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Abstract

We find that when the income share of the top 1% income earners
in the U.S. rises above trend by one percentage point, subsequent one
year market excess returns decline on average by 5.6%. This negative
relation remains strong and significant even when controlling for classic
return predictors such as the price-dividend and the consumption-wealth
ratios. To explain this stylized fact, we build a general equilibrium asset
pricing model with heterogeneity in wealth and risk aversion across agents.
Our model admits a testable moment condition and a novel two factor
covariance pricing formula, where one factor is inequality. Intuitively,
when wealth shifts into the hands of rich and risk tolerant agents, average
risk aversion falls, pushing down the risk premium. Our model is broadly
consistent with data and provides a novel positive explanation of both
market excess returns over time and the cross section of returns across
stocks.

Keywords: equity premium; heterogeneous risk aversion; return pre-
diction; wealth distribution.
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1 Introduction

Does the wealth distribution matter for asset pricing? Common sense tells us
that it does: as the rich get richer, they buy risky assets and drive up prices.
Indeed, over a century ago prior to the advent of modern mathematical finance,
Fisher (1910) argued that there is an intimate relationship between prices, the
heterogeneity of agents in the economy, and booms and busts. He contrasted
(p. 175) the “enterpriser-borrower” with the “creditor, the salaried man, or the
laborer,” emphasizing that the former class of society accelerates fluctuations
in prices and production. Central to his theories of fluctuations were differences
in preferences and wealth across people.

Following the seminal work of Lucas (1978), however, the “representative
agent” consumption-based asset pricing models—which seem to allow no role
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for agent heterogeneity—have dominated the literature, at least until recently.
Yet agent heterogeneity may (and is likely to) matter even if a representative
agent exists: unless agents have very specific preferences that admit the Gorman
(1953) aggregation (a knife-edge case, which is unlikely to hold in reality), the
preferences of the representative agent (in the sense of Constantinides (1982))
will in general depend on the wealth distribution, as pointed out by Gollier
(2001). Indeed, even with complete markets, the preferences of the represen-
tative agent are typically nonstandard when individual utilities do not reside
within quite particular classes.

To see the intuition as to why the wealth distribution affects asset pricing,
consider an economy consisting of people with different attitudes towards risk
or beliefs about future dividends. In this economy, equilibrium risk premiums
and prices balance the agents’ preferences and beliefs. If wealth shifts into the
hands of the optimistic or less risk averse, for markets to clear, prices of risky
assets must rise and risk premiums must fall to counterbalance the new demand
of these agents. In this paper, we establish both the theoretical and empirical
links between income/wealth inequality and asset prices.

This paper has two main contributions. First, we build a simple general
equilibrium model of asset prices with heterogeneous agents and derive testable
implications linking asset returns and inequality across risk aversion types. We
show that the stochastic discount factor depends both on market returns and
average risk tolerance, which depends on the wealth distribution. Although the
connection between the heterogeneity of agents’ risk aversion and asset prices
has been recognized at least since Dumas (1989) and recently emphasized by
Gârleanu and Panageas (2012), the literature presents few testable implications
that can be easily examined in financial data. We thus provide a link allowing
us to subject the theory to empirical scrutiny. The model also implies a new
covariance pricing formula regarding the cross section of returns across assets:
the average return of a stock depends positively on its correlation with the
market and negatively on its correlation with the wealth share of risk tolerant
agents. In short, the wealth distribution determines an asset pricing factor:
average risk aversion across agents. When average risk aversion is low, average
marginal utility is high. Therefore, assets correlated with top wealth shares
(and thus average risk tolerance) command relatively low risk premiums.

We also illustrate the effect of the wealth distribution on asset prices with
numerical examples. Two agents inhabit the model and trade a riskless bond
in zero net supply and a risky asset in positive supply. We consider two exam-
ples, one in which agents have constant but heterogeneous relative risk aversion
preferences, and another in which agents have identical but decreasing relative
risk aversion preferences. Note that with declining relative risk aversion the
wealthy are endogenously less risk averse. We perform comparative statics with
respect to the initial endowment share of the more risk tolerant agent and find
an inverse relationship between his income and the subsequent equity premium.
In line with intuition, as the risk tolerant rich get richer, they buy risky assets,
increasing their relative price. Subsequent excess returns thus fall.

Second, we empirically explore the theoretical predictions. We find that
when the income share of the top 1% income earners in the U.S. is above trend,
the subsequent one and five year U.S. stock market equity premiums are below
average. That is, current inequality appears to forecast the subsequent risk pre-
mium of the U.S. stock market. Many heterogeneous agent general equilibrium
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models in both macroeconomics and finance predict a relationship between the
concentration of income and asset prices (see Section 1.1). We thus provide em-
pirical support for a literature which has been subject to relatively little direct
testing. Furthermore, the patterns we uncover are intuitive. In short, if one
believes top earners are all else equal more willing to trade risk for return, then
it should not be surprising that in the data asset returns suffer as the rich get
richer.

More specifically, we employ regression analysis to establish the correlation
between inequality and returns. Regressions of the year t to year t+1 excess re-
turn on the year t top 1% income share indicate a strong and significant negative
correlation: when the top 1% income share rises above trend by one percentage
point, subsequent one year market excess returns decline on average by 5.6%.
This relation is strongly statistically significant and admits an R-squared of 9%.
We show that estimated top wealth share series and the .1% income share also
negatively predict subsequent returns. Furthermore, the top 1% income share
predicts asset returns even after we control for some classic return forecasters
such as the price-dividend ratio (Shiller, 1981) and the consumption-wealth ratio
(Lettau and Ludvigson, 2001). It appears that the top 1% income share is not
simply a proxy for the relative price level, which previous research shows corre-
lates with subsequent returns. This is perhaps surprising because one imagines
the rich being disproportionately exposed to stock price fluctuations. Our find-
ings are also robust to the exclusion of capital gains in the income share series,
to the inclusion of macro control variables, and to a large variety of detrending
methods. Top marginal income tax rates are correlated with the 1% share but
seemingly uncorrelated with subsequent excess returns. Using the top tax rate
as an instrument magnifies the estimated impact of inequality on returns (at
both the one and five year horizons) but also increases the standard error of the
estimate.

We also empirically investigate the key moment conditions of the model. We
structurally estimate the model’s moment conditions to explore the extent to
which the 6 Fama-French portfolios (sorted by size and book-to-market ratio) are
explained by their relationship with market returns and inequality between two
risk aversion types. As conjectured, we find that the rich are more risk tolerant
than are the poor. We fail to reject our models and show that they outperform
their homogeneous agent (standard CAPM) counterpart with respect to the
Fama-French portfolios. We provide estimates of average risk tolerance over
time in the U.S. and argue that its fluctuations are qualitatively in line with
Irving Fisher’s narratives.

Because any asset pricing model is inherently misspecified, we supplement
the GMM exercise by the misspecification-robust two-pass estimation of Kan et al.
(2013). In the first-pass time series regression, the income share coefficient is
significant for three of six Fama-French portfolios (the “small” ones). More-
over, in line with our model, the income share coefficients are inversely related
to the average portfolio returns: high return portfolios like “small size, high
book-market” are negatively correlated with the top 1% share, and low return
portfolios like “big size, low book-market” are positively correlated with the top
1% share. To reiterate, our explanation for this pattern is very simple and relies
only on the 1% being more risk tolerant: as the rich get richer, the economy’s
risk tolerance increases and marginal utility rises. Thus, assets negatively cor-
related with the 1% have low payouts in high marginal utility states and thus
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command a high risk premium. In the second-pass regression, our two factor
model performs similarly to the Fama-French three factor model. And, accord-
ing to the misspecification-robust estimation, the risk premium on the top 1%
income share is negative and significant.

The rest of the paper is organized as follows. After discussing the literature,
Section 2 introduces two simple models in which heterogeneity matters for as-
set pricing. We derive testable implications and provide numerical examples.
Section 3 establishes the empirical link between inequality and subsequent asset
returns. Section 4 estimates and tests heterogeneous risk aversion models and
explores the ability of the models to explain the cross section of returns.

1.1 Related literature

For many years after Fisher, in analyzing the link between individual utility
maximization and asset prices, financial theorists either employed a rational
representative agent or considered cases of heterogeneous agent models that ad-
mit aggregation, that is, cases in which the model is equivalent to one with a
representative agent. Extending the portfolio choice work of Markowitz (1952)
and Tobin (1958), Sharpe (1964) and Lintner (1965a,b) established the Capital
Asset Pricing Model (CAPM).1 These original CAPM papers, which concluded
that an asset’s covariance with the aggregate market determines its return, ac-
tually allowed for substantial heterogeneity in endowments and risk preferences
across investors. However, their form of quadratic or mean-variance preferences
admitted aggregation and obviated the role of the wealth distribution.

