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Abstract

At what rate should policy-makers discount the future? One long-debated and influ-
ential view holds that the social rate of discount should be lower than the private rate.
This idea has risen to renewed academic and policy prominence in ongoing debates on
the economics of climate change. This paper explores the broader fiscal implications of
social discounting by formalizing and quantifying the portfolio of optimal tax policies in
a dynamic general equilibrium model of fiscal and climate policy. The main finding is
that adopting a different social than private discount rate dramatically alters optimal
tax policy compared to the classic prescriptions from the literature. First, I theoretically
show that, if the government discounts the future less than households, decentralizing the
optimal allocation requires (i) capital income subsidies, (ii) labor income taxes that are
decreasing over time, and/or (iii) consumption taxes that are increasing over time. These
policies stand in stark contrast to the common prescriptions of zero capital income taxes,
constant labor income taxes, and constant (uniform) consumption taxes. Second, I show
that the magnitude of these policy changes is very large for the social discount factors
advocated in the climate change literature. Decentralizing the optimal allocation may
require capital income subsidies ranging from 30 − 65%, and a temporary labor income
tax increase to 53% followed by a continual decline to 36% by the end of the 21st Century.
Regardless of whether policy-makers are motivated to adopt differential social discount-
ing for ethical reasons related to climate change in particular, or intergenerational equity
in general, they should thus be aware that meeting their policy objectives may require
fundamental fiscal policy reform.

1 Introduction

At what rate should policy-makers discount the future? Economists have long debated the ap-

propriate social rate of discount. One particularly influential view holds that the social rate
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of discount should be lower than the private rate for reasons such as inter-generational equity.

Since the 1960s, a rich set of theoretical studies has debated the validity and potential micro-

foundations of this idea (see, e.g., Baumol, 1968; Sen, 1982; Lind, 1982; Caplin and Leahy, 2004,

etc.). However, the broader macroeconomic policy implications of such differential discounting

remain an open question. Recent work by Fahri and Werning (2005, 2007, 2010) demonstrates

that progressive estate taxation can decentralize the optimal allocation in an economy where

the social planner values future generations’welfare differently than current private agents.

While their framework focuses on a stochastic endowment economy with overlapping genera-

tions (OLG), it thus seems clear that differential discounting could also change fiscal policy

prescriptions in a production economy with factor taxation - the focus of this paper.

Importantly, the issue of differential discounting has once again risen to the forefront of

both academic and policy debates in the context of the economics of climate change (see, e.g.,

Arrow et al., 1995). As the impacts of greenhouse gas emissions occur over extremely long

time horizons, optimal climate policy and emissions taxes depend critically on the chosen rate

of discount (Nordhaus, 2007; Interagency Working Group, 2010). A number of economists

have once again argued that it is immoral for policy makers to discount future generations’

welfare at a rate consistent with market interest rates, a view often associated with Nicholas

Stern (2006) in this context.1 Stern thus imposes a "prescriptive" pure rate of social time

preference (0.1% per year) in his climate-economy modeling work, rather than a "descriptive"

value consistent with macroeconomic data (e.g., 1.5% per year). Perhaps the most common

critique of this approach is that it generates savings rates that are too high compared to

actual market data (Nordhaus, 2007; see also, e.g., Gerlagh and Liski, 2014). Consequently,

several recent studies have incorporated differential discount factors for households (βh) and the

government (βg) into climate-economy models (see, e.g., Kaplow, Moyer, and Weisbach, 2010;

Goulder and Williams, 2012; Gerlagh and Liski, 2014; von Below, 2012). Again, however, the

broader policy implications of this normative choice have received limited attention thus far.

In particular, while several studies have noted that there would likely be broader implications

such as for capital allocations over time (e.g., Goulder and Williams, 2012; Manne, 1995), there

have been very few formalizations and quantifications of these implications. Von Below (2012)

demonstrates the necessity of capital income subsidies (alongside carbon taxes) to decentralize

the optimal allocation if the government is more patient than the household. Building on

this insight, Barrage (2016) studies differential discounting in general equilibrium, finding that

(i) capital income subsidies may be a higher policy priority for a ’Sternian’ social planner

than high carbon taxes, depending on the intertemporal elasticity of substitution, and (ii)

that the nature of climate damages - e.g., whether the climate affects the marginal return to

1Earlier studies and authors - such as Cline (1992) - have made similar arguments as well.
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capital investments - becomes critically important in determining constrained-optimal policy

with differential discounting. Both these studies nonetheless remain narrow in focusing on

first-best environmental and tax policies. Whether these results are robust to a more realistic

fiscal policy environment - such as where revenues for capital income subsidies have to be raised

through distortionary tax instruments - remains an open question.

