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Abstract Barndorff-Nielsen, Kinnebrock and Shephard (2008) introduce a new 

measure of variation called realized semivariance. This estimator is reported more 

informative than realized variance. This paper employs a new modeling approach for the 

realized semivariance inspired by Chou (2005) in order to better capture the asymmetry 

of volatility in financial markets. With high frequency data from Shanghai stock market 

in Chinese, the empirical results using four types of volatility proxies including squared 

daily returns, daily high-low price ranges, realized variance, and realized range 

consistently indicate that this model sharpens the forecast power of existing volatility 

models in terms of GARCH type models. Four loss functions are employed for the 

assessments in out of the sample forecasting.  

Keywords: realized volatility; semi-variance; MEM model; loss function 

JEL code： C55 (Modeling with Large Data Sets)   G17  (Financial Forecasting) 

 

1. Introduction 

Volatility has been a traditional measure of risk. It plays a key role in the areas of 

asset pricing, portfolio allocation, and risk management. As transaction data is becoming 

more widely available, great interest has been drawn into the use of high frequency data 

for measuring and forecasting volatility. This is called the realized volatility approach. 

One advantage of the new emerging nonparametric volatility approach is that it can fully 

exploits intraday information and deliver a observable proxy for the volatility and 

therefore make the direct modeling volatility possible and avoid complicated estimation 

procedures needed for the unobservable volatility approach – using the GARCH type and 

stochastic volatility models.  

Barndorff-Nielsen, Kinnebrock and Shephard (2008) introduce a new measure for 

the variation of asset prices based on high frequency data. It is called realized 

semivariance (RS) and is reported more informative than the simple realized variance. 

Inspired by Chou (2005), we adopted the same methodology in that paper for the realized 

semivariance to better capture the asymmetry in financial markets. Intuitively this 

modeling approach combined with realized semivariance can sharpen the forecast power 

of existing volatility models. We also confirm this in our empirical study through a 

comparison of four GARCH-type models for non-negative series, proposed by Engle 

(2002) and known as Multiplicative Error Model (MEM). We employ Shanghai 

composite index data of one minute’s frequency to obtain our daily and realized volatility 

estimators. According to Engle (2005), different volatility proxies contain different 
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information about volatility. Therefore, we use six different volatility proxies of both 

daily frequency and high frequency as the measure volatility: squared daily returns, 

absolute daily returns, daily high-low price ranges, realized variance, realized range, and 

realized bipower variation. They consistently indicate that our modeling approach 

sharpens the forecast power of non-negative series GARCH type models. We use four 

loss functions in Hansen and Lunde (2005) as criterions for assessing the forecasting 

ability of the models. All in sample and out of sample prediction consistently confirmed 

our intuition that this modeling approach combined with realized semivariance is able to 

sharpen the forecast power of non-negative series GARCH type models. The rest of this 

paper has the following structure. In section 2 we will discuss the theory of realized 

volatility and semivariances. Section 3 introduces our empirical funds. Section 4 is the 

model comparisons. Section 5 concludes. 

2. Realized volatility, realized semivariance and the model 

Realized variance estimates the ex-post variance of asset prices over a fixed time 

interval. Since we are going to carry out our empirical analysis based in trading time, we 

define realized variance as: 
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tRV  is then the sum of squared intraday returns. Though the data arrives into our 

database at irregular points in time, according to Barndorff-Nielsen, Hansen, Lunde, and 

Shephard (2006) these irregularly spaced observations can be thought of as being equally 

spaced observations on a new time-changed process in the same stochastic class. Thus 

there is no intellectual loss in initially considering equally spaced returns. In arbitrage 

free markets, P  is often considered to follow a semimartingale process. Then as we have 

more and more data in one day’s time interval tRV  must converge into: 
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Where  
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t

st dsdsP
00
 .   is a locally bounded predictable drift process and 

  is a cadlag volatility process, which adapted to some common filtration tF . Barndorff-