The seminal consumption-based asset pricing work of Lucas (1978), Breeden
(1979), and Hansen and Singleton (1983) also abstracted from investor hetero-
geneity. They and others derived and tested analytic relationships between
the marginal rate of substitution of a representative agent (with standard pref-
erences) and asset prices. Despite the elegance and tractability of the repre-
sentative agent/aggregation approach, it has failed to adequately explain the
fluctuations of asset prices in the economy. Largely inspired by the limited
empirical fit of the CAPM (in explaining the cross section of stock returns),
the equity premium puzzle (Mehra and Prescott, 1985), and excess stock mar-
ket volatility and related price-dividend ratio anomalies (Shiller, 1981), since
the 1980s theorists have extended macro/finance general equilibrium models to
consider non-standard utility functions and meaningful investor heterogeneity.
These models can be categorized into two groups.

In the first group, agents have identical standard (constant relative risk aver-
sion) preferences but are subject to uninsured idiosyncratic risks.2 Although
the models of this literature have had some quantitative success, the empirical
results (based on consumption panel data) are mixed and may even be spuri-
ously caused by the heavy tails in the cross-sectional consumption distribution
(Toda and Walsh, 2014).

In the second group, markets are complete and agents have either heteroge-

1See Geanakoplos and Shubik (1990) for a general and rigorous treatment of CAPM theory.
2Examples are Mankiw (1986), Constantinides and Duffie (1996), Heaton and Lucas

(1996), Krusell and Smith (1998), Brav et al. (2002), Cogley (2002), Balduzzi and Yao (2007),
Kocherlakota and Pistaferri (2009), among many others. See Ludvigson (2013) for a review.
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neous CRRA preferences3 or identical but non-homothetic preferences.4 In this
class of models the marginal rates of substitution are equalized across agents
and a “representative agent” in the sense of Constantinides (1982) exists, but
aggregation in the sense of Gorman (1953) fails. Therefore there is room for
agent heterogeneity to matter for asset pricing. However, this type of agent
heterogeneity is generally considered to be irrelevant for asset pricing because
in dynamic models the economy is dominated by the richest agent (the agent
with the largest expected wealth growth rate) in the long run (Sandroni, 2000;
Blume and Easley, 2006).5 One notable exception is Gârleanu and Panageas
(2012), who study a continuous-time overlapping generations endowment econ-
omy with two agent types with Epstein-Zin constant elasticity of intertemporal
substitution/constant relative risk aversion preferences. Even if the aggregate
consumption growth is i.i.d. (geometric Brownian motion), the risk-free rate
and the equity premium are time-varying, even in the long run. The intuition
is that when the risk tolerant agents have a higher wealth share, they drive up
asset prices and the interest rate. The effect of preference heterogeneity persists
since new agents are constantly born. Consistent with our empirical findings
and model, the calibration of Gârleanu and Panageas (2012) suggests that in-
creasing the consumption share of more risk tolerant agents pushes down the
equity premium. All of the above works are theoretical, and our paper seems
to be the first in the literature to empirically test the asset pricing implications
of models with preference heterogeneity.

Although the wealth distribution theoretically affects asset prices, there are
few empirical papers that directly document this connection. To the best of
our knowledge, Johnson (2012) is the only one that explores this issue using
income/wealth distribution data. In particular, he shows that portfolios posi-
tively correlated with income concentration command lower average excess re-
turns (consistent with our findings in Section 4). However, his analysis is quite
different from ours. First, his model relies on a “keeping up with the Joneses”-
type consumption externality with incomplete markets. In contrast, we employ
a standard general equilibrium model (a plain vanilla Arrow-Debreu model).
Next, he does not directly test moment conditions from his model, whereas we
perform structural estimation of heterogeneous risk aversion parameters. Nor
does he derive and estimate our two factor covariance pricing formula or discuss
average risk tolerance. Finally, Johnson (2012) does not explore the ability of
top income shares to predict market excess returns, and he detrends inequality
differently from the way we do.

Lastly, our study is related to the empirical literature on heterogeneity in
risk preferences. A number of recent papers have found that the wealthy have
portfolios more heavily skewed towards risky assets, and many of these studies
have concluded that the wealthy are relatively more risk tolerant, either due to
declining relative risk aversion or innate heterogeneity in relative risk aversion.
See, for example, Carroll (2002), Vissing-Jørgensen (2002), Campbell (2006),
Bucciol and Miniaci (2011), or Calvet and Sodini (2014). This literature lends
credibility to our premise that the rich are relatively more tolerant. Further-

3Examples are Dumas (1989), Wang (1996), Chan and Kogan (2002), Hara et al. (2007),
Longstaff and Wang (2012), and Bhamra and Uppal (2014).

4Examples are Gollier (2001) and Hatchondo (2008).
5Coen-Pirani (2004) and Guvenen (2009) study cases with incomplete markets and hetero-

geneous Epstein-Zin preferences.
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more, we structurally estimate that the rich are relatively more risk tolerant and
thus support the findings of these authors, albeit with a different framework and
dataset.

2 Asset pricing implications of preference het-

erogeneity

In this section we present two simple models in which the heterogeneity in
agents’ attitude towards risk matters for asset pricing and derive testable im-
plications as well as a novel covariance pricing formula.

2.1 Asset pricing with heterogeneous risk aversion

2.1.1 Model with arbitrary preferences

Consider a two period model with time indexed by t and t + 1. There are I
agents indexed by i = 1, . . . , I. Agent i has the expected utility over final wealth
wi,t+1,

Et[ui(wi,t+1)],

where ui is von Neumann-Morgenstern utility function with u′
i > 0 and u′′

i < 0.
There are J assets indexed by j = 1, . . . , J . Asset j trades at price qj per share
(to be determined in equilibrium) at t and pays dividend Dj at t + 1. Agent i

is endowed with nij shares of asset j at t. Let wit =
∑J

j=1 qjnij be the initial
wealth of agent i. Letting n′

ij be the number of shares agent i holds after trade,
the optimal portfolio problem is

maximize
{n′

ij}
Et[ui(wi,t+1)]

subject to

J
∑

j=1

qjn
′
ij = wit, wi,t+1 =

J
∑

j=1

Djn
′
ij . (2.1)

Assuming no trade frictions, the first-order condition for optimality with respect
to n′

ij is
Et[u

′
i(wi,t+1)Dj ] = λiqj ,

where λi > 0 is the Lagrange multiplier for the budget constraint. Dividing by
qj and letting Rj,t+1 = Dj/qj be the gross return on asset j and assuming the
existence of a risk-free asset (with gross risk-free rate Rf,t), we obtain

Et[u
′
i(wi,t+1)(Rj,t+1 −Rf,t)] = 0.

Using the Taylor approximation

u′
i(x) ≈ u′

i(ai) + u′′
i (ai)(x− ai)

around the expected future wealth ait = Et[wi,t+1], letting x = wi,t+1, we obtain

Et[(u
′
i(ait) + u′′

i (ait)(wi,t+1 − ait))(Rj,t+1 −Rf,t)] = 0, (2.2)
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where we have written = instead of ≈. Dividing both sides by −u′′
i (ait) > 0 and

using the definition of the relative risk tolerance (reciprocal of the Arrow-Pratt
measure of relative risk aversion)

τi = −
u′
i(ait)

aitu′′
i (ait)

,

we obtain
Et[(aitτi − (wi,t+1 − ait))(Rj,t+1 −Rf,t)] = 0. (2.3)

Adding across all agents, letting Wt+1 =
∑I

i=1 wi,t+1 be the aggregate wealth

at t+ 1, and dividing by Et[Wt+1] =
∑I

i=1 ait, we obtain

Et[(τ̄ −Wt+1/Et[Wt+1] + 1)(Rj,t+1 −Rf,t)] = 0,

where τ̄ =
∑

i aitτi/
∑

i ait is the weighted average risk tolerance. Now since
every asset must be held by some agent in equilibrium and there is no con-
sumption at t, adding individual budget constraints, the growth rate of aggre-
gate wealth must be equal to the market return Rm,t+1. Therefore Wt+1 =
Rm,t+1Wt. Taking expectations, we obtain Et[Wt+1] = Et[Rm,t+1]Wt. There-
fore Wt+1/Et[Wt+1] = Rm,t+1/Et[Rm,t+1]. Putting all the pieces together, we
obtain

Et[((τ̄ + 1)Et[Rm,t+1]−Rm,t+1)(Rj,t+1 −Rf,t)] = 0, (2.4)

which is the key moment condition that we will exploit throughout the rest of
the paper.

