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Abstract

The paper develops a theory that firm entry causes endogenous
fluctuations in macroeconomic productivity through its effect on firm
capacity utilization. The results show that imperfect competition
raises profits which causes long-run excess entry : too many firms each
with excess capacity. However, entry occurs slowly, so firms cannot
respond instantaneously to economic conditions; hence in the short
run, incumbent firms’ capacity varies which alters their efficiency and
aggregates to affect productivity. The dynamical system is solved ana-
lytically without specifying functions, and the results show that entry
causes absolutely faster convergence to steady state, and a reduction
in the set of complex dynamics. JEL: E20, E32, D21, D43, L13

How does industry competition affect firm entry and in turn macroeco-
nomic dynamics? Since Chamberlin 1933 economists have understood that in
a monopolistically competitive economy there is ‘excess capacity’–each firm
produces below their full capacity, which minimizes costs, because under-
production earns monopoly profits. In terms of firm entry, underproduction
means too many firms enter and each produces too little. There is excess
entry. Microeconomists, view the process statically so excess entry arises
instantanenously. The focus of this paper is transition toward the excess
capacity steady state. During transition the capacity utilization of firms
fluctuates which causes endogenous productivity variations because at differ-
ent capacity levels firms have different productivity. The firm entry capacity
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utilization mechanism is unexplored in macroeconomics, so the aim of the
paper is to provide theoretical understanding. It ties with the ongoing co-
nundrum of business cycle productivity in macroeconomics, and has intuitive
grounds in light of current productivity puzzles. For example, a firm keeping
on workers, when it may not be productive to do so is a form of capacity
underutilization.

The main result is that resources are divided between too many firms in
the long run, but a perturbation from this equilibrium causes a more effi-
cient division in the short run as firms can not adjust so incumbents bear
the shock. The investigation centres on this endogenous capacity utilization
mechanism. In long-run equilibrium firms have excess capacity, but a move-
ment away from equilibrium can cause firms to increase (reduce) capacity
so they produce closer to (further from) full capacity for a short period of
time whilst other firms enter to arbitrage monopoly profits (exit to avoid
negative profits). The key technical results are that entry causes absolutely
faster convergence to steady state and reduces the set of complex dynamics,
by increasing eigenvalues. Convergence to steady state occurs faster, be-
cause firms outside the market are more responsive to monopoly profits, and
on entry they decrease profits by more than a firm would under imperfect
competition.

The focus on theory and analytical dynamics distinguishes the paper from
others that typically focus on quantitative replication of empirical results.
They are stochastic and dynamics are simulated, as opposed to our qualita-
tive deterministic approach that avoids specifying functional forms or solving
particular parameterized, path dependent models. Our analysis of model dy-
namics provides a mapping between endogenous entry and the dynamics it
creates. The model includes important features from the main papers in
the literature so far: endogenous labour, and capital accumulation (Bilbiie,
Ghironi, and Melitz 2012); imperfect competition (Etro and Colciago 2010)
and entry congestion effects that Lewis 2009 finds empirically important.
Congestion means entry costs increase with number of entrants. Imperfect
competition is the paramount addition since it is ubiquitous in these models
but its relation to entry and mapping to dynamics have not been investigated.

To understand the relationship between entry, imperfect competition and
macroeconomic dynamics, we build on work by Brito and Dixon 2013. The
model is a Cass-Koopmans model with labour-leisure choice and capital. We
add Datta and Dixon 2002 entry and imperfect competition via Cournot
monopolistic competition d’Aspremont, Dos Santos Ferreira, and Gerard-
Varet 1997. Firms control output price (imperfect product market), but do
not control input prices (perfect factor market). The role of a firm is as
a divisor of resources: too many firms divides resources too much; too few
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firms divides resources too little. How does imperfect competition affect the
division of resources among firms?

Our theory is that division of output across firms is important for deter-
mining efficiency and so the sluggish entry of firms is crucial. In the short run
the number of firms is fixed, so as aggregate output varies, output per firm
and capacity utilization vary. Imperfect competition causes firms to produce
less than the efficient level, so they operate with locally increasing returns
to scale. For example a positive production shock (technological or demand)
causes a short-run productivity gain. The shock increases output which raise
incumbent firm output because other firms cannot enter in the short run.
Therefore firms are large and benefit from increasing returns, so productivity
improves: fewer inputs produce more output1. The output of the incumbents
is above the equilibrium level and yields monopoly profits. In the long run,
entrants slowly enter to arbitrage the profits to zero-profit long-run outcome.
Each entrant reduces output per firm: undoing improved capacity, undoing
the increasing returns to scale, undoing the productivity gains. Therefore
the productivity gain is ephemeral, and excess capacity returns in the long
run.

Three features–imperfect competition, non-constant returns to scale (in-
creasing marginal cost), slow firm entry–are necessary for capacity utiliza-
tion effects. Without slow entry, there is standard instantaneous free entry2,
short-run capacity utilization by incumbents will not arise because other firms
enter instantaneously to meet output, so incumbents do not respond. They
always produce their optimal output level. If there were perfect competition,
firms produce efficiently, at minimum average cost; they do not have excess
capacity which if used can improve productivity. If there were constant re-
turns to scale, entry is inert: there is no difference between one large firm
producing all output versus many small firms producing all output3.

Related Literature (UNDER REVISION) Brito and Dixon 2013
study entry implications for macroeconomic dynamics. They show that with
perfect competition, firm entry causes empirically plausible macroeconomic
dynamics in a Ramsey model. The main result is that entry is sufficient
to give nonmonotone deviations from equilibrium under fiscal shocks. The
research derives sufficient conditions for hump-shaped responses that quan-
titative DSGE papers observe via simulation.

Excess capacity is a standard feature of models with imperfect competi-

1The share of inputs in output falls.
2The two extremes entry cases–instantaneous free entry and no entry fixed number of

firms–are special cases the model.
3Furthermore with a fixed cost, like we have, there would be a one firm natural

monopoly.
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tion. Typically macroeconomists discard entry effects by assuming instanta-
neous free entry or constant returns to scale. Both assumptions nullify the
effect of entry: instantaneous free entry drives profits to zero immediately,
which removes any entry incentive so there is no slow adjustment of firms;
constant returns to scale means that the number of firms in the economy is
unimportant because resources are employed at the same efficiency regardless
of size of firm. The contribution of this paper understand the relationship
between excess capacity and firm entry. Our model employs a different en-
try setup to the popular business cycle with entry paper by Bilbiie, Ghironi,
and Melitz 2012. In our model the sunk entry cost is endogenous, and firms
technology has decreasing returns to scale.

The employment of non-CRTS is an important consideration in our paper
which ties it more closely to IO literature and breaches a common macroeco-
nomic assumption. For example, in the IO literature Luttmer JET 2012 has
a fixed cost and decreasing returns, as do Rossi-Hansberg and Wright AER.

A novel aspect of our model is the endogenous sunk cost of entry which
is driven by a negative network effect, also called congestion effect. Some re-
cent papers have acknowledged the importance of congestion effects in entry.
Lewis 2009 offered initial empirical support for congestion effects of firm en-
try. Her VAR study showed that congestion effects can account for observed
lags in monetary policy.

1 Endogenous Entry Model with Imperfect

Competition

The model follows a standard Ramsey setup with additions of imperfect com-
petition, firm entry, and capital accumulation. The model is deterministic,
and labour is endogenous. There are two state variables: capital and number
of firms (K,n) on the state space X ⊆ R2.

We solve the model as a decentralised equilibrium because imperfect com-
petition distorts the optimising behaviour of the firm which does not coincide
with centralised equilibrium of a planner optimising behaviour of the econ-
omy. 4

4The conditions we derive could be derived from an optimal control problem with two
restrictions, but the economic intuition is less clear. However, the equivalence is important
for the theory of dynamics we use later.
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1.1 Household

The economy is inhabited by a continuum of identical households whose mass
is normalized to one. A household seeks policy functions of consumption
{C(t)}∞0 ∈ R and labour supply {L(t)}∞0 ∈ [0, 1] that maximise lifetime
utility U : R2 → R. We assume u is jointly concave and differentiable in
both of its arguments. It is strictly increasing in C and strictly decreasing in
L. L ∈ [0, 1] is a convex compact interval. A representative household solves
the utility maximisation problem.

U : =

∞∫
0

u(C(t), 1− L(t))e−ρtdt (1)

s.t. K̇(t) = rK(t) + wL(t) + Π− C(t) (2)

The household owns capital K and take equilibrium rental rate r and wage
rate w as given. Households own firms and receive their profits. Using the
maximum principle to maximise utility reduces the problem to six conditions
for optimal consumption and labour 5 The Pontryagin conditions simplify

Ċ(r, ρ) =
C

σ(C)
(r − ρ), where σ(C) = −CuCC(C)

uC(C)
(3)

w = − uL(L)

uC(C)
(4)

and the resource constraint (2). Notice that the intratemporal condition can
be substituted into the intertemporal condition through uc(C), which would
give a single differential equation in Ċ to team with the capital differential
equation6. The solution of the dynamic optimization problem for household
consumption will be one of the solutions of this system of two differential
equations that satisfy the initial condition K(0) = K0. But this is only
one boundary condition, rather than adding another condition at t = 0 and
forming an initial value problem, we solve the system of differential equations
as a boundary value problem by imposing a condition on the upper boundary,
so as t gets large rather than when t = 0. The system needs the same number

5Appendix A sets up the Hamiltonian and solves it.
6In optimal control, it is normal to write our Ċ differential as a differential in the

costate λ̇, rather than in the control C. But it is conveneient here to solve the first order
conditions of the Hamiltonian to get the costate as a function of the control, and then
replace the costate differential equation with its definition as a function of the control, so
we get a control variable differential equation instead.
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of boundary conditions as equations, as vairbales. So, in addition to initial
asset holdings, the transversality conditions restrict the solution set to a
single element.

lim
t→∞

Kte
−ρt > 0 (5)

lim
t→∞

Ktλte
−ρt = 0 (6)

K0 = K(0) (7)

Equations (2)-(7) characterize optimal paths of consumption and labour.
In equilibrium these equations continue to hold, with factor prices w and r
at their market value, which arises from firms profit maximising problem .