This paper formalizes and quantifies the implications of differential discounting for the

portfolio of optimal distortionary fiscal policies in the Ramsey tradition. More specifically, I

theoretically characterize and empirically quantify optimal tax policies in a dynamic, general

equilibrium growth model with differential planner-household discounting. The fiscal side of

the model incorporates the need for government expenditure through distortionary taxes in the

Ramsey tradition (see, e.g., Chari and Kehoe, 1999), and builds on previous computational

work on optimal Ramsey policies (e.g., Jones, Manuelli, Rossi, 1993). The environmental

side of the model is based on (i) the seminal climate-economy modeling framework of the

DICE/RICE model family (Nordhaus, 2008, 2010; Nordhaus and Boyer, 2000, etc.), (ii) the

growing macroeconomic literature on optimal dynamic environmental policy in general equilib-

rium (e.g., Golosov, Hassler, Krusell, and Tsyvinski, 2014; Gerlagh and Liski, 2014; Acemoglu,

Aghion, Bursztyn, and Hemous, 2012; Leach, 2009, etc.), and (iii) the rich literature on inter-

actions between distortionary taxes and environmental policy (e.g., Goulder, 1995; Bovenberg

and Goulder, 1996, 2002, etc.), most closely on the COMET fiscal climate-economy model of

Barrage (2015). The central contribution of the paper is thus to study the implications of

differential social discounting - a topic of interest in both the public finance and climate change

literatures - within a single, coherent theoretical and quantitative general equilibrium model of

both optimal taxation and climate change.

The main finding is that adopting a different social than private discount rate dramatically

alters optimal fiscal policy compared to the classic prescriptions from the literature. First, I

theoretically show that, if the government discounts the future less than households, decentral-

izing the optimal allocation requires (i) capital income subsidies, (ii) labor income taxes that

are decreasing over time, and/or (iii) consumption taxes that are increasing over time. These

policies stand in stark contrast to the standard setting optimal policy prescriptions of zero cap-

ital income taxation, constant labor income taxes, and constant (uniform) consumption taxes.

Second, I show that the magnitude of the required fiscal policy changes is very large for the

social discount factors advocated in the climate economics literature. In particular, adopting

the social pure rate of time preference advocated by Stern (2006) increases optimal climate

policy stringency significantly, but also has the broader policy implication that a transition to

capital income subsidies is needed, beginning with a 30% subsidy within two model periods,

and increasing to a 65% subsidy by the end of the Century. This policy stands in sharp contrast
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to both current policy of positive capital income taxes (∼ 40% average effective tax rate), and

to the optimal policy prescription of zero capital income taxes in the standard setting where

the government adopts the same discount factor as households. Similarly, decentralizing the

optimal allocation with differential "Stern" discounting changes the optimal labor tax prescrip-

tion from a constant optimal rate of 41% to a high initial rate of 53%, followed by a continual

decline to 36% by the end of the 21st Century. Regardless of whether policy-makers are mo-

tivated to adopt differential social discounting for ethical reasons related to climate change in

particular or intergenerational equity in general, they should thus be aware that meeting their

policy objectives may then require fundamental fiscal policy reform.

The remainder of this paper proceeds as follows. Section 2 sets up the model and provides

the main theoretical results. Section 3 describes the empirical calibration. Section 4 provides

the quantitative results and concluding thoughts.

2 Benchmark Theoretical Model

Households
An infinitely-lived representative household has well-behaved preferences over consumption

Ct and labor supply Lt, with lifetime utility:

U0,h ≡
∞∑
t=0

βthU(Ct, Lt)

In the decentralized economy, the representative household faces the following flow budget

constraint in every period:

(1 + τ ct)Ct + ρtBt+1 +Kt+1 ≤ wt(1− τ lt)Lt + {1 + (rt − δ)(1− τ kt)}Kt +Bt (1)

Here, the consumption-investment good is the numeraire, τ ct denotes the consumption tax

in period t, Bt+1 is purchases of one-period government bonds at price ρt, Kt+1 denotes the

household’s capital holdings in period t+1, wt the gross wage, τ lt the linear labor income tax, τ kt
the linear net-of-depreciation capital income tax, rt the return on capital, δ the depreciation

rate, and Bt repayments of government bond holdings. An alternative specification, which

facilitates a closed-form solution for capital subsidies, specifies capital income taxes as falling

on the total return on capital holdings τ̃ kt+1, yielding budget constraint:

(1 + τ ct)Ct + ρtBt+1 +Kt+1 ≤ wt(1− τ lt)Lt + {(1− δ + rt+1)(1− τ̃ kt)}Kt +Bt (2)
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Letting Uit denote the derivative of the household’s felicity function with respect to argument

i at time t, the household’s first-order conditions can be used to derive the standard optimal

labor-consumption and savings decisions, respectively:

−Ult
Uct

=
wt(1− τ lt)
(1 + τ ct)

(3)

Uct
Uct+1

= βh {1 + (rt+1 − δ)(1− τ kt+1)}
(1 + τ ct)

(1 + τ ct+1)
(4)

or:
Uct
Uct+1

= βh {1− δ + rt+1} (1− τ̃ kt+1)
(1 + τ ct)

(1 + τ ct+1)
(5)

Production
In the benchmark version of the model, the aggregate consumption-investment good is pro-

duced by a competitive representative firm with constant returns to scale production technology

F (At, Kt, Lt) that satisfies the Inada conditions. Here, At denotes the level of total factor pro-

ductivity in period t. Profit-maximization requires the firm to equate factor prices with their

marginal products, denoted by Fit for factor i at time t :

Flt = wt (6)

Fkt = rt

Government
The social planner seeks to maximize the household’s lifetime utility, but discounts the

future at a potentially different rate βg than the household:

U0,g =

∞∑
t=0

βtgU(Ct, Lt) (7)

The government must finance an exogenously given sequence of revenue requirements {Gt}∞t=0.
As is common in the literature, I first model Gt as wasteful government consumption (e.g., Atke-

son, Chari, and Kehoe, 1999; Chari and Kehoe, 1999, etc.). The expanded quantitative version

of the model further adds government transfers to households GT
t to government consumption

requirements in order to match IMF Government Finance Statistics.