Alternatively, if we apply the Taylor approximation around the initial wealth
wit instead of the expected future wealth Et[wi,t+1], (2.2) holds with ait = wit.
Adding across i and dividing by aggregate wealth Wt =

∑

i wit, we get

Et[(τ̄ + 1−Rm,t+1)(Rj,t+1 −Rf,t)] = 0, (2.5)

where τ̄ =
∑

i witτi/
∑

iwit is the average risk tolerance weighted by initial
wealth.

The moment conditions (2.4) and (2.5) are both valid approximations; (2.4)
is more accurate because we approximate around the expectation of the relevant
variable (future wealth), but (2.5) is easier to handle because there is no need
to predict future stock returns or the wealth distribution.

2.1.2 Model with quadratic preferences

The above discussion is only approximate since it involves linear approximations,
but it can be made exact under some assumptions. Assume that in addition to
the risky J assets, agents can trade a risk-free asset in zero net supply, where
the risk-free rate Rf is determined in equilibrium. Let θ = (θ1, . . . , θJ) be a
portfolio, where θj is the fraction of wealth of a typical agent invested in asset
j. Then the fraction of wealth invested in the risk-free asset is 1 −

∑

j θj .
Therefore the return on the portfolio θ is

R(θ) =
J
∑

j=1

Rjθj +Rf



1−
J
∑

j=1

θj



 = Rf +
J
∑

j=1

(Rj −Rf )θj ,
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where Rj is the gross return on asset j.
Now consider exactly the same model except preferences. Suppose that

agents are mean-variance optimizers. More precisely, agent i maximizes

vi(θ) = E[R(θ)] −
1

2τi
Var[R(θ)],

where τi > 0 is the risk tolerance. The expected return and variance of the
portfolio are

E[R(θ)] = Rf + 〈µ−Rf1, θ〉 , Var[R(θ)] = 〈θ,Σθ〉 ,

respectively, where µ = (µ1, . . . , µJ) is the J-vector of expected returns µj =
E[Rj ], 1 is the J-vector of ones, and Σ is the variance-covariance matrix of
the returns R = (R1, . . . , RJ ). Thus the optimal portfolio problem of agent i
reduces to

maximize
θ

Rf + 〈µ−Rf1, θ〉 −
1

2τi
〈θ,Σθ〉 ,

where θ ∈ R
J is unconstrained. The first-order condition is

µ−Rf1−
1

τi
Σθ = 0 ⇐⇒ θ∗i = τiΣ

−1(µ−Rf1), (2.6)

where θ∗i is the optimal portfolio of agent i.
Since every asset must be held by someone and the risk-free asset is in zero

net supply by definition, the average portfolio weighted by individual wealth,
∑

wi0θ
∗
i /

∑

i wi0, must be the market portfolio (value-weighted average port-

folio), denoted by θm. Letting τ̄ =
∑I

i=1 wi0τi/
∑I

i=1 wi0 be the average risk
tolerance, by taking the weighted average of the first-order condition (2.6), we
get

θm = τ̄Σ−1(µ−Rf1). (2.7)

Multiplying both sides of (2.7) by Σ and comparing the j-th element, we get

Cov[Rm, Rj ] = τ̄ E[Rj −Rf ],

where Rm = R(θm) is the market return. Since

Cov[Rm, Rj ] = E[(Rm − E[Rm])(Rj −Rf +Rf )]

= E[(Rm − E[Rm])(Rj −Rf )],

it follows that
E[(τ̄ + E[Rm]−Rm)(Rj −Rf )] = 0. (2.8)

(2.8) is identical to (2.4) or (2.5) except that 1 is replaced by E[Rm].

2.2 Covariance pricing formula

Using the moment conditions derived above, we can obtain a two factor covari-
ance pricing formula. For simplicity, assume that there are two types of agents
with high and low risk tolerance τH and τL. Letting

0 < αt = Et[wH,t+1]/Et[Wt+1] < 1
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be the fraction of wealth of high risk tolerant agents, from (2.4) we get

Et[((1 + αtτH + (1− αt)τL) Et[Rm,t+1]−Rm,t+1)(Rj,t+1 −Rf,t)] = 0. (2.9)

We can derive similar moment conditions from (2.5) and (2.8).
The moment condition (2.9) implies that

Mt+1 = (1 + αtτH + (1− αt)τL) Et[Rm,t+1]−Rm,t+1

is a scaled stochastic discount factor. Taking the conditional expectations and
using the definition of covariance, from (2.9) with the market return we obtain

Et[Rm,t+1]−Rf,t = −
Covt[Mt+1, Rm,t+1]

Et[Mt+1]
=

1

τL + αt∆τ

Vart[Rm,t+1]

Et[Rm,t+1]
, (2.10)

where ∆τ = τH − τL > 0. Similarly, taking the unconditional expectations and
using the definition of covariance, from (2.9) we obtain

E[Rj,t+1]− E[Rf,t] = −
Cov[Mt+1, Rj,t+1]

E[Mt+1]

=
1

E[Mt+1]
Cov[Rm,t+1, Rj,t+1]−

∆τ

τL + E[αt]∆τ
Cov[αt, Rj,t+1]. (2.11)

By (2.10) and (2.11), we obtain the following proposition.

Proposition 2.1. Suppose that the rich are more risk tolerant than the poor.
Then a high top wealth share predicts a low equity premium. Furthermore, the
top wealth share is an asset pricing factor.

The covariance pricing formula (2.11) shows that the covariance both with
the market and with the wealth distribution are priced. In particular, assets
with returns that are positively correlated with the wealth share of more risk
tolerant agents should have lower average returns. As we outlined in Section 1.1,
a number of recent empirical studies show that the rich choose riskier portfolios
and argue that the wealthy have lower relative risk aversion than do poorer
investors. We estimate the same pattern in Section 4. To the extent that the
richest agents are the most risk tolerant, assets that are positively correlated
with the wealth share of the rich should have lower average returns. In short,
the theory produces a two factor model of asset prices.

Why does negative correlation with the wealth share of risk tolerant agents
lead to high average returns for an asset? Intuitively, an asset that pays off when
the wealth share of risk tolerant agents is low is delivering precisely when the
economy’s average marginal utility is low. This is because with, for example,
mean-variance or CRRA preferences, marginal utility is increasing in risk toler-
ance, all else equal. Thus, when risk tolerance is low on average, marginal utility
is low. Moreover, assets that deliver in low marginal utility times will on aver-
age be less attractive to the agents. Therefore, the agents demand on average a
higher risk premium on assets that pay off when the risk tolerant wealth share
is low. In short, the implicit representative or average agent has high marginal
utility under two scenarios: low market returns and high risk tolerance. Assets
that deliver in these states provide insurance to this representative agent and
thus command lower risk premiums on average.
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The covariance pricing formula (2.11) still contains the expected future
wealth share αt = Et[wH,t+1]/Et[Wt+1] and therefore is not directly amenable
to data. However, as long as the top wealth share is slowly moving relative to
asset returns (which is the case), we can replace it by the actual wealth share
wH,t+1/Wt+1. In fact, this approximation holds exactly in a continuous-time
model studied by Gârleanu and Panageas (2012).

2.3 Numerical example

In this section we numerically solve two examples of the model in Section 2.1, one
with agents with constant but heterogeneous relative risk aversion (CRRA) and
another with identical decreasing relative risk aversion (DRRA) agents except
initial wealth. Appendix B discusses the numerical algorithm in detail.

2.3.1 Two CRRA agents with heterogeneous risk aversion

Assume that there are two agent types, i = 1, 2. Agent 1 has high risk tolerance
τH and agent 2 has low risk tolerance τL. For numerical values, we set γH =
1/τH = 0.5 and γL = 1/τL = 2. There is only one risky asset (stock) and a
risk-free asset in zero net supply. Fraction α of stocks are initially held by agent
1 and fraction 1 − α by agent 2. There are two states with equal probability,
and the dividend of the stock is 1 + µ± σ, where µ = 0.07 and σ = 0.2. To see
the accuracy of the approximation, we both solve the exact model numerically
as well as the approximate model semi-analytically using either (2.4) or (2.5).