The intratemptoral condition (4), given w at equilibrium, defines optimal
labour in terms of the other variables

Lemma 1.1 Optimal labour choice.
L̂(C
−
, K

+
, n

+
;A

+
, µ
−

) 7

Proof. Follows that L satisfies assumptions for implicit function definition
ADD PROOF HERE

The intratemporal condition is powerful. It defines the variables that
optimal labour depend on, and how optimal labour responds to the variables.
Consequently, we can determine the behaviour of output, wages, rent and
profits under optimal labour. The important effect for each sign is how wage
responds to the variable of interest, which in turn depends on the variable of
interest’s effect on labour productivity YL

8. For example, more firms raises
optimal choice of labour because it raises wage since when there are more
firms labour productivity is higher.

1.2 Firm Production

There is a continuum of one firm industries, so industry-wide there is a
countable number of measure zero firms, and within an industry firms have
positive measure. Multiproduct firms do not exist, so a firm is a producer, is
a product, is an industry.

There is imperfect competition in the product market and perfect com-
petition in the factor market. Product market imperfect competition means
that firms can control output price; factor market perfect competition means

7To obtain the signs differentiate the intratemporal condition (4) with labour defined
implicitly by L̂(C,K, n;A,µ).

8Derivations in appendix ..
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firms cannot control factor prices. Under imperfect competition each firm
produces less than it would under perfect competition, and the marginal
product of the factors of production, capital and labour, is higher. Under
perfect competition factors’ marginal products equal their price price, but
under imperfect competition,output is lower, so marginal product is higher
than price and a firm accrues monopoly profits.

The industry structure is Cournot monopolistic competition d’Aspremont,
Dos Santos Ferreira, and Gerard-Varet 1997: there is a continuum of indus-
tries, and each industry produces a different product j and has h firms9.
A firm can set industry price through control of its output, but there are
many industries so it cannot affect aggregate price. Perfect competition and
monopolistic competition are two special cases. Case 1, perfect competition
occurs when there are many firms per industry (h→∞) or varieties are close
substitutes (σ →∞), so the firm cannot manipulate industry price, and case
2 monopolistic competition Dixit and Stiglitz 1977 occurs when all industries
have a single producer (h = 1). A firm faces a fixed cost and decreasing re-
turns to scale, a scenario that is more common in IO literature for example
Rossi-Hansberg and Wright 2007 and Luttmer 2012.

Competitive factor markets mean that all n = i × j firms take factor
prices as given, so the market sets the price that all firms face, and firms
cannot affect it. The factors are capital K and labour L, and their prices
are interest r and wage w. Since all firms face the same factor prices, they
employ the same levels of factors. Thus aggregate capital and labour is split
evenly among firms.

ki(j, t) =
K(t)

n(t)
, li(j, t) =

L(t)

n(t)
(8)

Definition 1.2 Production.
Firms have the same production technology, which for firm i in industry j is

yi(j, t) = max{AF(ki(j, t), li(j, t))− φ, 0} (9)

where F : R2
+ ⊇ (k, l) → R+ is a firm production function with continuous

partial derivatives which is homogenous of degree ν < 1 (hod-ν) on the open
cone R2

+, and φ ∈ R+ a fixed cost. This firm output function causes a U-
shaped average cost curve. The output function y : R2

+ ⊇ (k, l) → R+ ∪ 0
is an increasing function of F , so is homothetic and inherits the geometric
properties of the homogeneous function.

A firm is inactive if y(i, t) = 0, otherwise it is active. For now assume that
each j industry has i = 1 firm so a firm is an industry, which will suppress
notation as we only need consider n the number of firms. This is the Dixit and Many

firms

per in-

dustry

under

devel-

opment

Many

firms

per in-

dustry

under

devel-

opment

9Industry and product are interchangeable and denoted by j.
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Stiglitz 1977 approach that will give a constant mark-up. Variable costs are
strictly convex (F is homogeneous of ν < 1 in capital and labour; increasing
marginal cost); the fixed cost denominated in terms of output is a source
of nonconvexity which will cause some firms not to produce. The fixed cost
which is paid each period is different to the sunk entry cost, paid one time
to enter, which I introduce later10. Inada’s conditions hold so that marginal
products of capital and labour are strictly positive which rules out corner
solutions. The average cost curve of (9) is U-shaped because of the fixed
cost. Marginal cost is increasing because ν < 1. Hence according to a U-
shaped cost curve there are initially IRTS, costs decreasing, then AC=MC
then DRTS, costs increasing. Hence there is an optimal scale when average
cost is minimized (AC=MC). Despite rising marginal cost and so ultimately
decreasing returns to scale in the production function, we shall see that firms
operate with increasing returns to scale, known as excess capacity. The trade-
off, which drives the U-shpaed cost curved, between an entering firm bringing
with it an extra fixed cost, versus incumbents increasing their output but at
a higher marginal cost is at the heart of the paper–it is uninteresting in the
perfect competition case because firms produce at optimum, whereas we shall
see with imperfect competition the negative effect of duplication of resources,
too many fixed costs, dominates the returns to scale effect so we are left with
locally increasing returns to scale i.e. a more efficient firm would make better
use of their fixed cost. The perfect competition, AC=MC, efficient output
is equivalent to the output maximising number of firms Yn = 0 from 107 we
have

F (k, l)e =
φ

A(1− ν)
(10)

ye = AF (k, l)e − φ =
φν

1− ν
(11)

Pe =
ye

F (k, l)
1
ν

= A
1
ν ν

(
φ

1− ν

) ν−1
ν

(12)

Technology A does not affect optimal net output, but it reduces optimal
gross output F (k, l) and raises productivity. Measured productivity is output
per unit of production, where production is normalized to be homogeneous
of degree 1. From (10)

(
1
n

)ν
F (K,L)e = φ

A(1−ν)
so number of firms is hod-1

in capital and labour. A rise in capital and labour by some proportion will
raise number of firms by the same proportion, so capital and labour per firm

10As in Jaimovich07 and Rotemberg Woodford the role of this parameter is to repro-
duce the apparent absence of pure profits despite market power. It allows zero profits in
the presence of market power.
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remain unchanged. This drives the result in (11) that optimal output per
firm is a fixed level, independent of model variables.

ne =

(
A(1− ν)

φ
F (K,L)

) 1
ν

Efficient output is not achieved when we consider the strategic interac-
tions of firms under CMC.

The ith firm of the jth industry maximises profits by choosing inputs
under intra-industry Cournot competition, that is it acts as a Cournot com-
petitor within an industry treating industry demand, other firms’ output and
macroeconomic variable P,D as given. Factor markets are competitive (no
monopsony) so all firms in all industries pay w for labour and r for capital.
Operating profits π exclude the one-off sunk cost that each firm pays to en-
ter; we consider sunk costs in the aggregation section when we total profits
across all firms

max
k,l

πi(j) = p(j)yi(j)− wli(j, t)− rki(j, t) (13)

∂πi(j)

∂li(j)
=

(
p(j)

∂yi(j)

∂li(j)
+ yi(j)

∂p(j)

∂li(j)

)
− w = 0 (14)

∂πi(j)

∂l
=

(
p(j)AFl + yi

∂p(j)

∂l

)
− w = 0 (15)

Under perfect competition a firm cannot change industry price, ∂p(j)
∂li(j)

= 0

, but with CMC the firm is large relative to industry size, and ∂p(j)
∂l

=

− 1
σ
p(j)
d(j)

AFl so substituting into (15)

p(j)AFl

(
K

n
,
L

n

)
(1− 1

σ

yi
dj

) = w (16)

p(j)AFl

(
K

n
,
L

n

)
(1− µ) = w (17)

Hence µ captures market share and elasticity of demand (NB–Generalize–
Elasticity of demand depends on the demand function p(j) you have specified)
Results analogous for the second factor k

p(j)AFk

(
K

n
,
L

n

)
(1− µ) = r (18)
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So due to imperfect competition, with output price as the numeraire, the
firm maximises profits given real wage w and interest rate r by choosing
labour and capital such that the following factor market equilibrium holds

AFk(1− µ) = r (19)

AFl(1− µ) = w (20)

The imperfectly competitive factor prices r and w increase firm operating
profits (13) by µνAF (k, l) relative to the perfect competition case when µ =
0.

π(L,K, n;A, µ, φ) = (1− ν)AF (k, l)− φ+ µνAF (k, l) (21)

= (1− (1− µ)ν)AF (k, l)− φ (22)

The next subsection is a brief explanation of the importance this results will
later have.

1.2.1 Zero profit outcome

The extra profit µνAF (k, l) from imperfect competition is crucial to under-
standing the entry-imperfect-competition relationship. Here we make several
assumptions that are later derived.

