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Abstract

We apply wavelet analysis to compare the relationship between simple
sum and Divisa monetary aggregates with real GDP and CPI inflation for
the U.S. using data from 1967 to 2013. Wavelet analysis allows to account
for variations in the relationships both across the frequency spectrum
and across time. While we find evidence for a weaker comovement of
Divisia compared to simple sum monetary aggregates with real GDP the
relationship between money growth and inflation is estimated to be much
tighter between Divisia monetary aggregates and CPI inflation than for
simple sum aggregates, in particular at lower frequencies. Furthermore,
for the Divisia indices for broader monetary aggregates (M2, M2M, MZM)
we estimate a stable lead before CPI inflation of about four to five years.

Keywords: money growth, Divisia aggregates, inflation, wavelet analy-
sis

1 Introduction

A central proposition of monetary theory is that, over the long-term, money
growth is strongly correlated with inflation. According to the quantity the-
ory this correlation should be one-to-one. Furthermore, given a stable money
demand function, i.e. a stable velocity of circulation, there should also exist a
strong correlation between real money and real output as more money is required
for an increasing volume of economic transactions. A vast empirical literature
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has studied the relationship between money, output and inflation using different
empirical methodologies and different measures.
In the U.S. there was a strong relationship between the narrow monetary

aggregate M1 and nominal GDP (Lucas, 1980) which became unstable in the
mid 1980s and 1990s, probably due to regulatory changes (e.g. lifting of Regu-
lation Q) and technological innovations, such as ATMs (Teles and Zhou, 2005).
Beginning in the 1970s, conventional money demand functions, linking nominal
money holdings to the price level, output and opportunity cost measures also
showed signs of instability (e.g. Judd and Scadding, 1992). One strategy aim-
ing to recover a stable relationship between money, output and prices was to
adjust the definition of monetary aggregates. For example, based on the con-
cept of liquidity as a basis for defining money Motley (1988) and Poole (1991)
proposed using the monetary aggregate MZM (money zero maturity). Combin-
ing M1 with MZM Teles and Zhou (2005) found evidence for a stable money
demand function and a stable relationship between money and output. Another
empirical strategy was to allow for time variation in the macroeconomic rela-
tionships and to focus at specific frequency ranges in the time series, especially
on the low frequency, i.e. trend components. For example, Valle e Azevedo and
Pereira (2010) show that there is a strong correlation between the low-frequency
components in M2 and MZM money growth and U.S. inflation, Benati (2005)
analyzes the relationship between inflation and the growth rates M1 and M2 for
US for the sample period of 1870 to 2004. He finds marked differences between
frequency ranges. For fluctuations between 8 and 30 years, and particularly
for even lower frequency components he finds stable correlations. Benati (2009)
studies the relationship for many countries, including observations for U.S. from
1820-2008. His analysis incorporates time-variation by using rolling windows.
For the U.S. the cross-spectral coherency at frequency zero, i.e. for permanent
innovations is consistently close to one while the cross-spectral gain displays
strong time variation and is significantly below one for long time periods. This
implies, that while innovations in money growth account for almost all of the
long-run variance of inflation, there is no one-to-one relationship between these
two variables. His interpretation of these results is that, in times of low infla-
tion, the money growth-inflation relationship is obscured by velocity shocks and
that the relationship is only uncovered in these rare episodes in which surges in
inflation and money growth occur. Sargent and Surico (2011) provide an analy-
sis of the correlation of M2 growth and inflation for quarterly U.S. data over
the sample period 1875-2007. They decompose their estimate of a time-varying
VAR with stochastic volatility with respect to its frequency content and present
evidence that there is quite some variation in the comovement between these
series which might be due to different monetary regimes. In particular, they
show that the cross-spectral gain gain at frequency zero has moved far below
one after the early 1980s. Haug and Dewald (2012) also find evidence for time
variation of the cyclical components at business cycle periodicities, but a stable
correlation between money growth and inflation at lower frequencies.
However, the monetary aggregates under consideration usually were all of the