The results are shown in Figure 1. A1 and A2 refer to the approximate model
using (2.4) and (2.5), respectively. According to Figure 1a, the optimal portfolio
of the exact and the two approximate models are close, at least when the wealth
share of the risk tolerant agent 1 is not too small. As the risk tolerant agent
gets richer, the risk averse agent’s portfolio share of stock declines. Essentially
agent 1 is providing insurance to agent 2.

According to Figure 1b, contrary to the case with portfolios the equilibrium
equity premium of A2 is not so accurate. The approximation error can be up to
2% in magnitude. However, the approximation A1 is virtually indistinguishable
from the exact model. As the risk tolerant agent gets richer, there is more
demand for borrowing, and therefore the risk-free rate increases in order to
clear the market. In this example since the expected stock return is fixed at
7%, the equity premium shrinks as the risk tolerant agent gets richer.

2.3.2 Two agents with identical DRRA utilities

Consider the same example as above except that preferences are identical and
exhibit decreasing relative risk aversion (DRRA). It is natural to assume that
the Arrow-Pratt measure of relative risk aversion is a decreasing power function,

RRA(x) = −
xu′′(x)

u′(x)
= γ

(x

c

)−η

,

where γ, η, c > 0 are parameters.6 The economic interpretation of the param-
eters is that c is a reference point for wealth, γ is the relative risk aversion

6This specification has essentially two parameters, since only η and γcη are identified.
η = 0 corresponds to the CRRA case.
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Figure 1: Numerical example with heterogeneous CRRA preferences. Exact:
numerical solution of exact model; A1, A2: semi-analytical solution of approxi-
mate model using (2.4) and (2.5).

coefficient at this reference point, and η governs the speed (elasticity) at which
RRA decreases. Solving the ordinary differential equation, it follows that the
von Neumann-Morgenstern utility function is

u(x) = A

∫ x

c

e
γ

η
( y

c
)−η

dy +B,

where A > 0 and B are some constants. Since A and B merely define an affine
transformation, they do not affect agents’ behavior. Therefore, without loss of
generality we may assume A = 1 and B = 0, so the utility function is

u(x) =

∫ x

c

e
γ

η
( y

c
)−η

dy. (2.12)

For a numerical example, we normalize the aggregate wealth at t = 0 to be
W0 = 1 and set γ = 2, η = 1, and c = 1/2 (the reference point is equal distribu-
tion of wealth), so u(x) =

∫ x

1/2 e
1/ydy and RRA(x) = 1/x. Figure 2 shows the

numerical solution. According to Figure 2a, as agent 1 gets richer, he becomes
less risk averse and invests more in stocks. However, when he is too rich agent 2
is too poor to lend, and agent 1’s portfolio share of stocks eventually decreases.
Consistent with empirical evidence discussed in Section 1.1, the wealthy choose
risker portfolios. According to Figure 2b, the equity premium is highest when
the wealth is equally distributed. As the wealth distribution becomes more
skewed, the richer and more risk tolerant agent leverages and drives down the
equity premium. As in the previous example, the approximation A1 is excellent
but A2 is poor.

3 Empirical link between inequality and equity

premium

Thus far, we have theoretically analyzed some models and examples in which
the extent of inequality across agents with heterogeneous risk aversion is key
in predicting returns. We found not only that the wealth distribution affects
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Figure 2: Numerical example with identical DRRA preference. Exact: numer-
ical solution of exact model; A1, A2: semi-analytical solution of approximate
model using (2.4) and (2.5).

the relative prices of risky assets but also that the extent of inequality may
determine an economy’s overall risk premium (and thus the equity premium).

But, are macroeconomic and financial data consistent with the implications
of this paper’s model and those in the above literature? In this section, we
show that there is a strong and robust negative relationship between the top
income/wealth share and subsequent medium-term excess stock market returns.
That is, current inequality appears to forecast the risk premium of the U.S.
stock market. The negative sign of the relationship is consistent with the above
example, and the inequality measures do not seem to merely be proxying for
either of two leading predictors of excess returns, price-dividend ratio (Shiller,
1981) and the consumption-wealth ratio (Lettau and Ludvigson, 2001).

3.1 Data

We employ the Piketty and Saez (2003) inequality measures for the U.S., which
are available in spreadsheets on the website of Emmanuel Saez.7 In particular,
we consider top income and wealth share measures. The income measures (with
or without capital gains) are at the annual frequency and are based on tax
return data, and cover the period 1913–2012. The wealth series, the top 1%
wealth share, covers 1916–2000 at the annual frequency and is based on estate
tax data. As opposed to the income data, many years are missing in the 50s, 60s,
and 70s for the wealth data, so we complete the series with cubic interpolation.
The income series reflect in a given year the percent of income earned by the
top earners pretax. Similarly, the wealth series is the percent of wealth owned
by the richest 1%. See Piketty and Saez (2003) and Kopczuk and Saez (2004)
for further details on the construction of these series. In Appendix A, we also
consider .1% shares and the wealth share series of Saez and Zucman (2014).

Figure 3a shows the top income share for each group, the richest 0–0.5%,
0.5–1%, 1–5%, and 5–10%. All groups seem to share a common trend, which
is similar to the highest marginal tax rate in Figure 4. However, the behavior
of these series around the trend is quite different. First, the top 0.5–1% share
is very smooth. Second, the top 0–0.5% share seems procyclical (move in the

7http://elsa.berkeley.edu/~saez/
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same direction as booms and busts), which is most apparent in the 1920s, 1960s,
1990s, and mid-2000s. On the other hand, the behavior of the top 1–5% and
5–10% resemble each other and seems countercyclical (move in the opposite
direction as booms and busts). Figure 3b shows the relative income share of
each group within the top 10%. We can see that the top 0.5–1% is stable, the
top 0–0.5% moves in the same direction as booms and busts, and the top 1–10%
moves in the opposite direction.
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(b) Relative shares within the top 10%.

Figure 3: Top income shares including capital gains (1913–2012).

Within the context of the model in Section 2, this behavior can be explained
if the richer agents are more risk tolerant. Consider, for example, the mean-
variance model. Then the mutual fund theorem holds and agents invest more or
less than 100% in stocks according as whether they are more or less risk tolerant
than the average. If we assume that the top 10% hold the entire stock market,
Figure 3b tells us that the top 0.5–1% roughly hold the market portfolio, the
top 0–0.5% are more risk tolerant and leverage (borrow from the poor), and the
top 1–10% are more risk averse and lend to the richest 0.5%. Thus, in bringing
our theory to the data, we take the top 1%, rather than say the top 5% or 10%,
as our dividing line between more and less risk tolerant agents.

Below, in both regressions and GMM exercises, we use not the raw Piketty-
Saez series but rather detrended, stationary versions. Specifically, we detrend
each of the inequality measures using the Hodrick-Prescott (HP) filter with a
smoothing parameter of 100, which is standard for annual frequencies. Stochas-
tically detrending asset return predictors is in the tradition of Campbell (1991),
for example, who removes a trend in the short-term interest rate before includ-
ing it in stock return vector autoregressions. Indeed, the Piketty-Saez series
appear to exhibit a U-shaped trend over the century, which might be due to the
change in the marginal income tax rates. According to Figure 4, the marginal
tax rate for the highest income earners increased from about 25% to 90% over
the period 1930–1945 and started to decline in the 1960s, reaching about 40%
in the 1980s.8 Thus the marginal tax rate exhibits an inverse U-shape that
coincides with the trend in the Piketty-Saez series. Imposing stationarity in
this way helps ensure the validity of standard error calculations and inference
and prevent spurious regressions. Figure 5 plots the top 1% series (with capital
gains) and their estimated trends. In Appendix A we employ different filter-
ing methods. Our results appear robust to using a smoothing parameter of 10,

8The tax rate data is from the Tax Foundation (http://taxfoundation.org/).
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the one-sided HP filter, the Kalman filter (which is also one-sided), the moving
average filter, or linear detrending.
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Figure 4: Top 1% income share including capital gains (left axis) and top
marginal tax rate (right axis), 1913–2012.

We calculate annual one and five year U.S. stock market excess returns using
the annual stock market spreadsheet from the website of Robert Shiller.9 The
spreadsheet contains historical one year interest rates and price, dividend, and
earnings series for the S&P 500 index, which are all put into real terms using
the consumer price index (CPI). These data are also used to calculate the series
P/E10 and P/D10, which are the price-dividend and price-earnings ratios (in
real terms) for the S&P 500 based on 10 year moving averages of earnings and
dividends.

