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Abstract

The price of gold is influenced by a wide range of local and global factors such as
commodity prices, interest rates, inflation expectations, exchange rate changes and stock
market volatility among others. Hence, forecasting the price of gold is a notoriously
difficult task and the main problem a researcher faces is to select the relevant regressors
at each point in time. This combination of model and parameter uncertainty is explicitly
accounted for by Dynamic Model Averaging which allows both the forecasting model and
the coefficients to change over time. Based on this framework, we systematically evaluate
a large set of possible gold price determinants and use both the predictive likelihood
and the mean squared error as a measure of the forecasting performance. We carefully
assess which predictors are relevant for forecasting at different points in time through
the posterior probability. Our findings show that (1) DMA improves forecasts compared
to other frameworks and (2) provides clear evidence for the time-variation of gold price
predictors.
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Introduction

There is now a large and growing academic literature on the financial economics of gold. Most studies

focus on one of the key properties of gold, e.g. the inflation hedge property of gold (e.g. Blose, 2010,

Jastram, 2009, and Beckmann and Czudaj, 2013), the currency hedge property of gold (e.g. Capie

et al., 2005 and Sjaastadt and Scacciavillani, 1996) or the safe haven property of gold (e.g. Baur

and Lucey, 2010) but do not entertain gold price forecasts.1 Interestingly, there is no established

forecasting model for gold prices and no framework that simultaneously considers and evaluates all

potential factors and their dynamics. This paper aims to fill this significant gap in the literature by

adopting the Dynamic Model Averaging approach which is well-suited for forecasting under conditions

of uncertainty. The question whether potential determinants of the gold price are also useful in a

time-varying forecasting framework is of great interest for a broad audience. A significant in-sample,

i.e. contemporaneous and thus non-predictive, relationship between the gold prices and particular

determinants over a specific period does not provide a guarantee for success in terms of out-of-sample

predictability. Hence, evaluating the evolution of gold price forecasts based on our framework offers

an interesting perspective for researchers and market participants.

Overall, a researcher who aims at forecasting gold prices faces a variety of issues: Firstly, the deter-

minants of gold potentially change over time resulting in model uncertainty, i.e. the set of variables

that determine the price of gold varies. This can be illustrated by studying the dynamics of the gold

price over the last decades: Having mostly fluctuated around a constant value in the 1980s and 1990s,

the rapid increase observed in the 2000s might be attributed to variables which were not considered

as important determinants up to that point in time. The task is further complicated by the fact that

determinants might be important throughout the sample but to a different degree, resulting in pa-

rameter uncertainty. It is, for example, well established, that the impact of stock market movements

on gold varies over time and is generally higher during times of turbulence. Inflation or inflation

1Baker and Van Tassel (1985) and Pierdzioch et al. (2014) are notable exceptions. The latter also try to
account for model and parameter uncertainty, however they only consider six different predictors and apply
model selection and aggregation methods that are based on recursive and rolling-window OLS estimates. The
selection of the “optimal” forecast model and the weighting of several forecast models solely depend on the
in-sample fit based on information criteria. The aspect which makes our forecasts superior compared to simple
selection and aggregation methods is that our model weights are based on the forecasting performance of the
models in previous periods.
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expectations may also be relevant only at certain periods of time, e.g. when inflation expectations

exceed a specific threshold. In summary, a researcher faces both uncertainty about the variables to

include in a forecasting model - model uncertainty - and uncertainty about the time-variation of the

parameters - parameter uncertainty. Raftery (1995) describes a common approach to account for

model uncertainty by first fitting the full model, screen the t-statistics for the parameters, remove the

variables for which these are small and then re-estimate the resulting, reduced, model. Raftery (1995)

argues that researchers often proceed using the selected model as if it were the only model that had

ever been considered. By choosing among a large number of models one increases the likelihood of

finding significant variables by chance alone.2

An intuitive solution to avoid this model uncertainty is the combination of different models. An

ad-hoc approach is to use a simple average of different forecasts. More sophisticated frameworks

rely on Bayesian techniques, explicitly accounting for a large degree of uncertainty by assigning

probabilities to each model conditional on previous forecasting performance. However, due to the

need of determining a transition matrix Bayesian inference can suffer from a computational burden

if many regressors are included. This becomes obvious if m regressors are considered resulting in 2m

possible model combinations. In other words, a forecasting model with m = 14 variables results in

16, 384 model combinations. If the forecasting model is allowed to change at each point in time t the

number of combinations of models which must be estimated is even much higher.