The government can raise revenues by issuing bonds and levying taxes on factor income and

5



consumption, with corresponding flow budget constraint:

Gt +BG
t = τ ltwtLt + τ ctCt + τ kt(rt − δ)Kt + ρtB

G
t+1 (8)

or:

Gt +BG
t = τ ltwtLt + τ ctCt + τ̃ kt[1− δ + rt]Kt + ρtB

G
t+1 (9)

It should be noted that, among τ k, τ l, and τ c, only two out of the three are needed to

form a "complete" tax system (Chari and Kehoe, 1999). That is, the same allocation can be

decentralized by many different tax systems that correspond to the same overall wedge between

the relevant marginal rates of substitution (MRS), as can be readily seen for the use of either τ lt
or τ ct to create a wedge in the consumption-leisure tradeoff (3). I thus consider both a version

of the model where the untaxed numeraire is the consumption good or capital investments,

respectively.

The bond market clearing condition is given by:

BG
t+1 = Bt+1 (10)

Competitive Equilibrium
The definition of competitive equilibrium in this economy thus far is standard as it requires

no modification for differential discounting:

Definition 1 A competitive equilibrium consists of an allocation {Ct, Lt, Kt+1}, a set of prices
{pt.rt, wt, ρt} and a set of policies {τ kt, τ lt, τ ct, BG

t+1} such that
(i) the allocations solve the consumer’s and the firm’s problems given prices and policies,

(ii) the government budget constraint is satisfied in every period, and

(iii) markets clear.

The government’s objective is to implement the competitive equilibrium that yields the

highest household lifetime utility (7) for a given set of initial conditions (K0, B0, τ k0, τ c0).

As is standard in the Ramsey optimal taxation literature, the initial capital income tax τ k0
and consumption tax τ c0 are assumed to be exogenously given as they can otherwise be used

as effective lump-sum taxes. I also assume that the government can commit to a sequence

of capital income taxes, in line with much (see discussion in Chari and Kehoe, 1999) but not

all (e.g., Klein and Rios-Rull, 2003; Benhabib and Rustichini, 1997) of the Ramsey taxation

literature.

The set of allocations that can be decentralized as a competitive equilibrium with a set of

taxes and prices can be characterized by two constraints: feasibility and an "implementability"
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constraint that captures the optimizing behavior of households and firms. The following propo-

sition formalizes this point. Note that the key difference compared to the standard version of,

e.g., Chari and Kehoe (1999) is that the present setting requires careful differentiation between

the household’s and the planner’s discount factors in the intertemporal aggregation.

Proposition 2 The allocations {Ct, Lt, Kt+1}, along with initial bond holdings B0, initial cap-
ital K0, initial capital tax τ k0 and consumption tax τ c0 in a competitive equilibrium satisfy:

F (At, Lt, Kt)t + (1− δ)Kt ≤ Ct +Gt +Kt+1 (RC)

and
∞∑
t=0

βth [UctCt + UltLt] =
Uc0

1 + τ c0
[K0 {1 + (Fk0 − δ)(1− τ k0)}+B0] (IMP)

In addition, given an allocation that satisfies (RC)-(IMP), one can construct prices, debt hold-

ings, and policies such that those allocations constitute a competitive equilibrium.

The Proof follows the standard procedure as outlined in Chari and Kehoe (1999), see also

Barrage (2015). The only difference in the present framework is that one must be careful to

employ the household’s discount factor βh rather than the planner’s βg in the derivation of the

implementability constraint (IMP), which captures the optimizing behavior of households. This

is the key benefit of differential discounting models such as this one: they allow the planner to

select a social discount factor for ethical reasons but take as given the behavior of agents in the

economy (see discussions in, e.g., Kaplow, Moyer, and Weisbach, 2010; Goulder and Williams,

2012; von Below, 2012).

2.1 Optimal Allocations and Tax Wedges

The social planner’s problem is to maximize (7) subject to (RC) and (IMP):

max
∞∑
t=0

βtg[U(Ct, Lt, )] (SWF)

+
∞∑
t=0

λt [{F (At, Lt, Kt)}+ (1− δ)Kt − Ct −Gt −Kt+1] (RC)

+φ

 ∞∑
t=0

βth(UctCt + UltLt)︸ ︷︷ ︸
≡Wt

−
{

Uc0
1 + τ c0

[K0 {1 + (Fk0 − δ)(1− τ k0)}]
} (IMP)
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The first-order conditions (FOCs) for the planner’s problem can be combined to derive

expressions for the optimal wedges (between marginal rates of substitution and transformation)

in the economy. Comparison with the optimality conditions governing households’and firms’

behavior, in turn, yields expressions for the corresponding taxes that can decentralize the

optimal allocation.

