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Abstract

Contrary to conventional wisdom, we find that the cross-sectional dis-
tributions of U.S. consumption and consumption growth are better de-
scribed by the double Pareto-lognormal (dPlN) distribution, which obeys
the power law in both tails, than by the lognormal distribution. Since
the power law exponent is about 4 in both cases, the population moments
of order > 4 or < −4 are not likely to exist. In light of this finding,
we reevaluate the models of a number of consumption-based asset pric-
ing papers that use the Consumer Expenditure Survey to build ‘Law of
Large Numbers’ stochastic discount factors (SDFs). We draw three main
conclusions. First, many estimators in the literature may be inconsistent.
Second, the power law in consumption appears to have the ability to gen-
erate spurious acceptance of asset pricing models in explaining the equity
premium. While dividing the sample into age cohorts allows us to miti-
gate the problem, the data do not support the SDFs that are robust to the
power law. Third, estimation using simulated data from a general equilib-
rium model supports our theory that the power law interferes with testing
and estimating heterogeneous agent asset pricing models. Our results are
important for any econometric analysis with potentially fat-tailed data,
not just for analyses of consumption data and asset prices.

1 Introduction

The famous “equity premium puzzle” of Mehra and Prescott (1985) is the fail-
ure of the representative agent, consumption-based asset pricing model of Lucas
(1978) to reconcile, for a reasonable value of relative risk aversion, the U.S. ag-
gregate consumption time series with the equity premium time series. Many
authors have thus explored the ability of heterogeneous agent and incomplete
markets models to resolve the equity premium puzzle and other inconsistencies
between the representative agent approach and financial/macro data. While this
literature consists mostly of theoretical papers,1 some authors use household-
level consumption data (Consumption Expenditure Survey, CEX) to empirically
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1See Constantinides and Duffie (1996), Heaton and Lucas (1996), Krusell and Smith
(1997, 1998), Guvenen (2009), Geanakoplos (2010), among many others.
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analyze the heterogeneous agent, incomplete market approach.2 The CEX pa-
pers have so far yielded mixed results regarding the theory. This is puzzling
because the approaches these papers take do not differ much except with re-
spect to seemingly minor details such as the length of the sample period, data
cleaning methods, and approximation methods such as log-linearization.3

This paper has two main contributions. First, contrary to conventional
wisdom, we find that the cross-sectional distributions of consumption and con-
sumption growth are better described by the double Pareto-lognormal (dPlN)
distribution, which obeys the power law in both tails, than by the lognormal
distribution. More specifically, we find that dPlN is not rejected by goodness-
of-fit tests in about 80% of our sample, whereas the lognormal distribution is
almost always rejected. The estimated power law exponent is around 4 for
both consumption and consumption growth. Our finding does not contradict
Battistin et al. (2009), who support the lognormal distribution within age co-

horts, because we find the power law in the entire cross-section. That the power
law emerges in the entire cross-section but not necessarily within age cohorts
is theoretically supported by one of the authors’ incomplete market general
equilibrium model (Toda, 2012c).

The second contribution is an analysis of the implications of the power law
for estimating and testing consumption-based asset pricing models. Since the
power law exponent is about 4, the population moments of consumption and
consumption growth of order > 4 or < −4 are not likely to exist. If this is
the case, the estimation of relative risk aversion γ using some ‘Law of Large
Numbers’ stochastic discount factors (SDFs) proposed in the literature may be
inconsistent when the GMM criterion does not have a limit for γ larger than
4. But what is the effect of this on γ estimation and model fit? To address
this issue we repeatedly sample from the data to generate bootstrap samples
for γ and the pricing error (unexplained equity premium). We find that the
histogram of the pricing errors is bimodal, with one peak at zero and the other
at a significantly nonzero value. The zero pricing errors tend to correspond to γ
estimates larger than 4, in the moment nonexistence range. Therefore, it seems
that forming the sample analogs of nonexistent moments may mechanically aid
in explaining the equity premium.

To see whether this odd behavior is due to the power law, we perform two
robustness checks. First, we drop the top and bottom 100 data points, which
correspond to less than 0.05% of the entire sample. Second, we split the entire
sample into age cohorts and estimate an overidentified model, which is less
susceptible to the power law issue. In both cases the zero pricing error peak
disappears, suggesting that this peak is an artifact of the power law. After
reevaluating each stochastic discount factor model using the age cohort robust
estimation, we find that none of the models is supported by data. For example,
overidentifying tests reject all of the models we consider.