Against this background, we adopt the Dynamic Model Averaging (DMA) approach introduced by

Raftery et al. (2010) and applied by Koop and Korobilis (2012) for forecasting inflation. Such a

framework has the advantage that both the forecasting model and the coefficients in each model are

allowed to change over time. Another advantage is that a direct comparison with forecasts based on

the “best” model at a certain point in time according to Dynamic Model Selection (DMS) can be

drawn. From an economic point of view, the importance of each predictor over time can be analyzed

by disentangling the dynamics of all underlying models simultaneously. A key ingredient is that a

model will have more weight at time t if it has forecasted well in the period prior to t. In other words,

sequential learning is a key part of the forecasting procedure.

Our main contribution is manifold. We analyze whether forecasts based on Dynamic Model Averaging

2Among others, Deckers and Hanck (2014) have called attention to this multiplicity problem.
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are able to systematically outperform the random walk for forecasting the price of gold. We also

address the important question whether more parsimonious models should be preferred for forecasting.

Finally, we systematically analyze the importance of different gold price predictors over time. In doing

so, we examine how the weights attached to regressors evolve over time and whether model averaging

or model selection provides superior results in terms of the forecasting performance. We consider

Bayesian and classical criteria to assess the adequacy of the obtained forecast.

This paper is structured as follows: Section 1 presents the Dynamic Model Averaging framework.

Section 2 introduces the data used in the estimation. Section 4 describes and discusses the estimation

results and Section 5 summarizes the main findings and provides concluding remarks.

1 Methodology

In our forecasting setup we consider K different models, M1, . . . ,MK , which are given by different

subsets of possible predictors xt = (xtj : j = 1, . . . ,m),3 and we allow for the uncertainty which model

is the best at each point in time t. We apply a state space model which comprises an observation and

a state equation given by

yt = x
>(k)
t θ

(k)
t + ε

(k)
t , (1)

θ
(k)
t = θ

(k)
t−1 + δ

(k)
t , (2)

where yt denotes the endogenous variable (i.e. the price of gold) and θ
(k)
t is a vector of regression

parameters for k = 1, . . . ,K. The measurement noise ε
(k)
t is distributed as N(0, V

(k)
t ) and the process

noise δ
(k)
t as N(0,W

(k)
t ). Both the state vector θ

(k)
t as well as the predictor vector x

(k)
t are different

for each model and the quantities belonging to Mk are represented by the superscript (k). For k = 1

Eq. (1) and (2) can be referred to as a standard state space model, which can be estimated adaptively

with standard Kalman filtering.4

If the process is governed by model Mk at time t, then Lt = k. The evolution of the model changes can

be determined by a K ×K transition probability matrix P , where pk,` = P [Lt = `|Lt−1 = k] denotes

3xt includes the time t− h information set and also includes an intercept. This means that xt contains the
predictors observed at t− 1, when using a forecast horizon of h = 1.

4See Raftery et al. (2010) for details.
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its elements. Since K = 2m, the dimension of this matrix depends on the number of predictors m

and unless m is very small, P will be an enormous matrix. Hence, inference will be imprecise and the

computation will take much time (Koop and Korobilis, 2012). Therefore, we avoid these problems by

the use of an approximation proposed by Raftery et al. (2010) that includes a forgetting factor. This

will be illustrated further below.

In our model setup the underlying state is characterized by the pair (Θt, Lt), where Θt = (θ
(k)
t : k =

1, . . . ,K), and the probability distribution of (Θt, Lt) is

p(Θt, Lt) =

K∑
k=1

p(θ
(k)
t |Lt = k)p(Lt = k), (3)

which will be updated each time as new data becomes available.