class of so-called simple sum aggregates, i.e. monetary aggregates constructed
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as the sum of financial assets considered as money. Barnett (1980) critized this
kind of aggregation as inconsistent with economic theory as well as aggregation
and index number theory and proposed Divisa aggregates as an alternative. In-
stead of assigning equal weights to all components of a monetary aggregate the
Divisia approach weights each component according to its user cost which is
measured relative to a benchmark yield, i.e. the return on an asset which is
not considered as money. Accordingly, the different monetary components are
aggregated according to their degree of "moneyness" which is measured by their
opportunity costs. Divisia aggregates are theoretically appealing because they
are micro-founded based on utility maximizing behavior and firmly grounded in
index number theory. For an overview, see Barnett (2012), Barnett and Binner
(2004), Barnett and Chauvet (2011b), and Barnett and Serletis (2000). The
difference between Divisa and simple sum monetary aggregates emerges, when
monetary components are paid interest rates above zero. Changes in the remu-
neration of the components of the money supply, both relative to each other and
relative to the benchmark yield, result in Divisia aggregates exhibiting differ-
ent growth rates from simple sum ones. Since Divisia monetary aggregates are
more closely related to the liquidity services provided by money their relation-
ship to money and output might be closer and more stable than for simple sum
monetary aggregates. In a theoretical model, Belongia and Ireland (2012) show
that simple sum aggregates can move inconsistently with the model-implied
"true" monetary aggregate, whereas Divisia measures provide the correct sig-
nals. Kelly et al. (2011) show that the liquidity puzzle, commonly encounterd
in VAR models, that shows an increase in money growth following a restrictive
monetary policy shock disappears if one uses Divisia instead of simple sum mon-
etary aggregates. Hendrickson (2013) tests the stability of money demand for
simple sum and Divisia aggregates for various monetary aggregates and finds
stable money demand relationships only for Divisia measures. Granger causal-
ity of money growth for nominal GDP growth is not rejected for all monetary
aggregates before 1979, but only for Divisia aggregates afterwards. Serletis and
Gogas (2014) estimate money demand functions for the U.S. using Divisia ag-
gregates and are able to restrict the income elasticity to one, i.e. to impose a
long-run one-to-one relationship between real money and output.
This paper analyzes the money-inflation relationship as well as the relation-

ship between money and real economic activity over time and frequency for the
U.S. by applying the methodology of wavelet analysis which, by design, is espe-
cially suited for this kind of questions. Wavelet analysis allows for variability in
the money growth - inflation/output growth relationship both across time and
across the frequency spectrum. Thus, focusing on a given frequency range, we
can study whether comovements between the variables have become stronger or
weaker through time. Alternatively, for a given point in time, we can analyze
whether the relationship between money and inflation or output growth changes
for different frequencies. Furthermore, wavelet analysis provides information on
lead-lag patterns, again allowing for change through time and across frequencies.
We study, whether simple sum or Divisia aggregates are more useful when

looking at the link between monetary aggregates, output and inflation in the
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U.S. We focus on the U.S. because of the availability of a range of Divisia
aggregates provided by the Federal Reserve Bank of St. Louis and by the Center
for Financial Stability. The relatively long time series for the U.S. enable us to
consider the relationship between money growth and the other variables at lower
frequencies. Our results show no evidence for a tighter link between fluctuations
in the growth rates of Divisia monetary aggregates with those in real GDP
growth than for simple sum monetary aggregates. For inflation, however, our
estimates indicate much stronger comovements between Divisia money growth
of M2 and related aggregates and inflation than for simple sum aggregates,
in particular at lower frequencies with fluctuations of periods of 12 years and
longer. This result becomes even stronger after adjusting money growth for real
GDP growth and accounting for changes in velocity. Furthermore, Divisia M2
and related aggregates have a stable lead before CPI inflation while the lead-lag
pattern of the simple sum aggregates is much less stable.
Wavelet analysis so far has only sparsely been applied to the analysis of

the money growth - output growth/inflation relationship. Mostly, researchers
have used the wavelet approach to extract frequency components from the time
series and then performed regression analysis using the extracted components.
For example, Andersson (2011) uses band spectrum regression methodology to
analyse the effects of changes in money growth on consumer price inflation and
asset price inflation in the U.S. The frequency components are extracted using
a discrete wavelet transform. He finds that money growth affects mainly asset
prices in the short-run, whereas it takes around ten years to affect consumer
price inflation. Whitcher (2001) uses the discrete wavelet transform to extract
specific frequency bands from Mexican money growth and inflation time series
and then tests for Granger causality between money growth and inflation. A
similar approach is taken by Greiber and Neumann (2007) who apply a dis-
crete wavelet transform to the money growth series only, which might generate
"spurious" Granger causality. More closely related to to this paper are the
analyses in Rua (2012) and in Mandler and Scharnagl (2013). There, wavelet
analysis is applied to the study of the money growth-inflation relationship in
the Euro area using the M3 simple sum monetary aggregate and consumer price
inflation using wavelet coherency, phase difference and, in the case of Mandler
and Scharnagl (2013) cross-spectral gains. While Rua (2012), in part due to
using self-constructed inflation data, finds a significant and stable relationship
between money growth and inflation throughout his sample period (1970-2007),
Mandler and Scharnagl (2013) using the offi cial inflation series do not estimate
significant comovements between the low frequency components in the growth
rates of the monetary aggregate M3 and consumer price inflation over 1970-2012.

2 Wavelet analysis

Wavelet analysis is an extension of spectral analysis.1 Spectral analysis measures
the contribution of periodic cycles of specific frequencies to the variance of a time

1For an introduction to wavelet analysis, see Aguiar-Conraria and Soares (2013).