Profits offer entry incentives, so monopoly profits encourage excess entry.
In section (4.1) we show that profits are zero in steady state so there is no
incentive to enter the market and entry is zero. Taking zero profits as given,
(21) implies

F (k∗, l∗) =
φ

A(1− (1− µ)ν)
(23)

y∗(φ
+
, ν

+
, µ
−

) = AF (k∗, l∗)− φ =
ν(1− µ)φ

1− (1− µ)ν
(24)

(25)

With zero profit π = y − wl − rk becomes

y∗ = wl∗ + rk∗ = (1− µ)AνF (k∗, l∗) (26)

P∗ =
y∗

F (k∗, l∗)
1
ν

= F (k∗, l∗)
ν−1
ν Aν(1− µ) (27)

= A
1
ν ν(1− µ)

(
φ

1− (1− µ)ν

) ν−1
ν

(28)
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Productivity is output per unit of production, production that is normalized
to be hod−1 since F (αk, αl)

1
ν = (ανF (k, l))

1
ν = αF (k, l)

1
ν , α ∈ R. Note that

this is a general definition of productivity: it is general in the sense that under
constant returns to scale ν = 1 then PCRTS = (1 − µ)A, and therefore with
CRTS and perfect competition µ = 0 our definition of measured productivity
is A which is TFP. Notice that with imperfect competition and constant
returns to scale the mark-up determines measured productivity.

However, less output per firm does not imply less output in aggregate
because in general equilibrium there will be a change in the number of firms.
Comparing (10) and (11) with (23) and (24) F (k∗, l∗) < F (ke, le), y∗ < ye,
P∗ < Pe this is Chamberlain-Robinson excess capacity.

Zero profit equilibrium only exists if the denominator is positive ν < 1
1−µ ,

µ → 1, ν → ∞ monopoly power allows ever increasing returns to scale. If
µ = 0 returns to scale are necessarily decreasing ν < 1 because no firm
is large enough to make use of the fixed cost. With CRTS ν = 1 then
µ > 0 because with constant returns and a fixed cost the economy cannot
be competitive. Under perfect competition, µ = 0, the long-run zero-profit
output is technically efficient, (11), but as market share µ increases long-run
output y∗ decreases. Hence imperfect competition causes firms to produce
less than the efficient level ye, so AC>MC and AC is decreasing, giving
locally increasing returns to scale. Increasing output would improve firm
productivity. This result is Chamberlin-Robinson excess capacity ; a firm
could produce more to reach full capacity, but it sits back and underproduces
to maximise profits. With entry we shall see that firms can be manipulated
to use some of this capacity. So in equilibrium the trade-off between an
additional firm bringing an extra fixed cost and reducing overall production
possibility frontier outweighs the efficiency gain from smaller firms being
more efficient.

1.3 Firm Entry

What determines the number of firms at t? The model of entry is from
Das and Das 1997 and Datta and Dixon 2002. Similarly to Berentsen and
Waller 2009 there is a congestion externality in entry11. Lewis 2009 finds
that congestion externalities in entry help to match data better because it
reduces the impact response of entry. A prospective firm pays q to enter, and
an incumbent firm receives a symmetric payoff −q to exit. The number of
entrants is equivalent to the change in the number of firms12, so the marginal

11An idea that relates to mathematical queuing theory
12The simplification is important: if one firm entered and one firm exited entry would

be zero. The number of entrants will always be underestimated because the measure does
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cost of entry depends of the flow of number of firms.

e(t) = ṅ (29)

q(t) = γe(t), γ ∈ (0,∞) (30)

It is expensive to enter when many firms are entering. If firms are exiting
the entry cost is negative i.e. entry is subsidised. If no firms enter or exit
then there is no cost to entry. γ is the effect of entry rate on entry cost. The
bounds on γ capture the limiting cases of entry. γ → 0 implies instantaneous
free entry, and γ →∞ implies fixed number of firms.

The costs imply a non-instantaneous adjustment path to the steady state,
which provides an analytical framework to understand short-run and long-run
dynamics.

Free entry eliminates arbitrage so an inactive firm is indifferent between
entering or not. Hence, at a point in time the cost of entry equals the profit
from being an incumbent

q(t) =

∫ ∞
t

π(s)e−
∫ ∗
t r(τ)dτds (31)

which is equivalent to a flow arbitrage condition by differentiating with re-
spect to time

q̇ = −π(t) + r(t)q(t) (32)

Using q̇ = γė

ė = −π(t)

γ
+ r(t)e(t), γ 6= 0 (33)

where π(t) = AF (k, l)(1− (1− µ)ν)− φ (34)

Which is the rate of change in entry, or if entry is the velocity of number
of firms, then ė is the acceleration of number of firms. When few firms
are entering the rate of entry can increase greatly from entry of a few extra
firms, whereas when profits are large and there are many entrants the a small
change in the number of entrants has a smaller proportional effect.

The operating profits of each firm less total entry costs Z(t) give total
profits.

not capture replacement of incumbent firms.
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2 Aggregation

The last section discussed firm level production and showed that imperfect
competition caused variable production, output and productivity of a firm to
be below the perfect competition case in the long run, so-called excess capac-
ity. Importantly these levels are fixed and independent of model variables in
the long run because capital per firm and labour per firm always return to
the same level–firms enter or exit until the desired per firm levels arise. That
each firm ultimately produces the same output, has implications for aggre-
gation: when there is a rise in firms, aggregate output will increase; when
there is a fall in firms, aggregate output will decrease. Both productivity and
output per firm will always tend to the same level, whereas aggregate output
will change, it has constant returns to scale.

The first firm to enter in a period pays 0, whereas the second firm will
pay γ and the third firm to enter 2γ and so on. Therefore the economy wide
cost of entry, Z(t), is

Z(t) = γ

∫ e(t)

0

i di = γ
e(t)2

2
(35)

Hence aggregate profits are aggregate operating profits less entry costs

Π = nπ − Z(t) (36)

Π = n[AF (k, l)(1− (1− µ)ν)− φ]− γ e(t)
2

2
(37)

Aggregate output is

Y (L,K, n;A, φ) =

n∫
0

y(i)di = n

[
AF

(
K

n
,
L

n

)
− φ
]

(38)

We previously noted at the firm level F (K
n
, L
n

) is homogenous of degree ν < 1,
so decreasing returns. The aggregate production function Y is homogeneous
of degree 1 in (K,L, n)–if you double capital, labour and number of firms,
all firms remain as they were, productivity and output at the firm level are
unaffected, so aggregate output also doubles because there are twice as many
firms each producing the same amount as before–in the long run this can be
seen by noting Y = ny from (1.2).

Y = n

[
AF

(
K

n
,
L

n

)
− φ
]

(39)
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If we substitute in zero profit output per firm (24) we get long-run output

Y ∗ = n∗
[
AF

(
K∗

n∗
,
L∗

n∗

)
ν(1− µ)

]
(40)

Y ∗ = n∗
1−ν
AF (K,L)ν(1− µ) (41)

substitute out n∗ = Y ∗

y∗
= Y ∗

φν(1−µ)
1−ν(1−µ)

Y ∗
ν

=

(
1− ν(1− µ)

φν(1− µ)

)1−ν

AF (K∗, L∗)ν(1− µ) (42)

Y ∗ = F (K∗, L∗)
1
ν A

1
ν ν(1− µ)

(
1− ν(1− µ)

φ

) 1−ν
ν

︸ ︷︷ ︸
P

(43)

Which is equivalent to Y ∗ = n∗y∗. Since ν < 1, free entry causes long-run
increasing returns to scale between F (K,L) and Y .

P∗ =
Y ∗

F (K∗, L∗)
1
ν

= A
1
ν ν(1− µ)

(
1− ν(1− µ)

φ

) 1−ν
ν

(44)

Long-run aggregate output Y ∗ is homogeneous of degree 113 in {K,L, n}.
F (K,L) is hod-ν so F

1
ν is hod-1. P is an efficiency parameter, called mea-

sured productivity since it is a function of true TFP A. Incidentally constant
returns to scale ν = 1 imply underlying productivity is P∗ = Y

F
= A(1 − µ)

which is equivalent to TFP if there is perfect competition µ = 0. Measured
productivity is decreasing in µ. Measured productivity P is increasing in
technological development A, whereas technology does not affect output per
firm y∗ (24).

Marginal products with fixed labour are in appendix E.1. The response
of output to an extra firm is ambiguous

Ŷn = π − µνAF

(
K

n
,
L

n

)
+ FlLn (45)

The result is also ambiguous in steady state when π = 0, whereas it is
positive under perfect competition because an extra firm increases labour and
there is no negative effect from the mark-up competition, and no endogenous

13Long-run aggregate output is hod − 1 in its factors. Increasing the factors
{K,L, n} in Y ∗ by λ gives Y ∗(λK, λY, λn) = (λn)1−νAF (λK, λL)ν(1 − µ) = Y ∗ =
λ1−νn1−νλνAF (K,L)ν(1− µ) = λn1−νAF (K,L)ν(1− µ) = λY ∗
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labour an additional firm reduces output. In the classic Ramsey case with
no endogenous labour, and no imperfect competition Ŷn = 0, so the number
of firms maximises output

Regardless of steady state Yn can be positive or negative. (See appendix).
When homogeneity ν → 1 there are CRTS and it is more likely that an addi-
tional firm reduces output. Since returns are near to constant it is less inef-
ficient for a large incumbent to increase output than if returns were strongly
decreasing because of a increasing variable costs. Since the incumbent is al-
ready going to pay fixed cost, the benefit of it producing albeit slightly less
efficiently is better than a new more efficient firm entering but incurring an
extra fixed cost. If there are strong decreasing returns to scale it is more
likely that the extra efficient of an additional firm relative to an incumbent
will outweighs the extra fixed cost incurred because there is one more firm.
The size of the fixed cost is also important. Large fixed cost and CRTS
encourage fewer firms.

