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Abstract

This paper describes an algorithm to compute the distribution of conditional fore-
casts, i.e. projections of a set of variables of interest on future paths of some other
variables, in dynamic systems. The algorithm is based on Kalman filtering methods
and is computationally viable for large models that can be cast in a linear state space
representation. We build large vector autoregressions (VARs) and a large dynamic fac-
tor model (DFM) for a quarterly data set of 26 euro area macroeconomic and financial
indicators. Both approaches deliver similar forecasts and scenario assessments. In addi-
tion, conditional forecasts shed light on the stability of the dynamic relationships in the
euro area during the recent episodes of financial turmoil and indicate that only a small
number of sources drive the bulk of the fluctuations in the euro area economy.
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1 Introduction

Vector autoregressions (VARs) are very flexible and general models and provide a reliable

empirical benchmark for alternative econometric representations such as dynamic stochastic

general equilibrium (DSGE) models, which are more grounded in theory but, at the same

time, impose more structure on the data (see, for example, Christiano, Eichenbaum, and

Evans, 1999).

Recent literature has shown that VARs are viable tools also for large sets of data (see Bańbura,

Giannone, and Reichlin, 2010). In this paper, we construct a large VAR for the euro area

and we apply it to unconditional forecasting as well as for conditional forecasts and scenar-

ios. These, along with structural analysis (assessing the effects of structural shocks), have

been the main applications of VARs. Whereas large VARs have been used for unconditional

forecasting and structural analysis,1 limited attention has been devoted as yet to conditional

forecasting. This is because popular algorithms for deriving conditional forecasts have been

computationally challenging for large data sets. We overcome this problem by computing the

conditional forecasts recursively using Kalman filtering techniques.

Conditional forecasts and, in particular, scenarios are projections of a set of variables of interest

on future paths of some other variables. This is in contrast to unconditional forecasts, where

no knowledge of the future path of any variables is assumed. The prior knowledge, albeit

imperfect, of the future evolution of some economic variables may carry information for the

outlook of other variables. For example, future fiscal packages would affect the future evolution

of economic activity and, thus, might provide important off-model information. Moreover, it

may be of interest to assess the impact of specific future events on a set of variables, i.e.

to conduct scenario analysis. Notable examples of the latter are the stress tests recently

conducted in the US and the euro area in order to assess the vulnerability of their banking

systems. For recent examples of conditional forecasts, see Lenza, Pill, and Reichlin (2010);

Giannone, Lenza, and Reichlin (2010); Jarociński and Smets (2008); Bloor and Matheson

(2011); Giannone, Lenza, Pill, and Reichlin (2012); Stock and Watson (2012a); Giannone,

Lenza, Momferatou, and Onorante (2014). Recently, Clark and McCracken (2014) propose

1See e.g. Koop (2013), Giannone, Lenza, Momferatou, and Onorante (2014), Giannone, Lenza, and Reichlin
(2012), Paciello (2011),Giannone, Lenza, and Primiceri (2014).
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and evaluate a range of tests of predictive ability for conditional forecasts from estimated

models.

The scenario analysis described above and studied in this paper can be considered as “reduced

form”, in the sense that the forecasts are conditional on observables and the identification of

structural shocks is not required.2 Notice that, if needed, the structural shocks that are

“compatible” with the scenario can be retrieved from the reduced form innovations with

some identifying assumptions. An alternative approach consists in constructing scenarios by

manipulating specific structural shocks so that the resulting paths of the observed variables

are consistent with the conditioning information (see also Leeper and Zha, 2003; Adolfson,

Laséen, Lindé, and Villani, 2005; Christoffel, Coenen, and Warne, 2007; Luciani, 2013). Along

similar lines, Baumeister and Kilian (2013) construct scenarios for real price of oil from a VAR

by conditioning on a sequence of appropriately derived structural shocks rather than on a pre-

specified path for observables.

For VAR models, the conditional forecasts are typically computed by using the algorithm de-

veloped by Waggoner and Zha (1999). Roughly speaking, the methodology involves drawing

(the entire) paths of reduced form shocks which are compatible with the conditioning path on

the observables. Due to computational burden, this approach can easily become impractical

or unfeasible for high dimensional data and long forecast horizons, even if the computationally

more efficient version of Jarociński (2010) is employed. However, many problems in macroe-

conomics and finance can only be addressed by looking at the joint dynamic behavior of a

large number of time series. For example, business cycle research, as in the NBER tradition,

typically involves the analysis of many macroeconomic variables. Professional forecasters and

policymakers look at a variety of different indicators to predict key variables of interest and

to make their decisions. Investors analyze the joint behavior of many asset returns in order to

choose their optimal portfolios. More in general, contemporary science relies more and more

on the availability and exploitation of large data sets.

In this paper, building on an old insight by Clarida and Coyle (1984), we propose an algo-

rithm based on Kalman filtering techniques to compute the conditional forecasts. Since the

Kalman filter works recursively, i.e. period by period, this algorithm reduces significantly the

2For a discussion on the invariance of conditional forecast distribution to alternative identification assump-
tions for structural shocks see Waggoner and Zha (1999).
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computational burden for longer forecast horizons and is particularly well suited for empirical

approaches handling large data sets. Using a simulation smoother (see Carter and Kohn,

1994; de Jong and Shephard, 1995; Durbin and Koopman, 2002, for examples of simulation

smoothers) allows for the computation of the full distribution of conditional forecasts. The al-

gorithm applies to any model which can be cast in a linear state space representation. For the

VAR framework, we compare the computational efficiency of different simulation smoothers

and find that for large systems the simulation smoother of Durbin and Koopman (2002) can

offer substantial computational gains with respect to the more popular algorithm of Carter

and Kohn (1994).

The interest in issues which are best addressed by considering large information sets raises

a trade-off between excessive simplicity of the models – misspecification due to omitted vari-

ables – and their excessive complexity – many free parameters leading to large estimation

uncertainty. Recent developments in macroeconometrics have suggested two approaches to

deal with the complexity of large sets of data, without losing their salient features: Bayesian

VARs (BVARs) and dynamic factor models (DFMs).

The aforementioned flexibility of VARs comes at the cost of a high number of free parameters

to be estimated. Specifically, for a generic VAR(p) model for a vector of n variables yt =

(y1,t, . . . , yn,t)
′:

yt = c+ A1yt−1 + · · ·+ Apyt−p + εt , εt ∼ WN(0,Σ) , (1)

where WN(0,Σ) refers to a white noise process with mean 0 and covariance matrix Σ, we

count: i) pn2 parameters in autoregressive matrices, A1, . . . , Ap, that are of dimension n× n

each; ii) n(n + 1)/2 free parameters in the n × n covariance matrix of residuals Σ; iii) n

parameters in the constant term c. The number of parameters proliferates as the number of

variables in the model increases, making estimation unreliable or unfeasible. For example,

when the number of variables in a VAR with 4 lags increases from 6, as in the original VAR

model proposed by Sims (1980), to 20, 50 or 100, the total number of parameters to be

estimated goes from 171 to, respectively, numbers in the order of 2, 10 and 50 thousands.

Such a high number of parameters cannot be well estimated by ordinary least squares, for

example, since the typical macroeconomic sample involves a limited number of data points

(in the best case, 50− 60 years of data, i.e. 200− 250 data points with quarterly data). The
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problem of parameter proliferation that prevents econometricians from conducting reliable

inference with large dimensional systems is also known as the “curse of dimensionality”.

A solution to the curse of dimensionality in the VAR framework consists in adopting Bayesian

shrinkage. The idea of this method is to combine the likelihood coming from the complex and

highly parameterised VAR model with a prior distribution for the parameters that is näıve but

enforces parsimony. As a consequence, the estimates of the coefficients are “shrunk” toward

the prior expectations, which are typically equal to 0.3 This approach can also be interpreted

as a penalised maximum likelihood method.

The shrinkage methods have been advocated by early proponents of VARs as a macroecono-

metric tool (Litterman, 1979; Sims, 1980; Doan, Litterman, and Sims, 1984) but they were

typically used for low dimensional systems. Recently, it has been shown that the idea of

shrinkage works also for high dimensional systems and provides results that are very similar

to those obtained by using the DFMs (see De Mol, Giannone, and Reichlin, 2008; Bańbura,

Giannone, and Reichlin, 2010; Giannone, Lenza, and Primiceri, 2014). This is not surprising

since, as shown by De Mol, Giannone, and Reichlin (2008), when applied to collinear vari-

ables, as are typically macroeconomic variables, the forecasts produced by factor models and

Bayesian shrinkage tend to get closer, as the size of the sample and of the cross-section get

larger.

Factor models exploit the fact that macroeconomic and financial time series are characterised

by strong cross-sectional correlation. Under the assumption that most of the fluctuations

are driven by a relatively limited set of common sources, factor models offer a parsimonious

representation by summarizing the information from a large number of data series in few

common factors. DFMs further parameterize the dynamics of the factors, typically assuming a

VAR process. The estimation of factor models generally requires that the data are stationary.

Assuming that stationarity is achieved via taking first differences4, the DFM is defined as

follows:

∆yt = µ+ ΛFt + et,

Ft = Φ1Ft−1 + . . .+ ΦpFt−s + ut , ut ∼ WN(0, Q) ,

3For an extensive discussion of shrinkage in various contexts see e.g. Stock and Watson (2012b) and Ng
(2013).

4Trending series are typically “logged” beforehand.
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where Ft = (F1,t, . . . , Fr,t)
′ is an r-dimensional vector of common factors, with r typically much

smaller than n and Λ is an n×r matrix of factor loadings. Since the number of common factors

r is typically small, the estimation of the VAR describing the dynamics of the common factors

does not pose any problem. The residual et = (e1,t, . . . , en,t)
′ is the idiosyncratic component.

