCA successfully retrieves the space spanned by dynamic factors.

Overall, our simulation experiments indicate that principal component based estima-

tors (with a mixture of I(1) and I(0) factors) can recover very well the factor space. More-

over, using the estimated factors in the factor VAR replicates accurately the true factor

responses. Finally, inserting the estimated factor responses in the FECM, in combination

with the estimated FECM parameters, delivers estimated structural impulse responses

very close to the true ones.

Table 6: Impulse responses of factors - approximate DFM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

% of true IRs True IR - mean IR Conf. int. width
outside 95% CI at horizon at horizon

T N Ft ct 3 12 24 100 3 12 24 100
Responses of Ft to shock to Ft

30 50 0 0 -0.04 -0.03 -0.03 -0.03 1.12 1.16 1.16 1.18
50 50 0 0 -0.03 -0.02 -0.02 -0.02 0.99 1.02 1.02 1.02
50 100 0 0 -0.02 -0.02 -0.02 -0.02 1.00 1.00 1.00 1.00
50 250 0 0 -0.02 -0.01 -0.01 -0.01 0.97 0.99 0.99 1.00
50 500 0 0 -0.02 -0.01 -0.01 -0.01 1.00 1.02 1.02 1.02

100 250 0 0 -0.01 -0.01 -0.01 -0.01 0.92 0.91 0.91 0.91
100 500 0 0 -0.01 -0.01 -0.01 -0.01 0.91 0.90 0.90 0.90
100 1000 0 0 -0.01 -0.01 -0.01 -0.01 0.91 0.91 0.92 0.92
250 500 0 0 0.00 0.00 0.00 0.00 0.86 0.86 0.86 0.86
250 1000 0 0 0.00 0.00 0.00 0.00 0.85 0.84 0.84 0.84
500 100 0 0 0.00 0.00 0.00 0.00 0.83 0.82 0.82 0.82
500 250 0 0 0.00 0.00 0.00 0.00 0.83 0.83 0.83 0.83
500 500 0 0 0.00 0.00 0.00 0.00 0.83 0.82 0.82 0.82

Responses of ct to shock to ct
30 50 0 1 -0.01 -0.01 0.00 0.00 0.71 0.15 0.02 0.00
50 50 0 1 -0.05 -0.01 0.00 0.00 0.65 0.10 0.01 0.00
50 100 0 1 -0.05 -0.01 0.00 0.00 0.65 0.11 0.01 0.00
50 250 0 1 -0.05 -0.01 0.00 0.00 0.66 0.13 0.02 0.00
50 500 0 1 -0.06 -0.01 0.00 0.00 0.66 0.12 0.02 0.00

100 250 0 1 -0.09 -0.01 0.00 0.00 0.61 0.09 0.01 0.00
100 500 0 1 -0.09 -0.01 0.00 0.00 0.61 0.10 0.01 0.00
100 1000 0 1 -0.09 -0.01 0.00 0.00 0.62 0.09 0.01 0.00
250 500 0 3 -0.11 -0.01 0.00 0.00 0.58 0.07 0.00 0.00
250 1000 0 3 -0.11 -0.01 0.00 0.00 0.58 0.07 0.01 0.00
500 100 0 3 -0.11 -0.01 0.00 0.00 0.56 0.06 0.00 0.00
500 250 0 3 -0.11 -0.01 0.00 0.00 0.56 0.05 0.00 0.00
500 500 0 5 -0.11 -0.01 0.00 0.00 0.56 0.05 0.00 0.00

Notes: 1000 Monte Carlo replications

The final issue analyzed with the simulation experiment is the estimation of the FECM

under the strcit DFM assumption, while the data-generating process is an approximate

DFM. To this end we modofy the data-generating process from above to include cross-

correlated idiosyncratic errors. In particular, we follow the structure of the Monte Carlo

experiment in Stock and Watson (2002) and set

(1− γi(L)) εit =
(
1 + b2

)
vit + bvi−1,t + bvi+1,t,

where the parameters of γi(L) are set as above and b = 1. The data are thus generated

by an approximate dynamic factor model and on these data we estimate the FECM as

proposed in the paper, i.e. by omitting the (lags of)Xjt from the equations ofXit according

to the (incorrect) strict DFM assumption.