4



series or to identify frequencies with dominating coherencies between multiple
time series. However, it is restricted to stationary time series as the cycles
have an infinite support. If an AR(1) process exhibits a structural break in its
persistence, both dominant frequencies will show up in the spectrum. It is not
possible to assign the frequencies to subsamples, i.e. spectral analysis has no
resolution over time.
Wavelet analysis removes this restriction.2 It provides the possibility of un-

covering transient relations (Aguiar-Conraria et al., 2008). As wavelets have
only finite support ("small wave" compared with sine function which can be
interpreted as a "big wave"), they are ideally suited to locally approximating
variables in time or space (Crowley et al., 2006). The multiresolution decom-
position (MRD) allows for a decomposition of a time series into trend, cyclical
component and noise. This kind of analysis asks different questions compared to
the time series type of analysis. It looks for correlations at specific frequencies.
It does not analyze the propagation mechanism by means of impulse responses
and it also does not try to identify shocks to the system.
The starting point is a so called mother wavelet ψ. By scaling and translation

a variety of wavelets can be generated.

ψτ,s (t) =
1√
|s|
ψ

(
t− τ
s

)
, (1)

where s is a scaling or dilation factor. It controls the width of the wavelet.
1/
√
|s| guarantees the preservation of energy, i.e.

∣∣∣∣ψτ,s∣∣∣∣ = |ψ|. τ is a transla-
tion parameter controlling the location of the wavelet.
The function ψ has to fullfil some requirements to have properties of wavelets

(Percival and Walden, 2002): The integral of ψ (u) is zero:∫ ∞
−∞

ψ (u) du = 0

Over time ψ has to be below and above zero. An admissibility condition is
a suffi cient decay:

Ψ (0) =

∫ ∞
−∞

ψ (t) dt = 0

These properties are necessary for an "effective localization in both time and
frequency" (Aguiar-Conraria and Soares (2011)).3

The continuous wavelet transform (CWT),Wx (τ , s), is obtained by project-
ing x (t) onto the family

{
ψτ,s

}
Wx (τ , s) =

∞∫
−∞

x (t)
1√
|s|
ψ∗
(
t− τ
s

)
dt, (2)

2 It was initially proposed by Ramsey and Lampart (1998) and Ramsey (2002) for applica-
tions in economics and finance. See also Crowley (2005).

3The CWT is an exploratory data analysis tool. As it is two dimensional but depending
on a one dimensional signal, it contains a lot of redundancy. When moving into larger scales
there is little difference in CWT between adjacent scales and there are slow variations across
time at any fixed large scale.
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where ∗ denotes the complex conjugate.
There is a variety of different wavelet functions. In the empirical section the

so-called Morlet wavelet is used.

ψω0 (t) = π−
1
4 eiω0te−

t2

2 , (3)

where ω0 = 6. This specific choice for the parameter ω yields a simple relation
between scales and frequencies: f ≈ 1

s .
The wavelet power spectrum is defined as

WPSx (τ , s) = |Wx (τ , s)|2 .

In the case of a complex-valued Morlet wavelet, the corresponding wavelet trans-
form is also complex—valued, allowing for an analysis of phase differences, i.e.
lead-lag structures. It can de decomposed into a real part, the amplitude,
|Wx (τ , s)|, and its imaginary part, the phase, |Wx (τ , s)| eiφx(τ,s). The phase-
angle φx (τ , s) can be obtained by

φx (τ , s) = arctan

(
={Wx (τ , s)}
< {Wx (τ , s)}

)
(4)

where = denotes the imaginary part and < the real part.
Aguiar-Conraria and Soares (2011) use an analytical wavelet. This type is

defined as one whose Fourier transform is supported on the positive real-axis
only. The corresponding wavelet transform is the analytic wavelet transform.
The cross wavelet transform is defined as

Wxy = WxW
∗
y (5)

where ∗ denotes the complex conjugate. The cross wavelet power spectrum is
defined as |Wxy|. Wavelet coherency between two time series x and y can be
interpreted as local correlation and is defined as

Rxy (s) =

∣∣S (s−1Wxy (s)
)∣∣√

S (s−1 |Wx|)
√
S (s−1 |Wy|)

(6)

where S is a smoothing operator with respect to time and scale. The wavelet
phase difference can be computed via (4)
If φx,y (s, τ) = 0, the series x and y move together at the specified frequencies.