The estimation consists of a prediction and an updating step. Suppose at first that we know the

conditional distribution of the state at time t−1 given the time t−1 information set Y t−1 = y1, . . . , yt−1

given by

p(Θt−1, Lt−1|Y t−1) =

K∑
k=1

p(θ
(k)
t−1|Lt−1 = k, Y t−1)p(Lt−1 = k|Y t−1). (4)

The conditional distribution of θ
(k)
t−1 in Eq. (4) can be approximated as follows

θ
(k)
t−1|Lt−1 = k, Y t−1 ∼ N(θ̂

(k)
t−1,Σ

(k)
t−1). (5)

Then the prediction step is a two-step technique: first, we use the model prediction equation to

predict the model indicator Lt and second, we use the parameter prediction equation for a conditional

prediction of the parameter θ
(k)
t given Lt = k from the first step. The model prediction equation is

πt|t−1,k ≡ P [Lt = k|Y t−1] =

K∑
`=1

πt−1|t−1,`pk,`. (6)

As mentioned above, instead of specifying the transition probability matrix P , we use an approxima-

tion that replaces Eq. (6) by

πt|t−1,k =
παt−1|t−1,k∑K
`=1 π

α
t−1|t−1,`

. (7)

α is the forgetting factor mentioned above with 0 < α ≤ 1, this will typically be slightly less than
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unity. The advantage of this approximation applying a forgetting factor is that it does not require an

Markov Chain Monte Carlo (MCMC) algorithm to draw the transition between the models, since we

only need information about πt−1|t−1,k and πt|t−1,k, but not about P .5

Then the parameter prediction equation is

θ
(k)
t |Lt = k, Y t−1 ∼ N(θ̂

(k)
t−1, R

(k)
t ), (8)

where

R
(k)
t = Σ

(k)
t−1 +W

(k)
t . (9)

However, same as for P , to specify each m×m matrix W
(k)
t is computationally infeasible. Therefore,

we again use an approximation proposed by Raftery et al. (2010) that includes a factor of forgetting.

Hence, we replace Eq. (9) by

R
(k)
t = λ−1Σ

(k)
t−1, (10)

where λ denotes the forgetting factor with 0 < λ ≤ 1 that is also typically slightly below unity.

Therefore, W
(k)
t = (λ−1 − 1)Σ

(k)
t−1. The forgetting factor ensures that data which is lagged by i time

periods, gets the weight λi. If we set λ = 0.99 and use monthly data, this means that the observations

three years ago receive around 70% as much weight as the observation of the last period. Hence, the

idea is similar to applying a rolling window regression with a window size of 1
1−λ .6

The prediction step is followed by the updating step, which also consists of two steps: model updating

5The term forgetting factor suggests that more recent information is more relevant than information more
distant in the past and that this is independent of good or bad forecasts. However, the forgetting factor α
implies that a model will receive more weight at time t, if it has produced a good forecast in the recent past,
where the forecasting performance is measured by the predictive density given in Eq. (11).

6The forgetting factors are of crucial importance: In a sense, the key question is whether an approach based
on previous estimation errors is superior to simpler frameworks that are based on constant coefficients. The
attractive feature of forgetting factors in this context is that they allow controlling the degree of instability in
the coefficients. This is important since it is unclear whether rapidly changing coefficients are useful even if a
high uncertainty regarding the relevant regressors or the corresponding elasticity exists. The reason is that fast
changing coefficients might inflate estimation errors. Comparing results based on different forgetting factors
offer a possible assessment of this issue.
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and parameter updating.7 First, the model updating equation is

πt|t,k =
πt|t−1,kfk(yt|Y t−1)∑K
`=1 πt|t−1,`f`(yt|Y t−1)

, (11)

where f`(yt|Y t−1) denotes the predictive density of model ` evaluated at yt given byN(x
>(`)
t θ̂

(`)
t−1, V

(`)
t +

x
>(`)
t R

(`)
t x

(`)
t ). In order to estimate the observation innovation variance V

(`)
t for each model, we apply

a rolling window version of the recursive method of moments estimator suggested by Raftery et al.

(2010):

V̂
(`)
t =

1

t∗

t∑
j=t−t∗+1

[(
yt − x>(`)t θ̂

(`)
t−1

)2
− x>(`)t R

(`)
t x

(`)
t

]
, (12)

where t∗ denotes the window size and has been set to 12 (i.e. one year) in our application. Using a

rolling window is motivated by the fact that the error variance is subject to change over time and a

rolling window allows a better approximation of this changing pattern than a simple recursion.