We also perform Monte Carlo studies of simulated consumption data us-
ing the incomplete market general equilibrium model of Toda (2012c), which

2Prominent examples are Brav et al. (2002), Cogley (2002), Vissing-Jørgensen (2002),
Balduzzi and Yao (2007), and Kocherlakota and Pistaferri (2009). See Ludvigson (2012) for
a survey of this literature.

3One exception is Kocherlakota and Pistaferri (2009), who test the standard Euler equation
as well as the inverse Euler equation, which arises when there is private information but agents
are able to use insurance to achieve constrained Pareto efficient allocations.
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is analytically solvable, and again find that the γ estimates zeroing the pric-
ing error are often in the nonexistence range. Furthermore, in many Monte
Carlo runs, the GMM criterion has multiple troughs, one near γ and one in
the nonexistence range. Sometimes, the latter trough is the global minimum of
the criterion. The age cohort robust method, however, almost never exhibits
multiple troughs. Since in this case the model is correctly specified and there is
a power law, the fat tails appear to be causing the estimation failure.

We draw three main conclusions from our study. First, the distributions of
observed consumption and consumption growth have much heavier tails than
economists typically believe. Moments outside the range of [−4, 4] are not likely
to exist. Second, in the presence of fat tails the estimation of model parame-
ters by standard econometric techniques may fail due to the nonexistence of
moments. However, since the calculation of sample moments is always possi-
ble (even if the population moments do not exist) and the estimation results
may appear reasonable, the researcher faces the danger of falsely accepting the
model. Also, we establish the bootstrap as a simple but effective method of
finding spurious results. In our case, the histogram of the bootstrapped vari-
able is bimodal, exhibiting a sharp, spurious peak. Third, the odd behavior we
observe using CEX data also occurs when we use simulated data, which has fat
tails by construction. Broadly, we interpret our results as a rejection of models
with identical constant relative risk aversion utility and interior solutions, not
of heterogeneous agent, consumption-based theories of asset prices in general.

Finally, note that our results are not specific to analyses of consumption
data and the equity premium. Our warnings could apply to any econometric
study with potentially fat-tailed data.

The rest of the paper is organized as follows. Section 2 summarizes the
literature of testing consumption-based asset pricing models using CEX data
and discusses potential inconsistencies under nonexistence of moments. Section
3 defines the power law, discusses an incomplete market general equilibrium
model that generates power law in the cross-sectional consumption distribution,
and documents the evidence for the power law in consumption and consump-
tion growth. Section 4 evaluates all of stochastic discount factors proposed in
the CEX literature, introduces our robust, cohort-based method, and presents
bootstrap results. Section 5 performs Monte Carlo studies with simulated data.

2 Summary of asset pricing models

2.1 Literature

Consider an economy with a continuum of agents. Assuming every agent has an
identical, additively separable, constant relative risk aversion (CRRA) utility

function E0

∑∞
t=0 β

t c
1−γ
t

1−γ , the Euler equation

c−γ
it = Et[βc

−γ
i,t+1Rt+1] (2.1)

holds for any asset return Rt+1 and interior agent i. If markets are complete,
since individual consumption cit is proportional to aggregate consumption Ct,
by the Euler equation (2.1) we obtain

C−γ
t = Et[βC

−γ
t+1Rt+1].
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Therefore ignoring the discount factor β,

mRA
t+1 =

(
Ct+1

Ct

)−γ

is a valid stochastic discount factor (SDF). This representative agent model has
been extensively studied and repeatedly rejected (Hansen and Singleton, 1983).