For the Lettau-Ludvigson consumption-wealth ratio, commonly referred to
as CAY, we use 100 times the annual version of this series from the website
of Amit Goyal (the spreadsheet for Welch and Goyal (2008)).10 It spans the
period 1945–2012.

We also include as controls GDP growth and, inspired by Lettau et al. (2008)
and Bansal et al. (2014), consumption volatility. Annual data for real GDP
and real consumption are from the website of the Federal Reserve Bank of
St. Louis11 and span 1930–2012. We estimate consumption volatility using a
standard GARCH(1,1) model for consumption growth.

Finally, we investigate the relationship between the top 1% income share and
the three annual Fama-French asset pricing factors from the website of Kenneth
French: EP, SMB, and HML (1927–2012).12 EP is the value-weighted excess
return on U.S. CRSP firms. SMB is, roughly, the difference in return between

9http://www.econ.yale.edu/~shiller/data.htm
10http://www.hec.unil.ch/agoyal/
11http://research.stlouisfed.org/fred2/
12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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Figure 5: Top 1% income share including capital gains (1913–2012) and top 1%
wealth share (1916–2000). The thin lines are the HP filter trends.

small and large valued firms. HML is, roughly, the difference in return between
high and low book-to-market firms. See also Fama and French (1993).

3.2 Regression analysis

Table 1 shows the results of regressions of one year (t to t+1) excess stock market
returns on top share measures (time t) and some classic return predictors (time
t).13 We find that when the top 1% income share (January to December of year
t) rises above trend by one percentage point, subsequent one year market excess
returns (January to December of year t + 1) decline on average by 5.6%. The
coefficient is significant at the 1% level (using Newey-West standard errors), and
the R-squared statistic is .09. Figure 6 shows the corresponding scatter plot for
five year returns. It is clear, at least in sample, that the detrended top 1% share
series has substantial power in forecasting the subsequent overall excess return
on the stock market.

This relationship also holds for the top 1% wealth share. With respect to one
year returns, the top wealth share is strongly significant and yields an R-squared
of .24, which is greater than the income share R-squared.

Given the strength of the relationship, a question immediately arises. Is
there some mechanical, non-equilibrium explanation for the relationship be-
tween inequality and subsequent excess returns? For example, might stock re-
turns somehow be determining the top share measures? For a few reasons, the
answer is likely no. First, the relationship is between initial inequality and sub-
sequent returns. Returns could affect contemporaneous top shares but likely not
lagged top shares. One might still worry that our results are driven by the HP
filter, which uses the past, current, and future data to obtain a smooth trend,
thereby introducing a look-ahead bias.14 As mentioned above, in Appendix A

13In Table 7 in Appendix A we use five year (t to t+ 5) returns.
14For example, since the rich are likely to be more exposed to the stock market, when the

stock market goes up at year t + 1, the rich will be richer than usual. But then the trend in
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we also detrend the top income share by the Kalman filter, the one-sided HP
filter, and the moving average filter, which use only past information and ob-
tain similar results. Finally, as we see in regression (2) from Tables 1 and 7,
when excluding capital gains, the top 1% income share coefficient is larger with
respect to five year returns and only slightly smaller with one year returns. If
returns were strongly affecting lagged inequality, excluding capital gains would
likely mitigate the regression results.

But, one might say, we have known at least since Shiller (1981) that when
prices are high relative to either earnings or dividends, subsequent market excess
returns are low. The current price could indeed affect current inequality (see
Section 3.3). Are the top shares series simply proxying for the price-dividend
or price-earnings ratios, which are known to predict returns? Again, the answer
seems to be no for two reasons. First, excluding capital gains from income
does not significantly mitigate the relationship, and capital gains are the main
avenue through which prices would determine inequality. Second, as we see in
regressions (6) and (7) from Table 1, top shares predict excess returns even
when controlling for the log price-dividend or price-earnings ratio. Including
these controls does decrease the top shares coefficients slightly, but they remain
large and significant. In the case of one year returns, the P/D and P/E ratios
are not significant after controlling for top income shares.

In regressions (4), (5), (8), and (9) from Table 1, we also control for real GDP
growth, consumption volatility (Lettau et al. (2008) and Bansal et al. (2014)),
and CAY, which Lettau and Ludvigson (2001) show forecasts market excess
returns. In the case of one year returns, including these controls has little impact
on the relationship between the top income share and subsequent returns.

Our empirical analysis thus far has relied on detrending, which requires the
researcher to take a stand on smoothing parameters and the underlying trend
model. Do the raw data indicate a relationship between asset prices and the one
percent? Figure 7 suggests that the answer is the yes. Over 1913-2012, both
overall and within subsamples, there is a clear positive correlation between the
top 1% income share (not detrended) and the price-dividend ratio. Of course,
this scatter plot does not establish causation, but it is more evidence in favor
of our theory and suggests that our empirical results are not simply artifacts
of detrending. Indeed, as we have shown, above trend inequality predicts sub-
sequent excess returns even when using a simple, one-sided trend estimation
method like the ten year moving average.

In summary, the data appear consistent with our theory that an increasing
concentration of income or wealth decreases the market risk premium.

the top income share will shift upwards, and the year t deviation of the top income share will
be lower. Therefore the low income share at year t may spuriously predict a high stock return
at t+ 1.
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Table 1: Regressions of one year excess stock market returns on top income shares and other predictors

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Constant
6.66
(1.77)

6.69
(1.76)

7.09
(1.83)

3.90
(2.36)

8.41
(3.03)

21.60
(11.65)

21.83
(12.86)

6.28
(1.64)

32.28
(19.96)

Top 1%
-5.61***
(1.60)

-7.63***
(1.82)

-7.67***
(1.68)

-5.02***
(1.63)

-4.86***
(1.71)

-5.50***
(1.56)

-5.53***
(1.61)

Top 1% (no cg)
-5.16**
(2.25)

Top 1% (wealth)
-7.93***
(1.91)

Real GDP Growth
0.73*
(0.37)

0.34
(0.59)

Cons. Growth Volatility
-0.46
(0.69)

-1.46
(2.34)

log(P/D10)
-4.52
(3.40)

-6.91
(4.89)

log(P/E10)
-5.62
(4.66)

CAY
2.39***
(0.58)

2.34***
(0.68)

Sample
1913-
-2012

1913-
-2012

1916-
-2000

1930-
-2012

1931-
-2012

1913-
-2012

1913-
-2012

1945-
-2012

1945-
-2012

R2 .09 .05 .24 .14 .15 .10 .11 .22 .24
Newey-West standard errors in parentheses (k = 4)
Consumption growth volatility from GARCH(1,1) model
***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants)
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Figure 6: Year t to year t + 5 excess stock market return vs. year t detrended
top 1% income share including capital gains (1913–2008).

3.3 Relationship with return predictors and taxes

As we saw in Section 3.2, controlling for the price-dividend (or price-earnings
ratio) or CAY mitigates to a small degree the estimated effect of inequality on
subsequent excess returns. Furthermore, because the rich hold more stock than
do the poor, high prices and the resulting capital gains likely have some direct
impact on the top income shares. To what extent then are the top income
shares correlated with classic return predictors? In Table 2, we regress the top
1% share on a number of series known to predict or explain asset returns (and
on the top tax rate).

For the top 1% share, the correlation with the log price-dividend ratio is
significant, but the R-squared is only .07. Therefore, while correlation with the
price-dividend ratio likely explains some of the relationship between inequality
and subsequent returns, it is not all or even most of the story. CAY, however, is
not significantly correlated with the top 1% share. Overall, the top 1% income
share appears to represent a component of the equity premium orthogonal to
CAY and only slightly related to the price-dividend ratio.

Unsurprisingly given Figure 4, the 1% share has a strongly significant nega-
tive relationship with the detrended top marginal tax rate, and the correspond-
ing R-squared is .10.

Table 2 also displays regressions of the top income share on the Fama-French
factors, which are powerful in explaining the cross section of average returns.
Notably, the SMB coefficient is significant, and the R-squared is larger than in
the price-dividend and CAY regressions.

This result opens up the possibility that Fama-French factors—which are
empirically motivated and theoretically hard to interpret—might actually be
capturing the income/wealth inequality and hence the average risk aversion in
the economy. The implication is that, across assets, heterogeneous correlation
with top income shares may help explain heterogeneity in average returns. We
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Figure 7: Top 1% income share (not detrended) vs. price-dividend ratio (in
real terms) for the S&P 500 based on 10 year moving averages of dividends.
1913-1945 (*), 1946-1978 (o), and 1979-2012 (+).