Second, parameter updating is done via

θ
(k)
t |Lt = k, Y t ∼ N(θ̂

(k)
t ,Σ

(k)
t ), (13)

where

θ̂
(k)
t = θ̂

(k)
t−1 +R

(k)
t x

(k)
t (V

(k)
t + x

>(k)
t R

(k)
t x

(k)
t )−1e

(k)
t (14)

with e
(k)
t = yt − x>(k)t θ̂

(k)
t−1 as the one-step-ahead prediction error of model k, and

Σ
(k)
t = R

(k)
t −R

(k)
t x

(k)
t (V

(k)
t + x

>(k)
t R

(k)
t x

(k)
t )−1x

>(k)
t R

(k)
t . (15)

Note that R
(k)
t x

(k)
t (V

(k)
t +x

>(k)
t R

(k)
t x

(k)
t )−1 is the Kalman gain or the blending factor which minimizes

the posterior error covariance. More precisely, if the observation innovation variance V
(k)
t is zero,

then the actual observation yt is trusted more than its prediction x
>(k)
t θ̂

(k)
t−1. On the other hand, if the

prior estimate for the error covariance Rt approaches zero, then the actual observation yt is trusted

less and less while its prediction x
>(k)
t θ̂

(k)
t−1 is trusted more and more.

7Such a sequential learning procedure offers a greater degree of flexibility than adopting simple averages.
As will be outlined below, the case of equal weights across all models is embedded in our approach and serves
as a prior assumption for all models.
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The process given by Eq. (11) and (13) is iterated each time new data becomes available and it is

initialized by using the noninformative prior π0|0,k = 1/K for k = 1, . . . ,K, and a relatively diffuse

prior on the parameters: θ
(k)
0 ∼ N(0, 100). Then the one-step-ahead prediction of yt (i.e. the price of

gold) is given by

ŷDMA
t =

K∑
k=1

πt|t−1,kŷ
(k)
t =

K∑
k=1

πt|t−1,kx
>(k)
t θ̂

(k)
t−1. (16)

Hence, the gold price prediction is a weighted average of the model-specific predictions ŷ
(k)
t , where

the weights are given by the posterior predictive model probabilities πt|t−1,k at each point in time t.8

These probabilities can be used to evaluate the importance of a model and therefore of a predictor

that is included in this model over time. Using this framework we are able to analyze if and how the

gold price determinants have changed over time.

2 Data

There is no established forecasting model for the price of gold. However, there are several factors

that are viewed to significantly influence the price of gold. These factors can be derived from the

properties gold is generally associated with, i.e. the inflation hedge and store of value property, the

safe haven property, the currency hedge property and the portfolio diversifier property. The variables

that are commonly used to empirically test these properties are consumer price indices, stock prices,

exchange rates and foreign currency reserves. Whilst exchange rates represent the currency hedge

property, the combination of exchange rates and foreign currency reserves represents the role of gold

as a diversifier for central bank foreign currency reserves. We also include interest rates to analyze

the cost of carry (e.g. Blose, 2010) and commodity price indices and silver as potential systematic

factors of gold.9 It is worth mentioning that some of the well-established properties of gold, such

as the inflation hedging function, depend on the sample period under investigation (e.g. Batten et

al., 2014). This provides further evidence for the importance of parameter instability. Overall, our

framework enables us to analyze whether some of the well-established (non-predictive) in-sample gold

price determinants such as the currency hedge are useful for forecasts of the gold price. Theoretically,

8For different forecast horizons h Eq. (16) can be generalized to ŷDMA
t =

∑K
k=1 πt−h+1|t−h,kx

>(k)
t θ̂

(k)
t−h.

9Escribano and Granger (1998) analyzed the co-movement of gold and silver in a co-integration framework.
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it is well possible that even a perfect in-sample fit implies no out-of-sample predictability (see also

Rossi, 2005).

We use (i) the MSCI world stock price index and (ii) the S&P500 composite price index as repre-

sentative stock price indices, (iii) a GARCH(1,1) process of the returns of the MSCI world index

as a measure of stock price volatility,10 (iv) the S&P GSCI commodity price index, (v) the CRB

commodity price index, (vi) the price of silver, (vii) the US consumer price index, (viii) a global

composite price index, (ix) the US dollar trade-weighted index, (x) the euro trade-weighted index,

(xi) US 3-month Treasury bill and (xii) US 10 year Treasury bond yields, (xiii) the Barclays Capital

US aggregate bond index, and (xiv) a global foreign currency reserves index.