3 General Equilibrium

Let us now consider determination of prices, consumption and labour given
the current capital stock and number of firms.

StachKikuchi

Output from firms Y is split between consumption C(t), investment
I(t) = K̇ and government spending G(t).

K̇ = wL+ rK + Π− C (46)

= n(1− µ)νAF (k, l) + n[AF (k, l)(1− (1− µ)µ)− φ]− γ e
2

2
− C (47)

K̇ = n

[
AF

(
K

n
,
L

n

)
− φ
]
− C − γ e

2

2
(48)

There is Ricardian equivalence T (t) = G(t).

Definition 3.1.
Competitive equilibrium is the ‘equilibrium’ paths of aggregate quantities and
prices {C(t), L(t), K(t), n(t), e(t), w(t), r(t)}∞t=0, with prices strictly positive,
such that {C(t), L(t)}∞t=0 solve the household problem. {K(t)}∞t=0 satisfies the
law of motion for capital. Labour and capital {L(t), K(t)}∞t=0 maximise firm
profits given factor prices. The flow of entry causes the arbitrage condition
on entry to hold (price of entry equals NPV of incumbent). State variables
{K(t), n(t)}∞t=0 satisfy transversality. Factor prices are set according to 18
and ensure goods and factor markets clear.

15



4 Dynamical System of Endogenous Entry Econ-

omy

Firstly, there is conflicting terminology from optimal control and dynamical
systems that needs clarifying. That is, the states, or state space, in the
dynamical systems is the C, e,K, n ∈ R4, whereas in the optimal control
problem it is K,n ∈ R2. Actually the system is reducible to the 2-dimensional
space as we shall see, but for linearization and studying stability we work in
the 4-dimensional space that we shall call the phase space. need

consis-

tency

in

termi-

nology

through-

out

paper

need

consis-

tency

in

termi-

nology

through-

out

paper

A system of four autonomous differential equations is sufficient to quali-
tatively analyse the economy. By a qualitative analysis we mean that we find
the set of solutions that satisfy the system given an initial state x0 := (K0, n0)
in the phase space X ∈ R2 and parameter set Ω ∈ RP. Given our system of
differential equations our goal is to describe the qualitative behaviour of the
solution set including the invariant sets and limiting behaviour defined by
the flow. In order to achieve this qualititative anlysis we employ local theory
particulary Hartman-Grobman Theorem and the Stable Manifold Theorem
which allow us to analyse the solution set of the nonlinear system of ODEs in
a neighbourhood of an equilibrium point (in fact the steady state) through
looking at the qualitative behaviour of the solution set of the corresponding
linearized system in a neighbourhood of the steady state. So at a point in
time t ∈ (0,∞) our economy is entirely described by its level of capital and
the number of firms. For now we do not specify initial conditions or func-
tional forms that would give specific trajectories of capital and number of
firms. The primitives of our boundary value problem are the state of the
system defined on an open set X := K×n ∈ R2, the time t ∈ I defined on an
open interval of R, the parameterization defined on an open set Ω ∈ RP and
the nonlinear C1 function g : X×I×Ω ⊇ R3+P → R2, or“time evolution law”,
that maps a given state, time and parameterization into a new state 14. This
rule allows use to determine the state of the system at each moment in time
from its state at all previous times. For most of the analysis we work with
a system where the state space includes C and e, although these variables
can be defined by their policy functions which map K × n into C × e, so the
system equations K̇ and ṅ describe the evolution of the state variables along
the stable manifold. Our system is could be reduced to two equations rather

14Without loss of generality, our system is defined across dimensions of the real field
R (Euclidean n-space). The assumption opposes intuition that a variable like number of
firms n evolves on the integer ring Z. This eases analysis, for example with the Euclidean
norm and associated Euclidean metric, our normed vector space is complete with respect
to the metric induced by its norm (a Banach space).
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than four, (this is the optimal system of Stachurski), so controls are defined
in terms of state. This is common to those using dynamic programming tech-
niques. But analysing the stability properties of this system is equivalent to
analysing the Hamiltonian system.

Dynamic system sufficient Caputo pp418 in absence of initial conditions and transversality? USE CA-

PUTO/ACEMOGLU P271 STEADY STATE UNIQUENESS ARGS

Definition 4.1 Nonlinear system.
The dynamical system is a pair (X, g), where X = (R4, ψ) is Euclidean space
and metric. It defines at a point in time t ∈ R the state of the system
x(t) ∈ X ⊆ R4 is described by a C1 vector valued transition map g : R5+P ⊇
X× R× Ω −→ R4

K̇ = Y − γ

2
e2 − C −G, Y = n(F (k, l)− φ) (49)

ṅ = e (50)

Ċ =
C

σ(C)
(r − ρ), σ(C) = −CuCC

uC
(51)

w =
−uL
uC

(52)

ė = re− π

γ
, π = AF (k, l)(1− (1− µ)ν)− φ (53)

where factor prices

r = (1− µ)AFk, w = (1− µ)AFl (54)

K̇ = n(AF (k, l)− φ)− γ

2
e2 − C −G, (55)

ṅ = e (56)

Ċ = − uC
uCC

((1− µ)AFk − ρ), (57)

(1− µ)AFl =
−uL
uC

(58)

ė = ((1− µ)AFk)e−
AF (k, l)(1− (1− µ)ν)− φ

γ
, (59)

The system equations, (49) and (50), explain how the state of the system
evolves. The optimization conditions, (51) and (53), restrict the state evolu-
tions. They impose that households maximise utility and potential entrants

17



maximise profits. The economic reiteration is that the system equations
determine how capital and number of firms evolve as the economy moves
through time, and the optimization conditions ensure that capital and num-
ber of firms move so as to maximise consumers’ utility and firms’ utility.

4.1 Steady-state behaviour

Assume that a solution of the system converges to steady state (K∗, n∗, C∗, e∗)→
(Ks, ns, Cs, es) as t→ +∞. 15In steady state K̇ = ṅ = Ċ = ė = 0.

K̇ = 0⇔ Y ∗(C∗) = C∗ +
γ

2
e∗ (60)

ṅ = 0⇔ 0 = e∗ (61)

w∗ =
−uL
uC

(62)

Ċ = 0⇔ r∗(C∗, K∗, n∗) = ρ (63)

ė = 0⇔ r∗(C∗, K∗, n∗)e∗ =
π∗(C∗, K∗, n∗)

γ
(64)

Plug e∗ = 0 into K̇ and ė and rewrite in terms of variables (C,K,L, n, e)

n∗
[
AF

(
K∗

n∗
,
L∗

n∗

)
− φ
]

= C∗ (65)

e∗ = 0 (66)

(1− µ)AFl

(
K∗

n∗
,
L∗

n∗

)
= − uL(L∗)

uC(C∗)
(67)

(1− µ)AFk

(
K∗

n∗
,
L∗

n∗

)
= ρ (68)

F

(
K∗

n∗
,
L∗

n∗

)
=

φ

A(1− (1− µ)ν)
(69)

The system determines (C∗, L∗, K∗, n∗, e∗), where e∗ = 0 is immediate, and
the intratemporal Euler (67) defines L(C,K, n;A, µ). The results formally
confirm what we found in the earlier section on zero profit outcomes. The
entry arbitrage condition, which becomes a zero profit condition in steady
state, gives steady-state technology F (K

n
, L
n

), which then gives y∗, and a map-
ping between C∗ and n∗ via (65). The system is recursive: first find K∗, n∗

then the policy rules C∗, L∗ as a function of the states. Projecting the op-
timization conditions (68) and (69) onto the state space determines K∗, n∗

15Ignore the trivial steady state that arises when the state vector is the zero vector.
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for a given L∗, which is fixed via the capital labour ratio. Ceteris paribus,
say for the K,L, n at perfect competition steady state levels, (69) implies
imperfect competition reduces production per firm and (67) and (68) imply
marginal products rise with imperfect competition (because firms underpro-
duce); (65) implies lower consumption. These do not necessarily hold when
K,L, n adjust. The intuition is that firms produce less so they benefit from
greater increasing returns to scale hence marginal products are higher.

4.1.1 Optimization conditions in k,l and K,n space

The optimization conditions (68) and (69) determine per firm capital k and
labour l, and therefore aggregate capital-labour ratio k

l
= K

L
16. In k, l space

(69) is an isoquant for zero-profit output, and (68) is a locus along which
marginal product of capital is at steady state. Figure (1) shows the convex
isoquant and linear marginal product of capital in steady state. Later we
shall comment on the unamibiguous decrease in k indicated by the dashed
lines which is caused by a rise in imperfect competition.

Figure 1: k, l space

16In other words, eliminate n in the two equations to give a single relationship between
K and L.
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Figure (2a) shows K,n combinations that cause Ċ = 0 and ė = 017.
At the intersection both hold. The interpretation of the functions is that
consumption does not change when interest rates equal the discount rate
r = ρ, and entry does not change when profits are zero π = 0. Incentives
cause both results: incentive to consume today is the same as incentive to
consume later because discount rate and interest rate are equal, so discount a
household suffers from waiting to consume is offset by interest earned whilst
waiting. There is no incentive for entry when profits are zero. The interest
rate condition is upward sloping. A rise in capital per firm decreases the
marginal product of capital18, and therefore the interest rate, but a rise in
firms decreases capital per firm back to its steady-state level. The free entry
condition (π = 0) slope is ambiguous when labour varies, and is upward
sloping when labour is fixed. Increasing capital increases profits, but capital
also raises labour which can reduce profits. If profit falls number of firms
decrease until zero profit is restored. Figure (2a) shows the case where an
increase in capital raises profits and number of firms increase to syphon the
profit causing a positive slope.