2.1.1 Capital Income Taxes

The planner’s FOCs imply that the net return on investment optimally evolves according to:

βh [(1− δ) + Fkt+1] =

[(
βtg
βth

)
Uct + φWct

]
[(

βt+1g

βt+1h

)
Uct+1 + φWct+1

] (11)

whereWct denotes the partial derivative of expressionWt in the implementability constraint

(IMP) with respect to consumption at time t. In the decentralized economy, the representative

household’s optimality condition governing savings for a given capital income tax τ kt+1 (when

consumption is the untaxed numeraire) is conversely given by:

βh [1 + (Fkt+1 − δ)(1− τ kt+1)] =
Uct
Uct+1

(12)

or:

βh [(1− δ) + Fkt+1] (1− τ̃ kt+1) =
Uct
Uct+1

(13)

In the standard setting where βg = βh, as is well known, for any set of preferences such that

that the right-hand side of (11) reduces to Uct/Uct+1, optimal effective capital income taxes

are zero (for t > 1) (Atkeson, Chari, and Kehoe, 1999; Judd,1999; Chari and Kehoe, 1999,

etc.). However, as can be seen in (11), the introduction of βG 6= βH introduces a wedge that

will remain even if the other terms would otherwise reduce to Uct/Uct+1. As the optimal tax

implied by this wedge depends on the utility function, I next consider two commonly used

constant elasticity of substitution preferences that satisfy consistency with balanced growth (as

per King, Plosser, and Rebelo, 2001):

U(Ct, Lt) = logCt + v(Lt) (A)

U(Ct, Lt) =
(CtLt

−γ)1−σ

1− σ (B)

where v(Lt) is some function that is increasing and concave in leisure (1− Lt).
With preferences of the form (A), it is straightforward to show that Wct = 0. Consequently,
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the planner’s optimality condition for investment (11) becomes:

βh [(1− δ) + Fkt+1] =
Uct
Uct+1

(
βh
βg

)
(14)

Comparing (12) and (14), it immediately follows that the capital income tax that decen-

tralizes the optimal allocation for t > 0 is given by:

τ ∗kt+1 =

(
βh − βg
βh

)
(Fkt+1 − δ + 1)
(Fkt+1 − δ)

. (15)

or:

τ̃ kt+1
∗
= 1−

βg
βh

(16)

With standard discounting, βg = βh, and that the optimal capital income tax for t > 1 is

thus equal to zero for both specifications. However, differential discounting βg > βh clearly

implies the optimality of a capital income subsidy (as both (15) and (16) are then negative).

Proposition 3 If the social planner’s discount factor βg exceeds the household’s discount factor
βh, and if preferences are of the form (A), then the optimal tax policy requires a capital income

subsidy for all periods t > 1.

For non-separable preferences of the form (B), one can easily show that:

Wct = Uct[1− σ − γ(1− σ)] (17)

Wlt = Ult [1− σ − γ(1− σ)] (18)

Substituting (17) into the planner’s optimality condition for savings (11) yields:

βh [(1− δ) + Fkt+1] =
Uct
Uct+1

[(
βg
βh

)t
+ φ[1− σ − γ(1− σ)]

]
[(

βg
βh

)t+1
+ φ[1− σ − γ(1− σ)]

] (19)

Let the overall wedge term in (19) be denoted ωt:

ωt ≡

[(
βg
βh

)t
+ φ[1− σ − γ(1− σ)]

]
[(

βg
βh

)t+1
+ φ[1− σ − γ(1− σ)]

] (20)

One can then easily show (see Appendix) that the capital income tax that decentralizes the
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optimal allocation defined by (19) is defined by:

τ ∗kt+1 =

(
ωt − 1
ωt

)
(Fkt+1 − δ + 1)
(Fkt+1 − δ)

(21)

It is thus immediately obvious that, if βg = βh, the wedge term (20) reduces to unity, and

the optimal capital income tax (21) equals zero. However, if βg > βh, we have the following

result:

Proposition 4 If the social planner’s discount factor βg exceeds the households’s discount fac-
tor βh, and if preferences are of the form (B) and consistent with balanced growth, then it is

optimal to subsidize capital income for all periods t+ 1 > 1.

Proof. First, note that, for utility parameters consistent with balanced growth, one can easily
show (see Appendix) that:

φ[1− σ − γ(1− σ)] ≥ 0 (22)

Second, noting that βg > βh implies that
(
βg
βh

)t+1
>
(
βg
βh

)t
, it is clear that the numerator

of the wedge term (20) is smaller than the denominator. Consequently, 0 < ωt < 1. As can

readily be seen from equation (21), the optimal capital income tax thus consists of a subsidy

(τ ∗kt+1 < 0). Finally, the restriction of this result to t + 1 > 1 stems from the fact that the

planner’s first-order conditions are non-stationary, implying a different optimal capital income

tax rule for t = 0 versus all subsequent periods. However, the optimality condition (19) is valid

for all t > 0, giving the desired result.

2.1.2 Labor Income Taxes

Combining the planner’s FOCs yields the following condition characterizing the optimal labor-

consumption wedge:
(−Ult/Uct)

Flt
= 1 + φ

[
Wct

Uct
+

Wlt

UctFlt

](
βg
βh

)−t
(23)

In the decentralized economy, the household’s optimal choices for a given labor tax satisfy:

−Ult/Uct
Flt

= (1− τ lt) (24)

Comparing (23) and (24) reveals that the optimal allocation can be decentralized by a labor

income tax implicitly defined by:

τ lt = (−φ)
[
Wct

Uct
+

Wlt

UctFlt

](
βg
βh

)−t
(25)
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For a given intratemporal allocation, differential discounting with βg > βh would thus

imply lower and decreasing labor income taxes compared to the standard case where βg = βh.