If φx,y (s, τ) ∈
(
0, π2

)
, series x leads y. The time lag between both series can be

calculated as

∆T (s, τ) =
φx,y (s, τ)

2πf (τ)
. (7)

The cross spectral gain is defined as

Gxy (s) =

∣∣S (s−1Wxy (s)
)∣∣

S
(
s−1 |Wy|2

) . (8)
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3 Empirical application

3.1 Data

The data set consists of U.S. quarterly time series for four monetary aggregates
M1, M2, M2M, MZM, for real GDP and the CPI.4 M2M is equal to M2 minus
small-denomination time deposits. MZM (money zero maturity) is equal to
M2 minus small-denomination time deposits plus institutional money funds.5

For each monetary aggregate we use time series for the simple sum aggregate
and for two Divisia aggregates, first, the Divisia index from the Center for
Financial Stability (CFS), and second, the Monetary Services Index (MSI) from
the Federal Reserve Bank of St.Louis. Except for the CFS Divisia index all
series are available from the Federal Reserve Bank of St. Louis’FRED data
base.6 The CFS Divisia index can be downloaded from the CFS website.7

All series are seasonally adjusted. The sample starts in 1967Q1, which is the
earliest availability of the Divisia-type series and ends in 2013Q2. The monetary
aggregates are normalized to 100 at the start of the sample period. The CFS
version of Divisia differs from the MSI because of a different construction of the
benchmark rates and differences in the treatment of sweep accounts, for details
see Barnett et al. (2012), Jones et al. (2005).
In our analysis, we use annual log-differences (annual growth rates) 8 Fig-

ure 1 shows the annual log-differences for the various simple sum and Divisia
aggregates, Figure 2 those for real GDP, nominal GDP and the CPI. For M1
the growth rates of simple sum and Divisia aggregates start to diverge in the
middle 1970s and that for the simple sum version stays above those for the both
Divisia aggregates until the end of the 1980s. In contrast, from 1995 right to
the beginning of the financial crisis M1 Divisia grows faster than the simple
sum aggregate, markedly so from the mid 1990s to the early 2000s. After-
wards, the growth rate of the simple sum aggregate again exceeds that of the
Divisia aggregate. For M2 (second row from top) the growth rates of the Di-
visia aggregates are below those of the simple sum aggregate for M2 growth
rates almost throughout the 1970s until the mid1980s, again in the late 1980s,
mid-1990s, around 2000 and from 2005 to the beginning of the financial crisis.
Faster growth in Divisia M2 relative to simple sum M2 can be observed only in

4 In addition, the GDP Deflator, nominal GDP and the three-month Treasury Bill rate are
used for various adjustments to the money growth series.

5M1 comprises currency in circulation, traveler’s checks of nonbank issuers, demand de-
posits and other checkable deposits. M2 consists of M1 plus savings deposits (including money
market deposit accounts), small-denomination time deposits and balances held in retail money
market mutual funds.

6http://research.stlouisfed.org/fred2/
7http://www.centerforfinancialstability.org/amfm_data.php.
The CFS provides Divisia aggregates for broader definitions of money (M3, M4) and a MSI

version of M3 is also available from the Federal Reserve Bank of St. Louis. Since, however,
the corresponding simple sum aggregate has either been discontinued as in case of M3 or has
never been compiled and, hence, a comparison of simple sum and Divisia aggregates is not
possible, we do not include them in this study.

8The results are robust to using quarterly growth rates instead.
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the mid 1980s, from about 1990 to 1995 and in the early 2000s. For the M2M
and MZM monetary aggregates Divisia and simple sum versions follow a sim-
ilar relative pattern as for M2, although the differences between both types of
aggregates are less pronounced. Generally for M2M and MZM, money growth
rates are very close to each other when they are falling, while a gap tends to
open when they are on the rise - a phenomenon which is better visible in MZM
than in M2M. The observable jumps in the growth rates of M2 and, particularly
M2M and MZM in 1982 result from a redefinition of M2 in 1982 which removed
the volatile wholesale component of money market mutual funds from M2 and
included retail repurchase agreements within M2 (Whitesell and Collins, 1997).
The convergence of simple sum and Divisia growth rates for M2 and its vari-
ants during the financial crisis can be explained by the compression of the yield
curve in the low interest-rate environment which leads to a convergence in the
user cost and hence in the weights of the different components in the Divisia
aggregates which, thus, become close to simple sum monetary aggregates.
Barnett and Chauvet (2011a) argue that growth rates of Divisia aggregates

are much lower before recessions or at the beginning of high interest rate periods.
Looking at the growth rates of M2 Divisia and real GDP this seems to be the
case for the 1980 and 1981/82 recessions but for the other recessions it is not that
obvious. Turning to the correlation with CPI inflation at least for M2 the more
pronounced fall in the Divisia growth rates at the end of the 1970s seem to be
stronger correlated with the decline in inflation rates than the roughly constant
evolution of the growth rates of the simple sum aggregate, and indicates tighter
monetary conditions compared to the simple sum version of M2.

