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The recession that started by the end of 2007 in the United States and later

on in Europe, popularly known as the great recession, has put a question mark

on some traditional methods for forecasting, in particular dynamic factor

models. These models exploit the comovement of a multiple set of variables

to predict macroeconomic aggregates such as in�ation or GDP growth. But

this episode has demonstrated that the comovement story is incomplete when

the dynamics of the variances are not considered.

We show that introducing time-varying variances in traditional Dynamic

Factor Models helps not only to solve estimation problems but can also im-

prove forecasts. Furthermore, it has interesting implications for the condi-

tional correlations that are also time varying. In addition, we get an estimate

of the common factor's volatility which in the business cycles context can be

interpreted as a measure of broad macroeconomic risk.
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1. Introduction

The recession that started by the end of 2007 in the United States and later on in Europe,

popularly known as the great recession, has put a question mark on some traditional
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methods for forecasting. The majority of these models were incapable of predicting the

timing and also the magnitude of the recession. With the high uncertainty about the

recovery and indicators that were sometimes misleading, forecasting has become more

challenging. As a matter of fact, the magnitude of the recession was so important that it

is comparable to the recessions of the 1970s and so unusually big for the recent times that

it has become very complicated to make predictions about the future with traditional

methods. Some people have included �nancial variables in their macro models to account

for the volatility, because the recession started as a �nancial crisis and the �nancial

sector has a more important role than ever. However, there is increasingly a consensus

that what is crucial is to take into account the changes in the level of uncertainty or

volatility in models to predict macro variables such as GDP or in�ation. In other words,

macroeconomics and volatility are closely related because �nance and macroeconomics

are more interconnected than ever.

After the double-dip recession in the USA in the beginning of the 1980s, there was

a process of declining variance of the main macroeconomic aggregates called the great

moderation. Since then, the cycles were smoother, especially the recessions, but also

the recoveries were milder. The same smoothing phenomenon was observed in Europe,

although not as markedly. However, the last recession involved a sharp decline in output

growth. In the speci�c case of the Euro area, where the available historical data set is not

as long as for the US, the small sample size aggravates the problem because the impact

of the most recent observations is inversely proportional to the length of the data that

precede it. All the models, and in particular the Dynamic Factor models (DFM), failed

to predict the great recession. The key question is why they were not able to do it.

There is a consensus in the economic literature about some stylized facts for key

macroeconomic time series. First, there is a strong comovement or correlation among

most of the macroeconomic indicators, especially at business cycles frequencies (from

the earliest works by Burns and Mitchell (1947), Geweke (1977) and Sargent and Sims

(1977), to the most recent ones which exploit this comovement by means of factor models

to predict GDP growth, among others Camacho and Pérez-Quirós (2010) or Angelini et

al. (2011)). This explains the popularity of factor models to estimate and forecast

the business cycle. Second, in crises episodes the volatility of most indicators increases

(see Engle (1982) and Stock and Watson (2007) for in�ation; Weiss (1984) and Ewing

and Thompson (2008) for industrial production; Ho and Tsui (2003) and Fang, Miller

and Lee (2008) for GDP growth). This is what is called volatility clustering or non-

constancy of the conditional variance over time. Third, the aforementioned phenomenon

occurs simultaneously in many macroeconomic series. Therefore, we can conclude that
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there exists volatility comovement (related works: Bollerslev (1990) for exchange rates;

Cappielo, Engle and Sheppard (2003) for equities and bonds; Ho, Tsui and Zhang (2009)

for sectoral industrial production). And �nally, given that the volatility is higher during

recessions than expansions, there is a leverage or asymmetric e�ect because negative

shocks have a higher impact on volatility than positive shocks (see for instance Ho and

Tsui (2003) and Fang , Miller and Lee (2008) for GDP growth, Ewing and Thompson

(2008) for industrial production, and Ho, Tsui and Zhang (2009) for sectoral industrial

production). Many models, such as the popular DFMs, have focused on the �rst stylized

fact without considering the others. But the recent crisis has shown how important it is

to take them into account.

In his recent book �Anticipated correlations� (2009) Robert Engle indeed pointed out

that a model which does not update volatilities and correlations will make much bigger

mistakes when the markets are changing. The literature on business cycles has focused

on the comovement and the non-linear behavior of the conditional mean in order to iden-

tify recessions and expansions, without explicitly considering time-varying features of

higher order moments (e.g. conditional variances or correlations). However, conditional

heteroscedasticity, asymmetric volatility and time-varying conditional correlations have

important implications for business cycle theory and especially for forecasting. Further-

more, Nelson and Foster (1994) argued that phenomena like fat residuals or leverage

e�ects are potentially more important than misspecifying conditional means. For all

these reasons we think that the comovement story is incomplete when the dynamics of

the second order moments are not considered.

The aim of this paper is to study in which ways we can modify the standard DFMs to

take into account the non-constancy of second conditional moments (i.e. the variance and

the correlations). Our point is to take this instability into account in the most parsimo-

nious way by introducing time-varying variances in the common factor of the DFM. As

we will discuss later, this involves that the conditional correlations are also time varying.

We will show that DFMs under serial heteroscedasticity do a better job at forecasting

than under homoscedasticity. Our empirical strategy entails several advantages: i) we

get an estimate of the volatility as a by-product; ii) we take into account the changing

level of uncertainty in the con�dence intervals for the conditional mean forecasts; and iii)

the implicit conditional correlations are time-varying. However, this comes at the cost

of introducing an additional source of error, because in some cases the parameters of the

volatility models are di�cult to estimate.

The structure of the paper is as follows. Section 2 reviews the literature on how works

in macroeconomics have dealt with the volatility problem. In Section 3, the DFMs and
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possible extensions to account for time-varying variances are presented. The results of

a Monte Carlo experiment are explained in Section 4, and Section 5 presents Stock and

Watson's (1991) coincident indicator as empirical application. Section 6 concludes.

2. Macroeconomics and volatility

2.1. Some stylized facts

The data we are going to use in this work correspond to the four monthly indicators

that Stock and Watson (1991) used to construct a coincident indicator for the United

States and that the National Bureau of Economic Research (NBER) closely monitors to

date peaks and troughs in the economic activity. These indicators are: i) The industrial

production index which is a monthly measure of production. The main shortcoming is

that it only represents manufacturing, mining and utilities sectors, excluding services

and government sectors. ii) The real personal income less transfers, which is the monthly

measure closest to real Gross Domestic Product (GDP) precisely due to the fact that the

transfers are subtracted and the nominal series is de�ated with the interpolated quarterly

GDP implicit price de�ator. iii) The employment series which is typically monitored and

included in Stock and Watson's indicator is the number of non-farm payroll employees.

It consists of the number of �lled jobs in the business sector excluding agriculture and

is based on the Current Employment Survey (CES). iv) Finally, the real manufacturing

and trade sales is another monthly indicator of output, although it only includes sales of

goods and imported goods but not services. In order to be comparable to real GDP, the

nominal sales are de�ated in the same way than the personal income.

Figure 1 represents the rates of growth and the estimated volatilities using simple

GARCH(1,1) models for the quarterly real GDP and the four monthly variables of Stock

and Watson's (1991) coincident indicator for the US mentioned above: industrial pro-

duction, real personal income less transfer payments, real manufacturing and trade sales,

and non-farm payroll employment. We see that the majority of these indicators exhibit

a higher conditional variance during recessions, especially in the recessions of the 1970s

and the last one in 2007. We also observe a global reduction in total variance since the

mid-1980s (i.e. the great moderation).

In the top of Figure 2 we plot the absolute value of the determinant of the correlation

matrix as a measure of linear relationship for these series. It will be 0 if the variables

are perfectly and positively correlated, and 1 whenever the variables are not correlated

at all. In order to make this measure more intuitive, we represent it as 1 minus this

determinant. In this way, values close to 1 indicate highly correlated series and 0 the
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opposite. It is computed using a rolling window of 5 years over the sample from 1959 to

2011. We observe that the total mass of correlation in general has decreased over time as

it had passed from values around 0.8 to around 0.3. There is a turning point around the

mid-1980s, at the time of the great moderation, but during recessions (shaded areas are

the o�cially dated recessions by the NBER) the correlations increase, especially during

the great recession.

In the bottom of Figure 2 we show the same measure of global comovement as before

but this time for the estimated volatilities. The graph shows that there exists a certain

comovement between the volatilities, in particular during recessions. What we can con-

clude from all this is that the instability and asymmetries in variance are transmitted

to the correlations in a way that times of common high volatility coincide with times of

high correlation. Therefore, the correlations are also time-varying.