The most common approach is to assume that the idiosyncratic component is cross-sectionally

uncorrelated. This assumption gives rise to the “exact” factor model, which highlights the

fact that the cross-correlation between the variables is fully accounted for by the common

factors. Interestingly, recent literature has shown that factor models can be estimated with

large data sets, i.e. even in situations in which the cross-sectional dimension n is much larger

than the sample size T . In addition, the estimates are asymptotically valid also when the data

generating process is not the “exact” but rather an “approximate” factor model, in the sense

that the idiosyncratic components are weakly cross-correlated (see Forni, Hallin, Lippi, and

Reichlin, 2000; Stock and Watson, 2002b; Bai and Ng, 2002; Bai, 2003; Forni, Hallin, Lippi,

and Reichlin, 2004; Doz, Giannone, and Reichlin, 2012). Stock and Watson (2011) provide an

exhaustive survey of the literature.

Factor models are appealing also because many popular economic models can be cast in their

format. The typical theoretical macro model, indeed, includes only a handful of shocks driving

the key aggregate variables in the economy. The arbitrage pricing theory (APT) is built upon

the existence of a set of common factors underlying all returns. Moreover, the distinction

between common and idiosyncratic sources of fluctuations is often employed in international,

regional and sectorial studies and represents a useful device to study macroeconomic implica-

tions of microeconomic behavior (see e.g. Kose, Otrok, and Whiteman, 2003; Foerster, Sarte,

and Watson, 2011).

In our empirical application, we carry out a comprehensive comparison of the two modelling

approaches, the VARs and the DFMs, on a large data set of quarterly euro area macroeconomic

and financial variables. We consider two versions of the BVAR – with data in (log-)levels and

in (log-)differences – and a dynamic factor model. First, we show that the three models

produce quite accurate unconditional forecasts, compared to univariate benchmarks, and that

the forecasts from the three approaches are very correlated. The latter finding lends empirical

support to the theoretical argument that the approaches are tightly linked, complementing

similar evidence already available for the US (see, for example De Mol, Giannone, and Reichlin,
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2008; Giannone, Lenza, and Primiceri, 2014).

Then, we compare the two approaches also for what concerns scenarios and conditional fore-

casts. In particular, we study the economic developments associated to a scenario of an

increase in world GDP as well as conditional forecasts based on the realised path of real

GDP, consumer prices and the policy rate. We show that also the scenario analysis and the

conditional forecasts computed for the three models provide similar insights. The fact that

the results are not model specific is reassuring, since it indicates that the predictions of the

models are reflecting genuine data features.

The results from the conditional forecasts yield support to two further conclusions. First, the

fact that the conditional forecasts based on the three variables track, in general, quite closely

the actual developments in most of the variables under analysis suggests that there are only a

few “sources” that drive the bulk of the fluctuations in the euro area economy. Second, there

appears to be some degree of stability in the economic relationships following the financial

crisis as the the conditional forecasts for this period based on the parameters estimated with

data until end of 2007 are relatively accurate, with the possible exception of some categories

of loans and broad monetary aggregates (see Giannone, Lenza, and Reichlin, 2012, for an

extensive discussion and interpretation of these results).

The structure of the paper is as follows. In section 2, we review the state-of-the-art techniques

for the estimation and inference for DFMs and BVARs and we expound the close relationship

linking the two approaches. In section 3, we describe a Kalman filter based methodology

to compute conditional forecasts. In section 4, we present and discuss the empirical results.

Section 5 concludes. The appendix contains some implementation details, comparison of

computational performance of different algorithms and data descriptions.
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2 Models for large data sets

2.1 Dynamic factor models

The general representation of the dynamic factor model described in the introduction is:

∆yt = µ+ ΛFt + et, (2)

Ft = Φ1Ft−1 + . . .+ ΦsFt−s + ut , ut ∼ WN(0, Q) .

Following Doz, Giannone, and Reichlin (2012) the model can be estimated by means of quasi-

maximum likelihood methods. In this context, the estimation of the model is performed by

maximising a likelihood function, under the assumption that data are Gaussian and that

the factor structure is exact, i.e. the idiosyncratic errors are cross-sectionally orthogonal:

ut ∼ i.i.d.N(0, Q) and et ∼ i.i.d.N(0,Γd), where Γd is a diagonal matrix.

Doz, Giannone, and Reichlin (2012) have shown that this estimation procedure provides con-

sistent estimates for approximate dynamic factor models under general regularity conditions

(convergence in probability of the covariance matrix of the data and data stationarity). Re-

markably, consistency is achieved without any constraint on the number of variables, n, rel-

ative to the sample size, T , under the assumption of weak cross-sectional dependence of the

idiosyncratic term, et, and of sufficient pervasiveness of the common factors.

As the factors are unobserved, the maximum likelihood estimators of the parameters Λ,Γd,

Φ1, . . . ,Φs, Q, which we collect in θ, are, in general, not available in closed form. They can

be obtained either via a direct numerical maximisation of the likelihood, which can be com-

putationally demanding,5 or, as in Doz, Giannone, and Reichlin (2012), via the Expectation-

Maximisation (EM) algorithm. The EM algorithm was proposed by Dempster, Laird, and

Rubin (1977) as a general solution to problems with incomplete or latent data. In the case of

the DFM, the algorithm alternates between the use of the Kalman smoother to estimate the

common factors given a set of parameters (E-step), and multivariate regressions (corrected

for the uncertainty in the estimation of the common factors) to estimate the parameters given

the factors (M-step), see e.g. Watson and Engle (1983) or Shumway and Stoffer (1982).

5Jungbacker and Koopman (2008) show how to reduce the computational burden in case the number of
observables is much larger than the number of factors.
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The algorithm can be initialised using the sample principal components. In what follows, we

assume that data are standardised to have sample mean equal to zero and variance equal to

one.6 Denote by dj, j = 1, . . . n, the eigenvalues of 1
T

∑T
t=1 ∆yt∆y

′
t and by vj, j = 1, . . . n, the

associated eigenvectors, i.e.(
1

T

T∑
t=1

∆yt∆y
′
t

)
vj = vjdj, j = 1, 2, . . . n ,

with v′jvj = 1, v′jvk = 0 for j ̸= k and d1 ≥ d2 ≥ . . . ≥ dn. The sample principal

components of ∆yt are defined as zjt =
1√
dj
v′j∆yt. The principal components are ordered

accordingly to their ability to explain the variability in the data as the total variance ex-

plained by each principal component is equal to dj. The principal components transform

cross-sectionally correlated data, ∆yt, into linear combinations zt = (z1,t, . . . , zn,t)
′ = H∆yt

where H =
(

1√
d1
v1, . . . ,

1√
dn
vn

)′
. These linear combinations are cross-sectionally uncorrelated,

with unit variance, 1
T

∑T
t=1 ztz

′
t = In.

The approximate factor structure is defined in terms of behavior of the eigenvalues of the

population covariance matrix when the number of variables increases. Specifically, the first r

eigenvalues of the population covariance matrix of ∆yt are assumed to grow with the dimension

of the system, at a rate n. All the remaining eigenvalues remain, instead, bounded. It can be

proved that these assumptions imply that the eigenvalues dj of the sample covariance matrix

will go to infinity at a rate n for j = 1, . . . , r, where r is the number of common factors. On

the other hand, dr+1, . . . , dn will grow at a rate given by n/
√
T (see De Mol, Giannone, and

Reichlin, 2008; Doz, Giannone, and Reichlin, 2011, 2012). Forni, Hallin, Lippi, and Reichlin

(2000) and Stock and Watson (2002a,b) have shown that if data have an approximate factor

structure7, then the first r principal components can approximate well the space spanned by

the unobserved common factors, when the sample size and the cross-sectional dimension are

large.

6The zero mean assumption is without loss of generality, since it is equivalent to concentrating out the
mean. Since maximum likelihood estimates are scale invariant, rescaling the data does not affect the estimates.
On the other hand, homogeneity of the scale across variables is convenient, since the algorithm for maximizing
the likelihood is more efficient from a computational standpoint. In addition, working with standardised data
is useful since the initialisation of the algorithm is based on principal components, which are not scale invari-
ant. Once the estimates are obtained, the factor loadings, Λ̂, and the covariance matrix of the idiosyncratic
components, Γ̂d, can be obtained by simple rescaling.

7As stressed above, this amounts to assuming that the idiosyncratic components are weakly cross-correlated.
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The sample principal components offer thus good starting values for the common factors:

F̂
(0)
t = zt.

8 The starting values for the parameters of the model, θ(0), can then be estimated

by means of OLS techniques, by treating the principal components as if they were the true

factors. Once the parameters have been estimated, we can estimate a new set of factors

by using the Kalman smoother: F̂
(1)
t = Eθ(0) [Ft|∆y1, . . . ,∆yT ]. At this stage, we have the

two-step procedure of Doz, Giannone, and Reichlin (2011). The quasi-maximum likelihood

estimation via the EM algorithm consists essentially in iterating these steps until convergence.

Details are reported in the appendix.

2.2 Bayesian vector autoregressions

For Gaussian data, the VAR model described in the introduction is:

yt = c+ A1yt−1 + · · ·+ Apyt−p + εt, εt ∼ N (0,Σ) .

We consider conjugate priors belonging to the normal-inverse-Wishart family, where the prior

for the covariance matrix of the residuals is inverse-Wishart and the prior for the autoregressive

coefficients is normal. The priors are a version of the so-called Minnesota prior, originally

due to Litterman (1979), which is centered on the assumption that each variable follows an

independent random walk process, possibly with drift:

yt = c+ yt−1 + εt ,

which is a parsimonious yet “reasonable approximation of the behavior of an economic vari-

able”.

For the prior on the covariance matrix of the errors, Σ, we set the degrees of freedom equal

to n+ 2, which is the minimum value that guarantees the existence of the prior mean, which

we set as E[Σ] = Ψ, where Ψ is diagonal.