3.2 Econometric analysis

We estimate the wavelet coherency between the annual growth rates of the
monetary aggregates under consideration, the annual growth rate of real GDP,
and annual CPI inflation.9 Figure 3 presents the estimated wavelet coherencies
for each monetary aggregate with real GDP growth across time (horizontal
axis) and frequencies/periods (vertical axis, in years). Numerical values of the
estimated coherencies are represented by different colours and are increasing
from blue to red. Black lines indicate coherency different from zero at the 5%-
level. However, only estimates between the curved red bands (cone of influence)
should be interpreted, since the estimates in the outer regions, i.e. outside of
the cone of influence, are based on relatively few observations.10

9All estimations were performed using the AST-toolbox for MATLAB by Aguiar-Conraria
and Soares. https://sites.google.com/site/aguiarconraria/joanasoares-wavelets/
10 If there is only an insuffi cient number of past or future observations available to esti-

mate the wavelet power spectra and the wavelet cross spectrum at a given point in time the
algorithm extends the sample backwards or forward by "reflection", i.e. double using some
observations close to the edges. In the region outside of the red lines the results are affected
by this procedure.
The cone of influence becomes smaller for lower frequencies because the flexible window

length that enters the wavelet transform increases and more observations are required for
extracting lower frequency components. This effect limits the range of frequencies that can

8



1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
­5

0
5

10
15
20

M1

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
­5

0
5

10
15
20

M2

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
­5

0
5

10
15
20

M2M

Monetary aggregates (annual dif ferences)

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
­5

0

5
10
15
20

MZM

SS CFS MSI

Figure 1: Annual growth rates of monetary aggregates.
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Figure 3: Wavelet coherency of annual growth rate of real monetary aggregates
an annual growth rate of real GDP.
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The left column in Figure 3 presents the results for the simple sum mone-
tary aggregates while the middle and right columns show those for the Divisia
aggregates (CFS in the middle column, MSI in the right one). A stable long-run
function relating demand for real balances to real output should reflect in high
and stable coherencies at low frequencies. In most cases (eight out of twelve)
we estimate marked coherencies between money growth and real GDP growth
at low frequencies which appear to be relatively stable over time in contrast
to the more fluctuating coherencies at middle-to-high frequencies, indicating a
more stable relationship between the longer-term trend components in the series
than in the faster moving components. The top row shows that switching for
M1 from the simple sum aggregate to the Divisia aggregates leads to a strong in-
crease in the wavelet coherency across the low frequency spectrum. (fluctuations
of 12 years and longer). In particular, when using the CFS Divisia aggregate
we estimate a stable wavelet coherency with real GDP growth at low frequen-
cies that is close to one and that is statistically significant at the 5%-level. For
the MSI Divisia aggregate the results are somewhat weaker but the relationship
between real money growth and output growth at low frequencies is still much
stronger than for the simple sum aggregate and is stable throughout the sample
period. Turning to the broader monetary aggregates (M2, M2M, MZM) the re-
sults are mostly the reverse. While we estimate high - and for the late 1980s up
to the mid 1990s significant - coherencies with GDP growth at low frequencies
for the simple sum aggregates, the estimates for the Divisia aggregates at these
frequencies are lower. Furthermore, at low frequencies the relationship between
the growth rates of the divisa aggregates and real GDP growth tends to weaken
over time with the exception of M2-MSI. At middle-to-higher frequencies (i.e.
fluctuations of less than ten years) use of Divisia aggregates strengthens the
cohereny with real GDP in the late 1970s and early 1980s for M2 but weakens
them for M2M. For MZM the results for the Divisia aggregates are broadly sim-
ilar to those for the simple sum aggregates. Overall, these results indicate that
Divisia aggregates improve the real money growth - output growth relationship
for the narrow monetary aggregate M1 while there is no such improvement for
M2 and its variants.
The results for the relationship between money growth and CPI inflation

are shown in Figure 4. For M1 (top row) the Divisia aggregates lead to no
improvement compared to the simple sum aggregate in the coherencies at low
frequencies. However, comovements between money growth and inflation turn
out to be somewhat more pronounced for the Divisia aggregates in the middle-
frequency band with fluctuations between four to eight years where the coheren-
cies become higher from the mid 1990s onwards.For M2, M2M and MZM we
estimate higher coherencies between the low frequency components (fluctuations
of ten to twelfe years) of the Divisia monetary aggregates and inflation than for
the simple sum aggregates and these coherencies turn out more stable through
time. The improvement is particularly strong for M2 where the estimates using
Divisia become statistically significant until the early-to-mid 1990s and where

be studied using a data set of given length.
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Figure 4: Wavelet coherency of annual growth rate of monetary aggregates and
annual CPI inflation.

we observe also a strong improvement in the estimated relationship at middle-
to-higher frequencies from the late 1970s to the late 1980s. Nevertheless, the
coherency estimated using the Divisia aggregates becomes slightly weaker when
moving throught the 1990s and 2000s with the MSI aggregates apparently more
affected than the CFS aggregates.
Since the quantity equation suggests that money growth driven by the ex-

pansion in the transaction volume, i.e. by growth in the real economy, should
not be inflationary, we follow Teles and Uhlig (2010) and adjust the monetary
aggregates for real GDP growth by subtracting the annual growth rate in real
GDP from the annual growth rates of the monetary aggregates.11The estimated