Table 2: Regressions of top income share on factors

Dependent Variable: Top 1% Share
Regressors (1) (2) (3) (4)

Constant
-1.74
(0.82)

-1.07
(0.93)

-0.04
(0.013)

0.07
(0.012)

log(P/D10)
0.53**
(0.25)

0.31
(0.28)

CAY
-0.02
(0.05)

Top Tax Rate♣
-0.04***
(0.01)

EP
0.01
(0.01)

SMB
-0.03**
(0.01)

HML
-0.01
(0.01)

Sample
1913-
-2012

1945-
-2012

1913-
-2012

1927-
-2012

R2 .07 .03 .10 .13
Newey-West standard errors in parentheses (k = 4)
♣ Detrended with HP filter (λ = 100)
***, **, and * indicate significance at 1%, 5%,
and 10% levels (suppressed for constants)
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explore this point in Section 4.

3.4 Instrumental variables regressions

As we saw in Table 2, the 1% income share is significantly correlated with the
detrended top marginal tax rate (with an R-squared of .10). The tax series is,
however, not significantly correlated with subsequent excess returns. Therefore,
as an additional robustness check, we use the top tax rate as an instrument for
the 1% share (Table 3). For one year returns (column (2)), including the instru-
ment magnifies the effect of inequality on subsequent asset returns from -5.61%
per year to -6.44% but also blows up the standard error, leading to statisti-
cal insignificance. For five year returns (column (5)), the inequality coefficient
similarly becomes more negative but remains significant at the 1% level.

Given the relationship between log(P/D10) and the 1%, in columns (3) and
(6) we also include the price-dividend ratio as an instrument. With this speci-
fication, inequality has a larger impact on subsequent return and is significant
at the 10% level both with respect to one and five year returns.

Table 3: Instrumental Variables Regressions

Dependent Variable: Excess Stock Market Return
t to t+ 1 t to t+ 5

(1) (2) (3) (4) (5) (6)
Regressors (t)

Constant
6.66
(1.82)

6.65
(1.84)

6.08
(1.78)

38.44
(5.09)

38.27
(5.27)

38.40
(5.65)

Top 1%
-5.61***
(1.94)

-6.44
(6.91)

-10.49*
(5.45)

-25.12***
(5.71)

-37.08***
(12.75)

-48.17***
(12.53)

Instruments (t)
Top Tax Rate♣ X X X X

log(P/D10) X X

R2 .09 .09 .02 .20 .16 .03
Sample: 1913-2012
Two-step GMM standard errors in parentheses
♣ Detrended with HP filter (λ = 100)
***, **, and * indicate significance at 1%, 5%, and 10% levels
(suppressed for constants)

4 Testing the asset pricing implications for the

cross section of returns

In this section we estimate and test a simplified version of the asset pricing
implications derived in Section 2, namely the moment conditions (2.4), (2.5),
and (2.8) with two agent types with risk tolerance τH > τL. For future reference,
we refer to these models as follows.

A1 The moment condition (2.9) derived from (2.4), which comes from the CRRA
model with Taylor approximation at future expected wealth.
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A2 The moment condition derived from (2.5), which comes from the CRRA
model with Taylor approximation at current wealth.

MV The moment condition (2.8), which comes from the mean-variance model.

We perform the structural GMM estimation as well as the Fama and MacBeth
(1973) two-pass regression.

4.1 Data

Since the Piketty-Saez data is annual, we use annual asset returns data from
1927 to 2012. Rm is the CRSP value-weighted average portfolio return. Rj ’s are
the 6 Fama-French portfolios sorted by size and book-to-market ratio and the
5 industry portfolios. Rf is the annualized return of the 90 day T-Bill rate.15

Nominal returns are converted to real returns using the CPI. Asset returns and
inflation data are from CRSP and Kenneth French’s website.

Let top1t be the detrended top 1% income share with capital gains at year t.
Therefore top1t has roughly mean zero and moves around zero, so τL in (2.9) can
be interpreted as the ‘baseline’ risk tolerance in the economy and ∆τ = τH − τL
can be interpreted as the sensitivity of the risk tolerance on the top income share.
We use the top 1% income share data, not the wealth share data, which is the
theoretically relevant variable. We have two justifications for this choice. First,
most income of the very rich is capital income, which should be proportional
to wealth. Second, the raw income share data is available annually, unlike the
wealth data which has either many missing years or is imputed.

4.2 GMM

4.2.1 Estimation

We estimate each model by GMM (with the market return and the Fama-French
portfolios as test assets) using the identity matrix for the first stage estimation
and the Newey-West HAC estimator with 4 lags to compute standard errors.16

In estimating Models A1 or MV, we need to compute the expected market return
E[Rm]. For this purpose, inspired by regression (1) in Table 1 we regress Rm

(year t to t+1) on a constant and top income share (year t) and define E[Rm] to
be the OLS fitted value. Following the discussion in Section 2.1, we adopt the
following time convention. In the case of Model A1, for instance, we estimate

E[((1 + τL + (τH − τL)top1t) E[Rm,t]−Rm,t)(Rj,t −Rf,t)] = 0.

That is, we employ the detrended Piketty-Saez inequality measure top1t and
asset returns of the same year.

15Strictly speaking, we should use the 1 year bond return, but it is available only after 1941.
We also estimate our model using the imputed value of the 1 year bond return before 1941 by
regressing the 1 year bond return on a constant, 90 day T-bill rate, 30 day T-bill rate, and
inflation, but the results were almost identical.

16We do not use the efficient second stage estimation results since it is well-known that the
finite sample property is poor, see Cochrane (2005).
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4.2.2 Results

Table 4 shows the results of the first stage GMM estimation of (2.9). The results
are roughly the same across specifications. The estimated risk tolerance shows
that the rich agents are nearly risk-neutral (γH = 1/τH ≈ 0) and the poor
agents have a relative risk aversion coefficient γL = 1/τL in the range 2 to 3.
The ‘rich’ and ‘poor’ here actually refer to the ‘very rich’ and ‘ordinary stock
market participant’ in common language usage. Therefore our ‘poor’ agents are
still relatively rich compared to the whole population. In any case, these results
validate our claim that the 1% are more risk tolerant.

According to the J test (shown by PJ in Table 4), the models cannot be
rejected, although this is not surprising given the small sample size (T = 86).
Although the point estimates of the risk tolerance of each type are quite differ-
ent, since the standard error of the risk tolerance of the rich is large, the Wald
test (shown by P (τH = τL) in Table 4) fails to reject homogeneous risk aversion.

Table 4: 1st stage GMM estimation of the moment conditions. Newey-West
standard errors in parentheses (k = 4). Sample: 1927–2012.

Income share Top 1%
Model A1 A2 MV

τH (rich)
17.9
(14.4)

22.3
(17.3)

20.3
(15.5)

τL (poor)
0.378
(0.090)

0.556
(0.124)

0.423
(0.106)

P (τH = τL) 0.22 0.21 0.20
PJ 0.24 0.32 0.27

Figure 8 shows the scatter plot of predicted and realized excess returns of
each Fama-French portfolio as well as the market portfolio for each model. The
scatter plot lies almost on the 45 degree line for models with heterogeneous risk
aversion (Figures 8a–8c). However, when we estimate the standard CAPM by
imposing τH = τL, the model fits poorly (Figure 8d). These results suggest that
preference heterogeneity indeed matters for asset pricing.

Figure 9 shows the time series of the implied average risk tolerance

τ̄t = top1tτH + (1− top1t)τL

for each model. We can see that the average risk tolerance of the economy is
generally around 0.5 but rises in booms (1920s, 1960s, 1990s, around 2005) and
approaches (sometimes hits) zero in busts, consistent with Fisher’s story that
booms and busts are associated with the wealth distribution and therefore the
average risk tolerance of the economy.

The Fisher story is most visible by plotting the average risk aversion. Figure
10 shows the time series of the implied average risk aversion γ̄ = 1/τ̄ . We can
see that the average risk aversion is usually between 2 and 4, but it sharply rises
during bad times for the rich (the financial crises of early 1930 and 2007–2009,
the introduction of exorbitant income tax during World War II, the collapse of
the IT bubble in 2000–2002, and, to some extent, the income tax hike in 1993).
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(d) Standard CAPM.

Figure 8: Predicted and realized excess returns.
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Figure 9: Time series of the implied average risk tolerance τ̄t = top1tτH + (1−
top1t)τL.
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Figure 10: Time series of the implied average risk aversion 1/τ̄ .