8In fact, under the assumption that Φ1 = . . . = Φs = 0 and Γd = γ̄In (i.e. homoscedastic idiosyncratic
components) the quasi-maximum likelihood solution is analytical, with the expected value for the factors
proportional to the principal components of the data.
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The prior moments for the VAR coefficients are as follows:

E
[
(As)ij |Σ, λ,Ψ

]
=

 1 if i = j and s = 1

0 otherwise

cov
[
(As)ij , (Ar)hm |Σ, λ,Ψ

]
=

 λ2 1
s2

Σih

Ψjj
if m = j and r = s

0 otherwise
.

Notice that the variance of this prior is lower for the coefficients associated with more distant

lags, and that coefficients associated with the same variable and lag in different equations can

be correlated. Finally, the key hyperparameter λ controls the scale of all the variances and

covariances, and effectively determines the overall tightness of this prior. The terms Σij/Ψjj

account for the relative scale of the variables. The prior for the intercept, c, is diffuse.9

We include an additional prior, which implements a so-called “inexact differencing” of the

data. More precisely, rewrite the VAR equation in an error correction form:

∆yt = c+Πyt−1 +B1∆yt−1 + . . .+Bp̃∆yt−p̃ + εt.

where p̃ = p− 1, Bs = −As+1 − . . .− Ap, s = 1, . . . , p̃ and Π = A1 + . . .+ Ap − In.

A VAR in first differences implies the restriction Π = 0 (or A1 + . . . + Ap = In). We follow

Doan, Litterman, and Sims (1984) and set a prior that shrinks Π to zero. Precisely, we set

a prior centered at 1 for the sum of coefficients on own lags for each variable, and at 0 for

the sum of coefficients on other variables’ lags. This prior introduces correlation among the

coefficients on each variable in each equation. The tightness of this prior on the “sum of

coefficients” is controlled by the hyperparameter µ. As µ goes to infinity the prior becomes

diffuse while, as it goes to 0, we approach the case of exact differencing, which implies the

presence of a unit root in each equation.

Following Sims (1993) and Sims and Zha (1998), we complement such “inexact differencing”

with an additional prior, known as “dummy-initial-observation” prior, that shrinks the forecast

9Koop (2013) considers non-conjugate priors which allow for exclusion of certain variables from some
equations, however, he finds that these do not outperform simpler Minnesota priors in terms of forecast
accuracy. Carriero, Clark, and Marcellino (2012) find that allowing for stochastic volatility helps to improve
forecast accuracy. See Karlsson (2013) for a comprehensive overview of Bayesian methods for inference and
forecasting with VAR models.
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of each variable at the beginning of the sample toward a no-change forecast. The tightness of

the prior is controlled by an additional hyperparameter δ.

The setting of the priors importantly depends on the hyperparameters λ, µ, δ and Ψ, which

reflect the informativeness of the prior distributions for the model coefficients. These hyper-

parameters have been usually set on the basis of subjective considerations or rules-of-thumb.

Instead, we closely follow the theoretically grounded approach proposed by Giannone, Lenza,

and Primiceri (2014). This involves treating the hyperparameters as additional parameters,

in the spirit of hierarchical modelling. As hyperpriors (i.e. prior distributions for the hyper-

parameters), we use proper but quite disperse distributions. The implementation details are

reported in the appendix.

2.3 Bayesian vector autoregression and dynamic factor model

The connection between Bayesian shrinkage and dynamic factor models is better understood

by focusing on the data that have been transformed to achieve stationarity, ∆yt, and that

have been standardised to have mean zero and unit variance.

The VAR in differences can be represented by:

∆yt = B1∆yt−1 + . . .+Bp̃∆yt−p̃ + εt.

Imposing that the level of each variable yt follows an independent random walk process, is

equivalent to imposing that its difference, ∆yt, follows an independent white noise process.

Consequently, the prior on the autoregressive coefficients can be characterised by the following

first and second moments:

E
[
(Bs)ij |Σ, λ,Ψ

]
= 0

cov
[
(Bs)ij , (Br)hm |Σ, λ,Ψ

]
=

 λ2 1
s2

Σih

Ψjj
if m = j and r = s

0 otherwise
.

Since the variables are rescaled to have the same variance, the hyperparameter related to the

scale can be set to be the same for all variables, i.e. Ψ = ψ̄In.
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The model can be rewritten in terms of the principal components described in section 2.1:

∆yt = B1H
−1zt−1 + . . .+Bp̃H

−1zt−p̃ + εt,

where zt = H∆yt are the ordered principal components.

Interestingly, the prior set-up that imposes a uniform shrinkage on the parameters is equivalent

to imposing a non-uniform degree of shrinkage on principal components:

E
[(
BsH

−1
)
ij
|Σ, λ, ψ̄

]
= 0

cov
((
BsH

−1
)
ij
,
(
BrH

−1
)
hm

|Σ, λ, ψ̄
)

=

 (λ2dj)
1
s2

Σih

ψ̄
if m = j and r = s

0 otherwise
.

In fact, the prior variance for the coefficients on the jth principal component turns out to be

proportional to the variance explained by the latter (dj).

As discussed in section 2.1, if the data are characterised by a factor structure then, as the

number of variables and the sample size increase, dj will go to infinity at a rate n for j =

1, . . . , r, where r is the number of common factors. On the other hand, dr+1, . . . , dn will grow

at a slower rate which cannot be faster than n/
√
T . As a consequence, if λ goes to zero

at a rate that is faster than that for the smaller eigenvalues and slower than for the largest

eigenvalues, i.e. λ2 = κ
√
T
n

1
T δ with 0 < δ < 1/2 and κ an arbitrary constant, then λ2dj will

go to infinity for j = 1, . . . , r. Hence the prior on the coefficients associated with the first

r principal components will become flat. Instead, for j > r, λ2dj will go to zero, i.e. the

coefficients related to the principal components associated with the bounded eigenvalues will

be shrunk to zero.

De Mol, Giannone, and Reichlin (2008) have shown that, if the data are generated accordingly

to a factor model and the hyperparameter λ is set according to the rate described above, the

point forecasts obtained by using shrinkage estimators converge to the unfeasible optimal

forecasts that would be obtained if the common factors were observed.
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3 Conditional forecasts for linear state space represen-

tations

3.1 Linear state space representation

Several univariate and multivariate time-series models may be cast in a linear state space

representation. For the sake of notation, the generic linear state space representation is

defined as10:

Measurement equation

Zt = CtSt + vt (3)

Transition equation

St+1 = GtSt + wt (4)

where Zt = (Z1,t, Z2,t, . . . , Zk,t)
′ is a k-dimensional vector of observables, St an m-dimensional

vector of potentially unobserved states, vt and ut two vectors of errors with: vt ∼ i.d. N(0,Rt),

wt ∼ i.d. N(0,Ht) and E [vtw
′
s] = 0 ∀ t, s. Finally, Ct and Gt are two, respectively, k ×m and

m×m matrices of potentially time-varying coefficients.

The dynamic factor model in (2) can be cast in the representation (3)-(4) with Zt := ∆yt,

Ct := (Λ, 0n×r(s−1), In), Rt := Γd and

St :=


Ft
...

Ft−s+1

µ

 , Gt :=



Φ1 Φ2 . . . Φs 0r×n

Ir 0r . . . 0r
...

...
. . . . . .

...
...

0r . . . Ir 0r 0r×n

0n×r . . . . . . 0n×r In


, Ht :=


Q . . . 0r×n
...

. . .
...

0n×r . . . 0n

 .

10See Harvey (1989) for a thorough treatment of state space techniques. To simplify notation we abstract
from exogenous variables as they are not included in our empirical models.
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For the VAR in (1), we have Zt := Yt, Ct := (In, 0n×np), Rt := 0n and

St :=


Yt
...

Yt−p+1

c

 , Gt :=



A1 A2 . . . Ap In

In 0n . . . 0n 0n
...

. . . . . .
...

...

0n . . . In 0n 0n

0n . . . 0n 0n In


, Ht :=


Σ . . . 0n
...

. . .
...

0n . . . 0n

 .

For the implementation in differences the modifications are straightforward.

3.2 Conditional forecasts

Simulation smoothers (see Carter and Kohn, 1994; de Jong and Shephard, 1995; Durbin and

Koopman, 2002, for example) can be used to generate a draw of the state vector St , t =

1, . . . , T conditional on the observations {Zt, t = 1, . . . , T} and on (a draw of) the parameters,

Ct, Gt, Rt, Ht, t = 1, . . . , T :

St|T ∼ p(St|Zt, Ct, Gt, Rt, Ht, t = 1, . . . , T ) , t = 1, . . . , T .

Let us now assume that for a subset of variables, I, we are interested in obtaining conditional

forecasts for t > t0, conditional on their own past and on the past and future observations of

the remaining variables, i.e. conditional on the information set Ω = {Zl,t, l ∈ I, t ≤ t0, Zl,t, l ̸∈
I, t = 1, . . . , T}:

Zi,t|Ω ∼ p(Zi,t|Ω), i ∈ I, t > t0 . (5)

In order to obtain such conditional forecasts, we adopt the solution proposed for forecasting

with ragged edge data sets using a Kalman filter methodology, see e.g. Giannone, Reichlin,

and Small (2005). In fact, the variables for which we do not assume the knowledge of a future

path can be considered as time series with missing data. The Kalman filter allows to easily

deal with such time series. Going more in details, we follow a standard approach (see e.g.