However, as the optimal allocation is endogenous, one must again consider specific utility

functions in order to assess the effect of differential discounting on optimal tax policy. In

particular, consider the following functional form for v(Lt) in (A):

U(Ct, Lt) = logCt − v1Lv2t (A’)

It is easy to show that (A′) satisfies the key properties of being increasing and concave in

leisure as long as v1 > 0 and v2 > 1. If preferences are of the form (A′), it follows that:

Wlt = Ultv2 (26)

Substituting (26) into the planner’s optimality condition (23), rearranging terms, and com-

paring with the household’s labor supply condition (24) demonstrates that the net-of-tax rate

on labor income that decentralizes the optimal allocation for t > 0 is implicitly defined by:

(1− τ lt) =
1[

1 + φv2

(
βh
βg

)t] (27)

With standard or descriptive discounting (βg = βh), it is clear from (27) that the optimal

labor income tax would be constant over time. However, with differential or prescriptive dis-

counting (βg > βh), this standard optimal tax smoothing result is overturned. Unfortunately,

one cannot draw unambiguous conclusions on the effect of βg > βh on the optimal labor tax level

since the Lagrange multiplier on the implementability constraint, φ, is endogenous. However,

the rate of change in the optimal labor tax over time can be determined:

Proposition 5 If the social planner’s discount factor βg exceeds the household’s discount factor
βh, and if preferences are of the form (A′), then the optimal tax policy requires labor income

taxes to be decreasing over time for all t after t = 1.

Proof. Consider the optimal labor tax wedge for any period t > 0 (27). The optimal tax at

t+ 1 is defined by:

(1− τ lt+1) =
1[

1 + φv2

(
βh
βg

)t+1]
If βg > βh, then

(
βh
βg

)t+1
<
(
βh
βg

)t
. Noting that φ ≥ 0 and v2 > 0, this, in turn, implies that

(1− τ lt+1) > (1− τ lt).
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Next, with non-separable preferences of the form (B), optimal labor income tax wedges for

t > 0 are unaffected by the assumption that βg > βh. In fact, the optimal wedge is zero for

t > 0 with this type of preferences, implying that all revenue should be raised through initial

labor income taxes and period t = 1 capital income taxes.2 Although similar results have been

found, e.g., by Jones, Manuelli, and Rossi (1997) in a Ramsey taxation model with human

capital with regards to optimal long-run tax rates, in the current setting this result is due do

the specific choice of utility function (B). With the more common variant of non-separable

preferences in this class of utility functions,

U(Ct, Lt) =
(Ct(1− Lt)v)1−σ

1− σ (B’)

the optimal net-of-labor tax rate in the current setting is given by (see Appendix for deriva-

tion):

(1− τ ∗lt) =
1 + φ[1− σ + A(Lt)]

(
βh
βg

)t
1 + φ[1− σ + A(Lt) +B(Lt)]

(
βh
βg

)t (28)

where A(Lt) = (−v)(1−σ)(1−Lt)−1Lt and B(Lt) = (1−Lt)−1. As in the case with separable
preferences (A) considered above, the endogeneity of terms such as φ (the Lagrange multiplier on

the implementability constraint in the planner’s problem) preclude one from drawing definitive

conclusions about the effect of βg > βh on the optimal labor tax wedge level. Unfortunately,

in contrast to the case with separable preferences, here even the rate of change in the optimal

labor tax wedge over time is endogenous due to the labor supply term Lt in (28). Section

3 thus solves for optimal tax rates numerically in an integrated assessment climate-economy

model with fiscal policy optimization.

2.1.3 Consumption Taxes

While the discussion thus far has treated the consumption good as the untaxed numeraire, the

optimal allocation can also be decentralized by a fiscal system of consumption- and labor (or

other combinations of) taxes. In particular, consider a decentralized economy where capital

investments are the untaxed numeraire. The household’s optimal savings condition (4) then

becomes:

Uct
Uct+1

= βh [(1− δ) + Fkt+1]
(1 + τ ct)

(1 + τ ct+1)
(29)

2This can be shown straightforwardly by substituting the terms (17)-(18) into the optimal labor wedge
expression (23) and cancelling terms.
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For separable preferences of the form (A), comparison of (29) with the planner’s optimality

condition for savings (14) shows that, on order to decentralize the optimal allocation, consump-

tion taxes for t > 0 must satisfy:
(1 + τ ∗ct+1)

(1 + τ ∗ct)
=
βh
βg

(30)

Condition (30) immediately implies that optimized consumption taxes must be decreasing

over time (for t > 0) if the planner discounts the future less than households (βg > βh). The

intuition for this result is as follows. Capital income taxes are equivalent to ever-increasing

consumption taxes, as shown and discussed in detail by Judd (1999). Consequently, the desir-

ability of capital income subsidies - of incentives to increase savings and delay consumption -

can be met through ever-decreasing consumption taxes. For example, in the debate surrounding

differential discounting in the climate change literature, it is common to assume βh = 0.985

and βg = 0.999. Condition (30) implies that, in order to decentralize the optimal allocation in

this setting, the after-tax price of consumption should decrease by 1.4% per year.