The price of gold is the 3pm London fixing price denominated in US dollars. All other variables are

also denominated in US dollars if applicable.

We assume that changes in the price of gold yt depend on a combination of the above factors as

follows

yt = x
>(k)
t θ

(k)
t + ε

(k)
t , (17)

where x
>(k)
t is a vector of variables observed at t − h that defines model k. The data is obtained

from Thomson Reuters Datastream for the 40-year sample period from 1975 to 2014 at a monthly

frequency. Due to stationarity considerations each series is taken as log-first-difference. Interest rates

are the only exception; these are taken in first differences.

Figure I illustrates the evolution of the price of gold and gold returns over the sample period. The

time-series plots demonstrate significant variations of the price of gold in the late 1970s and a clear

bull market from 2002 - 2011. The strong fluctuations during the mid-seventies can be attributed to

the the breakdown of Bretton Woods and the first major oil price shock.

*** Insert Figure I about here ***

10We have also considered the CBOE volatility index (VIX), however the corresponding time series starts
in 1986 and would therefore restrict our sample period. Thus, we make use of a GARCH(1,1) process of the
returns of the MSCI world index as a proxy for the VIX, since the correlation between both series is fairly high.
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Figure II presents the time-series of gold returns exceeding 5% and 10% thresholds for both negative

and positive returns. The graphs demonstrate that volatility of gold returns clusters and that the

volatility is relatively high around 1980 and 2010. The 10% graph provides particularly strong evi-

dence for the clustering with almost no large absolute returns present in the 20-year period between

1985 and 2005.

*** Insert Figure II about here ***

The strong variation in gold returns and gold prices suggests that the factors influencing gold prices

also vary over time.

3 Forecast Performance

The usefulness of gold price forecasts can be assessed based on different criteria: the simplest bench-

mark includes a naive random walk forecast. Regardless of their simplicity, random walk forecasts

have turned out to be a tough benchmark to beat when it comes to forecasting financial variables

such as exchange rates (Meese and Rogoff, 1983) or stock prices where even sophisticated models and

methods frequently fail to provide superior forecast.

Table I reports some forecast error statistics at different forecast horizons (h = 1, 3, 12) for our DMA

and DMS model in comparison to several alternatives including the simple random walk and other

model averaging techniques, where either one or both forgetting factors are fixed. Another simple but

useful benchmark is the “hit ratio” which corresponds to the percentage of correct direction forecasts.

Such a measure is useful within portfolio decisions where the direction rather than the magnitude

of the forecast matters. In addition, we do not only include classical forecast error criteria such as

the mean absolute forecast error (MAFE) or the root mean squared forecast error (RMSFE), but

we also consider a Bayesian criteria: the sum of the log predictive likelihood (log(PL)). This has the

advantage that we do not only evaluate the point forecasts but also consider the entire predictive

distribution f`(yt|Y t−1).
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*** Insert Table I about here ***

Overall, it becomes evident that a forecaster is better off using our flexible approach, which accounts

for both model and parameter uncertainty. More precisely, Table I reveals that DMA or DMS with

forgetting factors of at least 0.95 provides more accurate forecasts compared to less flexible alternatives

such as BMA or DMA with a forgetting factor fixed to unity, i.e. no forgetting. In addition, for a

forecast horizon of one month the sign of the gold return is predicted correctly in at least 50% of the

cases while less flexible alternatives perform slightly worse. In addition, DMS seems to be superior

compared to DMA for a slower forgetting of the past (e.g. forgetting factor of 0.99) while DMA

appears to be better for a faster rate of forgetting (e.g. values of 0.95 or 0.90). Our overall evidence,

that our approach is (1) clearly superior to a simple random walk and (2) flexible enough to outperform

model averaging techniques that do not imply any forgetting (BMA) or do not allow for model and

parameter uncertainty at the same time, also holds for higher forecast horizons. This is supported

by both classical and Bayesian criteria. In the following section we discuss the posterior inclusion

probabilities achieved by our approach with a relatively slow rate of forgetting (α = λ = 0.99) in

order to show that the importance of several gold price determinants has changed over time.