2.2. The importance of variance

As Hamilton (2008) stated, most macroeconomic studies have concentrated their ef-

forts on the conditional mean disregarding the information contained in the conditional

variance. However, there is an increasing number of more recent works that stress the

importance of accounting for variance instability for the reliability of the results.

The most well-known problem caused by non-constancy of the variance is the ine�-

ciency of the estimates. The estimation of linear models by Maximum Likelihood (ML

henceforth) is consistent even when GARCH e�ects in the disturbance are ignored (Weiss,

1984), but the estimators will not be e�cient any more. Hamilton (2008) shows that,

even when our main interest is the conditional mean, modeling the conditional variance

correctly is important for two reasons: i) OLS standard errors can be misleading and

result in spurious regressions because we strongly reject a true null hypothesis (i.e. type

I error); ii) the inference about the conditional mean can be badly in�uenced by outliers

and high-variance episodes.

Another issue are identi�cation problems. Fiorentini and Sentana (2001) found that if

factor models are estimated without taking time variation in the conditional variances

into account, neither the loading matrix nor the noise variance are identi�ed without

extra restrictions. However, the identi�cation problems are somehow alleviated when

this variation is accounted for, as there is a relative e�ciency gain which increases with

the variability of conditional variances.

In estimation methods like ML there could be convergence problems due to a compli-

cated shape of the likelihood with multiple modes and some �atter regions. This could

even result in Heywood cases, a case in which ML accommodates the parameters to reach

5



maximum in-sample �t, with absurd parameter values such as negative or zero variances.

The likelihood can also have a point mass at zero values of the parameters (Stock and

Watson, 1998), which is known as pile-up problem. Usually this occurs when there are

convergence problems because the algorithm is going through points in a region of non-

identi�cation. On the other hand, as pointed out by Box-Ste�ensmeier and Lebo (2008 ),

in methods like rolling window estimation or the popular Kalman �lter, the most volatile

period dominates the estimations making the model lose memory. In the rolling window

case it is because the rolling estimation introduces a small sample bias. In the Kalman

�lter estimation, as we will see later, it is due to the construction of the �lter.

2.3. Literature review

There is an agreement in the literature that mean shifts are less important for the variance

than variance shifts are for the mean. In this respect, some works in the literature of

structural break tests in mean have noticed that the distribution of the test statistic

may be a�ected. Two of the proposed solutions are to consider either bootstrap p-values

adapted to the instability of variance for these tests (e.g. Blocks or Wild bootstrap)

or Bayesian mixture innovation models (Gerlach et al. (2000) and Giordani and Kohn

(2008)).

Regarding the literature based on unobserved component (UC) models, Bos and Koop-

man (2010) notice the relevance of modeling the mean and the variance at the same time

in an univariate UC model for industrial production. They introduce stochastic volatility

to improve the �t of the model because in this way observations from non-volatile periods

receive more weight.

In the VAR and SVAR literature the most in�uential works which have introduced

time-varying variance in this framework are those trying to explain the reasons for the

great moderation in the US. Basically there are two theories: good policy vs good luck.

The good policy approach argues that changes in the transmission mechanism of mon-

etary policy played a role in the great moderation. In contrast, the good luck story

focuses on the reduction of the volatility of the shocks. From a practical point of view,

for disentangling both e�ects it is necessary to extend the VAR/SVAR models in a way

that the variance of the shocks is time-varying and the impulse responses or covariances

also change over time, as in Primiceri (2005) and Koop et al. (2009).

In relation to the identi�cation of turning points, Chauvet and Potter (2010) demon-

strated with Bayesian probits that the best model to predict turning points in the eco-

nomic activity for the US is one with recurrent breaks in variance, and Creal, Koopman

and Zivot (2010) show that the beginning of the recession in 2007 is better identi�ed
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when they introduce stochastic volatility in their multivariate trend-cycle decomposition

model.

For forecasting, most of the works that combine mean and variance modeling at the

same time are at an univariate level. Espasa et al. (2010) at a univariate level and Alessi

et al. (2009) at a multivariate level show that identifying the source of uncertainty helps.

When we turn to DFMs, there are very few works that have extended these models

to account for changes in variance. There are di�erent ways in which the variance could

adapt over time. On the one hand, it could be observation-driven, such as in GARCH

models, where the conditional variance depends on past observations. Alternatively, it

could be parameter-driven, such as in Stochastic Volatility (SV) models, because the

conditional variance depends on a latent (or unobserved) component estimated in a state

space model. The latter is more �exible although more complicated to estimate. It is

important to notice that these time-varying parameter (TVP) models work well when

the changes in the parameters are gradual (�many small breaks�). Large and infrequent

breaks, such as the great moderation, are more di�cult to pick up with these models,

especially with the observation-driven approach.

There are two in�uential papers based on the observation-driven approach. First, Har-

vey, Ruiz and Sentana's (1992) static factor model including ARCH for the variance of

common and idiosyncratic factors. They show the importance of including a correction

term in the estimation that accounts for the estimation error in the unobserved factor.

Second, Alessi, Barigozzi and Capasso (2009) estimated a dynamic factor model distin-

guishing between static and dynamic factors. The static factors are linear combinations

of dynamic factors and are orthogonal. In contrast, the dynamic factors (or common

shocks) are correlated. This fact allows to exploit the multivariate dimension to account

for time-varying variances in the model as the variance-covariance matrix of the dynamic

factors will follow a multivariate GARCH model1. Therefore, the static factors will be

weak GARCH processes. The variance of the idiosyncratic factors will follow independent

and univariate GARCH models. In the empirical example, they demonstrated that this

approach leads to a small improvement in forecasting in�ation at di�erent horizons. As

a by-product they get estimates and forecast of the conditional volatility and the covari-

ances. Their model can be considered a special case of the structural ARCH developed

by Harvey et al. (1992). But notice that this paper belongs to a growing literature on

multivariate volatility models which are related to the conditional heteroscedastic DFM.

The philosophy of multivariate volatility models2 is slightly di�erent from the traditional

1They consider two possibilities: a BEKK model and a Dynamic Conditional Correlation (DCC) model.
2See a survey on multivariate GARCH models in Bauwens, Laurent and Rombouts (2006).
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DFM as their purpose is to estimate and explain conditional variance-covariance matri-

ces with the observed variables. But Sentana (1998) demonstrated that under certain

conditions, they are observationally equivalent.

Regarding the parameter-driven approach, a recent paper by del Negro and Otrok

(2008) estimates from a fully Bayesian perspective a DFM in which all parameters are

time varying. The variances follow geometric random walks and the loading coe�cients

are random walks. In this framework many strong assumptions are required in order

to identify the model. In contrast, Stock and Watson (2010) proposed a DFM with

stochastic volatility in the variance of common and idiosyncratic factors. They account

for the large break in variance of the great moderation by introducing dummy variables.

In the next section we will provide more insights about how to extend traditional DFM

to account for variance instability.

3. Dynamic factor models and volatility

3.1. Dynamic factor models

Traditional factor models (e.g. the static factor model, the generalized dynamic fac-

tor model, etc.) have been successfully employed to forecast the conditional mean of

macroeconomic variables such as in�ation or GDP growth. Typically, they assume that

there are some common unobserved factors that help to explain the comovement of the

series, although this does not explain the whole behavior of the series. There is a part

that is speci�c to each series which is the idiosyncratic component. In order to iden-

tify these components some assumptions are required. Here we present the state-space

representation of a simple factor model:

yt = Hft + ξt, (3.1)

ft = Fft−1 + ut (3.2)

with ξt v N(0, R) and ut v N(0, Q), where yt = {y1t, ..., yNt} is the vector of N

series for t = 1, ..., T ; ft = {f1t, .., fkt} is the vector of K common factors that follow an

autoregressive model (for simpli�cation we assume p = 1); and ξt = {ξ1t, ..., ξNt} is the
vector of N idiosyncratic components. To simplify we do not introduce dynamics in this

component. H is a NxK matrix with the factor loadings in the measurement 3.1, F is a

KxK matrix of the autoregressive coe�cients for the transition 3.2, and R and Q are the

variance-covariance matrices of the idiosyncratic components and the innovations in the
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factor equation. Both are diagonal matrices of dimensions NxN and KxK, respectively.