If markets are incomplete, we cannot substitute aggregate consumption for
individual consumption in the Euler equation because the marginal rate of sub-
stitution is not equalized across agents. Since individual consumption data are
short and contain substantial measurement error, however, it is often undesir-
able to estimate the individual Euler equation (2.1) directly. To deal with the
issue of measurement error, the literature has considered ‘Law of Large Num-
bers’ stochastic discount factors. For example, rewriting the Euler equation
using the intertemporal marginal rate of substitution (IMRS) and averaging
across agents, Brav et al. (2002) and Cogley (2002) derive

1 = Et [βG−γ,t+1Rt+1] ,

where Gη,t+1 = Ei[(ci,t+1/cit)
η] is the η-th cross-sectional moment of consump-

tion growth between time t and t+ 1. Thus ignoring the discount factor β,

mIMRS
t+1 = G−γ,t+1

is a valid stochastic discount factor. Of course, with a finite sample we cannot
compute the population moment G−γ,t and hence the exact SDF. However, we
still can use the sample analog

m̂IMRS
t+1 = Ĝ−γ,t+1 =

1

I

I∑

i=1

(
ci,t+1

cit

)−γ

because averaging the Euler equations (2.1) is valid in the population (with a
continuum of agents) as well as in the sample (with a finite number of agents).
Brav et al. (2002) and Cogley (2002) employ linearized versions of the sample
analog of the IMRS SDF. While the representative agent approach considers
just the cross-sectional mean of the consumption distribution, these papers try
the cross-sectional mean, variance, and skewness of the consumption growth

distribution. Although the analysis of Cogley (2002) is unable to eradicate the
pricing error for γ < 15, Brav et al. (2002) find that the IMRS SDF explains the
equity premium for γ ≈ 3.5. These two papers clean the data and approximate
the SDF differently, and the literature does not provide a clear explanation
for the conflicting results. We conjecture that the discrepancy could be due to
the heaviness of the consumption growth distribution tail: the authors deal with
outliers differently, which could greatly impact skewness calculations, even when
the 3rd moment exists. Vissing-Jørgensen (2002) follows a similar approach, but
her focus is the estimation of γ and not the equity premium.

Averaging the Euler equation (2.1) directly, Balduzzi and Yao (2007) derive

C−γ,t = Et[C−γ,t+1Rt+1],

where Cη,t = Ei[c
η
it] is the η-th cross-sectional moment of consumption at time

t. Therefore

mMU
t+1 =

C−γ,t+1

C−γ,t
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is also a valid stochastic discount factor. They replicate the result of Brav et al.
(2002) at the quarterly frequency but show that the IMRS SDF is not valid for
monthly consumption growth. The main point of Balduzzi and Yao (2007) is
that the MU SDF, which they argue is less affected by measurement error than is
the IMRS one, zeroes the pricing error at γ ≈ 10 when they consider only house-
holds with at least $2,000 of financial assets. Also, assuming the consumption
distribution is lognormal (a premise that we reject), Balduzzi and Yao (2007)
show MU SDF is a closed-form function of the change in mean and variance of
the consumption distribution. This “BY” SDF performs similarly to MU.4

Kocherlakota and Pistaferri (2009) take a somewhat different approach. In-
stead of the Euler equation (2.1), they start from the inverse Euler equation,
which holds in a private information setting when agents use insurance compa-
nies to achieve constrained Pareto optimal allocation. They derive the SDF

mPIPO
t+1 =

Cγ,t

Cγ,t+1
.

While the above four papers study CEX data from the early 1980s through the
mid 1990s, Kocherlakota and Pistaferri further the literature by analyzing the
longer sample from 1980 to 2004 and incorporating data from U.K. and Italy to
perform overidentifying tests. In this longer sample, they reject the MU SDF
even when restricting analysis to households that meet various asset thresholds,
which is in conflict with the findings of Balduzzi and Yao (2007). The primary
result of Kocherlakota and Pistaferri (2009) is that the PIPO model zeroes the
pricing error at the GMM estimate γ ≈ 5. Also, imposing a common γ across
U.S., U.K., and Italy, overidentifying tests reject MU and RA but not PIPO.

Finally, Krueger et al. (2008) test the heterogeneous agent, complete market

model with limited enforcement and find that the equity premium cannot be
explained unless the relative risk aversion γ is as large as 60.

Table 1 below summarizes the literature of testing the heterogeneous agent,
incomplete market models. In summary, the literature had (i) rejected the rep-
resentative agent (RA) model, (ii) generated mixed support for IMRS, (iii) con-
firmed MU (with less data) and then rejected it (with more recent data), and
(iv) provided seemingly strong evidence for PIPO. However, Kocherlakota and Pistaferri
(2009) do not consider IMRS and BY with their more expansive dataset. More-
over, none of the above authors explicitly discusses the presence or implications
of fat tails in the cross-sectional distribution of consumption or consumption
growth.5 In what follows we reevaluate these SDFs, and after accounting for
the fat tails we find that none of the SDFs is supported.