4 Time-Varying Importance of Gold Price Determinants

Figure III shows the time-varying number of predictors (including the constant) included in the

model attached to the highest inclusion probability. The graph provides clear evidence that shrinkage

is needed to provide accurate gold forecasts. In most cases, two or three regressors turn out to be the

optimal choice. Once again, the high-volatility periods at the beginning and the end of the sample

turn out to be exceptions. While frequent switches are observed at the beginning of the sample

until the start of the eighties, the model also briefly includes six or seven regressors three times after

2005. It is quite remarkable that the algorithm drops down to three regressors almost immediately at

each point in time. This demonstrates the flexibility and the learning of the DMA approach: More

regressors are included to account for unexpected changes but a more parsimonious model is selected

quickly afterwards.
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*** Insert Figure III about here ***

Figures IV-VI provide the probability that a predictor is useful for forecasting at time t based on the

weight attached by DMA to models which include the corresponding regressor. An inspection of the

different graphs suggests that the inclusion probability always exceeds 0.5 during at least one point in

time, suggesting that each variable is important at some stage over the sample period. Interestingly,

the importance of some variables such as the US consumer price index significantly decreases after the

first years while other variables such as silver prices become increasingly important as time evolves.

The overall high volatility of the probabilities during the beginning of the sample can be traced back

to the economic turbulence after the first oil price shock.11

Many probabilities also show significant changes around the Millennium. Taking Figure II into ac-

count, it becomes evident that periods of large absolute gold returns coincide with those changes

in the inclusion probabilities. This demonstrates the flexibility of our forecasting approach since

changing patterns of the gold price are reflected in changes of the weights attached to the different

regressors. Furthermore, some regressors are favored once volatility of the gold price increases but the

probabilities decrease again shortly afterwards, illustrating the feature of fast changing weights. We

have already shown in the previous section that this flexibility pays off in terms of forecast accuracy

compared to other averaging techniques.

Figure IV presents the posterior inclusion probabilities for the MSCI world stock market index,

the S&P500 composite stock market index, the GARCH(1,1) of the MSCI stock returns, the S&P

GSCI commodity price index, and silver prices. The stock market indices both exhibit inclusion

probabilities clearly below 0.5 on average with the S&P500 index displaying larger but more volatile

inclusion probabilities than the MSCI world index after 1995. The inclusion probabilities provide

weak evidence for the importance of stock markets to forecast gold prices in general. There is also no

significant evidence for an increased inclusion probability during financial crisis or turmoil consistent

with gold’s safe haven status. More specifically, positive changes of the inclusion probabilities around

the Asian financial crisis and the Russian crisis in 1997 and 1998 and the turmoil following the Lehman

11However, it is worth noting that the probabilities at the very beginning of the sample period should be
interpreted with caution, since these could depend on the choice of the initial conditions, i.e. noninformative
prior on the model probabilities.
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Brothers bankruptcy in 2008 are small and insignificant. The picture is different for the estimated

GARCH volatility of the MSCI stock index returns. The inclusion probability is significantly higher

compared to the return series and increases rapidly between 2000 and 2008. The GSCI commodity

price index exhibits inclusion probabilities close to one around 2006 but stay below 0.5 for most

parts of the sample. The results for the CRB display the same pattern but are more volatile at the

beginning of the sample and are close to zero after. The inclusion probabilities for silver prices are

mostly higher and more volatile with relatively high values between 1995 and 2005 but values below

0.5 at the end of the sample period.

The results for stock and commodity prices confirm that “systematic” factors are only partly im-

portant to forecast gold prices. The overall pattern for stock prices suggests that in-sample (non-

predictive) safe haven or hedge functions of gold against stocks which have been frequently established

over the period under investigation are not necessarily related to out-of-sample predictive power. In

addition, the safe haven effect is often more pronounced on a short-term basis and not significant for

monthly data. These periods may thus be too short to gain weight in the inclusion probabilities of

our monthly dataset.

*** Insert Figure IV about here ***

*** Insert Figure V about here ***

Figure V presents the posterior inclusion probabilities for the US consumer price index (CPI), a global

(world) consumer price index as well as US long-term and short-term interest rates. The inclusion

probabilities of the US CPI indicate that consumer prices have played a big role during the high

inflation regimes in the 1970s and an insignificant role during the “great moderation” period between

1980 and mid-2000, in which inflation rates have been relatively low. The inclusion probabilities have

increased from values of zero in 2000 to values close to 0.4 in 2013. This increase lends weight to the

view that quantitative easing after the financial crisis in 2008 implies higher inflation expectations.