To identify the unobserved components the following assumptions are usually made:

i) ut is an orthonormal white noise involving that var(ut) = Q = I. This normalization

assumption is crucial to identify the loadings and factors; ii) ξit is a zero-mean stationary

process and independent across i; iii) ξit−k and ujt are mutually orthogonal (indepen-

dent), for all integer k, i, and j (i.e. exact factor model). This orthogonality assumption

is sometimes relaxed to allow for a limited amount of cross-sectional correlation (i.e.

approximate factor model). Assumptions ii) and iii) guarantee that all the comovement

comes from the common factors and make it possible to identify common and idiosyn-

cratic factors. Notice that this model implies the variance-covariance decomposition

var(yt) = Σ = Hvar(ft)H
′ +R (3.3)

Regarding the estimation method, Maximum Likelihood with Kalman �lter3 is typi-

cally the preferred method for small or moderate N , and Static and Dynamic Principal

Components Analysis (PCA and DPCA) for large N . Fiorentini and Sentana (2001)

showed that by estimating these models without taking time variation in the conditional

variances into account, neither the loading matrix nor the noise variance were identi�ed

without extra restrictions. However, if only some factors have conditional heteroscedastic

variances and we take it into account in the estimation, the loading matrix is identi�able.

Therefore, the identi�cation problems are alleviated when variation in factor variances

is accounted for because there is a relative e�ciency gain to estimate the loading matrix

and the variances of the idiosyncratic components, which increases with the variability

of the conditional variances. Besides, the indeterminacy of factors is small when the

variance of idiosyncratic components is small compared to the variance of the common

component, Hvar(ft)H
′. This means that in the hypothetical case that Q = I and

F = I, if the trace of HR−1H ′ is large, the indeterminacy of the factor is small. Notice

that in this case the inverse of the idiosyncratic variance-covariance matrix R−1 is also

the inverse of the signal-to-noise ratio, and H will be unique if HR−1H ′ is diagonal.

An e�cient method to estimate the state variables given the parameters is the Kalman

�lter. This �lter estimates the state variables as a weighted average of the most recent

observed values of the variables together with the past values, ft+1|t =
∑t

j=1wj(ft+1|t)yj .

Koopman and Harvey (2003) derived the weights wj(ft+1|t) of the Kalman �lter analyt-

ically and showed that they vanish geometrically in a way that most recent values have

more importance than older values. The weights are crucial because they determine how

3It is important to take into account that this parametric method requires su�cient additional structure
to ensure identi�cation. See Stock and Watson (2004).
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the new information is incorporated into the estimation of the state variable and, there-

fore, into the forecasts. Following Koopman and Harvey, the expression for the predicted

state at time t+ 1 given the information at time t in our case is:

ft+1|t = FKtyt +
t−1∑
j=1

FKjyj

t∏
i=j+1

F (I −KiH) (3.4)

where the Kj is the Kalman gain at time j and given by: Kj = Pj|j−1H
′(HPj|j−1H

′ +

R)−1. Notice that the Kalman gain depends inversely on the variance of the disturbances

in the measurement equation R and also on the predicted state variance Pj|j−1, which

is in�uenced by the initial state variance P1 and the variances of the disturbances in the

transition equations Q.

The forecasts of the variables at time t+ 1 given the information at time t are

yt+1|t = Hft+1|t = HFKtyt +

t−1∑
j=1

HFKjyj

t∏
i=j+1

F (I −KiH) (3.5)

The �rst term of the summation is equivalent to the pooling term in Peña and Poncela

(2004) and it is very important for the forecasts. The weight of this term depends on

the signal-to-noise ratio (Q/R), the squared of the loading matrix (H) and whether the

state variables are stationary or not (F ).

The Kalman �lter is designed in a way that it reaches the steady state in very few

iterations and the Kalman gain will remain in its steady state value, which is constant.

This creates problems in episodes of instability in variance. To understand why these

models have problems to predict a recovery, suppose we are in the beginning of the

recession and many variables drop dramatically. Assuming that the parameters are �xed

or known, the forecast of the Kalman �lter one period ahead will be driven mainly by

the abnormal negative value of the last period, because past values and their weights

are constant and neglectable. Over time, abnormal negative values will go to the second

part of the sum, and even though their weights become smaller over time, they can still

play an even more in�uential role than the most recent values. It is as if the model

has lost memory and only the observations of the volatile period count. This is in

agreement with Box-Ste�ensmeier and Lebo (2008) who demonstrated that methods like

the Kalman �lter or moving averages (i.e. rolling regressions or recursive regressions)

in linear regression models cause problems with statistical inference and forecasting in

presence of variance instability. They show that once the instability period is over, the

model seems to lose its memory and does not use the past history any more. In other
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words, the most volatile part dominates and the model has only short-run memory.

On the other hand, imagine that one variable or a set of variables with a small Kalman

gain or loading coe�cients are among the �rst to signal the recession. Given that their

weights are going to be constant and small, these atypical values will hardly have an

e�ect on the forecasts. If the weights of the Kalman �lter were not constant but instead

updated, they would react in some episodes in a way that the model would not lose

memory. One possible solution is to make the loading matrix time-varying. Alternatively,

we could modify the �lter in order to allow the Kalman gain to change over time. This

is essentially what we do in the presence of missing values where the gain is �xed to zero

for those observations with the aim of giving them null weight.

In practice, what is going to happen in most cases is that the maximum likelihood

estimation accommodates the parameters to reach maximum in-sample �t. This can

cause problems in out-of-sample forecasting. Furthermore, there can arise convergence

problems because the likelihood function is �atter or its shape is complicated, for instance

because of multiple modes. Additionally, we could get negative or zero values for the

estimated variance of idiosyncratic factors (Sentana, 2000). These so-called Heywood

cases may be caused by including too many or too few common factors, N and T being too

small to provide stable estimates, a misspeci�ed model, etc. The incidence of Heywood

cases increases with the variance of the idiosyncratic components and the maximum

likelihood method is especially vulnerable.

3.2. Proposed solution

One possible way of dealing with instability of second moments is to introduce time-

varying parameters in the loadings matrix. However, in a model of unobserved compo-

nents it would create further identi�cation problems and some additional assumptions

would be required. Alternatively, we could consider switching regimes in the common

factor for the �rst and/or second moments (e.g. Camacho et al. 2012), but it might be

di�cult to determine the number of regimes and the pattern of switching. Instead we

propose a more parsimonious solution that involves modeling the conditional variance

of the innovations of the common factor Qt. Introducing heteroscedasticity in factor

models may improve forecasting and statistical inference because it is going to a�ect the

signal-to-noise ratio which is crucial for forecasting and to identify the components. We

will assume that Qt follows either a GARCH or an Autoregressive Stochastic Volatil-

ity (ARSV) model. In this way the DFM implies the following conditional variance-

covariance decomposition:
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vart−1(yt) = HQtH
′ +R (3.6)

but if the factors are covariance stationary (i.e. E(Qt) = Q), we will have the same

decomposition in unconditional terms:

E(Σt) = HE(Qt)H
′ +R = HQH ′ +R (3.7)

According to Sentana (1998) introducing heteroscedasticity in the common factors has

interesting implications for the conditional correlation between two variables, which is

given by:

ρ12t =
h1h2qt√

(h21qt + r1)(h22qt + r2)
(3.8)

Introducing time-varying variance in the common factor qt captures the aforementioned

stylized facts: the volatility clustering, the commonality in volatility clustering and the

relationship between variance and correlation. This is, that periods when the variables

are more correlated coincide with those when the variance of the variables increase si-

multaneously. Notice that the correlation is strongly related to the signal-to-noise ratios

qt/r1 and qt/r2.

4. Monte Carlo experiment

4.1. Factor GARCH

The �rst experiment we have performed is to simulate 100 times a DFM for four series

(sample size 200) with only one common factor. The common factor and the idiosyncratic

components follow AR(2) processes, but our results are not sensitive to this choice.The

innovations of the common factor are conditionally heteroscedastic. In particular, they

follow a GARCH(1,1):4

Qt = (1− α− β) + αu2t−1|t−1 + βQt−1 (4.1)

We distinguish two cases: a) α = 0.3,β = 0.5: persistent but smooth GARCH. b)

α = 0.5,β = 0.3: persistent but volatile conditional variance. With the simulated series

4Notice that the model assumes that the unconditional variance is 1. As we use variance targeting
proposed by Engle and Mezrich (1996), the conditional variance is expressed in terms of the uncon-
ditional variance.
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we simultaneously estimate the parameters5 and the conditional variances by ML. This

increases the e�ciency of the estimation, especially in large samples, although it is com-

putationally more di�cult. Alternatively, we could use a two-step procedure, but Engle

and Sheppard (2001) concluded that these estimators are not fully e�cient as they use

limited information. Notice that in the estimation step we take the number of factors

and the lags of the idiosyncratic errors and factors as known, although this is in practice

an additional source of error.