11 In fact, the coeffi cient on real GDP in a regression of the simple sum aggregates real M2,
real M2M and real MZM on real GDP and an opportunity cost measure is close to one. Hence,
the results presented in the main text should be considered conservative estimates, as they are
based on a correction of monetary aggregates for real GDP growth that reflects the empirical
relationship for the simple sum aggregates more closely than that for the Divisia aggregates
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wavelet coherencies of these adjusted money growth series with CPI inflation
are displayed in Figure 5. Comparing Figures 5 and 4, the adjustment leaves the
results for M1 mostly unchanged. While for both simple sum and Divisia aggre-
gates estimated coherencies increase somewhat for low frequencies they decline
for middle frequencies in the early sample period. Turning to M2, M2M and
MZM, the adjustment leads to a strong improvement in estimated coherencies
for the simple sum aggregates along a middle frequency range of about three to
ten years where we estimate high and mostly significant coherencies throughout
the sample period. Across this frequency spectrum coherencies for the Divisia
aggregates improve less and thus the coherencies with inflation turn out less
pronounced than those using the simple sum aggregates. In fact, using the Di-
visia series there appears a "gap" with relatively low coherencies in the 1980s
which does not emerge for the simple sum aggregates. The Divisia aggregates,
nevertheless, remain superior to the simple sum ones for the long-term fluctu-
ations. Using the adjusted series leads to high and stable coherencies between
the long-term growth components of Divisia aggregates and CPI inflation across
a broad frequency band of fluctuations of 12 years and longer. In contrast, for
the simple sum aggregates the adjustment for real GDP growth does not lead to
a strengthening of the empirical relationship with inflation at low frequencies.
The quantity theory also suggests that in order to uncover the relationship

between money growth and inflation, money growth should not only be adjusted
for changes in real GDP but also for changes in velocity. Hence, as in Teles and
Uhlig (2010) we adjust the growth rates of all monetary aggregates not only
by subtracting real GDP growth but also by the estimated change in velocity.
Using the quantity equation in growth rates (∆mt+∆vt = ∆pt+∆yt), with m:
nominal money, v: velocity, p: price level, and y: real GDP (all in logarithms),
adjusted money growth is given by (using annual differences)

∆m∗t = ∆mt + ∆vt −∆yt. (9)

Following Teles and Uhlig (2010) we model the change in velocity as

∆vt = β1 · oct, (10)

with oc as the opportunity cost of holding money. Teles and Uhlig obtain β1
from the OLS regression

log Vt = log

(
Mt

PtYt

)
= β0 + β1oct, (11)

with PtYt representing nominal GDP. Adjusted money growth is then defined
as

∆m∗t = ∆mt −∆yt + β̂1∆oct, (12)

for which the coeffi cient is markedly lower.
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Figure 5: Wavelet coherency of annual growth rate of monetary aggregates(
adjusted for real GDP growth) and annual CPI inflation.
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with β̂1as the OLS estimate of the interest rate semi-elasticity of velocity.
For estimation, the opportunity cost of holding money is represented by the

three-month Treasury Bill rate. The interest-rate semi-elasticities vary widely
across the monetary aggregates. The results shown below are based on a value
of -4 which is close to the average of the estimates for the simple sum monetary
aggregates. Figure 6 presents the estimated wavelet coherencies of adjusted
money growth and annual CPI inflation. The changes are most striking for the
Divisia aggregates M2, M2M and MZM which now exhibit strong and signifi-
cant wavelet coherencies with inflation at frequencies with periods of four years
and longer extending almost all the way through the interpretable region. At
frequencies between four and eight years there are almost continuous signifi-
cant coherencies throughout the sample period and also at the lower frequency
spectrum there is evidence for a strong and stable relationship between Divisia
money growth and inflation although there is some weakening in the 2000s. This
could reflect effects from the financial crisis, since, at these frequencies the vari-
able windows of the wavelet decomposition already start in the early 2000s to
include observations from this period. For MZM the strength of the relationship
is more concentrated at the lower frequencies and not so much in the middle
band. The improvements for M1 compared to Figure 5 are not as impressive as
for the broader aggregates but the estimated coherencies, nevertheless, increase
strongly in the middle and lower frequency bands. Turning to the simple sum
aggregates (left column) the adjustment of the monetary aggregates for changes
in velocity leads only to a modest increase in the wavelet coherencies at low
frequencies and, for M2M and MZM tends to weaken the estimated relationship
over the middle frequency range compared to Figure 5. The results for sim-
ple sum M1 are very similar to those for the Divisa aggregates. In summary,
our estimates indicate strong comovements between the adjusted Divisia money
growth series and CPI inflation which are much more pronounced than for sim-
ple sum monetary aggregates. Comparison of the results for the CFS and MSI
Divisia aggregates shows both to lead to very similar results.
The estimated time differences (see (7)) indicate whether money growth is