In contrast, the global price index exhibits relatively large inclusion probabilities in the 1980s and
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reduced and more volatile probabilities in the 1990s consistent with the lower inflation rates and

expectations during the “great moderation”. Remarkably, the inclusion probabilities increase around

2005 and are slightly above 0.5 for the post-2008 crisis period. These findings support the inflation

hedge property of gold at a global level and demonstrate that gold is rather influenced by world price

levels than by US price levels.12

We analyze price levels and interest rates in one graph as these series generally co-move as predicted

by the Fisher effect. We focus on US interest rates as a global benchmark. The inclusion probabilities

for 10-year US government bond yields display an inclusion probability above 0.5 in the 1970s and

increases after 1985 and 2000. The shorter maturity 3-month T-bill provides weaker evidence, i.e.

lower and more volatile inclusion probabilities which decrease until 2000 but increase significantly

afterwards and surpass the 10-year bonds at the end of the sample. A possible explanation for this

pattern is that monetary policy currently faces a zero lower bound environment. The traditional role

of long-term government bonds for anchoring inflation is less important since market participants pay

more attention to short-run changes and announcements made by monetary authorities.

*** Insert Figure VI about here ***

Figure VI contains plots for the US dollar trade-weighted index, the euro trade-weighted index, the

world FX reserves of central banks, and the Barclays capital aggregate bond index. All series yield

relatively low inclusion probabilities for most of the sample period between 1980 and until 1995. The

low inclusion probabilities between 1985 and 2000 might be surprising at first but less so if the high

volatility of the US dollar relative to the gold price over this period is taken into account. Of all

indices, world FX reserves display the highest probability at the end of the sample. This probably

mirrors the fact that central banks, most notably, China and India, have only recently started to

diversify their FX reserves and purchased gold. This might have resulted in expectations of ongoing

gold purchases by central banks and is reflected in the low inclusion probabilities on average and the

12The causality pattern between gold returns and inflation is ambiguous. Considering that gold prices
incorporate inflation expectations, one might rather expect that gold forecasts inflation but not that inflation
forecasts gold. However, a possible explanation for our findings is that changes in current inflation also introduce
changes into expected inflation. An increase in expected inflation might then generate additional demand for
gold as market participants use gold to hedge against higher inflation.
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increase of the inclusion probabilities to values above 0.5 in the late 2000s.

Our results provide strong support for the time-variation of factors which drive the gold price. The

most obvious pattern is that most regressors display inclusion probabilities close to zero between

1985 and 2000 when gold returns were low and the price of gold relatively constant. On the other

hand, most inclusion probabilities increase significantly after 1995 when the gold price becomes more

volatile. The large variation in the probabilities suggests that simple averaging over all models is an

inadequate strategy since this would result in equal and constant weights for all models (as mirrored

by the prior) over the full sample period. The results also emphasize that a model that focuses on gold

price forecasts provides different results compared to models that focus on the factors that influence

the price of gold contemporaneously and thus in-sample. For example, exchange rates exhibit a strong

contemporaneous, in-sample effect but essentially no predictive, out-of-sample effect.

5 Summary and Concluding Remarks

This paper proposes Dynamic Model Averaging to forecast the price of gold and contributes to the

gold economics literature with a novel econometric methodology to forecast gold prices. The paper

stresses that accounting for both model and parameter uncertainty is particularly important for an

asset for which no pricing model exists and that is influenced by a variety of local and global factors

that potentially change over time.

The estimation results show that parsimonious forecasting models with only three variables clearly

dominate richer models with up to fourteen variables. However, it becomes also clear that the inclusion

of more predictors is beneficial due to the fact that our averaging approach is more flexible to capture

abrupt changes. In addition, the factors that influence future gold prices vary significantly through

time and can be clearly distinguished from results that focus on the in-sample and non-predictive

relationships within a classical regression model. More precisely, we find that in-sample functions of

gold such as the safe haven property, the currency hedge property or portfolio diversifier property do

not automatically translate into out-of-sample predictability. The results also show that the Dynamic

Model Averaging approach outperforms alternatives such as the random walk and Bayesian Model

Averaging. An appealing feature of DMA is its ability to learn and its flexibility in terms of the

14



weights attached to regressors: as an example, periods of large gold returns coincide with rapid

changes of the inclusion probabilities.