Finally, for non-separable preferences (B), comparison of the household’s Euler Equation

(29) with the planner’s optimality condition (19) shows that the optimal consumption tax

sequence must satisfy:

(1 + τ ∗ct+1)

(1 + τ ∗ct)
=

[(
βg
βh

)t
+ φ[1− σ − γ(1− σ)]

]
[(

βg
βh

)t+1
+ φ[1− σ − γ(1− σ)]

] (31)

As discussed above, if the government discounts the future less than households (βg >

βh), then the denominator in the right-hand side term of (31) is larger than the numerator.

Consequently, the optimal consumption tax sequence must again be decreasing over time.

Proposition 6 If the social planner’s discount factor βg exceeds the household’s discount factor
βh, and if preferences are of the form (A) or (B), then the optimal consumption tax rate is

decreasing over time for all t after t = 1.

In contrast, with standard discounting (βg = βh), it is clear from (30) and (31) that the

optimal consumption tax (for t > 0) is constant over time. Intuitively, this finding can be

understood both through the lens of the classic uniform commodity taxation result applied

to consumption over time (see, e.g., Chari and Kehoe, 1999), and in terms of the equally

classic ’Chamley-Judd’result on the desirability of no intertemporal distortions in a wide range

of settings (see, e.g., Chamley, 1985; Judd, 1986, 1999; Atkeson, Chari, and Kehoe, 1999;

Acemoglu, Golosov, and Tsyvinski, 2011).
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2.2 Theory Results Summary

The central theoretical finding is that the adoption of different social than private discount

rates drastically alters classic optimal tax policy prescriptions. In the benchmark setting with

descriptive discounting - where the planner adopts the household’s discount rate βg = βh -

the optimal allocation can be decentralized by zero capital income taxes, constant labor taxes,

and/or constant consumption taxes. In contrast, if the planner decides to discount the future

at a lower rate than households (βg > βh), I find that the optimal tax system features capital

income subsidies, labor income taxes that are decreasing over time, and/or consumption taxes

that are decreasing over time. To the best of my knowledge, these far-reaching implications of

differential discounting have not been previously formalized as such, nor incorporated in the

ongoing policy and academic debate on discounting in the economics of climate change.

3 Quantitative Analysis

In order to assess the quantitative importance of the theoretical results in a policy-relevant

setting, I build on the global fiscal climate-economy model of the COMET (Barrage, 2015) to

solve the planner’s problem numerically. The COMET is a dynamic general equilibrium growth

model of the global economy calibrated to incorporate fiscal and climate policy. The climate-

economy modeling side of the COMET builds on the seminal DICE framework of Nordhaus (see,

e.g., 2008, 2010, etc.). DICE is one of three models currently used by the U.S. Government to

estimate the social cost of carbon emissions (Interagency Working Group, 2010). The COMET

expands upon DICE in several ways to include distortionary fiscal policy. The representative

household has non-separable CES preferences similar to (B):

U(Ct, Lt, Tt) =

{
[Ct · (1− φLt)γ]1−σ

1− σ

}
+ α0(Tt)

2 (32)

The additional parameter φ is introduced in order to ensure that the calibration can simul-

taneously match (i) a desired intertemporal elasticity of substitution (σ = 1.5), (ii) a Frisch

elasticity of labor supply of 0.78 based on a survey by Chetty, Guren, Manoli, and Weber

(2011), and (iii) and to rationalize base year (2005) labor supply as estimated from OECD

data (l2005 = 0.227, see Barrage (2015) for details). The specification maintains consistency

with balanced growth. Next, Tt denotes mean atmospheric surface temperature change over

pre-industrial levels, and captures the severity of global climate change. This specification of

preferences permits a representation of the direct effects of climate change on utility (through,

e.g., lost existence value for species suffering extinction). The additively separable formulation,
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however, ensures that optimal tax wedges are not affected by climate change (see Barrage,

2015), and that the theoretical results derived above correspond closely to the quantitative

implementation.

Government revenue requirements and expenditure patterns are calibrated based on IMF

Government Finance Statistics. In the model base year 2005, the PPP-adjusted GDP-weighted

average share of government expenditure is 33.75% of GDP. I further break down observed

expenditures into government consumption (GC
t ∼ 57%) and social transfers (unemployment

insurance, disability insurance, etc.) (GT
t ∼ 43%). On the macroeconomic side, the model

adopts the productivity and population growth rate projections for the 21st and 22nd Centuries

of the DICE/RICE model family (Nordhaus, 2008, 2010). For example, TFP growth is assumed

to decline from 1.37% per year in the first model decade (2010-2020) to 0.76% by the end of

the century. In line with other fiscal computable general equilibrium and optimization models

(e.g., Jones, Manuelli, and Rossi, 1993; Goulder, 1995), I then assume that the level of total

government expenditure Gt grows at the rates of labor productivity and population growth,

with GC
t and G

T
t evolving at constant shares proportional to Gt (e.g., GC

t = Gt (.57)).