preceding or following inflation in time. From the perspective of monetary pol-
icy a useful indicator property of money growth for future inflation requires a
suffi cient lead in money growth before price level developments. Figure 7 dis-
plays the estimated time differences for the unadjusted money growth series
with CPI inflation. Positive (negative) values indicate a lag (lead) of money
growth before inflation. For fluctuations with periods between 12 and 16 years.
. We focus on these lower freuquencies as in our experience with many appli-
cations the time differences tend to become very unstable for medium to higher
frequencies. Our results show that the estimated time differences for the simple
sum aggregates exhibit instabilities at various points in time, first increasing
(M2, M2M, MZM) in the late 1970s and the falling again in the middle 1990s.
More importantly, the time differences for simple sum M2M and MZM switch
from money growth lagging inflation until the mid 1990s to a lead of money
growth afterwards. Only for M2 the estimates indicate a consistent lead be-
fore inflation although with a changing time difference. In contrast, the Divisia
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Figure 6: Wavelet coherency of annual growth rate of monetary aggregates (ad-
justed for real GDP growth and changes in velocity) and annual CPI inflation.
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aggregates for M2, M2M and MZM are estimated to have a very stable lead
before inflation of about four to five years. Only for M1 the growth in the Di-
visia aggregate exhibits a lag for most of our sample period and then switches
to a lead in the early 2000s, possible due to the effects of the financial crisis on
the estimates.12 These results are confirmed if we compute the time differences
for money growth adjusted for real GDP growth (Figure 8) and if we use the
money growth rates adjusted for real GDP growth and for changes in velocity
(Figure 9). In the latter case the lead of adjusted Divisia money growth before
inflation turns out somewhat shorter with about 1.5 to two years but remains
stable through time. For M1, the adjustment for velocity changes results in an
almost contemporaneous relationship between M1 growth and inflation for all
the aggregates for most of the sample period.
While the cross-spectral coherency measures the extent of covariability in

the fluctuations in both time series at a given frequency range, comparable to
the R2 in a regression analysis,. the cross-spectral gain (8) is a measure of the
relative size of the comovements in both series at a given frequency range. It
can be interpreted as a regression coeffi cient in a regression of specific frequency
components of inflation on the corresponding frequency components in money
growth. At frequency zero it captures the long-run (permanent) relationship
between money growth and inflation, as in the Lucas regressions (Lucas, 1980).
An estimated gain of one at frequency zero would imply that the quantity theory
holds in the long run, i.e. that inflation and money growth move one to one. In
wavelet analysis the length of the sample period limits the frequency spectrum
that can be analysed, as estimation for lower frequencies requires more and more
data. As a consequence, we are unable to present evidence for the relationship
at frequency zero and approximate the long run be looking at fluctuations with
periods between twelve and sixteen years.13

Figures 10 to 12 show the estimated cross-spectral gains for fluctuations with
periods between 12 and 16 years of CPI inflation with respect to unadjusted

12Since the time differences are based on phase differences between the cycles of the two time
series in question, the methodology effectively distinguishes a lead from a lag by proximity. A
phase difference between 0 and π, which equals a time difference of up to half of the period of
fluctations, is interpreted as a lag of money growth behind inflation, while a phase difference
between −π and 0 is interpreted as the equivalent lead of money before inflation. Hence, the
separation of leads from lags is somewhat arbitrary. For example, for fluctations with periods
of 16 years a phase difference interpreted as a lag of money growth after inflation of seven
years could also be interpreted as a lead of money growth of nine years.
13Estimating the gain at frequency zero would, in fact, require an infinitely long sample

period. Parametric methods can be used to estimate cross spectra at low frequency even
on finite data sets as they allow to "extrapolate" the relationships between the variables to
frequencies not actually contained in the data. See, for example, Sargent and Surico (2011)
who estimate a time-varying VAR and derive the cross-spectral gain at frequency zero from
the estimated VAR coeffi cients.
Given our sample size, the maximum length of period we can get estimates for is about 23