An interesting avenue for future research could be an analysis of the usefulness of gold prices for fore-

casting stocks, bonds, exchange rates or inflation rates within a Dynamic Model Averaging framework.
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Figure I Gold prices and gold returns

This Figure presents the evolution of monthly gold prices (top panel) and monthly gold
returns (bottom panel). The plots illustrate significant variation of the gold price through
time.
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Figure II Large absolute gold returns

The plots show the largest positive and negative gold returns if absolute returns exceed 5%
(top plot) and 10% thresholds (bottom plot). The graphs clearly indicate volatility clustering
in particular in the 1970s and in the post-2008 period.

1970 1980 1990 2000 2010

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

go
ld

 r
et

ur
ns

 >
 5

%

1970 1980 1990 2000 2010

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

go
ld

 r
et

ur
ns

 >
 1

0%

19



Figure III Optimal model size

The graph shows the time-varying number of predictors (including the constant) included in
the model attached to the highest inclusion probability.
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Figure IV DMA posterior inclusion probabilities for stock prices and

commodity prices

The plots show the posterior inclusion probabilities for the MSCI world stock market index,
the S&P500 composite stock market index, the GARCH(1,1) process of the returns of the
MSCI world index (proxy for the VIX), the S&P GSCI commodity price index, the CRB
commodity price index, and silver prices. The graphs provide the probability that a predictor
is useful for forecasting at time t based on the weight attached by DMA to models which
include the corresponding regressor.

MSCI S&P

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

π
t

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

π
t

GARCH(1,1) S&P GSCI

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

π
t

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

π
t

CRB Silver

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

π
t

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

π
t

21



Figure V DMA posterior inclusion probabilities for consumer prices and

interest rates

The plots show the posterior inclusion probabilities for the US consumer price index, a global
(World) consumer price index and US long-term and short-term interest rates.
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Figure VI DMA posterior inclusion probabilities for effective dollar FX

rate and world FX reserves

The plots show the posterior inclusion probabilities for the US dollar trade-weighted index,
the world FX reserves of central banks, the euro trade-weighted index, and the Barclays
Capital US aggregate bond index.
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Table I Comparison of forecast models

h = 1 h = 3 h = 12

MAFE RMSFE Hit ratio log(PL) MAFE RMSFE Hit ratio log(PL) MAFE RMSFE Hit ratio log(PL)

DMA (α = λ = 0.99) 4.34 6.12 0.50 -2.94 4.15 5.77 0.55 -2.96 4.17 5.85 0.55 -2.94

DMA (α = λ = 0.95) 4.15 5.96 0.57 -2.94 4.05 5.73 0.58 -2.95 4.05 5.65 0.60 -2.96

DMA (α = λ = 0.90) 4.10 5.88 0.59 -2.97 4.11 5.94 0.61 -2.97 4.09 5.77 0.59 -2.98

DMS (α = λ = 0.99) 4.24 5.92 0.50 -2.90 4.12 5.71 0.53 -2.92 4.18 5.93 0.55 -2.91

DMS (α = λ = 0.95) 4.34 6.22 0.53 -2.70 4.18 5.82 0.57 -2.75 4.16 5.86 0.58 -2.76

DMS (α = λ = 0.90) 4.60 6.52 0.54 -2.45 4.56 6.41 0.54 -2.48 4.48 6.26 0.57 -2.49

BMA (α = λ = 1) 4.41 6.16 0.48 -2.97 4.74 6.49 0.49 -3.05 4.23 5.95 0.51 -2.95

DMA (α = 0.99, λ = 1) 4.44 6.22 0.48 -2.94 4.56 6.30 0.52 -3.01 4.20 5.87 0.53 -2.93

DMA (α = 1, λ = 0.99) 4.32 6.05 0.50 -2.96 4.23 5.80 0.52 -2.98 4.19 5.93 0.54 -2.94

Random walk 5.78 7.94 0.50 – 5.54 7.80 0.53 – 5.60 7.76 0.52 –

Note: The table reports the mean absolute forecast error (MAFE), the root mean squared forecast error (RMSFE), the hit ratio, and the sum of the log

predictive likelihood (log(PL)) for each model alternative.
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