Durbin and Koopman, 2001, pp. 92-93) and apply the Kalman filter to a modified state space

representation with Zt, Ct and Rt replaced by Z̄t, C̄t and R̄t respectively. The latter are
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derived from the former by removing the rows (and, for Rt, also columns) that correspond to

the missing observations in Zt.
11

This insight is already sufficient in order to compute point conditional forecasts, as the Kalman

smoother gives the expectation of the distribution in (5), conditional on the parameters. In

addition, assuming that the posterior distribution of the model parameters conditional on the

data is available, the following algorithm (described for the generic iteration j) may be used

in order to draw from the distribution of the conditional forecasts:12

(i) Draw the parameters C̃
(j)
t , G̃

(j)
t , R̃

(j)
t and H̃

(j)
t from their posterior distribution.13

(ii) Draw the states S̃
(j)
t|Ω using a simulation smoother (Carter and Kohn, 1994; de Jong and

Shephard, 1995; Durbin and Koopman, 2002) for the modified (for the missing data)

state space representation with the parameters ¯̃C
(j)

t , G̃
(j)
t , ¯̃R

(j)
t and H̃

(j)
t .

(iii) Draw the disturbances for the observation equation, ṽ
(j)
i,t|Ω, from a conditional multivariate

distribution p(vi,t|ṽ(j)l,t|Ω, l ̸∈ I), i ∈ I, t > t0.
14 In fact, for a VAR ṽ

(j)
i,t|Ω ≡ 0.

(iv) Compute Z̃
(j)
i,t|Ω = (C̃

(j)
t )i· S̃

(j)
t|Ω + ṽ

(j)
i,t|Ω, i ∈ I, t > t0.

The algorithm can be modified in a straightforward manner for any pattern of “missing”

observations in Zt. Note that we can also easily condition on a linear combination of the

observations. Suppose, in fact, that the aim is to condition on j linear combinations WtZt

11Giannone, Reichlin, and Small (2005) propose an equivalent solution. Instead of removing rows (and
columns) of Ct and Rt that correspond to missing observations, they replace Rt with R̄t defined as follows:

(R̄t)ij =

 (Rt)ij if Zi,t and Zj,t are available

∞ otherwise

where, in practice, ∞ is a large number.
12We will denote a draw of a random variable from a distribution by .̃
13In order to take the available future paths of selected variables into account when drawing the parameters,

the initial values can be obtained from the “balanced” data set (up to t0) and then steps 1-4 can be iterated,
with the latest conditional forecasts treated as data when drawing the parameters in step (i).

14See e.g. Greene (2002) pp. 872 for conditional normal distributions. ṽ
(j)
l,t|Ω, l ̸∈ I can be obtained from

Zl,t − (C̃
(j)
t )l·S̃

(j)
t|Ω or, alternatively, a disturbance smoother (see de Jong and Shephard, 1995; Durbin and

Koopman, 2002) can be used and the states can be derived indirectly from the disturbances.
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where Wt is a sequence of matrices of dimension j × k. Then we set

Žt =

 WtZt

Zt

 , Čt =

 WtCt

Ct

 , Řt =

 WtRtW
′
t WtRt

RtW
′
t Rt

 .

Note that for a large VAR model with several lags, the size of the state vector, St, is much

larger than the size of the vector of observables, Zt. It turns out that in this case the simulation

smoother of Durbin and Koopman (2002) along with the Kalman smoother implementation of

de Jong (1988) offers large computational gains compared to the algorithm of Carter and Kohn

(1994), see the appendix. This is the implementation we adopt in the empirical exercises.15

3.3 Comparison with the approach of Waggoner and Zha (1999)

The algorithm of Waggoner and Zha (1999) is a popular method to obtain conditional forecasts

for VAR models. Roughly speaking, the methodology involves drawing directly vectors of εt,

t = t0 + 1, . . . , T , in (1) which satisfy the required conditions.

For the VAR described above and the pattern of variable availability discussed in section 3.2:

Ω = {Yl,t, l ∈ I, t ≤ t0, Yl,t, l ̸∈ I, t = 1, . . . , T} ,

this would involve an inversion of a q × q matrix, where q = (n−#(I))(T − t0) denotes the

number of restrictions, and, more importantly, a spectral decomposition of a n(T−t0)×n(T−
t0) matrix (see e.g. Jarociński, 2010, for a detailed discussion).16 Jarociński (2010) proposes a

way to decrease the computational complexity which involves a singular value decomposition

of a q×n(T−t0) matrix and avoids the matrix inversion. However, the complexity still heavily

depends on the number of restrictions, which can be prohibitively large in case of a large data

set and a long forecast horizon. In contrast, the application of the Kalman filter makes the

problem “recursive”, and the size of the largest matrix to be inverted is independent of the

forecast horizon.

The appendix provides an assessment of computational performance of different algorithms for

obtaining conditional forecast distributions for VARs and indeed shows major computational

15To further improve the computational performance for the VARs we include the intercept, c, as a constant
in the transition equation (4) and remove it from the state vector, St, see the appendix.

16#(I) denotes the number of elements in I.
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gains of the Kalman filter based algorithm over the one of Waggoner and Zha (1999) and

Jarociński (2010) when the number of restrictions increases.

3.4 Conditional forecasts and structural scenarios

The scenario analysis described above and considered in this paper is reduced form, in the

sense that the scenarios are based on all the innovations that are compatible with the con-

ditioning information. An alternative approach consists in constructing structural scenarios

based only on certain structural shocks. This amounts to considering only some specific lin-

ear combination of the reduced form innovations. These scenarios can be implemented by

modifying the covariance matrix of the innovations in the state space representation.

Let us consider the case of the VAR first. Let us denote by ηt = (η1,t, . . . , ηn,t)
′ the structural

shocks, assumed to be orthonormal, E(ηtη
′
t) = In. We have that εt = Γηt = γ1η1,t+· · ·+γnηn,t,

where Γ contains the contemporaneous responses to the shocks and ΓΓ′ = Σ. If one is

interested in obtaining the scenario based only on the last n − s shocks (i.e. η1,t, . . . , ηs,t are

assumed to be 0), it is sufficient to replace Σ with Σ̄ = γs+1γ
′
s+1 + . . .+ γnγ

′
n.

17

In the case of the factor model, structural shocks, ηt = (η1,t, . . . , ηr,t)
′, E(ηtη

′
t) = Ir, are linear

combinations of the shocks to the factors. We have that ut = Γηt = γ1η1,t+ · · ·+ γrηr,t, where
Γ contains the contemporaneous responses to the shocks and ΓΓ′ = Q. If one is interested in

obtaining the scenario based only on the last r − s shocks, that it is sufficient to replace Q

with Q̄ = γs+1γ
′
s+1 + . . .+ γrγ

′
r.

Another observation is that the conditional forecast framework can be used to obtain impulse

response functions for VARs with recursive identification schemes. In this case Γ is lower

triangular and the impulse response function to a shock ηit can be obtained as:

IRFi
j = E (Yt+j|ϵ1,t = 0, . . . , ϵi−1,t = 0, ϵi,t = γii; Yt−1, . . . ,Yt−p)− E (Yt+j|Yt−1, . . . ,Yt−p) ,

(6)

j = 0, . . .. The second term on the right-hand side of equation (6) is the unconditional forecast.

The conditions ϵi,t = 0 (ϵi,t = γii) are implemented by setting Yi,t equal to its unconditional

17One has to further insure that the reduced form innovations implied by the scenario are not “incompatible”
with the assumptions on Σ̄. For example, in a recursive identification scheme with Γ lower triangular, one
cannot impose that η1,t = 0 and ϵ1,t ̸= 0.
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forecast (plus γii).
18 For i = 1, this is akin to estimating a generalised impulse response

function (on this point, see Koop, Pesaran, and Potter, 1996; Pesaran and Shin, 1998).

4 Empirical Results

4.1 Data

Our data set includes 26 quarterly variables. Roughly, we include the most relevant real and

nominal euro area aggregates and a set of international macroeconomic variables that proxies

for global macroeconomic conditions (GDP and expenditure components, consumer and pro-

ducer prices, labour market data, surveys, effective exchange rate, world economic activity,

commodity prices), financial variables (short and long-term interest rates, stock prices), credit

(both to households and firms) and monetary aggregates (M1 and M3).

The sample covers the period from 1995Q1 to 2012Q4. Most of the data come from the Area

Wide Model data base (Fagan, Henry, and Mestre, 2005). The share price index is downloaded

from Datastream and the US short-term interest rate from the IMF data base. Remaining

variables can be downloaded from the ECB Statistical Data Warehouse. The data appendix

at the end of the paper provides the details, including the data transformations applied prior

to parameter estimation. For most of the variables that are not already expressed in rates

we take the natural logarithm multiplied by 4. For the models specified in differences we

further take first differences for all the variables. For the logged variables this corresponds to

annualised one-period percentage changes (in decimal).19

4.2 Model specifications

We include 3 common factors in the DFM, which are meant to roughly capture the information

on real developments, prices and interest rates. Further, we include 4 lags in the VAR of the

common factors. The model is estimated by maximum likelihood using the EM algorithm.

We also include 4 lags in the BVAR in differences and in order to be consistent with the

18On the connection between scenario analysis and impulse response functions to identified shocks see also
Jardet, Monfort, and Pegoraro (2012).

19This reflects the setting of the prior for Ψ, see the appendix.
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dynamics captured in the two approaches specified on variables in differences, in the BVAR

in levels we include 5 lags. In the BVAR approaches, we have to choose the tightness of

the prior distributions. As suggested in Giannone, Lenza, and Primiceri (2014), we follow a

hierarchical approach and we treat the hyperparameters governing such tightness as random

variables with relatively diffuse prior distributions.

4.3 Model validation: out-of-sample forecasting evaluation of un-
conditional forecasts

As a preliminary step, we gauge the accuracy of our empirical models in terms of out-of-

sample unconditional forecasts. This preliminary step is particularly important because our

models are specified on a large set of variables (26). This feature leads to a proliferation of

parameters and, hence, potential instabilities due to estimation uncertainty might completely

offset the gains obtained by limiting model misspecification due to variable omission. As-

sessing out-of-sample forecast accuracy, which reflects both estimation uncertainty and model

misspecification, allows us to understand whether the benefits due to the generality of our

models outweigh the costs.