The initial year tax rate estimates are based on effective tax rate estimates across countries

by Carey and Rabesona (2002). The PPP-adjusted GDP-weighted average rates for 1995-2000

based on the set of OECD countries in their study are given by:

Labor & Consumption: 35.19% (33)

Capital: 43.27%

There are two production sectors: the final consumption-investment good is produced using

capital, labor, and energy inputs, and energy is produced from capital and labor. Both sectors

assume a Cobb-Douglas production technology, with factor shares based on the literature and

U.S. Bureau of Economic Analysis Data (see Barrage, 2015, for details). There are two types of

energy: carbon-based (e.g., oil, coal, gas) and clean. Production of the former leads to carbon

emissions which accumulate in the atmosphere and change the climate. The climate system

is modeled as in DICE, with three carbon reservoirs (lower ocean, upper ocean/biosphere,

atmosphere) and an exogenous path of projected land-based emissions. Climate change affects

welfare through two channels: direct utility damages as per (32), and output losses in the final

consumption-investment good production sector. Total damages estimates are taken from the

DICE model (Nordhaus, 2008; Nordhaus and Boyer, 2000), and the split into output and utility

damages is based on a calculation presented in Barrage (2015). The majority (∼ 75%) of global
damages are assumed to affect production processes, with the remainder (∼ 25%) projected to
occur outside the production sector.
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Given the non-stationary nature of the optimal Ramsey taxation problem, I numerically

solve the model using a similar but different procedure as in Jones, Manuelli, and Rossi (1993).

The model optimizes directly over all allocations for T periods as well as over the continuation

gross savings rate for after period T (with T = 25, representing 250 years). Then, in order

to enable the global climate to reach a new steady-state before imposing a balanced growth

path, I simulate the model for another 100 years with the continuation savings rate and other

variables (e.g., the clean energy share) locked in at their time T values. Finally, I assume a

balanced growth path after the year 2365 (35 periods), and compute continuation values for

the infinite time horizon. The computation uses Matlab’s optimization package.

4 Quantitative Results and Conclusions

The central quantitative result is that the values of βg currently debated and employed in

the climate change economics literature would require massive changes in fiscal policy in order

to decentralize the optimal allocation. The figures below display optimal tax rates over time

for different values of βg. Households’pure rate of social time preference is held constant at

1.5% per year (βh = 0.985), consistent with macroeconomic data at the assumed intertemporal

elasticity of substitution parameter σ = 1.5 (Nordhaus, 2008). In contrast, for the planner’s

discount factor, a range from βg = 0.985 (standard or descriptive discounting) to the value of

βg = 0.999 adopted by the influential Stern Report (Stern, 2006). Figure 1 displays the results

for optimal capital income taxes over time:
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In line with the theoretical results, the optimal capital income tax with standard discounting

(βg = βh) equals zero after the first optimization period. In contrast, with differential discount-

ing, large capital income subsidies become necessary. For the "Stern" pure rate of social time

preference (βg = 0.999), a 29% subsidy (or −29% capital income tax) becomes necessary in

the third model period, increasing to a 64% subsidy (τ k = −64%) by the end of the century.
These values undoubtedly represent great departures both from standard recommendations and

from current policy practice, thus potentially suggesting some degree of caution in adopting

the prescriptive or differential discounting approach.

Figure 2 displays the labor income taxes that can decentralize the optimal allocation for

different social vs. private discount factors. Again in line with the theoretical results and the

standard prescription from the literature, the optimal labor income tax is constant at ∼ 41%
after the first period with equal discounting (βg = βh). In contrast, if the planner decides to

discount the future at a lower rate than households (βg > βh), labor income taxes must be

decreasing after period t = 1. For the social pure rate of social time preference advocated by

Stern (2006), this would initially require the imposition of very high labor taxes ∼ 53% (in

order to meet the government revenue requirement), declining to∼ 36% by the end of the 21st

Century.
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Finally, in order to place these results in the appropriate policy context, Figures 3 and 4

display optimal climate change and carbon pollution taxes across social discount rates.
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As has been the focus of the literature, a planner adopting the low social discount rates

advocated by authors such as Stern (2006) and Cline (1992) would seek to impose stringent
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environmental policies in order to limit global temperature change to below 2◦C (specifically

1.93C◦). In contrast, if governments adopt a discount factor consistent with household behavior

(βg = βh = 0.985), the optimal policy limits climate change to around 3◦C, in line with the

seminal results of the DICE/RICE model family (Nordhaus, 2008, 2010, etc.). The correspond-

ing optimal carbon tax levels required to decentralize these environmental outcomes range from

$62 per metric ton carbon (mtC) in 2015 ($2005) for standard discounting to $121/mtC with

"Stern" discounting (βg = 0.999). While these climate policy results for differential discounting

are thus well-known, the key contribution and finding of this model is thus to demonstrate that,

in a richer macroeconomic context, the axiomatic choice to impose a social discount rate based

on ethical considerations has dramatic implications for optimal fiscal policy. Both qualitatively

and quantitatively, decentralization of the optimal allocation with differential social discounting

requires changing income tax policy in a way that runs contrary to both the standard prescrip-

tions from the literature, and to current policy practice (specifically a switch to subsidizing

capital income at an ever-increasing rate, and a sharp increase and subsequent decline in labor

income taxes over time).
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5 Appendix

5.1 Derivations for Non-Separable Preferences (B)

5.1.1 Optimal Capital Income Taxes

This section derives the optimal capital income tax expression as a function of the wedge ωt :

ωt ≡

[(
βG
βH

)t
+ φ[1− σ − γ(1− σ)]

]
[(

βG
βH

)t+1
+ φ[1− σ − γ(1− σ)]