Our interest is to study the one-step-ahead out-of-sample forecasting properties of

factor GARCH when we compare it with a standard homoscedastic DFM. The results

of the simulations are collected in Table 1. What we theoretically expect is that an

incorrectly speci�ed model such as the homoscedastic one does a bad job. In contrasts,

what we obtain according to the root mean squared error (RMSE) is that on average

it performs comparable with the factor GARCH. Possibly the reason for the similar

forecasting abilities is that GARCH introduces an estimation bias because the GARCH

parameters are not very precisely estimated. As shown by Fiorentini and Sentana (2001),

β is much more imprecisely estimated than α. Apart from this reason, Bos and Koopman

(2004) and Harvey et al. (1992) demonstrated that in this situation the Kalman �lter

is no more optimal because the �lter is evaluating a likelihood that is not linear any

more as some of the parameters depend on squared observations. So, in reality it is

evaluating a quasi-likelihood function. Furthermore, the estimation of GARCH models

is very sensitive to the existence of non-normal residuals, outliers and structural breaks.

We also compare the factor GARCH with the DFM including stochastic volatility that

will be studied in the next subsection. The model with stochastic volatility performs

worse. Moreover, the test of forecast accuracy developed by Clark and West (2007) does

not reject in any case the null hypothesis that the forecast accuracy of the heteroscedastic

models is similar to the one in the homoscedastic case.

4.2. Factor stochastic volatility

The shocks governing the volatility may not necessarily be the innovations of the common

factor. Therefore, a natural step is to extend the model to account endogenously for other

types of shocks. This is the case of the ARSV model. Empirically it has been found

that a simple ARSV �ts the data equally well as more heavily parameterized GARCH

models. Apart from that, ARSV is more �exible than GARCH models, even though

it requires simulation methods to estimate the unobserved innovation of the variances.

5To guarantee positive variances we reparametrise the GARCH parameters in the following way: α =
sin2(α∗) and β = sin2(β∗)(1− α). The initial value for Qt is Q1 = E(Qt).
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The complexity of estimating these models introduces an additional estimation bias and

the uncertainty in the estimation of the stochastic volatility must be taken into account

inside the likelihood. This together with the fact that the model is no more linear and

Gaussian gives as a result that there is no analytical expression for the likelihood, and

thus, numerical methods are required to compute it. Regarding these methods, there

are two approaches in the literature: the Monte Carlo Markov Chain (MCMC)6 and the

Sequential Monte Carlo (SMC)7 simulation-based methods.

MCMC is an iterative algorithm and typically delivers smoothed estimates (i.e. smooth-

ing algorithm as the estimations of the parameters and variables of interest are based

on all the information available in the whole data set). In contrast, the SMC is a recur-

sive algorithm which is more appropriate for real time or on-line analysis8 (i.e. �ltering

algorithm). As noticed in Primiceri (2005), smoothed estimates are more e�cient and

suitable when our objective is to identify and estimate the evolution of unobservable

states over time (e.g. identify structural shocks), whereas �ltered estimates are better

for forecasting. As the latter applies to our study, we consider simulation-based �ltering

SMC methods such as particle �lters, which are also much easier to implement than

MCMC methods.

The purpose of SMC methods is to sequentially update samples from posterior distri-

butions via importance sampling and resampling techniques. According to Doucet, de

Freitas and Gordon (2001) particle �lters produce Monte Carlo approximations to poste-

rior distributions by propagating simulated samples whose weights are updated against

incoming observations and taking advantage of the state-space representations of dy-

namic models. Therefore, each particle is a sampled value of the state vectors and/or the

parameters of interest. In the state-space framework, these �ltering algorithms perform

reasonably well at �ltering states in non-linear and/or non-gaussian models. Actually

Fernández-Villaverde and Rubio-Ramírez (2007) show how particle �ltering is useful to

estimate dynamic macroeconomic models, in particular, dynamic stochastic general equi-

librium (DSGE) models because the economies can be non-linear and/or non-normal.

Moreover particle �ltering is a likelihood-based approach comparable to the Bayesian

averaging, where the weights depend on the likelihood of each particle.

The most popular SMC �lter is the Auxiliar Particle Filter (APF) of Pitt and Shephard

(1999) that uses the optimal importance density to compute the importance weights in

6See Robert and Casella (2004) for an overview of MCMC.
7See Doucet, De Freitas and Gordon (2001) and Creal (2009) for a survey of SMC methods, and
Fernández-Villaverde and Rubio-Ramírez (2004) for an illustrative example.

8Notice that the �ltered estimates of the volatilities in DFM-SV estimated by SMC are directly com-
parable to the estimated volatilities in the DFM-GARCH because both rely on past information.
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the sampling step. The optimality involves perfect adaptation of the algorithm. A similar

but more e�cient method is the Rao-Blackwellised Particle Filter (RBPF henceforth)

(Chen and Liu, 2000; Andrieu and Docet, 2002). It is based on marginalization via

Kalman Filter to reduce the Monte Carlo variation and improve numerical e�ciency.

It is typically assumed that the parameters of the model (e.g. the loadings or the

autoregressive parameters for the state factor in our DFMs) are known or given. In

practice, however, these parameters are unknown and have to be estimated. This causes

problems in the previous algorithms because they should sequentially update the pa-

rameters given the estimated �ltered states, and viceversa, update the estimated �ltered

states given the estimated parameters. There are very few works that have dealt with

this problem. One possible solution proposed by Aguilar and West (2000) is to estimate

the parameters and the states with MCMC methods (e.g. Gibbs sampling) to �t the

model to historical data, and then to carry out sequential particle �ltering only on the

states to forecast given the parameters previously estimated by MCMC. The problem

is that MCMC usually is computationally very intensive. Therefore, running MCMC

each time a forecast exercise is performed is not very practical, especially for real time

analysis. What is necessary is a method capable of modifying the �ltered and predicted

values fast and e�ciently as new information arrives. In this line of reasoning, a few

works have adapted the sequential �ltering algorithms to allow for sequential parameter

learning. This learning process is based on one idea introduced by Gordon et al. (1993)

in a di�erent context and consists in adding small random perturbances to the parameter

draws. This is a way of introducing an arti�cial evolution to the parameter as if they

were time-varying even though they are constant over time. In reality, what is changing

is the estimation of the parameters given the states. As the introduction of these shocks

can lead to problems in the precision of the inferences, Liu and West (2001) considered

a kernel smoothing of the parameters. They impose a Gaussian kernel with a shrinkage

rule for the mean value (kernel location) to reduce over-dispersion, and a scale of the

kernel that is a function of the smoothing parameter.

The aforementioned work of Liu and West (2001) proposed a general algorithm that

incorporates this kernel parameter learning into the APF. However, in this paper we

instead use the RBPF, also known as mixture Kalman Filter. It is preferable because

it combines the standard and popular Kalman �lter with Gaussian mixtures. Given the

characteristics of our state-space model (i.e. conditionally linear and Gaussian), it is

more e�cient and �exible to use this extended version of the Kalman �lter because it

easily accommodates departures from normality and non-linearities. More details on this

algorithm can be found in the Appendix.
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Nevertheless, it should be noticed that there is evidence showing that the APF, and

to a lesser extent RBPF, could degenerate for sequential parameter learning and result

in inaccuracies, especially for the variance of the innovations of the volatility. This

parameter is crucial, not only for particle �ltering but also for MCMC. As Liu and

West (2001) commented: �Sequential simulation-based �ltering methods must always be

combined with some form of periodic recalibration based on o�-line analysis performed

with much more computational time available than the �ltering methods are designed

to accommodate�. They propose to monitor the learning process of the parameters and

compare it with their values when the model is estimated by MCMC. But as in some

cases the problem of parameter degeneracy is very serious, they also suggested to use the

parameter values obtained by MCMC or Maximum Likelihood (also known as o�-line

methods) to avoid inaccuracies.