Nielsen, Kinnebrock and Shephard (2008) introduce a new measure of variation called 

realized semivariance. This kind of estimator is solely determined by the single side 

(upward and downward) moves in high frequency asset prices defined as: 
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Where 1P  is the indicator function taking the value 1 of the argument is true and 0 

otherwise. If  P  is a semi martingale without jumps as  
t
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would be no difference between 

tRS  and 

tRS . They both converge into: 
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Under in-fill asymptotics. But if there are jumps in the process of P : 
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Then the realized variance of P  converges into:  
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And the downward realized semivariance and upward realized semivariance will 

converge into different limits under in-fill asymptotic: 
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From above, we can easily see that: 
  tt

p

t RSRSRV . But since the two components 

of tRV  can be distinguished, it must be more informative than mixed together. For the 

purpose of volatility measuring, we also introduce two another realized measures here. 

The first one is called realized range, proposed by Christensen and Podolskij (2005) and 

Martens and van Dijk (2007). This estimator is inspired by the idea of Parkinson (1980) 

that range-based variance estimator is much more efficient than return-based estimator. 

And this one is indeed reported more efficient and less contaminated by micro noises in 

empirical study. It is defined as follows: 
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In a driftless martingale process, this estimator also converges to quadratic variation. 

Usually for the estimation of one day’s volatility, driftless martingale process assumption 

is not a bad one. The second one is called realized bipower variation. This estimator is 

proposed by Barndorff-Nielsen and Shephard (2002). It is defined as: 
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Where 1  is a normalization factor. And in a semimartingale process with finite 

jumps, realized bipower variation converges to integrated variation but not quadratic 

variation.  

Inspired by Chou (2005), we can see that his model can be naturally extended to 

model the upward (downward) realized semivariances with a little modification: 
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We call this model as Asymmetric Multiplicative Error Model (AMEM), see Engle 

and Gallo(2006), for Realized Semivariance (AMEM-RS). In the following empirical 

study, we compare volatility forecasting power in context of out-of-sample forecast of 

four different models: MEM-RV, MEM-RV with lagged return, AMEM-RS and AMEM-

RS with lagged return.  

3. Empirical results 

To calibrate our models, we employ high frequency Shanghai composite index data 

in this paper. The data contain observations from January 1, 2007 to January 4, 2013. 

After deleting the days of unavailable and insufficient information, we have 1570 days’ 

observations of 1 minute’s frequency data. The data is from the Windin database. Table 1 

gives out the descriptive statistics of raw data and daily estimators obtained from raw 

data in everyday. 

Table 1: The descriptive statistics of raw and daily data 

 
Raw  

prices 

Raw 

returns 

Daily 

returns 

Squared 

returns 

Absolute 

returns 
Ranges 

Mean 2957 -9.5E-06 -3.3E-04 1.512 0.921 1.709 

Median 2774 0.000 0.0337 0.489 0.699 1.481 

Maximum 6092 2.951 6.940 48.167 6.940 7.731 

Minimum 1707 -5.653 -5.801 0.000 0.000 0.398 
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Std. Dev. 882.5 0.064 1.230 3.087 0.815 0.921 

Skewness 1.524 -1.600 0.012 6.220 1.897 1.945 

Kurtosis 4.845 252.7 5.164 62.965 8.932 9.113 

Jarque-Bera 36726 1.6E+09 306 245344 3244 3434 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 

Sum 7.8E+08 -5.970 -0.515 2374 1446 2684 

Observations 628934 628933 1570 1570 1570 1570 

*Raw returns, daily returns and range are all multiplied by 100; squared returns and absolute returns are 

respectively the squared value and absolute value of daily returns; 

In order to compare models in terms of their prediction accuracy, we need to use 

proper proxies for underlying unobservable true volatility. According to Engle and Gallo 

(2006), there is still no consensus about a “true” or "best" measure of volatility. And 

“many ways exist to measure and model financial asset volatility”. Here we employ six 

measures of asset volatility for our model comparison. Three of them are three ordinary 

daily measures: absolute daily returns, daily Parkinson high-low range estimator and the 

most usual squared daily returns. We give their statistics description in Table 1. The other 

three of them are realized volatility measures: realized variance, realized range and 

realized bipower variation with the most used 5 minutes’ frequency. Table 2 gives their 

statistics description together with RS+ and RS-. 