The results, equivalent to those in Tables 4 and 5, are presented in Tables 6 and 7.
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Principal components yield consistent estimates of the factor space even in presence of

cross-correlated idosyncratic errors, which is why we put our attention to the properties

of the impulse responses of observable variables Xit. What can be observed by comparing

Tables 5 and 7 is a great degree of similarity of results. The only notable difference are

the impulse responses at short horizons (horizon 3 in the tables) for which we see that the

presence of cross-correlation of the idiosyncratic component leads to slighlty larges bias

than observed in the case of a strict DFM GDP. The bias decreases both with the impulse

response horizon and both dimensions of the data panel. Similar observations apply to

estimated confidence intervals. These results suggest that estimating the FECM under the

strict DFM assumption does not lead to a significant bias in estimated impulse responses

and/or inefficiency of inference based on bootstrapped confidence intervals.

Table 7: Estimation of impulse responses of observable variables - average across Xs -
approximate DFM

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
% of true True IR - mean IR Conf. int. width

IRs outside at horizon at horizon
T N 95% CI 3 12 24 100 3 12 24 100

Shock to Ft

30 50 0.02 0.16 0.05 0.05 0.05 4.22 3.18 3.18 3.15
50 50 0.18 0.17 0.03 0.03 0.03 2.30 1.43 1.42 1.41
50 100 0.12 0.19 0.05 0.05 0.05 2.57 1.71 1.73 1.74
50 250 0.21 0.17 0.05 0.05 0.05 2.52 1.70 1.70 1.70
50 500 0.14 0.15 0.03 0.03 0.03 2.59 1.54 1.53 1.53

100 250 0.26 0.15 0.02 0.02 0.02 1.22 0.55 0.55 0.55
100 500 0.28 0.14 0.02 0.02 0.02 1.14 0.52 0.52 0.52
100 1000 0.32 0.15 0.02 0.02 0.02 1.22 0.54 0.54 0.53
250 500 0.78 0.12 0.01 0.01 0.01 0.56 0.18 0.18 0.18
250 1000 0.73 0.13 0.00 0.00 0.00 0.61 0.19 0.19 0.19
500 100 1.13 0.14 0.00 0.00 0.00 0.42 0.11 0.11 0.11
500 250 0.86 0.13 0.00 0.00 0.00 0.43 0.13 0.13 0.13
500 500 0.98 0.13 0.00 0.00 0.00 0.48 0.12 0.12 0.12

Shock to ct
30 50 0.06 0.39 0.03 0.03 0.03 6.66 2.13 2.15 2.17
50 50 0.12 0.40 0.02 0.02 0.02 3.68 1.28 1.34 1.34
50 100 0.07 0.33 0.02 0.01 0.01 4.12 1.43 1.44 1.45
50 250 0.12 0.41 0.01 0.01 0.01 3.87 1.34 1.36 1.36
50 500 0.14 0.40 0.02 0.02 0.02 3.72 1.33 1.35 1.35

100 250 0.38 0.36 0.01 0.00 0.00 1.81 0.92 0.94 0.94
100 500 0.38 0.35 0.01 0.00 0.00 1.93 0.85 0.86 0.86
100 1000 0.39 0.36 0.01 0.01 0.01 1.79 0.88 0.91 0.91
250 500 1.43 0.35 0.01 0.00 0.00 0.71 0.52 0.53 0.53
250 1000 1.45 0.34 0.01 0.00 0.00 0.75 0.54 0.54 0.54
500 100 1.99 0.34 0.01 0.00 0.00 0.47 0.45 0.44 0.44
500 250 2.24 0.34 0.01 0.00 0.00 0.44 0.38 0.38 0.39
500 500 2.20 0.33 0.01 0.00 0.00 0.43 0.40 0.40 0.40

Notes: 1000 Monte Carlo replications. Results in the table refer to mean impulse
responses across N variables. Absolute deviations between true and estimated
impulse responses.
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Appendix C: DSGE evidence on impulse responses to inno-

vations to a stochastic productivity trend

In this Appendix we report the responses to a positive and permanent productivity shock

obtained with the Adolfson et al. (2007) estimated DSGE model of the Euro area, for

comparison with the FECM results presented in Section 6.2.

Figure 3: Impulse responses to a permanent technology shock for the EA from Adolfson
et al. (2007)

Note: Benchmark impulse responses under price rigidity and imperfect exchange rate
(pass-through solid, left axis) and flexible prices and wages (dashed, right axis).
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