Proposition 4.2.
Interest rates are less sensitive to number of firms than profits. The interest
function is steeper than the profit function19.

dn

dK

∣∣∣∣
r=ρ

− dn

dK

∣∣∣∣
π=0

=
νFkkF + (1− ν)FkFk
−ν(1− ν)FkF

> 0 (70)

Proof. Appendix (G)

4.1.2 Euler Frontier and Income Expansion Path in L,C space

For all of the features shown in the state space diagram look at the Ċ
and ė columns of the jacobian see Caputo 419/420

We have k∗ and l∗, so we can determine the marginal product of labour,
which gives the steady state wage w∗. Steady-state wage is fixed so the
intratemporal condition (67) describes L,C combinations that keep the ratio
of marginal utilities constant. Thus it represents the income expansion path.
We call the capital evolution equation (65) the Euler frontier when Y is
replaced by zero profit output from (69), equivalent to (24), and number of

17Functions (68) and (69) respectively. The loci are equivalent to Ċ = 0 and ṅ = 0 only
if other vairables are at steady state.

18since DRTS Fk is decreasing in its arguments.
19In fact, profit function could have negative slope.
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K

n

r = ρ

π = 0
A

k∗

r = ρ

π = 0
B

(a) K,n space

L

C
EF (µ = 0)

IEP(µ = 0)

A

EF (µ > 0)

IEP(µ > 0)

B

C(µ0)

L(µ0)

C(µ1)

L(µ1)

(b) L,C space

Figure 2: Steady State Condtions

firms is written in terms of L, so the equations can be plotted in L,C space20.
n = L

l
and l is determined, so when L changes it changes l but n moves to

keep l at its steady state level. Then the IEP and EF are

w∗︷ ︸︸ ︷
(1− µ)AFl (k

∗, l∗) = − uL(L)

uC(C)
IEP (71)

C =
L

l∗

(
ν(1− µ)φ

(1− (1− µ)ν)

)
EF (72)

The IEP is downward sloping because labour is an inferior good and
consumption is a normal good. As income increases consumption increases
and labour decreases; specifically non-labour income since w∗ is fixed. Income
and utility expand North West on the IEP. The slope is convex because
utility from consumption diminishes and disutility from labor grows. Under
quasi-homothetic preferences the IEP is a straight line; if preferences are
homomethic IEP intersects (1,0).

4.1.3 Comparative statics: Imperfect competition

Proposition 4.3.
Market power decreases capital per firm, and ambiguously affects labour per
firm.

kµ < 0, lµ Q 0 (73)

20The EF is steeper than the budget constraint see Appendix H.
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Proof. Appendix (F.1)

The result is shown in figure (1) by a downward shift in steady-state
output isoquant and downward shift in steady-state marginal product of
capital. The result is also shown by the grey region of figure 2a. In the grey
region K

n
is strictly less, and one can see any shift in the curves caused by

a rise in µ will put the new intersection in the grey region, as the example
with dotted lines shows.
Give examples of when n can decrease, K decrease and example of n in-
crease but K decrease, last n increase K increase

Imperfect competition reduces the interest rate so it is less than the dis-
count rate. Interest rate will return to parity if the marginal product of
capital increases which for given K occurs by increasing n–less capital per
firm raises MPK as each firm employs capital more efficiently due to DRTS
in variable cost. The r = ρ curve shifts up. A rise in imperfect competition
increases profits π > 0, so π = 0 shifts up too because given K a rise in n
will reduce production per firm, and therefore profits, since each firm has less
capital and uses it more efficiently (has less excess capacity lower monopoly
profits), which will keep profits at zero. Under both steady-state conditions
imperfect competition must be offset by a rise in n for a given K, hence
capital per firm, k, unambiguously falls. The grey region is k < k∗, and any
rise in µ will reduce k, to a point in this region21.

A rise in imperfect competition shifts the IEP down and decreases the EF
slope causing a decrease in consumption and an increase or decrease in labour
supply, but a fall in consumption for any L. The IEP shifts down because
market power µ reduces wage, so for given L, according to the intratemporal
condition, consumption must decrease to decrease the utility from consump-
tion and equate the fall in wages22. It is a pure substitution effect: leisure
(1− L) is cheaper relative to consumption, therefore the household decrease
consumption and increase leisure (for a given level of consumption takes less
labour). The EF slope is shallower because each unit of L increases income
less, which creates an income effect. The household has less income so de-
creases intake of both normal goods: consumption and leisure. For a given
L the household reduces C. Both substitution and income effects reduce
consumption, but the substitution effect reduces labour whereas the income
effect increases labour (decreases the normal good leisure). Figure 2b shows

21The diagram is schematic; k must be in a region bound above both original curves,
which rules out some of the grey, but consider different functions e.g. both are flatter so
they tend to the k∗ line–this opens up more of the grey region.

22The ratio of marginal utilities is negative, so we want the ratio to increase which means
a decrease when we consider the negation.
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the case where substitution effect dominates the income effect–labour falls.
Under fixed labour EF would still rotate because return on capital and wage
decrease, but the IEP is vertical which removes substitution effect, leaving
consumption reducing income effect.

The steady state analysis shows that imperfect competition reduces con-
sumption, but can increase or decrease labour supply. Imperfect competition
may increase or decrease capital and number of firms but capital per firm
will fall whereas labour per firm is ambiguous. A decrease in capital per firm
is important for our thesis because in steady-state firms have excess capac-
ity and employ too few inputs. This result asserts that any more imperfect
competition will worsen the situation.

From this snapshot of the economy when capital, number of firms, con-
sumption and entry are constant we find entry is zero, output per firm is
lower, marginal products are higher, consumption is lower, capital, number
of firms and labour are higher or lower, but capital per firm is lower and
consumption to labour is lower.

4.2 Local Comparative Dynamics IN PROGRESS

Use Hasselblatt Katok to clarify notation in this section

Comparative dynamics can explain how imperfect competition affects the
economy as it transitions to excess capacity steady state. For example, if the
economy is at a more efficient capital-number-of-firms state what mechanisms
drive the states to the inefficient steady state? On path to steady state, can
the economy pass through more efficient positions in the state space? To
answer these questions, we solve the four dimensional system which gives
trajectories of the variables over t.

Our system is of nonlinear form ẋ = g(x), but we linearize it to ẋ = Ax̄,
and analyse the A operator which is a matrix on the space defined. The
local behaviour of the nonlinear system is analogous to the behaviour of
the linearized system23; the systems are ‘topologically equivalent’. Proof in
appendix X.

23There is an injective (one-one) mapping between trajectories in a neighbourhood of x̄
and an open set containing the origin.
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Ċ

ė

K̇

ṅ

 =


C
σ
rC 0 C

σ
rK

C
σ
rn

rCe− πC
γ

r rKe− πK
γ

rne− πn
γ

YC − 1 −γe YK Yn

0 1 0 0


∣∣∣∣∣∣∣∣∣Ċ = 0
ė = 0

K̇ = 0
ṅ = 0


C

e

K

n

 (74)

Definition 4.4 Jacobian Matrix and the Jacobian (determinant).
The Jacobian matrix Df(x̄) : R4 → R4 is the nonlinear system matrix eval-
uated at steady state x̄. It forms the system matrix of the linearized system.
The determinant of the Jacobian matrix |Df(x̄)| is called the Jacobian.

A reminder that at steady state e = 0, r = ρ, Y = C and π = 0.


Ċ

ė

K̇

ṅ

 =

Df(x̄)︷ ︸︸ ︷
C∗

σ
r∗C 0 C∗

σ
r∗K

C∗

σ
r∗n

−π∗
C

γ
ρ −π∗

K

γ
−π∗

n

γ

Y ∗C − 1 0 Y ∗K Y ∗n

0 1 0 0



C − C∗

e− e∗

K −K∗

n− n∗

 (75)

In the linearized model, the state vector is deviation from equilibrium
point24. Labour behaves according to the optimal intratemporal condition
L̂. The elements of the Jacobian have the same qualitative interepretation as
the perfect competition case, but their magnitudes change because the fixed
point is different, and this will create different dynamics.

The interest rate affects consumption; profits affect entry, and capital af-
fects output. Imperfect competition dampens interest rate elasticities which
dampens consumption volatility. Profit elasticities are higher which exac-
erbates rate of entry responses. Imperfect competition raises entry rate re-
sponses because it creates a term νµ in profit elasticities so that greater
imperfect competition increases entry rate responses, and stronger decreas-
ing returns ν → 0 offsets the imperfect competition and dampens entry
responses.

Proposition 4.5 Effect of entrant on aggregate output.

24In the terminology of the dynamical system all undetermined variables are state vari-
ables, whereas in the terminology of the optimization problem K,n are states and C, e
are controls. Actually the dynamical system is only 2-dimensional, K,n is a basis for the
whole system. C, e will be shown to be functions of K,n

24



In steady state an entering firm ambiguously affects aggregate output

Y ∗n = −µνAF
(
K∗

n∗
,
L∗

n∗

)
+ AFl

(
K∗

n∗
,
L∗

n∗

)
Ln (76)

=
−φµν

1− (1− µ)ν
+ AFl

(
K∗

n∗
,
L∗

n∗

)
Ln Q 0 (77)

(78)

Corollary 4.6.
Whether an additional firm increases of decreases aggregate output depends
on whether the positive labour effect outweighs the negative fixed cost effect

• Ŷ ∗n < Ŷ ∗µ=0
n firm contributes less than under perfect competition

• Ŷ ∗n < 0 if µνF > FlLn underproduction component exceeds labour boost

• Ŷ ∗n > 0 if µνF < FlLn labour boost exceeds capacity underutilization
effect

Firm entry causes a trade-off between the additional firm incurring a fixed
cost and the additional firm producing more efficiently because of decreasing
returns to scale. The proposition captures the two effects. First, there is a
positive labour effect because entry increases labour supply25. Second entry
is a negative effect that is larger when the fixed cost is higher, there is more
market power, or higher returns to scale; so properties akin to a natural
monopoly increase the negative effect of a firm. This makes it more likely
that entry reduces aggregate output.