Additionally, when the number of parameters is very high, this problem could become

so important that it leads to a sample impoverishment or depletion. The reason is that

due to the high variance of the importance weights over time, very few particles are

used in each iteration to approximate the posterior distribution. Because of that, it is

necessary to monitor that there is no weight degeneracy or that the number of dead

particles is not very high. In order to do that we compute several measures such as: i)

the survival rate, SRt = (1 − Nt)/D, where Nt is the number of non-selected particles

at time t and D the number of total particles; ii) the e�ective sample size (Liu, 1996),

ESSt = (1/
∑D

i=1w
(i)2
t )−1 where w

(i)
t is the importance weight of particle i at time t; and

iii) the Shannon entropy, SEt = −
∑D

i=1w
(i)
t ln(w

(i)
t ). We have to check for instance that

the survival rate or the entropy do not decrease over time, and the e�ective sample size

is not lower than 60-80% of the total particles generated. In practice, the performance

of the parameter learning requires a bit of tuning of the width of the kernel and the

variance of the arti�cial noise.

Now we repeat the same forecasting experiment performed in the previous subsection.

First, we simulate 100 times a DFM for four series (sample size 200) and one common

factor. But this time the innovations of the factor follow the SV model

ln(Qt) = ln(Qt−1) + wt (4.2)

Then, we estimate again 3 models: the homoscedastic DFM, the DFM with factor

GARCH, and the DFM with factor SV9. The results are displayed in Table 2. In con-

9The resampling method used is the strati�ed sampling, and the discount factor in the parameter
learning algorithm is 0.9. Di�erent resampling methods and values of the discount factor led to very
similar results.
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trast to the GARCH case, this time the SV clearly outperforms the GARCH and the

homoscedastic models. In fact, the test of forecast accuracy does not support the hy-

pothesis that the homoscedastic model performs similar at forecasting. Nevertheless,

although it is not shown, notice that in the SV model the parameters are estimated with

a small bias due to the kernel smoothing method.

5. Empirical application: Stock and Watson's (1991) DFM

Stock and Watson (SW, 1991) proposed a simple DFM to estimate a coincident indicator

of the economic activity for the United States from four monthly series. These series

are carefully monitored by the NBER in order to date a chronology of the peaks and

troughs, or beginning of recessions and expansions. This model became very popular

to construct business cycle indicators and has subsequently been extended by Kim and

Nelson (1999) and Mariano and Murasawa (2003). However, Stock and Watson (2008)

showed in their work about forecasting with DFM in presence of instabilities that the

estimates of the common factor are quite stable and, in contrast, the estimates of the

loadings or regression coe�cients are quite unstable. Therefore, they concluded that the

best strategy to produce accurate forecasts in this framework is to use estimates of the

common factors using the full sample, and estimates of the loadings using only a sub-

sample or time-varying estimations. This is related to the idea that the best predictors are

not always the same indicators or, in other words, the time-varying relationship among

variables. Later on many subsequent papers considered a large number of indicators

because large cross-sections provide insurance against structural instabilities.

Using the same speci�cation as SW(1991) and our proposed extensions, we perform

next a forecasting exercise out-of-sample and in pseudo real time. We predict one-period

ahead from 1994.01 until 2011.04, re-estimating the model each period but using the last

vintage of data available (May 2011). The results are collected in Table 3.

We see that introducing stochastic volatility in the common factor reduces the one-step-

ahead mean squared error (MSE) and the mean absolute error (MAE) when we consider

the whole period, 1994.01-2011.04, and especially for the great recession, 2007.12-2009.06.

In contrast, introducing GARCH does not lead to signi�cant forecasting improvements.

We also compute forecast accuracy tests to compare all the speci�cations with the

homoscedastic DFM. There are two well-known one-sided tests in the literature: Diebold

and Mariano (1995) and Clark and West (2007). The former is very popular because it is

very robust to non-quadratic loss functions and when the forecast errors are non-gaussian

or have non-zero mean or under serial and contemporaneous correlation. However, it is
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more suitable to test forecast accuracy in non-nested models and it does not take into

account the noise introduced by the estimation of parameters. In order to do that the

second test introduces a correction term. Apart from that, Clark and West's test is

designed to forecast evaluation in nested models, as in our case. It compares a small

model with a larger one which encompasses it. The results of Clark and West's test are

collected on Table 4. Notice that to compute it we assume a quadratic loss function and

asymptotic normality of the computed statistic, and we use Barlett's window to compute

the long-run variance together with the optimal lag truncation parameter suggested by

Newey and West (1994).

Considering both the MSE and the statistical test, we can conclude that in general the

models with heteroscedasticity in the common factor improve the forecast accuracy for

most of the series and also during the great recession. However, as stressed by Diebold

and Mariano, it is important to consider that the superiority of a particular model in

terms of forecasts accuracy does not necessarily imply that forecasts from other models

contain no additional information. Therefore, our conclusion does not mean that the

forecasts of the homoscedastic DFM are wrong or not informative at all. But in speci�c

situations such as in a very serious crisis like the great recession, or when the level of

uncertainty is very high, it could be worth to consider heteroscedastic models.

As we are going to see next, there are some additional advantages of our approach.

First, it is straightforward to obtain the implicit correlations. For simplicity we have

computed once more our measure of comovement with the estimated correlations that is

directly comparable with the recursive measure computed before.

In Figure 3 we see that in all cases we observe an inverse S shape. This means that the

correlations would have been higher in the beginning and would have gone down with

the great moderation. Nevertheless, there are some symptoms of increasing correlation

in the last part of the sample. This is in stark contrast with the constant correlation

assumption in the standard DFMs.

As a useful by-product of our approach we get an estimate of the volatility of the

common factor, which in this business cycle model can be interpreted as a measure of

the broad macroeconomic risk. The GARCH and SV (�ltered) estimates of the common

factor's volatility are displayed in Figure 4. It picks up the two facts mentioned before:

the great moderation and the higher volatility during the recessions. Notice that both

measures are realized volatilities as they are �ltered estimations.

We have performed the exercise of estimating the smoothed volatility in the DFM

with stochastic volatility in the common factor by MCMC methods which is displayed in

Figure 5. We observe the same pattern as before in the �ltered volatility but in an even
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clearer way.

One advantage more of our SMC method is that as it is designed for non-linear or

non-gaussian models, it is straightforward to introduce additional non-linearities in our

DFM-SV. In this way, we have estimated the model considering Markov Switching in

the mean of the factor, with two states corresponding to expansion and recession. It

is also straightforward to obtain the probability of being in recession as it is shown in

Figure 6. The periods when the probabilities of recession are near one coincide very

closely with the o�cial recessions dated by the NBER (shaded areas). We also observe

that the model has more di�culties to signal the exit of the recessive phase in the last 3

recessions, characterized by jobless recoveries.

6. Conclusions

Episodes such as the recent Great Recession and moments of especially high uncertainty

have underlined the necessity of considering the changing level of uncertainty in models

for forecasting in macroeconomics such as the DFM. In this work we have extended the

standard DFM in a parsimonious way to take into account time-varying correlations

and variances. We do this by introducing heteroscedasticity (i.e. GARCH or ARSV)

in the common factor. We have also proposed a sequential Monte Carlo method to

estimate stochastic volatility in DFM, easier to implement than MCMC and, therefore,

more appropriate for performing forecasting exercises. Additionally, this method is fast,

e�cient and robust to non-linearities and departures from gaussianity. Furthermore,

we have shown that the heteroscedastic models have better forecasting properties at

short-run (one period ahead) than homoscedastic models, especially in these speci�c

episodes. Apart from that, it takes the time-varying correlations between variables into

account and delivers the volatility of the common factor which we can interpret as an

indicator of global macroeconomic risk. Finally, it is possible to extend these models for

additional non-linearities such as markov switching in the mean of the factor to compute

probabilities of being in recessions or expansions.

Regarding our proposed method to introduce SV in DFM, it has however some short-

comings that must be considered. There could arise problems with the parameter learn-

ing, especially when the number of parameters is very high, the learning process is too

slow or the priors are not very realistic. The problem is that how to choose e�ective

particles still lacks of rigorous justi�cation. And in some cases it could happen that the

Monte Carlo error grows exponentially. Although there are some recent proposals in the

literature to improve this methodology, there is no agreement on which is the best one.

19



Most of them try to improve SMC by introducing MCMC steps. This requires further

research.

One step ahead in our research agenda is to extend these models to real-time data.

These datasets have interesting characteristics: the data have mixed frequencies, missing

observations, and ragged-ends, because the indicators are not released at the same time.