years. This however, would us only allow to get one estimate at the middle of the sample
and, hence, would leave no scope for studying time-variation in the relationship. Against
this background, looking at periods with length between 12 and 16 years is a reasonable
compromise.
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Figure 7: Time difference between annual money growth and annual CPI infla-
tion. (Positive numbers indicate lag of money growth, negative numbers indicate
lead. Frequencies with fluctuations of 12-16 years.)
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Figure 8: Time difference between annual money growth (adjusted for real GDP
growth) and annual CPI inflation. (Positive numbers indicate lag of money
growth, negative numbers indicate lead. Frequencies with fluctuations of 12-16
years)
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Figure 9: Time difference between annual money growth (adjusted for real GDP
growth and changes in velocity) and annual CPI inflation. (Positive numbers
indicate lag of money growth, negative numbers indicate lead. Frequencies with
fluctuations of 12-16 years.)
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Figure 10: Cross spectral gain between CPI inflation and money growth (Rows:
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money growth, money growth adjusted for GDP growth and money growth
adjusted for GDP growth and changes in velocity.14 For the unadjusted M1
series the gain starts out very high and then drops towards one with similar
results for simple sum and Divisia aggregates. For M2 the gain using the simple
sum aggregate starts out above one with the one estimated using the Divisia
aggregates slightly below one, then the gain declines for all aggregates converging
to a value of about 0.5 or slightly below, in case of the simple sum aggregate.
Using a time-varying VAR for the U.S. Sargent and Surico (2011) estimate
cross spectral gains between money growth (M2) and inflation (measured by
the growth in the GDP deflator). Their results indicate that the cross-spectral
gain at frequency zero is not significantly different from one in the 1970s but
declines significantly below one after 1980 with point estimates around 0.25.
Our results for simple sum M2 are broadly consistent with this evidence, for
the Divisia aggregates the change is, however, less pronounced. Sargent and
Surico attribute the strong decline in the cross spectral gain at frequency zero
to a more aggressive monetary policy reaction function which implies a shift in
the cross spectral gain towards zero. Based on a DSGE model they show that a
cross spectral gain at low frequencies around one results from the central bank
allowing persistent innovations in money by reacting to weakly to inflationary
pressures. In contrast, a monetary policy reaction function in which the central
bank responds aggressively to inflationary pressures leads to a gain close to zero.
For M2M and MZM the results for the growth rates based on unadjusted

simple sum and Divisia aggregates are very close to each other - they start
around one and ten slowly decline towards 0.5. Adjusting for real GDP growth
(Figure 11) leads to lower estimated gains for M1 with a similar qualitative pat-
tern as before. For the other monetary aggregates the gains turn out somewhat
higher than in Figure 10 at the beginning of the sample. They start out some-
what above one and then decline to somewhat below with not much difference
between simple sum and Divisia for M2M and MZM. For M2, however, the gain
estimated for the simple sum aggregate is slightly less stable than for the Divisia
monetary aggregates. Finally, using the money growth rates adjusted for both
real GDP growth and changes in velocity the gain estimated using the Divisia
aggregates for M2, M2M and MZM is initially above one and, beginning in the
mid 1990s increases even further for M2 and MZM while declining towards one
for M2M (Figure 12) For the simple sum aggregates the gain behaves less sys-
tematically and tends to be lower in the late sample than at the beginning. The
gain for M1 evolves similarly for all types of monetary aggregates and from the
early 1990s onward falls from about one to zero. Overall the gains computed
for the Divisia aggregates tend to behave more stable than those for the simple

14The figures do not indicate rejection regions around zero or one to test for statistical
significance. Simulated probability bands for these null hypotheses turned out to be extremely
wide. For example, the 90-percent band for the null hypothesis of a cross-spectral gain of zero
always also covers one. This however, is not specific to gains estimated using wavelet analysis.
For example, the estimated gains for money growth and inflation in Sargent and Surico (2011)
which are computed from the coeffi cients of an estimated VAR model exhibit similar problems
and the probability bands around their estimates often cover zero and one simultaneously.
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sum aggregates.

4 Summary and conclusions

Comparing the results from our wavelet analyses for simple sum and Divisia
monetary aggregates we find no evidence for a tighter link between fluctuations
in the growth rates of Divisia monetary aggregates with those in real GDP
growth than for simple sum monetary aggregates. In fact, except for M1 the
relationship between real money growth and real GDP growth is estimated to
be weaker, especially at low frequencies when using the Divisia aggregates.
Turning to the relationship between money growth and inflation, our results

show much stronger comovements between CPI inflation and growth in Divisia
monetary aggregates than between inflation and growth rates in simple sum
aggregates, especially at low frequencies. Adjusting money growth for real GDP
growth and accounting for changes in velocity strengthens these results even
more. The relationship between Divisia money and inflation remains strong
throughout our sample period. Only for M1 the results for simple sum and
Divisia aggregates turn out to be very similar. Furthermore, while the lead-
lag patterns between money growth and inflation exhibits some instabilities
for simple sum monetary aggregates, growth rates in broader Divisia monetary
aggregates are estimated to have a stable lead before CPI of about four to five
years. Adjusting money growth for real GDP growth and changes in opportunity
costs shortens this lead to about 1.5 to two years. The results for the cross-
spectral gains at low frequencies, i.e. for the level relationship between changes
in money growth and changes in inflation is less conclusive but the estimated
gains tend to be more stable for the Divisia than for the simple sum aggregates.
Comparison of the results for CFS (Center for Financial Stability) and MSI
(Federal Reserve Bank of St.Louis) types of Divisia aggregates does not suggest
marked differences between them. Overall, our results provide evidence that
the indicator properties of long-term changes in money growth for future long-
term changes in inflation in the U.S. are more pronounced when using Divisia
monetary aggregates instead of simple sum aggregates. This suggests, that the
Federal Reserve should emphasize the role of Divisia monetary aggregates over
that of conventional monetary aggregates.
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