We focus on point forecasts. For the DFM the forecasts are easily obtained with the Kalman

filter. For the BVARs we use the modes of the posterior distribution of the parameters and

the forecasts are obtained using the chain rule.

For each of the three models, we produce the forecasts recursively for three horizons (1, 2 and

4 quarters ahead). The evaluation period is 2004-2012. For each of the evaluation periods,

t = 2004Q1, . . . , 2012Q4, and forecast horizons, h = 1, 2, 4, the forecasts are produced using

the data from 1995Q1 to t − h. At each step, the parameters (including the mode of the

posterior distribution of the hyperparameters) are re-estimated.

For each variable, the target of our evaluation is defined as mh
i,t+h = 100

h
[yi,t+h − yi,t]. For

variables specified in logs, this is approximately the average annualised growth rate over the

next h quarters (in percent), while for variables not transformed in logs, this is the average

annualised quarterly change over the next h quarters .

We compare our model with a simple benchmark model, namely a random walk with drift for
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the (log-)levels of the variables. This model is a particularly challenging benchmark over the

monetary union sample and, in addition, it has also the appeal of being the “prior model” for

the BVAR approaches. Hence, in case the BVAR models out-perform the benchmark model,

this would suggest that they are able to extract valuable information from the sample.20

Table 1 reports the results of our analysis, for all models and variables. Results are cast in

terms of ratios of the Mean Squared Forecast Errors (MSFE) of our three models with respect

to the corresponding MSFE of the random walk benchmark model. Hence, values smaller

than one indicate that our model outperforms the benchmark model.

INSERT TABLE 1

The outcomes of the evaluation show that, in general, the BVARs and the DFM are able

to outperform the benchmark model, particularly for the short horizons. For the one- and

two-quarter horizons, the models are more accurate than the random walk for most of the

variables. Some failures to outperform the benchmark model are not particularly surprising,

since it is well known that it is very hard to beat the random walk model for financial and

commodity prices, in general. Also for consumer prices (HICP) and the GDP deflator there

is a relatively ample documentation of the difficulties to beat the random walk due to the

steady anchoring of inflation expectations in the monetary union sample.21

As argued in section 2.3 and in De Mol, Giannone, and Reichlin (2008), there is a tight con-

nection between the BVAR and the DFM approaches. Indeed, the out-of-sample performance

of the three different approaches is quite similar. This reflects the fact that the forecasts

from the three approaches are very correlated. Figure 1 (panels a-c) reports the bivariate

correlation with the BVAR in levels of the DFM (black bar with stripes) and the BVAR in

differences (red solid bar) for all the variables and forecast horizons.

INSERT FIGURE 1

The figure reveals the strong collinearity of the forecasts across approaches, providing empirical

20We also compared our models to a battery of univariate autoregressive models, another class of popular
benchmark models, with very similar outcomes.

21See, for example, Diron and Mojon (2005) and Giannone, Lenza, Momferatou, and Onorante (2014).
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support for their theoretical connection highlighted in section 2.3 and in De Mol, Giannone,

and Reichlin (2008).

4.4 Scenario analysis: an increase in world GDP

In this exercise we perform a scenario analysis to assess the effects associated with positive

developments in the global economy, represented by a 0.1 percentage point stronger growth

(on impact) in global GDP.

We compute the effects of the scenario by using our framework to produce conditional fore-

casts, as discussed in section 3.4. Precisely, we estimate our models on the whole sample

and generate two forecasts: an unconditional forecast for T + 1, . . . , T + h given the sam-

ple 1, 2, . . . , T (which provides a “baseline” scenario) and a conditional forecast in which the

world GDP growth in T + 1 is set to the value of its own unconditional forecast plus 0.1

percentage points and all the remaining variables are left unconstrained (which we will refer

to as the “shocked scenario”). The scenario results for all variables are computed by taking

the difference between the conditional and the unconditional forecasts described above. This

is equivalent to computing a generalised impulse response function to an increase in world

GDP, see section 3.4. We explore the horizon of eight quarters.

Figure 2 shows the responses of some selected variables for the three models.22 In particular,

we report the distribution of the scenario effects computed in the context of the BVAR model

in levels (shades of orange) and the point estimates of the effects in the other two modelling

approaches (DFM: dashed blue line; BVAR in differences: black solid line). For the BVARs

we use the algorithm described in section 3.2 and the point estimates of the effects for the

BVAR in differences are defined as the medians of the distribution.23 For the DFM we simply

use the Kalman smoother to obtain the (conditional) forecasts given the maximum likelihood

estimates of the parameters. All results are reported in terms of deviations of (log-)levels of

the variables in the shocked scenario compared to the baseline.24

22The total set of responses is available upon request.
23We generate 25000 draws from the posterior distribution of the parameters and discard the first 5000. For

each of the remaining draws we compute a point (conditional) forecast using the Kalman smoother.
24For the variables that are modelled in logs, this approximately corresponds to percentage deviation from

the baseline for the levels.
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INSERT FIGURE 2

The three approaches provide similar scenario assessments for all variables, at least qualita-

tively but, generally, also quantitatively. This result confirms the view that, for the variables

commonly used in macroeconometric studies, dynamic factor models and Bayesian shrinkage

(irrespective of data transformation) are both valid alternative methods to deal with the curse

of dimensionality.

Going more in details of the scenario analysis, the top left panel reports the developments in

global real GDP, which is 0.1 percent higher on impact (as assumed in the scenario assump-

tion), keeps on increasing for the first year and then tends to drop back to the level prevailing

before the initial increase.

The euro area real economy (GDP, exports, imports and unemployment) closely mirrors the

developments in global GDP. Consumer prices are also higher, reaching a peak after about

one year.

The short-term interest rate, which reflects systematic monetary policy, reacts positively to

stabilize the economy and then drops back toward the initial level. According to the BVAR

results, long-term interest rates are not particularly affected. This implies that the term-spread

(defined as long-term interest rates minus short-term interest rates) decreases on impact, to

finally revert to initial values. In this case, the DFM results are different from those of the

BVARs.

Credit aggregates, which are traditionally very cyclical, follow the same path as GDP. More-

over, loans to households are coincident with GDP, while loans to firms lag behind. The

narrow monetary aggregate M1 decreases on impact, reaching a trough after about 1-1.5 year.

To understand this pattern, notice that M1 is negatively related to the short-term interest

rate, indicating that its response to world demand is mainly driven by the liquidity effect.

The effect on M3 is instead mostly driven by the increases in the short-term monetary assets

included in the M3-M1 component, which completely offset the decrease in M1 (see Giannone,

Lenza, and Reichlin, 2012, for an extensive discussion on the cyclical properties of credit and

monetary aggregates in the euro area and their relationships with short and long-term interest

rates).
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An implicitly maintained assumption in this exercise is that the forecast paths we examine

involve shocks small enough so as not to be subject to the Lucas critique.25 Indeed, the

reliability of the results rests on the fact that the perturbations we induce in the system

by means of the scenario assumptions are not as big as to induce a substantial shift in the

behavior of economic agents which could, in turn, change the economic structure and, hence,

the estimated reduced form parameters.

4.5 Conditional forecasts

In this exercise we generate forecasts from the three models conditional on the realised paths

for the following three variables: real GDP, HICP and the short-term interest rate.

The conditional forecasts are generated over the period 1997-2012. The first two years in the

sample are used as initial conditions. The parameters are estimated over the sample 1995-2007.

Thus the conditional forecasts for 1997-2007 can be considered as “in-sample” while those over

2008-2012 as “out-of-sample”. The aim of this exercise (see Giannone, Lenza, and Reichlin,

2012; Stock and Watson, 2012a, for similar exercises) is twofold. First, the “in-sample” part

(1997-2007) of the conditional forecasts can be compared with the observed developments in

order to gauge whether knowing only the time series of real GDP, HICP and the short-term

interest rate is sufficient in order to capture the salient features of the variables in our model.

Second, by comparing the “out-of-sample” part (i.e. from 2008 onward) of the conditional

forecasts with the observed developments, we can also assess whether the turmoil associated to

the financial and the sovereign debt crises was reflected in a change in the structural economic

relationships in the euro area. In fact, a change in the economic relationships would likely

lead to relevant inaccuracies of the conditional forecasts based on parameters representing the

pre-2007 economic relationships.

Figure 3 shows the conditional forecasts from the three models for the same selected variables

shown in Figure 2.26 As in the previous exercise, the distribution is generated using the

BVAR in levels, using the algorithm described in section 3.2.27 Blue dashed and black solid

25See, Kilian and Lewis (2011) and references therein for a discussion of this issue.
26Three additional variables replace the three variables shown in Figure 2 which in this exercise were used

as conditions. A complete set of results is available upon request.
27We generate 25000 draws from the posterior distribution of the parameters and discard the first 5000. For
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lines correspond, respectively, to the conditional point forecasts of the DFM, obtained via the

Kalman smoother, and the BVAR in differences, obtained as the median of the distribution.

In addition, the green line indicates the actual outcomes. For the interest rates and the

unemployment rate we report the conditional forecasts for the levels. For the remaining

variables the results are expressed in terms of annual rates of change.

INSERT FIGURE 3

Analogously to the previous exercise, the forecasts from the three models are similar for most

of the variables, indicating that different methodologies capture similar cross-sectional and

dynamic information. In addition, the conditional forecasts are close to the actual outcomes,

in particular in the “in-sample” period. This fact suggests that 3 “dimensions” are sufficient

to capture the developments in most of the economy28 (Giannone, Reichlin, and Sala, 2004,

reach a similar conclusion for the US economy).