And therefore, the level of uncertainty is higher and the variance problems are even more

relevant. Nevertheless, to adapt the SMC methods is complicated because the number of

missing data is crucial. When the rate of missing data increases, it is harder to achieve

a certain tolerance and a large number of particles is needed.

References

[1] O. Aguilar and M. West. Bayesian dynamic factor models and portfolio allocation.

Journal of Business and Economic Statistics, 18:338�357, 2000.

[2] L. Alessi, M. Barigozzi, and M. Capasso. Estimation and forecasting in large datasets

with conditionally heteroskedastic dynamic common factors. ECB working paper,

1115, 2009.

[3] C. Andrieu and A. Doucet. Particle �ltering for partially observed gaussian state

space models. Journal of Royal Statistical Society, 64, 4:827�836, 2002.

[4] E. Angelini, G. Camba-Mendez, D. Giannone, L. Reichlin, and G. Rünstler. Short-

term forecasts of euro area gdp growth. Econometrics Journal, 14:c25�c44, 2011.

[5] L. Bauwens, S. Laurent, and J.V. Rombouts. Multivariate garch models: a survey.

Journal of Applied Econometrics, 21, 1:79�109, 2006.

[6] T. Bollerslev. Modelling the coherence in short-run nominal exchange rates: A

multivariate generalised arch model. Review of Economics and Statistics, 72:498�

505, 1990.

[7] C.S. Bos and S.J. Koopman. State space models with a common stochastic variance.

Journal of Business and Economic Statistics, 22:346�357, 2004.

[8] C.S. Bos and S.J. Koopman. Models with time-varying mean and variance: a robust

analysis of us industrial production. Tinbergen Institute Discussion Paper TI, 2010-

017/4, 2010.

20



[9] J. M. Box-Ste�ensmeier and M. Lebo. Dynamic conditional correlations in political

science. Journal of Political Science, 52, 3:688�704, 2008.

[10] A.F. Burns and W.C. Mitchell. Measuring business cycles. NBER Book Series

Studies in Business Cycles, 1947.

[11] M. Camacho and G. Pérez-Quirós. Introducing the euro-sting: Short-term indicator

of euro area growth. Journal of Applied Econometrics, 25, 4:663�694, 2010.

[12] M. Camacho, G. Pérez-Quirós, and P. Poncela. Markov-switching dynamic factor

models in real time. Banco de España Working paper, 1205, 2012.

[13] L. Cappielo, R. F. Engle, and K. Sheppard. Asymmetric dynamics in the correlations

of global equity and bond returns. Journal of Financial Econometrics, 4, 4:537�572,

2006.

[14] M. Chauvet and S. Potter. Business cycle monitoring with structural changes. In-

ternational Journal of Forecasting, 26, 4:777�793, 2010.

[15] R. Chen and J.S. Liu. Mixture kalman �lters. Journal of Royal Statistical Society,

62, 3:493�508, 2000.

[16] T.E. Clark and K.D. West. Approximately normal tests for equal predictive accuracy

in nested models. Journal of Econometrics, 138:291�331, 2007.

[17] D. Creal, S.J. Koopman, and E. Zivot. Extracting a robust u.s. business cycle

using a time-varying multivariate model-based bandpass �lter. Journal of Applied

Econometrics, 25:695�719, 2010.

[18] D. D. Creal. A survey of sequential monte carlo methods for economics and �nance.

Working paper, Department of Econometrics, Vrije Universiteit Amsterdam, 2009.

[19] M. del Negro and C. Otrok. Dynamic factor models with time-varying parameters:

measuring changes in international business cycles. Federal Reserve Bank of New

York Sta� Reports, 326, 2008.

[20] F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal of

Business and Economic Statistics, 13:253�263, 1995.

[21] R. Douc, O. Cappé, and E. Moulines. Comparison of resampling schemes for particle

�ltering. . In 4th International Symposium on Image and Signal Processing and

Analysis (ISPA), 2005.

21



[22] A. Doucet, N. de Freitas, and N. Gordon. Sequential monte carlo methods in prac-

tice. 2001.

[23] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom in�ation. Econometrica, 50, 4:987�1007, 1982.

[24] R. F. Engle. Anticipating correlations: A new paradigm for risk management. 2009.

[25] R. F. Engle and J. Mezrich. Garch for groups. Econometrica, 9, 8:36�40, 1996.

[26] R. F. Engle and K. Sheppard. Theoretical and empirical properties of dynamic

conditional correlation multivariate garch. NBER Working Papers, 8554, 2001.

[27] A. Espasa, S. Pellegrini, and E. Ruiz. Prediction intervals in conditionally het-

eroscedastic time series with stochastic components. International Journal of Fore-

casting, 27, 2:308�319, 2010.

[28] B. T. Ewing and M.A. Thompson. Industrial production, volatility, and the supply

chain. International Journal of Production Economics, 115:553�558, 2008.

[29] W. Fang, S. M. Miller, and C. Lee. Cross-country evidence on output-growth volatil-

ity nonstationary variante and garch models. Scottish Journal of Political Economy,

55, 4, 2008.

[30] J. Fernández-Villaverde and J. F. Rubio-Ramírez. Sequential monte carlo �ltering:

an example. Mimeo, 2004.

[31] J. Fernández-Villaverde and J. F. Rubio-Ramírez. Estimating macroeconomic mod-

els: A likelihood approach. Review of Economic Studies, 74:1059�1087, 2007.

[32] G. Fiorentini and E. Sentana. Identi�cation, estimation and testing conditionally

heteroskedastic factor models. Journal of Econometrics, 102:143�164, 2001.

[33] R. Gerlach, C. Carter, and R. Kohn. E�cient bayesian inference for dynamic mixture

models. Journal of American Statistical Association, 95, 451:819�828, 2000.

[34] J. Geweke. The dynamic factor analysis of economic time series. Latent Variables

in Socio-Economic Models, 1977.

[35] P. Giordani and R. Kohn. E�cient bayesian inference for multiple change-point

and mixture innovation models. Journal of Business and Economic Statistics, 26,

1:66�77, 2008.

22



[36] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-

gaussian bayesian state estimation. IEE Proceedings F on Radar and Signal Pro-

cessing, 140, 2:107�113, 1993.

[37] J. Hamilton. Macroeconomics and arch. NBER Working Paper series, 14151, 2008.

[38] A. Harvey, E. Ruiz, and E. Sentana. Unobserved component time series models with

arch disturbances. Journal of Econometrics, 52, 1-2:129�157, 1992.

[39] K. Y. Ho, A. K. Tsui, and Z. Zhang. Modelling volatility asymmetry of business

cycles in the u.s. Mathematics and Computers in Simulation, 79:2856�2868, 2009.

[40] K. Y. Ho and A. K. C. Tsui. Asymmetric volatility of real gdp: some evidence from

canada, japan, the united kingdom, and the united states. Japan and the World

Economy, 15, 4:437�445, 2003.

[41] C.J. Kim and C.R. Nelson. State-space models with regime switching. 1999.

[42] G. Koop, R. Leon-Gonzalez, and R.W. Strachan. On the evolution of the monetary

policy transmission mechanism. Journal of Economic Dynamics and Control, 33,

4:997�1017, 2009.

[43] S.J. Koopman and A. Harvey. Computing observation weights for signal extraction

and �ltering. Journal of Economic Dynamics and Control, 27:1317�1333, 2003.

[44] J. Liu and M. West. Combined parameter and state estimation in simulation based

�ltering. Sequential Monte Carlo Methods in Practice, 2001.

[45] R. S. Mariano and Y. Murasawa. A new coincident index of business cycles based

on monthly and quarterly series. Journal of Applied Econometrics, 18, 4:427�443,

2003.

[46] D. B. Nelson and D. P. Foster. Asymptotic �ltering theory for univariate arch

models. Econometrica, 62:1�41, 1994.

[47] W. K. Newey and K. D. West. Automatic lag selection in covariance matrix esti-

mation. Review of Economic Studies, 61, 4:631�654, 1994.

[48] D. Peña and P. Poncela. Forecasting with nonstationary dynamic factor models.

Journal of Econometrics, 119:291�321, 2004.

[49] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle �lters.

Journal of the American Statistical Association, 94, 446:590�599, 1999.

23



[50] G. Primiceri. Time varying structural vector autoregressions and monetary policy.

Review of Economic Studies, 72, 3, 2005.

[51] C.P. Robert and G. Casella. Monte carlo statistical methods. 2004.

[52] T. J. Sargent and C. Sims. Business cycle modelling without pretending to have too

much a priori economic theory. New Methods in Business Cycle Research, 1977.