4.3 Two-pass regression

Every asset pricing model is necessarily misspecified, and therefore the standard
inference under the null hypothesis may be misleading. There is now a growing
literature that documents that when the model is misspecified and contains
a factor that is uncorrelated with asset returns (‘useless factor’), the factor
may spuriously appear to be priced (Kan and Zhang, 1999a,b). We take model
misspecification seriously and therefore apply the misspecification-robust two-
pass regression of Kan et al. (2013), which is basically the Fama and MacBeth
(1973) two-pass regression that gives correct standard errors even under possible
model misspecification.

Below, we implement the misspecification-robust two-pass regression follow-
ing the online appendix of Kan et al. (2013). The models that we consider are
the classic CAPM, our two factor with the market return and the top 1% income
share, and the Fama and French (1993) three factor model. To impose greater
challenges to the asset pricing models, we include the 6 Fama-French portfolios
sorted by size and book-to-market value as well as the 5 industry portfolios.17

In general, a K-factor beta pricing model specifies that expected excess
returns are linear in beta, that is,

E[Rj ]−Rf = γ0 + β′
jγ1, (4.1)

where γ0 is the difference between the zero-beta rate and the risk-free rate, γ1
is a K-vector of factor risk premia, and βj is a K-vector of factor loadings for
asset j. In the classic CAPM, since the only factor is the market excess returns,
we have γ1 = γm (m for “market”). In our model, the top 1% income share
is also a factor, so γ1 = (γm, γtop1). In the Fama-French three factor model,
we have γ1 = (γm, γsmb, γhml). (smb and hml stand for “small minus big” and
“high minus low”.)

The estimation of (4.1) proceeds in two steps. In the first pass, we estimate
βj by running a time series regression of excess returns on a constant and fac-
tors. In the second pass, we estimate γ = (γ0, γ1) by running a cross-sectional

17We limit our analysis to these 11 portfolios because consistent estimation requires that
the sample size (number of time periods) is much larger than the number of portfolios. Since
we use annual data, the sample size is T = 86.
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regression of average excess returns on a constant and betas. See Kan et al.
(2013) for details on how to calculate standard errors.

Table 5 shows the intercept and the betas estimated from the first-pass
regressions of the excess returns of Fama-French portfolios on the top 1% income
share and the market excess return. We draw two main conclusions from the
results. First, consistent with the covariance pricing formula (2.11), both the
market return and the top 1% share are statistically significant in explaining the
returns for most of the portfolios. In particular, the market return is significant
in all six regressions (the classic CAPM result), and the top 1% is significant
for small stocks.

Second, the signs of the top 1% coefficients are ordered exactly as the co-
variance pricing formula would have us expect. As is well known, small stocks
have higher average returns than do big stocks, high book-market stocks have
higher average returns than do low book-market stocks, and, unsurprisingly, sh
has a much higher average return than does bl (19% vs. 11%). As we see in
Table 5, the top 1% coefficients range from 0.645 for bl to -5.71 for sh. The sl
coefficient is slightly smaller than the sm one, but the coefficients are otherwise
ordered as expected. Exactly as in our model (assuming the rich are less risk
averse), stocks negatively correlated with the top 1% have high average returns,
and stocks positively correlated with the top 1% have low average returns.

Table 5: Time series regressions of Fama-French benchmark portfolios on fac-
tors.

Regressors Portfolio
bl bm bh sl sm sh

Constant
-0.0717
(0.543)

0.571
(0.705)

1.32
(1.05)

-0.626
(1.71)

2.87*
(1.49)

4.32**
(1.83)

Market
0.956***
(0.0317)

0.982***
(0.0767)

1.23***
(0.0921)

1.40***
(0.104)

1.27***
(0.107)

1.38***
(0.0968)

Top 1%
0.645
(0.518)

0.0905
(0.612)

-0.819
(0.997)

-3.96**
(1.81)

-3.65***
(1.07)

-5.71***
(1.57)

R2 .936 .891 .832 .776 .819 .775
Newey-West standard errors in parentheses (k = 4)
Sample: 1927–2012
***, **, and *: significant at 1%, 5%, and 10%

Table 6 shows the result of the second-pass cross-sectional regression for each
model, using the 6 Fama-French portfolios and the 5 industry portfolios as test
assets. CAPM, FF3, and Top 1% refer to the classic CAPM, the Fama-French
three factor model, and our two factor model. The t-ratios are calculated using
the Kan-Robotti-Shanken model misspecification-robust standard errors. The
classic CAPM shows a poor fit, with an R-squared of 0.437. As is well-known,
the Fama-French three factor model gives a much better fit, with an R-squared
of 0.748. The risk premia on the SMB and HML factors are significant but the
market return is insignificant. Our two factor model with top 1% income share
performs comparably well as the Fama-French three factor model, with an R-
squared of 0.668. As expected, the risk premium on the top 1% income share is
negative and significant. However, the risk premium on the market return has
the wrong sign and it is insignificant.
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Table 6: Second-pass estimation of risk premia. FF3: Fama-French three factor
model; Top 1%: two factor model with market return and top 1% income share.

Model CAPM FF3 Top 1%
Risk premium γ̂m γ̂m γ̂smb γ̂hml γ̂m γ̂top1
Estimate 7.36* -7.58 3.56* 2.90* -3.58 -1.04*
t-ratio 1.90 -1.33 1.96 1.95 -0.514 -1.73
R2 0.437 0.748 0.668
N 11 11 11
T 86 86 86
Sample: 1927–2012
***, **, and *: significant at 1%, 5%, and 10%

Given that few of the macroeconomic factors considered in the literature
(such as consumption growth, human capital, etc.) continue to price assets
once we take model misspecification into account (see the empirical analysis of
Kan et al. (2013)), it is reassuring that our theoretically motivated top income
share factor remains significant and gives a comparable performance to the
empirically motivated Fama-French factors.

5 Concluding remarks

In this paper we found that the income/wealth distribution is closely connected
with stock market returns. When the rich are richer than usual the stock market
subsequently performs poorly. To explain this stylized fact, we built a simple
general equilibrium model with agents that are heterogeneous in both wealth
and attitudes towards risk. We then derived a testable moment condition as
well as a new two factor covariance pricing formula. The formula tells us,
essentially, that assets positively correlated with the top income share (and
thus the average risk tolerance in the economy) command relatively low risk
premiums. Our model is a mathematical formulation of Irving Fisher’s narrative
that booms and busts are caused by changes in the relative wealth of the rich
(the “enterpriser-borrower”) and the poor (the “creditor, the salaried man, or
the laborer”). Overall, we find that our model is broadly consistent with the
data.

Could one exploit the predictive power of top income shares to beat the
market on average? The answer is probably no since the top income share—
which comes from tax return data—is calculated with a substantial lag. One
would receive the inequality update too late to act on its asset pricing infor-
mation. However, our analysis provides a novel positive explanation of both
market excess returns over time and the cross section of returns across stocks.
We conclude, as decades of macro/finance theory have suggested, that stock
market fluctuations are intimately tied to the distribution of wealth, income,
and assets.
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A Robustness of predictability

Table 7 shows some of the regressions of Table 1, except with five year stock
returns. Table 8 explores the robustness of the result that when the top income
or wealth share is above trend, subsequent one year excess returns are signif-
icantly below average. Column (1) shows the regression for the .1% income
share from Piketty and Saez (2003). Compared with the 1%, the relationship
is actually much stronger. Column (2) uses the Piketty and Saez (2003) 1%
series in which the income rank includes capital gains. This mitigates the re-
lationship but only slightly. Columns (3) and (4) use the estimated top wealth
share series of Saez and Zucman (2014). The impact of inequality on asset re-
turns is smaller than with the Kopczuk and Saez (2004) wealth series, but the
coefficients remain significant.