2.2 ‘Law of Large Numbers’ stochastic discount factors

and nonexistent moments

Because individual consumption data contain substantial measurement error
and households participate in surveys for only short horizons, the above-mentioned
literature considers ‘Law of Large Numbers’ SDFs. By averaging across agents in

4Kocherlakota and Pistaferri (2009) suggest (on page 560 of their paper) that
Balduzzi and Yao (2007) use log-linearized SDFs, but this does not appear to be the case.

5Kocherlakota (1997) discusses the possibility of fat tails in aggregate consumption growth
in the context of a representative agent model.
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Table 1. Estimation of relative risk aversion γ and tests of stochastic discount factors. X (X)
indicates support for (rejection of) an SDF. The number next to X is the estimate of γ when not
rejected. Q (M) indicates quarterly (monthly) consumption growth.

Paper Sample IMRS MU PIPO
Cogley (2002) 1980–1994 X

BCG (2002) 1982–1996 X3.5

BY (2007) 1982–1995
Q : X5
M : X

X10

KP (2009) 1980–2004 X X5
This paper 1980–2004 X X X

an incomplete markets model, one could form SDFs consisting of cross-sectional
moments of consumption and consumption growth. Assuming measurement
error “averages out,” using the time series of CEX sample analogs of these
moments, one can both estimate the model and evaluate its fit, even when indi-
vidual household time series are short and poorly measured. If the population
moments exist, these Law of Large Numbers SDFs are justified: the sample
moments converge in probability as the sample size tends to infinity, and hence
the GMM estimator of the relative risk aversion coefficient γ is consistent. For
example, the IMRS, MU, and PIPO SDFs can be justified if E[(ci,t+1/cit)

−γ ],
E[c−γ

it ], and E[cγit] exist, respectively, where the expectation is for i, fixing t. The
minimized value of the GMM criterion then tells us about the fit of the model.

But what if these population moments do not exist? The following theorem
gives a negative answer.

Theorem 2.1 (Feller (1946)). Let X1, X2, . . . be i.i.d. with E[|X1|] = ∞ and

let Sn = X1 + · · · + Xn. Let an be a sequence of positive numbers with an/n
weakly increasing. Then lim supn→∞ |Sn| /an = 0 or ∞ almost surely according

as
∑∞

n=1 P (|X1| ≥ an) < ∞ or = ∞.

Letting Xi = (ci,t+1/cit)
−γ , c−γ

it , and cγit for the case of IMRS, MU, PIPO,
respectively, it follows that the existence of the relevant moment is also necessary
for the consistency of the GMM estimator. This is because no matter what
normalizing constant an (an = nα with α ≥ 1, say) we choose, the quantity
Sn/an (and hence the sample analog of each SDF above) either converges to
zero or diverges. In other words, if an SDF estimate contains sample analogs of
nonexistent moments, its asymptotic behavior will be model independent!

We establish in Section 3 that for both consumption and consumption growth,
moments of order beyond 4 are unlikely to exist. Which papers in the lit-
erature would be affected by this degree of nonexistence? The analyses of
Brav et al. (2002) and Cogley (2002) are likely not. First, both papers only
approximate mIMRS

t and never calculate a sample moment beyond the third.
Second, Brav et al. (2002) trim the tails of the consumption growth distribution,
which would help mitigate erratic behavior stemming from fat tails. However,
trimming the tails of consumption growth is problematic because consumption
growth is an endogenous variable.6

6To see this, observe that the theory predicts the (unconditional) Euler equation

1 = E[βg−γ
t+1

Rt+1] (2.2)

where gt+1 = ct+1/ct is consumption growth. Suppose, for example, that the researcher trims
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Indeed, these authors were probably aware of the odd behavior of higher mo-
ments in the CEX. Cogley (2002) attributes this to measurement error, writing,

I stop at a third-order approximation because measurement error
makes it difficult to estimate high-order moments. This is also the
reason why I work with an approximate rather than exact discount
factor (p. 314, footnote 8).