Imperfect competition introduces the negatative duplication effect and
the possibility that Ŷ ∗n < 0; whereas, under perfect competition Ŷ ∗n > 0 26.

The result alters the direct effect of number of firms on capital accumula-
tion in steady state (element (3, 4) in the Jacobian matrix, whereas indirect
effects of firms on capital are (3, 1),(3, 2) and (3, 3)). Under perfect competi-
tion a deviation in firms from equilibrium had an effect of the same sign on
capital accumulation–more firms raised capital–but with imperfect competi-
tion the sign may be reversed: more firms decumulate capital.

This plays an important role for eigenvalues which I analyse next. It has
two effects. Contributes to discouraging complex eigenvalues and ensures
faster convergence to steady state.

25See appendix. The postive effect of a firm on labour supply relies on decreasing returns
to the technology ν < 1. Firm entry decreases labour per firm which increases MPL due to
decreasing returns. Firms therefore employ more labour. Under under increasing returns
the reduction in per firm labour decreases the marginal product of labour. Therefore firms
employ less labour

26If labour were not endogenous Fl = 0 and Ŷ ∗n 6 0.
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4.3 Eigenvalues

The four dimensional system has two positive and two negative eigenvalues,
so the system is a saddle which is locally asymptotically unstable. By the
stable manifold theorem, we show saddlepath stability by setting the con-
stant of integration on the two explosive eigenvalues to zero, thus reducing
attention to the stable set. This gives a system of saddle-path conditions that
may be solved for C and e. These policy functions for C and e are the stable
manifold of the system that ensure the constants on the explosive eigenvalues
are zero. Therefore this solution ensures the system is on a subspace of the
system without explosive eigenvalues– this is the the stable manifold which
asymptotically reaches steady state.

First derive the eigenvalues. The 4-dimensional system has symmetry
that we exploit to solve the quartic characteristic polynomial analytically.
Eigenvalues have the general structure of Feichtinger, Novak, and Wirl 1994,
and are qualitatively similar to Brito and Dixon 2013. Despite the same
qualitative interpretations, the magnitudes change and this affects the size
of the sets of different types of dynamic behaviour.

The characteristic polynomial of the Jacobian takes a standard form. And
the solution of the quartic polynomial is symmetric around ρ

2
, and non-zero

since ρ
2
> 0.

Notice the similarities between your system and Acemoglu p271 he works
wth a system of mixed controls and states

Proposition 4.7 Eigenvalues.

λs,u1,2 =
ρ

2
∓
[(ρ

2

)2

− T
2
∓∆

1
2

] 1
2

(79)

λs1 =
ρ

2
−
[(ρ

2

)2

− T
2
−∆

1
2

] 1
2

λu1 =
ρ

2
+

[(ρ
2

)2

− T
2
−∆

1
2

] 1
2

(80)

λs2 =
ρ

2
−
[(ρ

2

)2

− T
2

+ ∆
1
2

] 1
2

λu2 =
ρ

2
+

[(ρ
2

)2

− T
2

+ ∆
1
2

] 1
2

(81)

Proposition 4.8 Stable eigenvalues–saddlepath.
There are always two negative eigenvalues, either real or complex, so we
can choose state variables freely. There are always two positive and two
negative eigenvalues because the root of the outer discriminant (the term
in square brackets) is greater than the term it is added/subtracted from ρ

2
.

26



Because eigenvalues are always positive and negative the matrix is indefinite.
We deduce this because −T

2
± ∆

1
2 > 0, note T < 0, so overall the inner

discriminant is at least as large as ρ
2

2 and therefore its root is larger than ρ
2
.

Formally the least upper bound of the outer discriminate

inf

{[(ρ
2

)2

− T
2
∓∆

1
2

] 1
2

}
=
ρ

2

This also implies that no eigenvalue has zero real part, so by Grobman-
Hartman within a neighbourhood of such a fixed point the linearized system
is topologically equivalent to the nonlinear system.

Proposition 4.9 Nature of eigenvalues.
T drives stability and is affected by πn
∆, more specifically O, determines complex or real roots
The outer discriminant is always positive (and greater than ρ

2
) because −T

2
∓

∆
1
2 is positive, so only the inner discriminant can cause complex roots.

Proposition 4.10 Eigenvalues always real.
If Ŷn < 0 then O > 0 so the inner discriminant ∆ > 0 and all eigenvalues
are real. Imperfect competition encourages nonexistence of complex roots by
decreasing Ŷn which decreases the offsetting negative component O in the
inner discriminant ∆.

The second effect of strictly smaller firm contribution to output Yn is to
increse the absolute values of the eigenvalues

Proposition 4.11.
The inner discriminant is unambiguously larger (in real case??) so whatever
we ∓ is larger leading to larger absolute eigenvalues.

∂O
∂Yn

< 0, since Yn(µ) < Yn(µ = 0) (82)

then O(µ = 0) < O(µ) (83)

∂∆

∂O
> 0, therefore ∆(µ]) > ∆(µ = 0) (84)

That eigenvalues are absolutely larger is driven by having a larger inner
discriminant. T is driven up by πn component which raises the absolute value
of the eigenvalues. Yn also helps to increase the inner discriminant–both have
the ffect of raising the eigenvalues. It means that trajectories converge faster
or diverge faster. Why do trajectories move faster, why is the economy more
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responsive, in the presence of imperfect competition? The intuition is that
monopoly profits encourage a faster response by firms so they enter faster to
arbitrage profits to zero. Remember the result is driven by πn being larger,
so an additional firm drives profits down more which drives us to zero profit
quicker. Note that even though profits are larger they are driven to zero faster
than lower normal profits, suggesting a marginal increase in profit causes a
more than proportional response in the speed of entry.

We are driven closer to the exogenous labour case for O

5 Capacity Utilization

In the short run, the state variables, capital and number of firms, are prede-
termined, so they do not adjust immediately when there is a shock. This can
be seen from the solution to the system, since at t = 0 the state variables
equal their initial condition x0, whereas the controls change depending on
the eigenvectors. Labour is one of these free variables that will jump instan-
taneously. The timing difference between immediate labour adjustment and
slow capital and firm adjustment exacerbate the capacity utilization effect
which causes measured productivity to exceed underlying productivity. Un-
derlying productivity is the steady-state value P∗ defined in (44); it depends
on {A, ν, φ, µ} and is independent of model variables. Measured productivity
P is productivity observed at any instance.

In steady state firms have excess capacity. Since entry is a slow process, a
positive production shock prompts incumbent firms to increase their capacity
toward full capacity, making better use of their fixed costs, which improves
productivity. A negative production shock causes firms to decrease their
capacity, further from full capacity, making less use of their fixed costs and
decreasing productivity. In the long run, firms will exit until zero profit
returns each firm to producing a long-run level of output which is unchanged.
Ignoring labour, with better technology each firm will require less capital to
produce the long-run level. Hence capital per firm should fall.

Theorem 5.1 Measured Productivity Overshooting.
A change in technology causes a greater change in measured productivity than
underlying productivity.

dP(0)

dA
=

1

(1− µ)

dP∗

dA
+ µP∗ YL

Y ∗
LA, (85)∣∣∣∣dP(0)

dA

∣∣∣∣ > ∣∣∣∣dP∗dA

∣∣∣∣ (86)
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Corollary 5.2. • Imperfect compeition µ > 0 is necessary and sufficient
for measured productivity overshooting, and overshooting is increasing
in µ.
PROOF By contrapositive, differentials are equal if and only if µ = 0.

• Endogenous labour is not necessary for overshooting, but it strengthens
the effect.

A positive technology shock immediately raises output per firm. Firms
do not have time to adapt, incumbents absorb the new technology and pro-
duce more output given their existing capital. Producing more reduces their
excess capacity. Profits increase (π is increasing in A eq (21)). Over time
capital and number of firms adjust, returning production to y∗ and profits to
zero. Capital per firm will falls because better technology the inputs needed
to produce the fixed long-run level y∗. Endogenous labour strengthens the
impact response, and causes more overshooting.

6 Conclusion

The paper proposes a microfounded endogenous firm entry DGE model with
imperfect competition and endogenous entry costs. The contribution of the
paper is to analyse the effect of imperfect competition on entry, and in turn
how entry changes capacity utilization which cause endogenous productivity
dynamics. Imperfect competition creates monopoly profits which cause too
many entrants each producing “too little”: less than a cost minimizing level
of output. Excess capacity is the difference between what they produce, and
what they would produce if they minimized costs. Firms underproduce, so
underemploy factors, and employing additional factors which expands their
output and diminishes excess capacity causes productivity gains. The entry-
imperfect-competition interaction has been observed in quantitative DSGE
models of firm entry, but the papers only observe simulations, we offer an
analytical narrative to the blackbox driving these simulated dynamics. And
on the technical side we emphasise that entry reduces the set of complex
dynamics, and drives the economy to steady state faster.