Turning to the “out-of-sample” evidence, there is still a general similarity of the conditional

forecasts across approaches. However, some differences appear between forecasts and observed

developments for a few variables, indicating an instability in the relationships of these variables

with the conditioning set. For example, notable differences appear in the developments in

money and credit variables, whose actual developments were much more subdued than what

would have been predicted based on the conditioning information.29 For the variables where we

have evidence of instability, we also notice some discrepancies in the forecasts across methods.

5 Conclusions

We have modelled the dynamic interactions among a large set of macroeconomic and financial

indicators in the euro area by means of large dynamic factor models and large Bayesian vector

autoregressions.

each of the remaining draws we compute a draw of the conditional forecast.
28Notable exceptions are wages, GDP deflator, government consumption and the effective exchange rate

(not shown). For these variables, the conditional forecast distributions cover a relatively wide range of values
and the central forecasts are often quite far from the outcomes.

29Giannone, Lenza, and Reichlin (2012) extensively discuss and interpret the anomalies in the developments
in credit and money markets during the crisis.
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We find that both classes of models are reliable tools for analyzing large data sets, since they

produce accurate unconditional forecasts and meaningful scenarios.

Interestingly, the predictions of the two model classes are not only equally reliable, but are

also very similar, in general. The fact that the results are not model specific is reassuring

since it indicates that the predictions of the models are reflecting genuine data features.

The robustness and reliability of dynamic factor models and Bayesian vector autoregressions

for analyzing large macroeconomic data sets has been already established for the United States

in relation to forecasting and impulse response function analysis (see e.g. Bańbura, Giannone,

and Reichlin, 2010; Giannone, Lenza, and Primiceri, 2014). We document that the same holds

true for the euro area and for conditional forecasts.

In addition, we have shown how to implement scenario analysis and, in general, to compute

conditional forecasts in the context of large data sets. The procedure is computationally

feasible, produces meaningful results and interesting insights. The methodology has been

already used in a number of papers including Giannone, Lenza, Momferatou, and Onorante

(2014), Giannone, Lenza, and Reichlin (2010, 2012), Giannone, Lenza, Pill, and Reichlin

(2012), Lenza, Pill, and Reichlin (2010) and Luciani (2013).

26



A Simulation smoothers

A.1 Implementation

As mentioned above, for the VARs, we consider a version of the transition equation (4), in

which the intercept is included as a constant:

St+1 = c̄t +GtSt + wt, (7)

where c̄t = (c′ 01×n(p−1))
′ whereas St, wt, Gt and Ht are obtained from the corresponding

terms in equation (4) by removing the last n rows (and columns).

Given the parameter set Ct, Gt, Rt, Ht and c̄t, the algorithm of Carter and Kohn (1994)

derives draws from the conditional distribution of the state vector, S̃t|T , t = 1, 2, . . . , T , from

the following recursions:

Sbt = St|t + Pt|tG
′
t(GtPt|tG

′
t +Ht)

−1(S̃t+1|T −GtSt|t − c̄t),

Pbt = Pt|t − Pt|tG
′
t(GtPt|tG

′
t +Ht)

−1GtPt|t,

S̃t|T = Sbt + ξ̃t, ξt ∼ N(0, Pbt),

with S̃T |T = ST |T + ξ̃T , ξT ∼ N(0, PT |T ). St|t = E [St|Z1, . . . ,Zt] and Pt|t = Var [St|Z1, . . . ,Zt]

are obtained from the Kalman filter (see below). In the case of a VAR, the algorithm involves

a (pseudo) inversion of matrices of size np × np as well as a singular value decomposition of

matrices of the same size.

The simulation smoother of Durbin and Koopman (2002) can be implemented via the following

steps:

(i) Draw the disturbances ṽt and w̃t, t = 1, 2, . . . , T , from the unconditional distribution of

vt and wt, i.e. N(0, Rt) and N(0, Ht), respectively.

(ii) Generate Z̃t and S̃t, t = 1, 2, . . . , T , using the state space representation given by (3) and

(7) and ṽt and w̃t from the previous step.

(iii) A draw from the conditional distribution of the state vector can be obtained as S̃t|T =

E
[
St|Z̃∗

1, . . . , Z̃
∗
T

]
+S̃t, where Z̃

∗
t = Zt − Z̃t, t = 1, 2, . . . , T .
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Let S∗
t|s = E

[
St|Z̃∗

1, . . . , Z̃
∗
s

]
and P ∗

t|s = Var
[
St|Z̃∗

1, . . . , Z̃
∗
s

]
. We obtain S∗

t|T , t = 1, 2, . . . , T ,

using the following implementation of the Kalman filter:

Et = Z∗
t − CtS

∗
t|t−1, Ft = CtP

∗
t|t−1C

′
t +Rt,

Kt = P ∗
t|t−1C

′
tF

−1
t , Lt = I −KtCt,

S∗
t|t = S∗

t|t−1 +KtEt, P ∗
t|t = P ∗

t|t−1L
′
t

S∗
t+1|t = GtS

∗
t|t + c̄t, P ∗

t+1|t = GtP
∗
t|tG

′
t +Ht

and smoother:

rt−1 = C ′
tF

−1
t Et + L′

trt, S∗
t|T = S∗

t|t−1 + P ∗
t|t−1rt−1,

with rT = 0. This approach involves the inversion of matrix Ft, which has the (row and

column) size of n−#(I) ≤ n. It is anyway needed for the run of the Kalman filter and can be

stored. By contrast, the implementation of the Kalman smoother as in e.g. Hamilton (1994)

for a VAR requires the inversion of np × np matrices Pt+1|t. Thus, the approach of Durbin

and Koopman (2002) can offer sizable computational gains for large p.

In the empirical exercises we run the simulation smoother only for the part of the sample with

missing data, that is we truncate the data keeping only Zt, t > t0 and we use Zt0 , Zt0−1, . . .

to derive the initial conditions, S0 (e.g. in case of the VAR in levels S0 = (Y ′
t0
. . . Y ′

t0−p+1)
′).

Then we set S1|0 = G0S0 + c̄0 and P1|0 = H0. For the simulation smoother of Durbin and

Koopman (2002) we set S∗
0 = 0 and c̄t = 0np×1.

A.2 Computational time

Table A compares the average computational time of a draw of conditional forecast for the 26

variable VAR considered in section 4 for the following algorithms: the simulation smoother

of Carter and Kohn (1994) (CK ); the simulation smoother of Durbin and Koopman (2002)

with a “traditional” Kalman smoother implementation (see e.g. Hamilton, 1994, pp. 394-396)

(DK,H ); the simulation smoother of Durbin and Koopman (2002) with the Kalman smoother

implementation of de Jong (1988) (DK,dJ ); the algorithm of Waggoner and Zha (1999) with

the implementation of Jarociński (2010) (WZ,J )30. We consider the cases of different number of

30We would like to thank Marek Jarociński for sharing his Matlab code for this procedure.
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lags (p = 2, p = 3 or p = 5), different number of variables in the conditioning set (n−#(I) = 5,

n−#(I) = 15 or n−#(I) = 25) and different number of conditioning periods (T − t0 = 5,

T − t0 = 20 or T − t0 = 60). In each case the time for the fastest algorithm is marked in

boldface, whereas the time for the slowest is put in italics. Average time in seconds over 1000

repetitions is reported.31

Table A: Average time of a draw of conditional forecast

CK DK,H DK,dJ WZ,J CK DK,H DK,dJ WZ,J CK DK,H DK,dJ WZ,J

n−#(I) = 5 n−#(I) = 15 n−#(I) = 25

p = 2

T − t0 = 5 0.04 0.02 0.01 0.01 0.04 0.02 0.01 0.02 0.03 0.02 0.01 0.05

T − t0 = 20 0.16 0.09 0.04 0.13 0.16 0.09 0.04 0.51 0.13 0.08 0.03 1.51

T − t0 = 60 0.42 0.28 0.06 2.20 0.38 0.26 0.07 10.61 0.40 0.26 0.08 39.25

p = 3

T − t0 = 5 0.08 0.05 0.01 0.01 0.08 0.05 0.01 0.02 0.08 0.05 0.01 0.05

T − t0 = 20 0.34 0.23 0.04 0.15 0.32 0.20 0.04 0.52 0.35 0.20 0.05 1.59

T − t0 = 60 1.03 0.69 0.10 2.25 0.96 0.62 0.13 10.82 1.11 0.64 0.14 39.75

p = 5

T − t0 = 5 0.26 0.16 0.03 0.02 0.25 0.15 0.03 0.03 0.27 0.16 0.03 0.06

T − t0 = 20 1.14 0.73 0.11 0.21 1.05 0.65 0.12 0.60 1.19 0.70 0.12 1.62

T − t0 = 60 3.46 2.20 0.33 2.40 2.49 1.56 0.34 10.34 3.69 2.15 0.39 39.67

Note: Table provides average time in seconds over 1000 repetitions of a draw of conditional forecast for the 26 variable VAR considered
in section 4. The following algorithms are considered: CK - the simulation smoother of Carter and Kohn (1994); DK,H - the simulation
smoother of Durbin and Koopman (2002) with a “traditional” Kalman smoother implementation (see e.g. Hamilton, 1994, pp. 394-396);
DK,dJ - the simulation smoother of Durbin and Koopman (2002) with the Kalman smoother implementation of de Jong (1988); WZ,J -
the algorithm of Waggoner and Zha (1999) with the implementation of Jarociński (2010). n − #(I) refers to the number of variables in
the conditioning set, T − t0 to the number of conditioning periods and p is the number of lags in the VAR. The time of fastest algorithm
in each case is marked in boldface, whereas the time for the slowest is put in italics.