[53] E. Sentana. The relation between conditionally heteroskedastic factor models and

factor garch models. The econometric Journal, 1:1�19, 1998.

[54] E. Sentana. The likelihood function fo conditionally heteroskedastic factor models.

Annales d`Économie et de Statistique, 58:1�19, 2000.

[55] J. H. Stock and M. W. Watson. Median unbiased estimation of coe�cient variance

in a time-varying parameter model. Journal of the American Statistical Association,

93, 441:349�358, 1998.

[56] J. H. Stock and M.W. Watson. Forecasting with many predictors. Handbook of

Economic Forecasting, 2004.

[57] J. H. Stock and M.W. Watson. Why has u.s. in�ation become harder to forecast?

Journal of Money, Credit and Banking, 39, 1:13�33, 2007.

[58] J. H. Stock and M.W. Watson. Forecasting in dynamic factor models subject to

structural instability. The Methodology and Practice of Econometrics, A Festschrift

in Honour of Professor David F. Hendry, 2008.

[59] J. H. Stock and M.W. Watson. The evolution of national and regional factors in us

housing construction. Volatility and time series econometrics: essays in honor of

Robert F. Engle, 2010.

[60] A.A. Weiss. Arma models with arch errors. Journal of Time Series Analysis, 5:129�

143, 1984.

[61] M. West. Approximating posterior distributions by mixtures. Journal of the Royal

Statistical Society (Ser. B), 55, 2:409�422, 1993.

24



25



Figures and Tables

Figure 6.1: Volatility of some macroeconomic variables in the US

(a) Real GDP

(b) Several monthly indicators
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Figure 6.2: Measures of comovement and volatility comovement

(a) Comovement

(b) Volatility comovement
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Figure 6.3: Dynamic correlations
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Figure 6.4: Common factor conditional variance. Filtered values
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Figure 6.5: Common factor conditional variance. Smoothed values

Figure 6.6: Filtered probabilities of recession
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Table 1: Simulation exercise: Factor GARCH

RMSE one-period ahead

Estimated models variable 1 variable 2 variable 3 variable 4 average

Homosc. DFM 0.65 0.61 1.14 1.10 0.88

Factor GARCH (real) 0.63 0.61 1.11 1.08 0.86

Factor SV 1.08 1.00 1.28 1.33 1.17

Note: ** corresponds to the signi�cance level of 5% of the Clark and West (2005) forecast accuracy test.

(a) Persistent GARCH

RMSE one-period ahead

Estimated models variable 1 variable 2 variable 3 variable 4 average

Homosc. DFM 0.71 0.66 1.15 1.07 0.90

Factor GARCH (real) 0.70 0.66 1.14 1.05 0.89

Factor SV 1.13 1.03 1.36 1.34 1.21

Note: ** corresponds to the signi�cance level of 5% of the Clark and West (2005) forecast accuracy test.

(b) Volatile GARCH

Table 2: Simulation exercise: Factor SV

RMSE one-period ahead

Estimated models variable 1 variable 2 variable 3 variable 4 average

Homosc. DFM 2.25 2.37 2.59 2.72 2.48

Factor GARCH 2.13 2.20 2.46 2.58 2.34

Factor SV (real) 1.92** 1.98** 2.39** 2.34** 2.16**

Note: ** corresponds to the signi�cance level of 5% of the Clark and West (2005) forecast accuracy test.
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Table 3: Forecasting exercise with Stock and Watson's (1991) DFM

IPI INC SALES EMP Average

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Homosc. DFM 0.93 0.67 0.46 0.43 1.54 0.95 0.02 0.12 0.74 0.54

Factor GARCH 0.90 0.65 0.45 0.43 1.51 0.93 0.02 0.12 0.72 0.53

Factor SV 0.49 0.50 0.28 0.33 0.79 0.67 0.03 0.15 0.40 0.41

(a) Period 1994.01-2011.05

IPI INC SALES EMP Average

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Homosc. DFM 3.94 1.51 0.59 0.61 1.71 1.03 0.07 0.20 1.58 0.84

Factor GARCH 3.93 1.51 0.57 0.59 1.75 1.06 0.07 0.20 1.58 0.84

Factor SV 1.96 1.00 0.37 0.49 1.02 0.82 0.10 0.30 0.86 0.65

(b) Great recession

Table 4: P-values from the Clark and West (2007) forecast accuracy test

IPI INC SALES EMP

Factor GARCH 0.25 0.15 0.00 0.01

Factor SV 0.00 0.01 0.00 0.00

(a) Period: 1994-2011

IPI INC SALES EMP

Factor GARCH 0.38 0.18 0.29 0.33

Factor SV 0.00 0.00 0.00 0.00

(b) Great recession
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Appendix

A. Modi�ed Kalman �lter for DFM with GARCH

Here we detail the steps of the extended Kalman �lter to account for time-varying vari-

ances in the factor innovations following a GARCH model. First, the state-space repre-

sentation of this model is:

yt = π +Hft + ξt (A.1)

ft = Fft + ut (A.2)

Qt = (1− α− β) + α(u2t−1|t−1 + Pt−1|t−1) + βQt−1 (A.3)

And the steps are:

1. Initialise f0|0, P0|0 and Q0|0.

2. For t = 1, 2, .., T

a) In the forecasting step the states and their variances together with the volatili-

ties of the factor innovations (and idiosyncratic innovations, if we also consider

this case) at time t are estimated using the information available until t − 1

with the next equations:

ft|t−1 = Fft−1|t−1 (A.4)

Pt|t−1 = FPt−1|t−1F
′ +Qt|t−1 (A.5)

Qt|t−1 = (1− α− β) + α(u2t−1|t−1 + Pt−1|t−1) + βQt−1|t−1 (A.6)

Notice that the variance matrix of the states Pt−1|t−1is included in the second

term in the right hand side of A.6. Harvey et al. (1992) introduce this

correction term, given that the factor is an unobserved component and must

be estimated, to take the uncertainty in the factor estimates into account.

b) As soon as new data are available at time t, we compute the forecast errors

and their corresponding variances,

vt = yt − π −Hft|t−1 (A.7)

Σt = HPt|t−1H
′ +R (A.8)
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and update the estimates of the states together with their variances, and also

the volatilities.

ft|t = ft|t−1 + Pt|t−1H
′Σ−1t vt (A.9)

Pt|t = Pt|t−1 − Pt|t−1H
′Σ−1t HPt|t−1 (A.10)

Qt|t = Qt|t−1 (A.11)

The log-likelihood function is calculated as function of the forecast errors and

their variances.

loglikt = −0.5(ln(2π) + ln(|Σt|) + v′tΣ
−1
t vt) (A.12)

B. Rao-Blackwellized Particle Filter (RBPF)

Rao-Blackwellized Particle Filter (RBPF) is an e�cient sequential Monte Carlo (SMC)

method because it recycles the simulated random variables by means of the popular

Kalman �lter algorithm. It is based on marginalisation and gaussian mixtures. In each

iteration candidate values for the unknown variables (also called particles, because this

methodology was developed in Physics) are generated. The name of Rao-Blackwellised

is due to the Rao-Blackwellised theorem, which says that the expected value of any

estimator conditioned on the information of a su�cient statistic is always better in terms

of mean squared error than the estimator itself. In this case the proposed estimators given

the information of the Kalman �lter are better than the estimators themselves. Assuming

that the values of all the parameters θ(i.e. loadings, autoregressive coe�cients, variances)

are known, the purpose of the �lter is to generate particles from a posterior density (or

�ltering density) P (ft|It, θ) using the likelihood P (yt|It, θ) and the prior density (or

forecasting density) P (ft|It−1, θ) in the nex way:

P (ft|It, θ) ∝ P (yt|ft, θ)P (ft|It−1, θ) (B.1)

The observation equation in the DFM provides information about the likelihood. And

given that the DFM is conditionally linear and gaussian, the likelihood is also normal

and can be written as a function of the forecast errors vt and their variances Σt:

P (yt|ft, θ) ∼ N(vt,Σt) (B.2)

The state equation is useful to infer the prior distribution. Again, given that the model

is conditionally linear and gaussian, this density will be normal with mean Fft−1|t−1 and
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variance FPt−1|t−1F
′ +Qt−1, this is, A.4 and A.5. So, the prior density is

P (ft|It−1, θ) = P (ft|ft−1, θ) ∼ N(Fft−1|t−1, FPt−1|t−1F
′ +Qt−1) (B.3)

The posterior density is therefore approximated in this discrete way:

P (ft|It, θ) '
D∑
j=1

w
(j)
t P (ft|f (j)t−1, θ) (B.4)

where w
(j)
t are the importance weights which are a function of the likelihood function.