A Household Optimization Problem

To obtain the necessary conditions for a solution to the household’s util-
ity maximisation problem I use the maximum principle. The current value
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Hamiltonian is

Ĥ(t) = u(C(t), L(t)) + λ(t)(w(t)L(t) + r(t)K(t) + Π(t)− C(t)−G) (87)

The costate variable λt is the shadow price of wealth in utility units. The
Pontryagin necessary conditions are 27

ĤC(K,L,C, λ) = 0 =⇒ uC − λ = 0 (88)

ĤL(K,L,C, λ) = 0 =⇒ uL + λw = 0 (89)

ĤK(K,L,C, λ) = ρλ− λ̇ =⇒ λr = ρλ− λ̇ =⇒ λ̇

λ
= −(r − ρ) (90)

Ĥλ := K̇t =⇒ K̇ = rK + wL+ Π− C −G, Π = py − TC
(91)

Equations (88)-(90) reduce to two equations: a differential equation in con-
sumption, and an injective mapping between labour and consumption.

B Operating Profit

Total costs are

wl + rk = AFl(1− µ)l + AFk(1− µ)k (92)

= A(1− µ)[Fll + Fkk] (93)

= (1− µ)νAF (k, l) (94)

Operating profit is output less total costs

π = y − wl − rk (95)

π = (AF (k, l)− φ)− ((1− µ)νAF (k, l)) (96)

π(L,K, n;A, µ, φ) = AF (k, l)(1− (1− µ)ν)− φ (97)

C Output Derivatives

L is fixed.

Y (L,K, n;A, φ) =

n∫
0

y(i)di = n

[
AF

(
K

n
,
L

n

)
− φ
]

(98)
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I suppress the function notation e.g. Fl = Fl
(
K
n
, L
n

)
YK = AFk =

r

1− µ
> 0 (99)

YKK = AFkk
1

n
< 0 (100)

YKn = YnK = A(Fkkkn + Fklln) = A

[
Fkk

(
−K
n2

)
+ Fkl

(
− L
n2

)]
(101)

= A
−1

n
(ν − 1)Fk =

A

n
(1− ν)Fk > 0 (102)

YL = AFl =
w

1− µ
> 0 (103)

YLK = AFlk
1

n
> 0 (104)

YLL = AFll
1

n
< 0 (105)

YLn =
A

n
(1− ν)Fl > 0 (106)

Yn = (AF − φ) + n

[
AFk
−K
n2

+ AFl
−L
n2

]
= (AF − φ) + [−νAF ] (107)

= (1− ν)AF

(
K

n
,
L

n

)
− φ Q 0

Returns to scale ν and fixed cost φ both reduce the effectiveness of an ad-
ditional firm and favour an economy with a low number of firms, which can
cause Yn < 0 if there are too many firms. Under constant returns to scale
ν = 0 and the contribution of an additional firm is to increase output by per
firm output Yn = y.

Line (107) uses Euler’s homogeneous function theorem. Since the pro-
duction function F : R2 ⊇ (k, l) → R has continuous partial derivatives on
the open cone (k, l). Then F is homogeneous of degree ν if and only if

Fkk + Fll = νF ∀(k, l) ∈ R2

Line (102) uses a lemma, since derivatives of a hod − ν function are
hod− ν − 1 then xFxx + yFxy = (ν − 1)Fx.

D Optimal Labour Derivatives

Partially differentiate the intratemporal Euler with respect to each variable
treating labour as an implicit function. Then by implicit function theorem
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get labour responses L̂(C
−
, K

+
, n

+
;A

+
, µ
−

)

uL + uC(1− µ)AFl

(
K

n
,
L

n

)
= 0 (108)

Assumptions: Fll, uCC , uLL < 0 and uC , FL, Flk > 0, where l = L
n

and
k = K

n

uLLLC + uCC(1− µ)AFl + uC(1− µ)AFll
LC
n

= 0, LC =
−uCC(1− µ)AFl

uLL + uC(1− µ)AFll
n

< 0

(109)

uLLLK + uC(1− µ)AFlk
1

n
+ uC(1− µ)AFll

LK
n

= 0, LK =
−uC(1− µ)AFlk

n

uLL + uC(1− µ)AFll
n

> 0

(110)

uLLLn + uC(1− µ)A

[
Flk
−K
n2

+ Fll

(
−L
n2

+
Ln
n

)]
= 0, Ln =

uC(1− µ)A(ν − 1)Fl
n

uLL + uC(1− µ)AFll
n

> 0

(111)

uLLLA + uC(1− µ)Fl + uC(1− µ)AFll
LA
n

= 0, LA =
−uC(1− µ)Fl

uLL + uC(1− µ)AFll
n

> 0

(112)

uLLLµ + ucAFll
Lµ
n
−
(
uCAFl + uCµAFll

Lµ
n

)
= 0, Lµ =

uCAFl

uLL + uC(1− µ)AFll
n

< 0

(113)

The intratemporal Euler is shown graphically as the IEP , it shifts left under
a rise in µ reflecting that the choice of L is strictly lower.

Assumptions on the functions, given above, are sufficient to determine
the signs in all cases except Ln, which depends on returns to scale of the
technology ν. With constant returns ν = 0 an entering firm does not affect
labour supply; with decreasing returns ν < 1 labour increases; with increasing
returns labour decreases.

The denominator is the same in each case, it is the intratemporal condi-
tion differentiated with respect to L and it is negative. The negativity, relects
that with more labour utility from labour is less (and therefore when valued
in terms of consumption, the second component, it is also less). Therefore
the numerator distinguishes signs. The numerator is the derivative of the
intratemporal condition with respect to the variable of interest, with labour
exogenous. It is the derivative of the value of consumption, so the right hand
side of uL = −uC(1− µ)AFl

(
K
n
, L
n

)
.
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E Optimal interest rate, profit, output

Given optimal labour choice we can evaluate how interest rate, profit and
output respond.

E.1 Output

Y (L,K, n;A, φ) = n

[
AF

(
K

n
,
L

n

)
− φ
]

(114)

ŶC = AFlLC < 0 (115)

ŶK = A(Fk + FlLK) > 0 (116)

Ŷn = (1− ν)AF − φ+ AFlLn Q 0 (117)

Furthermore in steady state when F (K
n
, L
n

)∗ = φ
A(1−(1−µ)ν)

then Ŷ ∗n = −φµν
1−(1−µ)ν

+
AFlLn which is positive or negative depending whether the negative compe-
nent outweighs the positive labour effect.

E.2 Rents

r = (1− µ)AFk (118)

rC = (1− µ)YKLLC = (1− µ)
A

n
FklLC < 0 (119)

rK = (1− µ)(YKK + YKLLK) = (1− µ)
A

n
[Fkk + FklLK ] < 0 (120)

rn = (1− µ)(YKn + YKLLn) = (1− µ)
A

n
[(1− ν)Fk + FklLn] > 0 (121)

E.3 Profit

π = AF (k, l)(1− (1− µ)ν)− φ (122)

πC = AFl
LC
n

(1− (1− µ)ν) < 0 (123)

πK =
A

n
(Fk + FlLK)(1− (1− µ)ν) > 0 (124)

πn =
A

n
(−νF + FlLn)(1− (1− µ)ν) < 0 (125)

Notice that for an k, l profit is higher so for any given K,L, n profit is higher,
but not necessarily for any given K,n which is why in state space fewer firms
can arise–which explains the confusion over why despite higher profits we can
have a reduction in firms; the answer is higher profits rely on given L.
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F Jacobian[ C∗
σ

(1 − µ)A
n
FklLC 0 C∗

σ
(1 − µ)A

n
[Fkk + FklLK ] C∗

σ
(1 − µ)A

n
[(1 − ν)Fk + FklLn]

(1 − µ)A
n
FklLCe− AFlLC (1−(1−µ)ν)

γn
(1 − µ)AFk (1 − µ)A

n
[Fkk + FklLK ]e− Ξ (1 − µ)A

n
[(1 − ν)Fk + FklLn]e− Ψ

AFlLC − 1 −γe A(Fk + FlLK) (1 − ν)AF − φ + AFlLn

0 1 0 0

]
(126)

where Ξ = A(Fk+FlLK)(1−(1−µ)ν)
nγ

and Ψ = A(−νF+FlLn)(1−(1−µ)ν)
nγ

. Then in steady

state we have e = 0, Fk = ρ
A(1−µ)

, and F = φ
A(1−(1−µ)ν)

−uC
uCC

(1− µ)A
n
FklLC 0 −uC

uCC
(1− µ)A

n
[Fkk + FklLK ] −uC

uCC
(1− µ)A

n
[(1− ν)Fk + FklLn]

−AFlLC(1−(1−µ)ν)
γn

(1− µ)AFk −A(Fk+FlLK)(1−(1−µ)ν)
nγ

−A(−νF+FlLn)(1−(1−µ)ν)
nγ

AFlLC − 1 0 A(Fk + FlLK) (1− ν)AF − φ+AFlLn

0 1 0 0


(127)

There is a direct effect of µ which appears as 1− µ in several elements of
the Jacobian matrix. There is also an indirect effect which changes value of
the functions F and u and their derivatives because they are valuated at a
different steady state.

The µ parameter has a direct effect in two rows. In the first row the
direct effect which is visible as (1 − µ) decreases the absolute value of Ċ
responses to changes in the four equilibrium variables, so consumption is less
prone to change i.e. consumption volatility dampened. In the second row,
(1−µ) raises the absolute value response of ė to C,K, n changes, and lowers
the response to an e change. The change in entry rates are exacerbated, so
a period of lots of entry activity, will be followed by a period of less entry
relative to the perfect competition case. The direct effect of entry deviating
from equilibrium causes a greater change in the rate of entry than if there
were perfect competition.

The indirec effect of µ is to change the steady state, and therefore alter
where the functions Fkk, Fk, Fl, uCC , uC are evaluated. The labour deriva-
tives, are defined in terms of the other variables earlier in the appendix. But
although these marginal effects may increase or decrease their signs and thus
the general dynamics will not change.