The results indeed show large computational gains of the algorithms based on the Kalman fil-

ter over the approach of Waggoner and Zha (1999) and Jarociński (2010) when the number of

restrictions (a combination of the number of conditioning variables and conditioning periods)

increases. In the extreme case of 60 conditioning periods and 25 conditioning variables the

latter algorithm needs 11 hours for 1000 draws compared to 1-7 minutes in case of the simu-

lation smoother of Durbin and Koopman (2002) with the Kalman smoother implementation

of de Jong (1988). This algorithm fares by far the best among the approaches based on the

Kalman filter, with larger improvements relative to the algorithm of Carter and Kohn (1994)

as the number of lags included in the VAR increases. As expected, the computational time of

31The computations were performed with Matlab R2008a on a computer with Intel CORE Duo ˜ 2925 Mhz
processor and 4.1 GB physical memory.
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the Waggoner and Zha (1999) and Jarociński (2010) algorithm is unaffected by the number

of lags in the VAR while the performance of the algorithms based on the Kalman filter is not

much affected by the number of conditioning variables.

B Estimation

B.1 Dynamic factor model

If the factors were observed the joint likelihood of the data and the factors would be easily

maximised and the estimates of the parameters would correspond to ordinary least squares

outcomes. Specifically Λ and Γd would be obtained by regressing ∆yt on Ft while the autore-

gressive parameters Φ1, . . . ,Φs and the covariance matrix Q would be obtained by regressing

Ft on its lags, Ft−1, . . . , Ft−s.

As the factors are unobserved the likelihood of the data cannot be maximised explicitly. As

an alternative to numerical optimisation methods, the EM algorithm alternates between com-

puting the expectation of the joint likelihood of the data and the factors given the parameter

estimates from the previous step (E-step) and deriving new estimates by maximising the ex-

pected likelihood (M-step). An interesting property is that at each step the likelihood of the

data increases, insuring that a convergence to a local maximum is reached.

Maximising the expected likelihood given the parameters at the jth iteration is achieved

through substituting the sufficient statistics with their expectation. This amounts to replacing

the unobserved factors with their expected value F̂
(j)
t = Eθ(j−1) [Ft|y1, . . . , yT ], and correcting

for estimation uncertainty which is measured as

V̂
(j)
l,t = Eθ(j−1)

[
(Ft − F̂

(j)
t )(Ft−l − F̂

(j)
t−l)

′|y1, . . . , yT
]
.

Those quantities can be computed recursively using the Kalman smoother.

It is easily seen that the expected sufficient statistics are as follows:

Eθ(j−1) [∆yt∆y
′
t|y1, . . . , yT ] = ∆yt∆y

′
t,

Eθ(j−1) [∆ytF
′
t |y1, . . . , yT ] = ∆ytF̂

(j)′

t
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and

Eθ(j−1)

[
FtF

′
t−l|y1, . . . , yT

]
= F̂

(j)
t F̂

(j)′

t−l + V̂
(j)
l,t .

As a consequence the M-step consists of the following equations, where for simplicity we

consider the case s = 132:

Λ̂(j) =

(
T∑
t=1

∆ytF̂
(j)′

t

)(
T∑
t=1

F̂
(j)
t F̂

(j)′

t + V̂
(j)
0,t

)−1

,

Γ̂
(j)
d =

1

T
diag

[(
T∑
t=1

∆yt∆y
′
t

)
− Λ̂(j)

(
T∑
t=1

F̂
(j)
t ∆y′t

)]
,

Φ̂
(j)
1 =

(
T∑
t=2

F
(j)
t F̂

(j)′

t−1 + V̂
(j)
1,t

)(
T∑
t=2

F̂
(j)
t−1F̂

(j)′

t−1 + V̂
(j)
0,t−1

)−1

and

Q̂(j) =
1

T − 1

((
T∑
t=2

F
(j)
t F

(j)′

t + V̂
(j)
0,t

)
− Â(j)

(
T∑
t=2

F̂
(j)
t−1F̂

(j)′

t + V̂
(j)
1,t

))
.

Principal components represent a good starting point for the EM algorithm. The initial

estimates of the factor loadings are obtained by regressing ∆yt on the principal components:

Λ̂(0) =

(
T∑
t=1

∆ytF̂
(0)′

t

)(
T∑
t=1

F̂
(0)
t F̂

(0)′

t

)−1

.

The variance of the idiosyncratic residuals is hence given by:

Γ̂
(0)
d =

1

T
diag

[(
T∑
t=1

∆yt∆y
′
t

)
− Λ̂(0)

(
T∑
t=1

F̂
(0)
t ∆y′t

)]
.

The total variance of the residual is given by: trace(Γ̂
(0)
d ) = dr+1 + . . .+ dn.

Turning to the estimation of the VAR model for the common factors, the OLS estimates,

treating the factors as known, can be obtained as follows:

Φ̂
(0)
1 =

(
T∑
t=2

F
(0)
t F̂

(0)′

t−1

)(
T∑
t=2

F̂
(0)
t−1F̂

(0)′

t−1

)−1

32Extending it for more general situations is straightforward. Bańbura and Modugno (2014) show how to
modify the following formulas in case some of the observations in ∆yt are missing.
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and

Q̂(0) =
1

T − 1

((
T∑
t=2

F
(0)
t F

(0)′

t

)
− Φ̂

(0)
1

(
T∑
t=2

F̂
(0)
t−1F̂

(0)′

t

))
.

It is important to stress that this algorithm is more efficient when the scale of all the variables

is similar. Hence, although the QML estimates are scale invariant, it is useful to standard-

ise variables beforehand. The scale can be re-attributed accordingly once the likelihood is

maximised. Standardisation is also useful for assuring a good initialisation since principal

components are not scale invariant.

B.2 Bayesian vector autoregression

In this section we summarise the procedures derived by Giannone, Lenza, and Primiceri (2014).

Consider the VAR model of section 2.2:

yt = c+ A1yt−1 + · · ·+ Apyt−p + εt, t = 1, . . . , T ,

εt ∼ N (0,Σ) ,

and rewrite it as

Y = Xβ + ϵ ,

ϵ ∼ N (0,Σ⊗ IT−p) ,

where y ≡ (yp+1, . . . , yT )
′, Y ≡ vec (y), xt ≡

(
1, y′t−1, . . . , y

′
t−p
)′
, x ≡ (xp+1, . . . , xT )

′, X ≡
In ⊗ x, ε ≡ (εp+1, . . . , εT )

′, ϵ ≡ vec (ε), B ≡ (c, A1, . . . , Ap)
′ and β ≡ vec(B). Finally, denote

the number of regressors for each equation by k ≡ np+ 1.

For expositional convenience we will focus first on the implementation of the Minnesota prior.

Later in the section, we will describe how to implement the sum-of-coefficient and the dummy-

initial-observation prior.

The Minnesota prior on (β,Σ) is given by the following normal-inverse-Wishart distribution:

Σ|Ψ ∼ IW (Ψ, d) ,

β|Σ,Ψ, λ ∼ N (b,Σ⊗ ΩΨ,λ) .
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The posterior is given by:

Σ|Ψ, λ, Y ∼ IW

(
Ψ+ ε̂′ε̂+

(
B̂ − b̂

)′
Ω−1

Ψ,λ

(
B̂ − b̂

)
, T − p+ d

)
,

β|Σ,Ψ, λ, Y ∼ N
(
β̂,Σ⊗

(
x′x+ Ω−1

Ψ,λ

)−1
)
,

where B̂ ≡
(
x′x+ Ω−1

Ψ,λ

)−1
(
x′y + Ω−1

Ψ,λb̂
)
, β̂ ≡ vec

(
B̂
)
, ε̂ ≡ y − xB̂, ϵ̂ ≡ vec (ε̂), and b̂ is a

k× n matrix obtained by reshaping the vector b in such a way that each column corresponds

to the prior mean of the coefficients of each equation (i.e. b ≡ vec(b̂)).

We follow Giannone, Lenza, and Primiceri (2014) and set an almost flat, but proper, hyper-

prior. For λ we choose Gamma distribution with mode equal to 0.2 and standard deviation

equal to 0.4. Our prior on Ψ is an inverse-Gamma with scale and shape equal to (0.02)2.

The posterior for the hyperparameters is p(Ψ, λ|Y ) ∝ p (Y |Ψ, λ) p(Ψ, λ), where p (Y |Ψ, λ) is
the marginal likelihood, which takes the following form (see Giannone, Lenza, and Primiceri,

2014):

p (Y |Ψ, λ) =

(
1

π

)n(T−p)
2 Γn

(
T−p+d

2

)
Γn
(
d
2

) ×

|ΩΨ,λ|−
n
2 · |Ψ|

d
2 ·
∣∣x′x+ Ω−1

Ψ,λ

∣∣−n
2 ×∣∣∣∣Ψ+ ε̂′ε̂+

(
B̂ − b̂

)′
Ω−1

Ψ,λ

(
B̂ − b̂

)∣∣∣∣−T−p+d
2

.

Draws from the joint posterior of the parameters and hyperparameters can be easily derived

by using the following algorithm. Since the marginal likelihood conditional on the hyperpa-

rameters is available in closed form, the hyperparameters can be drawn using the Metropolis-

Hastings algorithm. For any draw of the hyperparameters Ψ and λ, the covariance matrix of

the residuals Σ and the autoregressive parameters β can be drawn from their distributions

conditional on Ψ and λ.

B.2.1 Implementing the “sum-of-coefficients” and the “dummy-initial-observation”
priors

The sum-of-coefficient prior is implemented by using the following dummy observations:

Yµ = diag(ȳ0)/µ; Xµ = [0n,1
′
p ⊗ diag(ȳ0)]/µ ,
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where ȳ0 is the average of the first p initial observations, 1p is a p × 1 vector of ones and 0n

is a n× 1 vector of zeros.