]
First, substitute this term into the planner’s first order condition for capital (19) to obtain:

βH [(1− δ) + Fkt+1] =
Uct
Uct+1

ωt (34)

Next, consider the household’s Euler equation for a given capital income tax:

βH [1 + (Fkt+1 − δ)(1− τ kt+1)] =
Uct
Uct+1
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Rearranging terms allows one to express the capital income tax that decentralizes a given

allocation as:

τ kt+1 = 1−
Uct

βHUct+1

(Fkt+1 − δ)
+

1

(Fkt+1 − δ)
(35)

Finally, rearrange terms in the planner’s optimality condition (34) as follows:

[1 + Fkt+1 − δ]
1

ωt
=

Uct
βHUct+1

1−
[1 + Fkt+1 − δ] 1ωt
(Fkt+1 − δ)

+
1

(Fkt+1 − δ)
= 1− (Uct/βHUct+1)

(Fkt+1 − δ)
+

1

(Fkt+1 − δ)
(36)

Comparing (35) and (36), we thus see that the capital income tax that decentralizes the

optimal allocation at t+ 1 for t > 0 is defined by:

τ ∗kt+1 = 1−
[1 + Fkt+1 − δ] 1ωt
(Fkt+1 − δ)

+
1

(Fkt+1 − δ)

=

(
ωt − 1
ωt

)
(Fkt+1 − δ + 1)
(Fkt+1 − δ)

5.1.2 Consistency with Balanced Growth

This section derives the parametric restrictions required to ensure consistency with balanced

growth for preferences (B):

U(Ct, Lt) =
(CtLt

−γ)1−σ

1− σ
Let leisure be denoted Lt = 1− Lt, and re-write the utility function in terms of leisure as:

U(Ct,Lt) =
(Ct(1− Lt)−γ)1−σ

1− σ (37)

The King-Plosser-Rebelo conditions for (37) to be consistent with a balanced growth path

are as follows. Focusing on the case where σ > 1, the sub-function v(L) = (1−Lt)−γ(1−σ) must
be decreasing and convex.

v(L) = (1− Lt)−γ(1−σ) (38)

v′(L) = γ(1− σ)(1− Lt)−γ(1−σ)−1 (39)

v′′(L) = = γ(1− σ)(γ(1− σ) + 1)(1− Lt)−γ(1−σ)−2 (40)
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1) Decreasing:
In order for v(Lt) to be decreasing, as per (39), what is needed is that:

γ(1− σ) < 0

For σ > 1, this condition is satisfied as long as γ > 0.

2) Convex:
Convexity of v(Lt) requires, based on (40), that:

γ(1− σ)(γ(1− σ) + 1) > 0

As we already have that γ(1− σ) < 0, all that is further required is that:

γ >
−1

(1− σ)

3) Overall concavity:
Finally, in order to ensure the overall concavity of the utility function, the leisure preference

function must satisfy:

(−σ)v
′′(L)
v′(L) > (1− σ)

v′(L)
v(L)

⇒ (−σ)v′′(L)v(L) < (1− σ)[v′(L)]2 (41)

Substituting in from (38)-(40), the requirement (41) reduces to:

−σ
(1− σ) < γ (42)

It should be noted that this final condition (42) implies that the other conditions for con-

sistency with balanced growth are satisfied as well.

Finally, consider the claim in Proposition 3 (22) that:

φ[1− σ − γ(1− σ)] ≥ 0

Combining the implications of (42) with the observation that the Lagrange multiplier on

(IMP ), φ, is necessarily weakly positive, confirms this claim.
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5.2 Derivations for Non-Separable Preferences (B’)

5.2.1 Optimal Labor Income Taxes

This section derives an expression for optimal labor income taxes when preferences are of the

non-separable form (B′):

U(Ct, Lt) =
C1−σt

1− σ (1− Lt)
υ(1−σ) (B’)

First, note that (B′) implies that:

Wct = Uct
[
1− σ + (−υ)(1− σ)(1− Lt)−1Lt

]
(43)

Wlt = Ult
[
1− σ + 1 + (−1)(υ(1− σ)− 1)(1− Lt)−1Lt

]
(44a)

Substituting (43)-(44a) into the planner’s leisure-consumption optimality condition,

1 + φ

[
Wct

Uct
+

Wlt

UctFlt

](
βtG
βtH

)−1
=
(−Ult/Uct)

Flt

and rearranging terms leads to:

1 + φ [1− σ + (−υ)(1− σ)(1− Lt)−1Lt]
(
βtG
βtH

)−1[
1 + φ[1− σ + (−v)(1− σ)(1− Lt)−1Lt + (1− Lt)−1]

(
βtG
βtH

)−1] = (−Ult/Uct)
Flt

Defining A(Lt) = (−v)(1− σ)(1− Lt)−1Lt and B(Lt) = (1− Lt)−1 thus yields:

1 + φ[1− σ + A(Lt)]
(
βtH
βtG

)
1 + φ[1− σ + A(Lt) +B(Lt)]

(
βtH
βtG

) = (−Ult/Uct)
Flt

(45)

Finally, note that the household’s optimality condition for the consumption-leisure tradeoff

(1− τ lt) =
−Ult/Uct

Flt

thus implies the desired result that the left-hand-side of (45) defines the net-of-labor tax

rate that decentralizes the optimal allocation.
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