Similarly, Brav et al. (2002) comment,

The SDF is expressed in terms of the cross-sectional mean, variance,
and skewness of the household consumption growth rate. The moti-
vation for this procedure is that the estimation of the cross-sectional
moments may be less susceptible to outliers than the estimation of
the [exact SDF]: the estimates of the cross-sectional moments are in-
dependent of [γ], whereas the [exact SDF] is very sensitive to outliers
in the household consumption growth when [γ] is large (p. 811).

Balduzzi and Yao (2007), in contrast, study exact SDFs. In their successful
IMRS run, they estimate γ ≈ 5, encroaching on the nonexistence range. How-
ever, they trim the tails in accordance with Brav et al. (2002), so we do not
suspect moment nonexistence drives this result (although trimming is problem-
atic). On the other hand, their MU findings rest on sample estimates of the
−10th moment of the consumption distribution, which do not exist according
to our characterization of the lower tail. In other words, the support for MU in
this case may be a “false positive.” While the successful BY SDF requires just
the second moment to exist, it assumes the lognormality of the consumption
distribution, which we reject in favor of the power law.

Similarly, the pro-PIPO evidence in Kocherlakota and Pistaferri (2009) re-
lies on sample estimates of the 5th moment of the consumption distribution,
which we suggest does not exist.

3 Double power law in consumption

In this section we introduce the notion of the double power law and show both
theoretically and empirically that the cross-sectional distribution of consump-
tion obeys the double power law.

3.1 Definitions and notations

Power law A nonnegative random variable X obeys the power law (in the
upper tail) with exponent α > 0 if

lim
x→∞

xαP (X > x) > 0

the tails of consumption growth by dropping observations outside the range [g, ḡ]. Then the
researcher is in fact testing the conditional moment restriction

1 = E
[

βg−γ
t+1

Rt+1

∣

∣

∣
g ≤ gt+1 ≤ ḡ

]

, (2.3)

which is different from (2.2). Note that even if the model is correct (i.e., (2.2) holds), the
conditional moment restriction (2.3) is almost always false for generic thresholds (g, ḡ).
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exists (Pareto, 1896, 1897; Mandelbrot, 1960, 1961, 1963).7 Recently, many
economic variables has been shown to obey the power law not only in the upper
tail but also in the lower tail,8 meaning that

lim
x→0

x−βP (X < x) > 0

exists for some exponent β > 0. Toda (2012a) introduces the concept of the
double power law, which means that the power law holds in both the upper
and the lower tails. If X obeys the double power law with exponents (α, β),
then Xη obeys the double power law with exponents (α/η, β/η) if η > 0 and
(−β/η,−α/η) if η < 0. To see this, for example if η > 0 we have

P (Xη > x) = P (X > x
1
η ) ∼ x−α

η

as x → ∞, and other cases are similar. An important implication of this fact is
that the ηth moment E[Xη] exists if and only if −β < η < α. Since many econo-
metric techniques rely on the existence of some moments, recognizing a power
law is important. For instance, Kocherlakota (1997) tests the representative
agent, consumption-based capital asset pricing model (CAPM) by considering
the possibility that aggregate consumption growth may have fat tails.

Double Pareto and double Pareto-lognormal distributions A canonical
distribution that obeys the double power law is the double Pareto distribution
(Reed, 2001), which has the probability density function (PDF)

fdP(x) =

{
αβ
α+β

1
M

(
x
M

)−α−1
, (x ≥ M)

αβ
α+β

1
M

(
x
M

)β−1
, (0 ≤ x < M)

(3.1)

where M > 0 is a scale parameter (the mode if β > 1), and α, β > 0 are
shape parameters (power law exponents). The classical Pareto distribution with
minimum size M is a special case of the double Pareto distribution by letting
β → ∞ in (3.1).