Thus, the posterior density is approximated by a mixture of normals P (f1|f (j)t−1, θ) with

weights w
(j)
t . Due to that and the use of Kalman �lter, this method is also known as

Mixture Kalman �lter.

Once the philosophy is clear, next we explain the steps of the algorithm.

1. Initialisation: At time 0 we generate D initial random particles for the states{
f
(j)
0|0

}D

j=1
. Their variances

{
P

(j)
0|0

}D

j=1
, the volatilities of the factor innovations{

Q
(j)
0

}D

j=1
, and the importance weights

{
w

(j)
0

}D

j=1
are also initialised. Typically

f
(j)
0|0 follows a standard normal, P

(j)
0|0 is the identity matrix, Q

(j)
0 is a random draw

of a log-normal distribution and w
(j)
0 = 1/D.

2. For t = 1, 2, ..., T

a) Prediction step of the Kalman �lter to get the state variables
{
f
(j)
t|t−1

}D

j=1

and their variances
{
P

(j)
t|t−1

}D

j=1
. We also compute the forecast errors

{
v
(j)
t

}D

j=1

and their variances
{

Σ
(j)
t

}D

j=1
, and the likelihood

{
lik

(j)
t

}D

j=1
given the ob-

served yt.

b) Compute the importance weights for each particle from the likelihood

function
{
w̃

(j)
t

}D

j=1
and normalize them w

(j)
t = w̃

(j)
t /

∑D
j=1 w̃

(j)
t . This nor-

malization is important for the next step.

c) Resampling of the particles: This step is necessary to reduce the sam-

pling variability of the generated particles and to stabilise the algorithm.

It consists in generating D values of a multinomial k which takes values

1, 2, ..., D with probabilities w
(j)
t , and select those particles for the states{

f
(kj)

t−1|t−1

}D

j=1
and their variances

{
P

(kj)

t−1|t−1

}D

j=1
, and the volatilities of the
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factor innovations
{
Q

(kj)
t−1

}D

j=1
. In the literature some small modi�cations have

been proposed in order to reduce the resampling variance or Monte Carlo vari-

ation such as the strati�ed resampling (for more details see Douc, Cappé and

Moulines (2005)).

d) Updating step of the Kalman �lter to get the �ltered values of the state

variables
{
f
(j)
t|t

}D

j=1
and their variances

{
P

(j)
t|t

}D

j=1
. We also obtain the up-

dated volatilities of the factor innovations
{
Q

(j)
t

}D

j=1
given that lnQ

(j)
t ∼

N(lnQ
(j)
t−1, σ

2
W ) and the weights w

(j)
t = 1/D.

C. Parameter Kernel Smoothing (PKS)

Usually not only the state vector but the parameters are a priori unknown. This means

that a new unkonwn term θ is included in the posterior density, in a way that it becomes

a joint density of the state vector ft and the parameters θgiven the information until

time t, P (ft, θ|It). Applying Bayes' theorem,

P (ft, θ|It) ∝ P (yt|ft, θ)P (ft, θ|It−1) ∝ P (yt|ft, θ)P (ft|ft−1, θ)P (θ|It−1) (C.1)

the joint posterior density P (ft, θ|It) is proportional to the likelihood P (yt|ft, θ), the
conditional or forecasting density of the state variable given the parameters P (ft|ft−1, θ),
and the density of the parameters given the information until t−1, P (θ|It−1). Under the
assumption of known parameters, the latter density is degenerate and we can skip that

last term and in the joint distribution in C.1. But more realistically if the parameters

are unknown, the density of the parameters P (θ|It−1) must be approximated to obtain

draws from it. As already explained in section 4.2, one way of solving this issue is

to treat the parameters as time varying, even though they are �xed, by adding small

random disturbances to the parameters. Thus, the state vector is augmented with θt.

But it is important to clarify that θt means that our estimation about the values of the

parameters changes with the information available. However, the parameters are actually

�xed. Typically the following parameter learning evolution is imposed over the D draws

θ
(j)
t = θ

(j)
t−1 + ζ

(j)
t (C.2)

with ζ
(j)
t ∼ N(0,W

(j)
t ) for j = 1, 2, .., D and t = 1, 2, ..., T .
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This arti�cial evolution could lead to very di�use values for the draws of the parame-

ters, and hence, cause problems of precision or loss of information. For this reason, West

(1993) proposed to smooth these draws using kernel smoothing methods. In this way, we

get draws of θ at time t given the information until t− 1 by means of the next discrete

Monte Carlo approximation as a weighted mixture of normals

P (θt|It−1) ≈
D∑
j=1

w
(j)
t−1N(θt|m(j)

t−1, h
2Vt−1) (C.3)

where N(•|mt−1, h
2Vt−1) is a multivariate normal density (i.e. Gaussian kernel) with

mean mt−1 (i.e. kernel location) and variance h2Vt−1, and w
(j)
t−1 are the importance

weights. Notice that h is a smoothing parameter, strictly positive, and Vt =
∑D

j=1(θ
(j)
t−1−

θ̄t−1)
2/D is the Monte Carlo posterior variance and represents the kernel rotation and

scaling. Furthermore, the next shrinkage rule for the meanm
(j)
t−1 is going to push draws of

θ
(j)
t towards the Monte Carlo �nite mean θ̄t−1 =

∑D
j=1 θ

(j)
t−1/D and avoid over-dispersion

m
(i)
t−1 = aθ

(j)
t−1 + (1− a)θ̄t−1 (C.4)

with the number a speci�ed as function of a discount factor δ ∈ (0, 1], this is, a =

(3δ − 1)/2δ. In practice a typically takes values between 0.95 and 0.99. The smoothing

parameter h depends on a, usually speci�ed in this way h =
√

(1− a2) . It is important

to mention that when dealing with variances and parameters restricted to a �nite range

such as the autoregressive coe�cients is necessary to transform them with the logarithm

in the �rst case or the logit transformation in the latter to use a normal approximation

implied in C.2.

D. General Algorithm

Finally, plugging together RBPF and PKS these are the steps of the general algorithm:

1. Initialisation step to get D draws from:

a) the parameters θ
(j)
0 ∼ p(θ0) for j = 1, 2, .., D.

b) the states
{
f
(j)
0|0

}D

j=1
and their variances

{
P

(j)
0|0

}D

j=1
, and the volatilities of the

factor innovations
{
Q

(j)
0

}D

j=1
.

c) the importance weights w
(j)
0 = 1/D for j = 1, 2, ..., D.

2. For t=1,2,..,T
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a) Compute the mean m
(j)
t−1 using C.4 and the variance Vt−1 of the draws θ

(j)
t−1.

b) Prediction step of the Kalman �lter to get the predicted states
{
f
(j)
t|t−1

}D

j=1

and their variances
{
P

(j)
t|t−1

}D

j=1
. We also compute the forecast errors

{
v
(j)
t

}D

j=1
and

their variances
{

Σ
(j)
t

}D

j=1
, and the likelihood

{
lik

(j)
t

}D

j=1
given the observed

yt.

c) Compute the importance weights for each particle from the likelihood

function
{
w̃

(j)
t

}D

j=1
and normalize them w

(j)
t = w̃

(j)
t /

∑D
j=1 w̃

(j)
t .

d) Resampling of the particles using draws from a multinomial k that can take

values 1, 2, ..., D with probabilities w
(j)
t , and selecting these particles for the

states
{
f
(kj)

t−1|t−1

}D

j=1
and their variances

{
P

(kj)

t−1|t−1

}D

j=1
, and the volatilities of

the factor innovation
{
Q

(kj)
t−1

}D

j=1
.

e) Updating step for:

i. the parameters θ
(j)
t ∼ N(m

(kj)
t−1 , h

2Vt−1).

ii. the state vector
{
f
(j)
t|t

}D

j=1
and its variance

{
P

(j)
t|t

}D

j=1
using the Kalman

�lter and the selected particles from the previous step.

iii. the volatilities of the factor innovations
{
Q

(j)
t

}D

j=1
considering that lnQ

(j)
t ∼

N(lnQ
(j)
t−1, σ

2
W ).

iv. the importance weights w
(j)
t = 1/D for j = 1, 2, ..., D.
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