Similarly, the dummy-initial-observation prior is implemented by using the following dummy

observations:

Yδ = ȳ′0/δ; Xδ = [1,1′
p ⊗ ȳ′0]/δ.

These dummy observations are added to the data and the procedure described above is per-

formed on the augmented data set Y ∗
µ,δ =

(
Y ′ Y ′

µ Y
′
δ

)′
and X∗

µ =
(
X ′ X ′

µ X
′
δ

)′
. The only

correction that has to taken into account concerns the marginal likelihood which should be

computed on the original data only. As derived in Giannone, Lenza, and Primiceri (2014),

this is equivalent to taking the ratio between the marginal likelihood of the augmented data

set relative to the marginal likelihood of the dummy observations:

p(Y |Ψ, λ, µ, δ) = p(Y ∗
µ,δ|Ψ, λ)/p(Yµ, Yδ|Ψ, λ).

The prior distributions for µ and δ are Gamma distributions with mode and standard deviation

equal to 1.
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C Description of the data set

No Short name Description Source Transformation

(BVAR in levels)

1 Global GDP World gross domestic product AWM 4×log-levels

2 Real GDP Real gross domestic product, euro area AWM 4×log-levels

3 Real consumption Real private consumption, euro area AWM 4×log-levels

4 Government consumption Real government consumption, euro area AWM 4×log-levels

5 Real investment Real gross investment, euro area AWM 4×log-levels

6 Real exports Real exports of goods and services, intra and extra
euro area

AWM 4×log-levels

7 Real imports Real imports of goods and services, intra and extra
euro area

AWM 4×log-levels

8 Employment Total employment (persons), euro area AWM 4×log-levels

9 Unemployment rate Unemployment rate (as a ratio to the civilian
workforce), euro area

AWM Raw

10 Economic sentiment Economic sentiment indicator, survey of the Euro-
pean Commission, euro area

Eurostat Raw/100

11 Oil price Price of oil in US dollars AWM 4×log-levels

12 N.-o. comm. prices Non-oil commodity prices in US dollars AWM 4×log-levels

13 HICP Harmonised index of consumer prices, euro area AWM 4×log-levels

14 PPI ex. const. Producer price index, domestic sales, total indus-
try excluding construction, euro area

ECB 4×log-levels

15 GDP deflator GDP deflator, euro area AWM 4×log-levels

16 Imports deflator Imports of goods and services deflator, intra and
extra euro area

AWM 4×log-levels

17 Nominal wages Compensation per employee, euro area AWM 4×log-levels

18 US short-term i. r. US short-term interest rate, 3-month dep. LIBOR IMF (IFS) Raw/100

19 Short-term i. r. Short-term interest rate, 3-month EURIBOR AWM Raw/100

20 Long-term i. r. Long-term interest rate, euro area 10-year govern-
ment benchmark bond yield

AWM Raw/100

21 M1 Monetary aggregate M1, index of notional stocks,
euro area

ECB 4×log-levels

22 M3 Monetary aggregate M3, index of notional stocks,
euro area

ECB 4×log-levels

23 Loans to households Loans to households, sum of consumer loans, loans
for house purchases and other loans, index of no-
tional stocks, euro area

ECB 4×log-levels

24 Loans to firms Loans to non-financial corporations, index of no-
tional stocks, euro area

ECB 4×log-levels

25 Effective exchange rate Nominal effective exchange rate of the euro
(against main 20 trading partners)

AWM 4×log-levels

26 Stock prices Dow Jones Euro Stoxx price index DataStream 4×log-levels

Note: In the BVAR in differences and in the DFM specification we take the first difference of the variables transformed as in the BVAR in levels.

AWM refers to the 13th update of the Area Wide Model data base (Fagan, Henry, and Mestre, 2005).
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TABLES AND FIGURES

Table 1: Ratio of MSFE relative to random walk benchmark

Variables BVAR in levels BVAR in differences Dynamic Factor model

H=1 H=2 H=4 H=1 H=2 H=4 H=1 H=2 H=4

Global GDP 0.61 0.67 0.76 0.65 0.69 0.69 0.60 0.62 0.63

Real GDP 0.59 0.78 1.00 0.53 0.73 0.88 0.56 0.71 0.84

Real consumption 0.39 0.21 0.27 0.41 0.28 0.36 0.55 0.41 0.64

Government consumption 0.54 0.43 0.31 0.59 0.44 0.37 0.85 0.85 0.91

Real investment 0.51 0.55 0.60 0.46 0.51 0.56 0.43 0.46 0.51

Real exports 0.71 0.98 1.28 0.66 0.91 1.04 0.72 0.99 1.03

Real imports 0.51 0.63 0.73 0.46 0.59 0.67 0.54 0.65 0.73

Employment 0.16 0.21 0.35 0.16 0.20 0.33 0.17 0.19 0.33

Unemployment rate 0.39 0.50 0.72 0.35 0.46 0.66 0.30 0.40 0.61

Economic sentiment 0.48 0.67 0.73 0.58 0.88 0.96 0.73 0.97 1.17

Oil price 1.08 1.34 1.52 1.28 1.65 1.79 1.93 2.89 3.44

N.-o. comm. prices 1.08 1.33 1.40 1.16 1.48 1.61 1.23 1.55 1.63

HICP 1.00 1.42 2.54 0.96 1.28 1.79 1.55 2.28 3.25

PPI ex. const. 0.72 1.04 1.56 0.69 1.07 1.67 0.97 1.58 2.26

GDP deflator 0.79 0.98 1.71 1.06 1.17 1.33 1.25 1.38 1.81

Imports deflator 0.75 1.09 1.58 0.74 1.18 1.84 0.91 1.53 2.08

Nominal wages 1.17 1.39 2.24 1.02 0.98 1.18 0.87 0.96 1.44

US short-term i. r. 0.90 1.05 1.14 0.80 0.88 0.82 0.87 0.88 0.81

Short-term i. r. 0.67 0.94 1.46 0.57 0.92 1.64 0.72 1.18 1.75

Long-term i. r. 0.90 1.01 1.58 1.05 1.30 1.64 1.08 1.26 1.62

M1 0.57 0.60 0.90 0.60 0.69 1.23 0.89 1.22 1.74

M3 0.46 0.47 0.66 0.53 0.54 0.65 0.54 0.49 0.55

Loans to households 0.09 0.11 0.18 0.12 0.18 0.30 0.25 0.31 0.50

Loans to firms 0.06 0.09 0.26 0.07 0.10 0.25 0.15 0.20 0.41

Effective exchange rate 1.33 1.50 2.13 1.38 1.39 1.59 1.29 1.43 1.76

Stock prices 0.83 0.93 1.21 0.88 1.02 1.05 0.90 1.12 1.50

Note: The table reports the ratio of Mean Squared Forecast Errors (MSFE) of the BVAR in levels, BVAR in differences and
the DFM over the MSFE of the random walk with drift for the (log-)levels (the model that would prevail if we assumed a
dogmatic prior). The ratios are reported for the horizons of one, two and four quarters ahead. Values smaller than one (in
bold) indicate that the MSFE of a specific model is lower than the corresponding MSFE of the random walk model.
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Figure 1:
Correlation of DFM and BVAR in differences forecasts with BVAR in levels forecasts

(a) One quarter ahead

0.2

0

0.2

0.4

0.6

0.8

1

G
lo
b
al
G
D
P

R
e
al
G
D
P

R
e
al
co
n
su
m
p
ti
o
n

G
o
ve
rn
m
e
n
t
co
n
su
m
p
ti
o
n

R
e
al
in
ve
st
m
e
n
t

R
e
al
e
xp
o
rt
s

R
e
al
im

p
o
rt
s

E
m
p
lo
ym

e
n
t

U
n
e
m
p
lo
ym

e
n
t
ra
te

E
co
n
o
m
ic
se
n
ti
m
e
n
t

O
il
p
ri
ce

N
.
o
.c
o
m
m
.p
ri
ce
s

H
IC
P

P
P
Ie
x.
co
n
st
.

G
D
P
d
e
fl
at
o
r

Im
p
o
rt
s
d
e
fl
at
o
r

N
o
m
in
al
w
ag
e
s

U
S
sh
o
rt
te
rm

i.
r.

Sh
o
rt
te
rm

i.
r.

Lo
n
g
te
rm

i.
r.

M
1

M
3

Lo
an
s
to

h
o
u
se
h
o
ld
s

Lo
an
s
to

fi
rm

s

E
ff
e
ct
iv
e
e
xc
h
an
ge

ra
te

St
o
ck

p
ri
ce
s

DFM Diff. BVAR

(b) Two quarters ahead
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(c) Four quarters ahead
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Note: For each variable on the horizontal axis, we report the correlation between the forecasts from the DFM
and BVAR in levels (bars with white stripes) and between the forecasts from the BVAR in differences and BVAR
in levels (bars with red solid fill).
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Figure 2: Scenario analysis: an increase in world GDP
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Note: Shades of orange: distribution of the scenario responses in the BVAR in levels, excluding the lower and higher 5% quantiles.
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scenario (except for the unemployment rate and the interest rates, for which we show deviations).
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Figure 3: Conditional Forecasts
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Dashed blue line: point estimate of the conditional forecasts in the DFM model. Solid black line: point estimate of the conditional
forecasts in the BVAR in differences, which is computed as the median of the distribution of the conditional forecasts in this model.
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39



References

Adolfson, M., S. Laséen, J. Lindé, and M. Villani (2005): “Are constant interest rate
forecasts modest interventions? Evidence from an estimated open economy DSGE model
of the euro area,” International Finance, 8, 509–544.

Bai, J. (2003): “Inferential theory for factor models of large dimensions,” Econometrica,
71(1), 135–171.

Bai, J., and S. Ng (2002): “Determining the number of factors in approximate factor
models,” Econometrica, 70(1), 191–221.
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