Table 2: The descriptive statistics of realized estimators 

 RV RR RB RS+ RS- 

Mean  1.642  1.110  1.636  0.811  0.831 

Median  1.057  0.758  1.112  0.501  0.493 

Maximum  35.663  23.719  21.293  19.202  33.875 

Minimum  0.132  0.117  0.157  0.074  0.046 

Std. Dev.  2.114  1.393  1.866  1.146  1.375 

Skewness  6.303  6.837  4.896  6.321  11.779 

Kurtosis  69.475  79.844  38.567  67.219  238.107 

Jarque-Bera  299464  398511  89026  280241  3652223 

Probability  0.000  0.000  0.000  0.000  0.000 

Sum  2577  1743  2569  1273  1304 

Observations  1570  1570  1570  1570  1570 

Figure 2 presents the time series of RS+ against RS-. These two parts of realized 

variance do look very different from each other, and therefore two separately models for 

each of them is necessary and maybe fruitful. 
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Fig 1: Upside and downside realized semivariance 

In order to better incorporate the leverage effects of lagged returns, we estimate four 

models in this section: MEM-RV, MEM-RV with lagged returns, AMEM-RS and 

AMEM-RS with lagged returns. We employ the simplest form GARCH model for all of 

the four models – GARCH (1, 1), which is already adequacy in most applications 

according to Bollerslev, Chou, and Kroner (1992). Table 3 presents the estimated 

parameters of the four models. 

Table 3: MEM type models for realized volatility and semivariance 

 MEM-RV MEM-RS 

  RS+ RS- RS+ RS- 

Constant 
0.037 0.035 0.016 0.017 0.015 0.026 

(0.050) (0.032) (0.017) (0.016) (0.011) (0.011)** 

ARCH 
0.367 0.219 0.257 0.282 0.158 0.152 

(0.097)*** (0.087)** (0.078)*** (0.058)*** (0.052)*** (0.054)*** 

GARCH 
0.623 0.760 0.731 0.710 0.823 0.814 

(0.090)*** (0.086)*** (0.071)*** (0.065)*** (0.051)*** (0.057)*** 

Return(-1) 
 -0.097    -0.065 

 (0.049)**    (0.015)*** 

Return(-2) 
    -0.046  

    (0.022)*  

Log-L -2446.0 -2438.9 -1910.8 -1912.5 -1902.5 -1896.1 

Model selection is based on AIC and BIC and numbers in parenthesis are the standard deviations, and stars refer to 

significance level of 10% (*), 5% (**) and 1% (***). 

4. Models comparison 

According to Hansen and Lunde (2005) we continue to use the four loss functions 

employed by them as criterions for model: 
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The first two loss functions are regular ones. QLIKE  is proposed by Bollerslev 

(1994), and is also called Gaussian quasi-maximum likelihood function, which can easily 

see that it is originated from the likelihood function of GARCH model from its 

formulation. 2R LOG  is proposed by Pagan and Schwert (1990), it aims to give some 

penalty to the asymmetry of the volatility forecasting. Different from the quadratic loss 

function, it was a proportional loss function. We focus on the out of sample comparisons 

for finding useful models in prediction of real world.  In table four, 2r , |r|, range, realized 

volatility, realized range and realized bipower variance are used as measurement 

volatility (MV) to judge the out of sample forecasting of the four models. It is clear that 

with most loss functions the lagged realized semivariance (RS-Lag) performs better than 

other forecasted volatilities (FV). 