F.1 Comparative statics

From (68) and (69)

Fk(k, l) = Υ, F (k, l) = Ξ (128)

where, Υ =
ρ

A (1− µ)
Ξ =

φ

A (1− (1− µ) ν)
(129)
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Use Cramer’s rule to determine the effect of a change in µ. Differentiate with
respect to µ

Fkkkµ + Fkllµ = Υµ (130)

Fkkµ + Fllµ = Ξµ (131)

J︷ ︸︸ ︷[
Fkk Fkl
Fk Fl

] [
kµ
lµ

]
=

[
Υµ

Ξµ

]
(132)[

kµ
lµ

]
=

1

det(J)

[
Fl −Fkl
−Fk Fkk

]
︸ ︷︷ ︸

J−1

[
Υµ

Ξµ

]
(133)

det(J) = FkkFl − FklFk < 0, Υµ =
ρ

A(1− µ)2
> 0 Ξµ = − φ

A(1− (1− µ)ν)2ν
< 0

(134)

Hence,

kµ =
1

det(J)
(FlΥµ − FklΞµ) < 0 (135)

lµ =
1

det(J)
(−FkΥµ + FkkΞµ) ≷ 0 if

∣∣∣∣ FkFkk
∣∣∣∣ ≶ ∣∣∣∣− φ(1− µ)2

ρ(1− (1− µ)ν)2ν

∣∣∣∣
(136)

G Sensitivity to entry

By analysing the implicit functions n and K within our explicit functions,
the isoclines Ċ and ė we have28

dn

dK

∣∣∣∣
r=ρ

= −rK
rn

=
Fkk

−(1− ν)Fk
> 0 (137)

dn

dK

∣∣∣∣
π=0

= −πK
πn

=
Fk
νF

> 0 (138)

28Given explicit function F (x, y, z) to analyse the implicit function z = f(x, y) we have
∂f
∂x = −FxFz and ∂f

∂y = −FyFz .
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H Euler Frontier in terms budget constraint

The Euler frontier is the steady state budget constraint. It is the budget
constraint with K∗

L∗ at constant steady state level, unlike the budget constraint
where the ratio changes. The normal budget constraint has positive income
when labour is zero because there is nonlabour income from capital, but
the EF maintains K/L ratio so zero labour means zero capital. Under the
normal budget constraint a rise in labour raises consumption by w, but under
the Euler frontier a raise in labour means capital increases to maintain their
ratio, so there is a rise in w but also capital income.

I Productivity effect

Denote F (K,L) by F , remembering on impact t = 0 the state variables K,n
are predetermined so do not adjust; however, L adjusts29. By the quotient
rule differentiate Y

F
1
ν

= An1−νF+nφ

F
1
ν

dP(0)

dA
=
F

1
ν (n1−νF + An1−νFLLA)− (An1−νF + nφ) 1

ν
F

1
ν
−1FLLA

F
2
ν

(139)

= F−
1
ν (n1−νF + An1−νFLLA)− (An1−νF + nφ)

1

ν
F−

1
ν
−1FLLA

(140)

29See Caputo 2005 p.426
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If we consider this effect at the fixed point K∗, n∗ and note that in this
equilibrium P∗ = (1− µ)Aνn∗

1−ν
F (K∗, L∗)1− 1

ν . Therefore

dP(0)

dA
= n1−νF 1− 1

ν +
P∗

(1− µ)F
FLLA − P∗

1

νF
FLLA (141)

=
P∗

(1− µ)Aν
+
P∗FLLA
νF

(
µ

1− µ

)
(142)

=
1

(1− µ)

dP∗

dA
+
P∗FLLA
νF

(
µ

1− µ

)
(143)

=

(
µ

1− µ
+ 1

)
dP∗

dA
+
P∗FLLA
νF

(
µ

1− µ

)
(144)

dP(0)

dA
− dP∗

dA
=

(
µ

1− µ

)
dP∗

dA
+
P∗FLLA
νF

(
µ

1− µ

)
(145)

=

(
µ

1− µ

)
P∗
(

1

Aν
+
FLLA
νF

)
(146)

=

(
µ

1− µ

)
A

1
ν ν(1− µ)

(
φ

1− (1− µ)ν

) ν−1
ν
(

1

Aν
+
FLLA
νF

)
(147)

= µ

(
φ

A(1− (1− µ)ν)

)1− 1
ν
(

1 +
AFLLA
F

)
(148)

Using dP∗

dA
= P∗

Aν
and Y ∗ = (1− µ)Aνn1−νF and YL = An1−νFL

dP(0)

dA
=

1

(1− µ)

dP∗

dA
+ µP∗ YL

Y ∗
LA (149)

J Functional forms

The baseline RBC model assumes isoelastic (constant elasticity) separable
subutilties and a Cobb-Douglas production function.

U(C,L) =
C1−σ − 1

1− σ
− ξ L

1+η

1 + η
(150)

UC = C−σ, UCC = −σC−σ−1, UL = −ξLη (151)

Hence the degree of relative risk aversion is constant σ(C) = −C UCC
UC

= σ
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F (k, l) = kαlβ = KαLβn−(α+β) = F (K,L)n−(α+β)

(152)

Fk = αkα−1lβ = αKα−1Lβn1−(α+β), Fl = kαβlβ−1 = KαβLβ−1n1−(α+β)

(153)

The functional forms satisfy our assumptions on the production function.
The Cobb-Douglas production function is homogeneous of degree ν = α+β <
1 which implies increasing marginal costs. An increase inputs by n, produc-
tion increases by nν i.e. F (nk, nl) = nνF (k, l). There is constant elasticity of
utility with respect to each good so a percent change in consumption causes a
(1−σ)% change in utility, and σ 6= 1 is the constant coefficient of relative risk
aversion, which implies infinite risk aversion in the limit–utility changes very
little from a rise in consumption, so there is aversion to changing consump-
tion. Given these functional forms the system in variables (K,n,C, e, L) and
parameters (A,α, β, φ, γ, σ, µ, ρ, ξ, η) where ν = α + β becomes

K̇ = n
[
AKαLβn−(α+β) − φ

]
− γ

2
e2 − C (154)

ṅ = e (155)

Ċ =
C

σ

[
(1− µ)AαKα−1Lβn1−(α+β) − ρ

]
(156)

ξ

C−σ
= (1− µ)AKαβLβ−1−ηn1−(α+β) (157)

ė = (1− µ)AαKα−1Lβn1−(α+β)e− 1

γ

(
AKαLβn−(α+β)(1− (1− µ)ν)− φ

)
(158)

There are five equations in five variables, four of the equations are differen-
tional equations in C, e,K, n. The fifth is the intratemporal Euler from which
we can define L(C, e,K, n) and thus remove it from the system and plug it
into our differential equations so that there are four differential equations in
four variables.

We can derive k∗, l∗ and C∗(n∗). The entry arbitrage condition, which
is the zero profit condition in steady state, gives steady-state technology
F (K

∗

n∗ ,
L∗

n∗ ) = φ
A(1−(1−µ)ν)

which via Ċ gives k∗ and substitute k∗ back into Ċ
to get l∗

k∗ =
φα(1− µ)

(1− (1− µ)ν)ρ
(159)

l∗ =

[
1

A

( ρ
α

)α(1− (1− µ)ν

φ(1− µ)

)1−α
] 1
β

(160)
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The C(n) realtionship follows from using the steady state technology from ė

in K̇, (which also confirms y∗ = φ(1−µ)ν
1−(1−µ)ν

n∗ =
(1− (1− µ)ν)

ν(1− µ)φ
C∗ (161)

Thus having determined e = 0, k∗, l∗, and C∗(n∗), we are left to find n∗.
Substituting k∗ and l∗ in the intratemporal condition gives another n∗(C∗)
condition, which may be solved implicitly using the C(n) condition derived
from the K̇ goods market condition.

Proposition J.1.
With Cobb-Douglas production and isoelastic utility, whether an entering
firms explands or contracts output depends {α, β, η, µ}

Yn Q 0⇐⇒ β(1− (α + β))

(α + β)(1 + η − β)
Q µ (162)

which comes from Y ∗n = −φµ(α+β)(1+η−β)+φβ(1−(α+β))
(1−(1−µ)(α+β))(1+η−β)

Consider a numerical example, α = 0.3, β = 0.5, η = 0 implies 0.25 < µ
is sufficient for an entrant to contract output Y ∗n < 0. As intertemporal
elasticity of labour η increases less market power µ is necessary. For example,
with log utility in labour η = 1 then 0.125 < µ is sufficient. So for a typical
calibration an additional firm contracts output as we normally take µ much
higher than either of these two examples. One can also see that if µ = 0 then
Yn > 0 and if there are constant returns α + β = 1 then Yn < 0.

J.1 Cost function

Static optimization problem so drop time subscripts

C(r, w, y) = min
l,k

wl + rk + φ s.t.y 6 Akαlβ − φ (163)

With Cobb-Douglas production the total cost function from substituting La-

grangean obtained conditional input demands k(r, w, y) =

[(
wα
rβ

)β (
y+φ
A

)] 1
α+β

and l(r, w, y) =
[(

rβ
wα

)α (y+φ
A

)] 1
α+β

into the cost function is

C(r, w, y) = (α + β)

(
y + φ

A

) 1
α+β ( r

α

) α
α+β

(
w

β

) β
α+β

+ φ (164)

Where the firm takes factor prices as given. The average cost C
y

is U-shaped

and the marginal cost dC
dy

is increasing.
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