In the other columns, we detrend the 1% series but without using the HP
filter with a smoothing parameter of 100. First, using a smoothing parameter of
10 strengthens the relationship between inequality and asset returns. In column
(5), we use the one-sided HP filter with a smoothing of 100. The one-sided
HP filter detrends each data point by applying the filter only to the previous
data. This method gives slightly weaker results than our baseline regression. In
column (7), we estimate and remove two linear trends, a downward one pre-1977
and an upward one post-1977. Doing so weakens the relationship somewhat,
but the inequality coefficient remains significant. We detrend using the Kalman
filter method outlined in Appendix C. Column (9) uses and AR(1) model for
the cyclical component and column (10) is AR(2). (We also tried white noise
(p = 0) for the cyclical component, but then the trend becomes almost identical
to the raw series. Letting p ≥ 3 is similar to AR(2).) In these regressions, the
1% series remains significant. Since the Kalman filter uses only current and
past data, these results show that the look-ahead bias of the HP filter is not
severe. Finally, in column (11) we estimate the trend using a ten year moving
average. This method, which is also one-sided, yields a slightly weaker but still
significant relationship inequality and subsequent excess returns.
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Table 7: Regressions of five year excess stock market returns on top income shares and other predictors

Dependent Variable: t to t+ 5 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (9)

Constant
38.44
(8.54)

38.52
(8.81)

43.07
(10.14)

152.42
(45.59)

159.70
(52.38)

38.35
(8.38)

177.39
(60.79)

Top 1%
-25.12***
(8.15)

-20.61**
(8.07)

-19.11**
(8.18)

-10.45♣

(7.76)
-7.67
(6.91)

Top 1% (no cg)
-28.62**
(11.41)

Top 1% (wealth)
-14.23***
(5.20)

log(P/D10)
-34.50**
(13.05)

-39.48**
(16.35)

log(P/E10)
-44.92**
(18.55)

CAY
12.35***
(1.96)

11.09***
(2.79)

Sample
1913-
-2008

1913-
-2008

1916-
-2000

1913-
-2008

1913-
-2008

1945-
-2008

1945-
-2008

R2 .20 .16 .08 .30 .31 .38 .50
Newey-West standard errors in parentheses (k = 4)
***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants)
♣ significant at 10% level with OLS standard error
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Table 8: Regressions of one year excess stock market returns on top income and wealth shares

Dependent Variable: t to t+ 1 Excess Stock Market Return
Regressors (t) (1) (2) (3) (4) (5) (6) (7) (9) (10) (11)

Constant
6.67
(1.70)

6.67
(1.77)

6.71
(1.69)

6.71
(1.69)

6.68
(1.95)

6.62
(1.74)

6.73
(1.72)

7.15
(1.81)

7.07
(1.79)

7.45
(1.90)

Top .1%
-15.32***
(4.09)

Top 1% (rank with cg)
-4.85***
(1.29)

Top 1% (SZ wealth)
-2.87**
(1.14)

Top .1% (SZ wealth)
-3.84***
(1.29)

Top 1% (one-sided HP)
-5.48**
(2.41)

Top 1% (HP, λ = 10)
-8.13***
(1.97)

Top 1% (linear detrending)
-3.82***
(1.18)

Top 1% (Kalman, p = 1)
-3.76**
(1.83)

Top 1% (Kalman, p = 2)
-3.46**
(1.50)

Top 1% (10 year MA)
-2.54**
(1.13)

Sample
1913-
-2012

1913-
-2012

1913-
-2012

1913-
-2012

1936-
-2012

1913-
-2012

1913-
-2012

1913-
-2012

1913-
-2012

1922-
-2012

R2 .09 .12 .05 .05 .06 .11 .09 .03 .05 .05
Newey-West standard errors in parentheses (k = 4)
***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants)
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B Numerical algorithm

This appendix explains how to compute the equilibrium of the numerical exam-
ples in Section 2.3 in the general case. Suppose that there are I agents and J
risky assets. Interpret the risky assets as constant-returns-to-scale, stochastic
savings technologies; letR = (R1, . . . , RJ) be the vector of gross returns with ex-
pected return µ = E[R] and variance-covariance matrix Σ = E[(R−µ)(R−µ)′].

The equilibrium objects are the portfolios {θ∗i }
I
i=1 and the risk-free rate Rf .

First we consider the approximation (2.5). By the budget constraint, we get

wi1

wi0
=

J
∑

j=1

Rjθj +Rf



1−
J
∑

j=1

θj



 = Rf + 〈R−Rf1, θ〉 .

By the approximation of the first-order condition (2.3) with ai = wi0, we get

E[(τi + 1− (Rf + 〈R−Rf1, θ〉))(R −Rf1)] = 0

⇐⇒ (τi + 1−Rf )(µ −Rf1)− E[(R −Rf1)(R−Rf1)
′]θ = 0

⇐⇒ θ∗i = (τi + 1−Rf )[Σ + (µ−Rf1)(µ−Rf1)
′]−1(µ−Rf1).

This equation shows that the mutual fund theorem holds. Taking the weighted
average across agents and using market clearing, it follows that

θm = (τ̄ + 1−Rf )[Σ + (µ−Rf1)(µ−Rf1)
′]−1(µ−Rf1),

where θm is the market portfolio and τ̄ is the average risk tolerance. We can
solve for the equilibrium by the shooting algorithm: given a risk-free rate Rf ,
we compute the market portfolio θm, raise the interest rate if

∑

j θmj > 1 and

cut otherwise. Then iterate until we get
∣

∣

∣

∑

j θmj − 1
∣

∣

∣ < ε, where ε is the error

tolerance. We can use the risk-free rate computed from the mean-variance model
as an initial guess: by (2.7) and 1′θm = 1, we obtain

R0
f =

1′Σ−1µ− 1/τ̄

1′Σ−11
.

Next we consider the approximation (2.4). Using the approximation of the
first-order condition (2.3) with a = ai = E[wi1] and noting that

ai
wi0

=
E[wi1]

wi0
= Rf + 〈µ−Rf1, θ〉 ,

we obtain

E[(τi(Rf + 〈µ−Rf1, θ〉)− 〈R− µ, θ〉)(R−Rf1)] = 0

⇐⇒ (E[(R−Rf1)(R− µ)′]− τi(µ−Rf1)(µ−Rf1)
′)θ = τiRf (µ−Rf1)

⇐⇒ θ∗i = τiRf [Σ− τi(µ−Rf1)(µ−Rf1)
′]−1(µ−Rf1).

In this case the mutual fund theorem does not hold, but we can still compute the
equilibrium by the shooting algorithm. Starting from some Rf , for each agent
we compute the optimal portfolio θ∗i by the above formula. Then we compute
the market portfolio θm =

∑

iwi0θ
∗
i /

∑

iwi0 and raise or cut the interest rate
according as

∑

j θmj ≷ 1.
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Solving the exact model is similar, except that for each agent we have to
numerically solve the optimal portfolio problem

max
θ

E[ui((Rf + 〈R−Rf1, θ〉)wi0)].

Letting V (θ) be the objective function, if the functional form of u′
i and u′′

i are
explicitly known, we can solve this problem by the Newton algorithm since the
gradient and the Hessian can be computed as

∇V (θ) = E[u′
i((Rf + 〈R−Rf1, θ〉)wi0)(R −Rf1)],

∇2V (θ) = E[u′′
i ((Rf + 〈R−Rf1, θ〉)wi0)(R−Rf1)(R −Rf1)

′],

respectively.

C Kalman filter

This appendix explains how we detrend the top income/wealth share using the
Kalman filter.

Let yt be the observed top income/wealth share data at time t. Let

yt = gt + ut, (C.1)

where gt is the trend and ut is the cyclical component. We conjecture that the
trend is an I(2) process and the cycle is an AR(p) process, so

(1− L)2gt = ǫt, ǫt ∼ i.i.d. N(0, σ2
ǫ ), (C.2a)

φ(L)ut = wt, wt ∼ i.i.d. N(0, σ2
w), (C.2b)

where L is the lag operator and

φ(z) = 1− φ1z − · · · − φpz
p

is the lag polynomial for the autoregressive process. For concreteness, assume
p = 1 so φ(z) = 1− φ1z. Then (C.1) and (C.2) can be written as

[

gt
gt−1

]

=

[

2 −1
1 0

] [

gt−1

gt−2

]

+

[

ǫt
0

]

, (C.3a)

yt = φ1yt−1 + gt − φ1gt−1 + wt. (C.3b)

Letting ξt = (gt, gt−1)
′, vt = (ǫt, 0)

′, xt = yt−1, A = φ1, F =

[

2 −1
1 0

]

, and

H =
[

1 −φ1

]

, (C.3) reduces to

ξt = Fξt−1 + vt, (C.4a)

yt = Axt +Hξt + wt. (C.4b)

(C.4a) is the state equation and (C.4b) is the observation equation of the state
space model. We can then estimate the model parameters φ1, σ

2
ǫ , σ

2
w as well as

the trend {gt} by maximum likelihood: see Chapter 13 of Hamilton (1994) for
details. The extension to general AR(p) model is straightforward.
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