Table 4: out of sample forecasting comparisons with different loss functions 

 2r  |r| Range RV RR RB 

 Loss function: MSE 

RV 1311.01 316.10 173.71 161.84 166.19 147.48 

RV-Lag 1291.31 264.08 130.04 159.16 128.32 154.23 

RS 1314.82 299.29 156.18 159.38 156.75 151.35 

RS-Lag 1275.95 227.06 104.69 159.07 110.93 155.88 

 Loss function: MAE 

RV 177.15 110.01 79.57 70.02 75.87 61.68 

RV-Lag 175.46 104.57 74.08 69.30 71.58 62.83 

RS 178.71 109.48 76.87 70.22 76.95 62.96 

RS-Lag 173.93 100.14 69.41 69.15 69.96 62.58 

 Loss function: QLIKE 

RV 296.25 137.68 267.57 119.68 79.97 109.97 

RV-Lag 280.83 130.42 257.72 120.26 74.55 110.61 

RS 274.01 120.77 232.00 104.60 68.97 95.95 

RS-Lag 256.58 117.03 233.38 110.12 65.46 101.07 

 Loss function: R2LOG 

RV 581.08 184.60 30.35 23.71 45.23 18.45 

RV-Lag 575.44 180.40 28.11 23.20 41.84 18.39 

RS 586.71 186.37 27.38 24.15 46.95 19.09 

RS-Lag 576.70 179.22 25.32 23.73 41.91 18.90 

For RS models we use upside RS and downside RS forecasting to synthesize RV forecasting and the model with 

minimum forecasting errors under four types of loss functions and six types of “true volatility” measurements are 

highlighted. 
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       In the Appendix, we also presented the in-sample forecasting performance under the 

same criterions. 

5. Conclusion  

Volatility is one of the core problems in many financial practices but the asymmetry 

of volatility is often confused in arbitrage and risk management because of downside 

volatility is definitely not equal to upside volatility in these fields. Separately modeling 

the two sides of volatility would be more informative than just mixing them together. 

In this paper, we use a new modeling approach to model the realized semi variance  

with high frequency data in Chinese financial markets. Then the empirical study shows 

that when measured by six different volatility proxies, the realized semi variance (RS) 

performs better than the traditional realized volatility estimator (RV).  

These findings mean when measuring volatility or fluctuations of financial assets, 

the usage of our new estimator will increase the performance of many financial practices 

like pricing or risk management. With the development of the information technology, 

high frequency data are more and more available. Developing an accurate and robust 

estimation of assets volatility is more and more important. One feasible way to extend 

this paper is to incorporate the correlation effects between upside realized semivariance 

and downside ones. 
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Appendix: In sample comparison 

Table 5: in sample forecasting comparisons with different loss functions 

 2r  |r| Range RV RR RB 

 Loss function: MSE 

RV 917.34 281.96 175.48 329.61 239.66 229.96 

RV-Lag 868.62 223.06 126.37 304.65 194.04 206.50 

RS 900.61 258.05 152.80 318.47 223.53 220.72 

RS-Lag 857.14 195.18 105.52 299.71 178.72 202.70 

 Loss function: MAE 

RV 161.01 103.54 80.22 81.53 84.83 72.35 

RV-Lag 155.57 97.17 72.51 77.34 78.68 68.61 

RS 160.62 102.74 77.13 81.24 85.25 72.52 

RS-Lag 154.68 94.45 68.36 76.89 77.82 68.17 

 Loss function: QLIKE 

RV 318.62 137.03 265.86 151.53 97.56 136.82 

RV-Lag 296.85 129.43 253.80 146.52 88.02 131.02 

RS 291.97 120.12 232.62 138.01 85.96 122.61 

RS-Lag 280.73 114.25 224.65 133.55 77.94 118.88 

 Loss function: R2LOG 

RV 567.85 178.04 32.61 32.08 55.92 25.60 

RV-Lag 552.63 170.76 28.97 29.77 50.91 23.26 

RS 572.36 179.32 29.69 32.67 57.67 26.03 

RS-Lag 556.11 170.91 26.11 30.29 52.32 23.71 
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