The double Pareto distribution is rarely observed in reality because its PDF
has a cusp at M . An example of a distribution with a smooth density that obeys
the double power law is the double Pareto-lognormal distribution (Reed, 2003),
abbreviated as dPlN throughout the paper. A dPlN random variable is defined
as the product of independent double Pareto and lognormal random variables.
Its density is

fdPlN(x) =
αβ

α+ β

[
e

α2σ2

2
+αµΦ

(
log x−µ

σ − ασ
)
x−α−1

+e
β2σ2

2
−βµΦ

(
− log x−µ

σ − βσ
)
xβ−1

]
,

where α, β are the power law exponents of the double Pareto variable (with
M = 1), µ, σ are the mean and the standard deviation of the logarithm of
the lognormal variable, and Φ(·) denotes the cumulative distribution function

7See Gabaix (1999, 2009) for reviews of mechanisms generating the power law.
8Examples are income (Reed and Wu, 2008; Toda, 2011, 2012a) and city size (Reed, 2002;

Giesen et al., 2010).
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(CDF) of the standard normal distribution. As is clear from the above density,
the double Pareto-lognormal distribution obeys the double power law with ex-
ponents α, β. The double Pareto distribution and the lognormal distribution
are special cases of the double Pareto-lognormal distribution by letting σ → 0
and α = β → ∞, respectively. This is an important point because it means
the lognormal distribution, which is nested within dPlN, can be tested against
dPlN by the likelihood ratio test.

Laplace and normal-Laplace distributions Instead of working with dou-
ble Pareto and dPlN random variables, it is often easier to work with their
logarithms. The logarithm of a double Pareto random variable is said to be
Laplace.9 The logarithm of a dPlN random variable is called normal-Laplace,
which is the convolution of independent normal and Laplace random variables.
See Appendix A for more details on these distributions.

3.2 Theory

The conventional wisdom is that the cross-sectional distribution of consump-
tion is lognormal. Using the consumption Euler equation, Battistin et al. (2009)
show that consumption is approximately lognormal within age cohorts. If house-
holds “die” with constant probability and are reborn, by Theorem A.1 the dou-
ble power law emerges in the entire cross-section.

There is an alternative model generating the double power law in consump-
tion based on the heterogeneous agent, incomplete markets general equilibrium
model studied by Toda (2012c). Because the model is highly tractable, we can
create an artificial economy with a consumption distribution that obeys the
double power law and then use it as a laboratory for studying the properties of
various stochastic discount factors in asset pricing models.

Here is a simplified version of the model. Agents are indexed by i ∈ I =
{1, . . . , I}10 and have a standard additive CRRA utility function

E0

∞∑

t=0

βt c
1−γ
t

1− γ
.

Agent i starts with initial wealth (capital) wi0 > 0 but has no future endow-
ment. There are J technologies (investment projects) indexed by j ∈ J =
{1, . . . , J}. Production takes one period and is subject to aggregate and id-
iosyncratic shocks: when agent i allocates k units of goods at the end of time
t to technology j, he receives Aj

i,t+1k units of good at the beginning of period

t + 1, where Aj
i,t+1 > 0 is the productivity of technology j for agent i. Think

of these technologies as private equity, human capital, or agriculture in private
land. We can interpret a technology without idiosyncratic risk (which is a spe-
cial case) as a firm whose shares are publicly traded. Letting θjit be the fraction

9Hence the Laplace and the double Pareto distributions have the same relation as the nor-
mal and the lognormal distributions. As an interesting historical remark, Laplace discovered
the Laplace distribution in 1774, which predates by a quarter of century the discovery of the
normal distribution by himself and Gauss in the early 1800s. For more historical background,
see Kotz et al. (2001).

10In Toda (2012c), there are a continuum of agents with mass 1, but the result goes through
with finite agents.
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of agent i’s wealth invested in project j at time t, where θjit ≥ 0 and
∑

j θ
j
it = 1,

the gross return on portfolio θit = (θ1it, . . . , θ
J
it) is denoted by

Ri,t+1(θit) =
J∑

j=1

Aj
i,t+1θ

j
it.

The sequential budget constraint of agent i is therefore

(∀t) wi,t+1 = Ri,t+1(θit)(wit − cit) ≥ 0. (3.2)

Assume that the productivity Aj
i,t+1 decomposes into aggregate and idiosyn-

cratic components as Aj
i = ajiA

j , where we have dropped the time subscripts,

and assume that the idiosyncratic shock aji is i.i.d. across agents conditional
on the history of aggregate shocks. The vector of the aggregate components is

denoted by A = (A1, . . . , AJ). We impose the normalization E
[
aji

∣∣∣A
]
= 1.

We assume that there is no insurance markets for the idiosyncratic shocks
ai = (a1i , . . . , a

J
i ) (incomplete markets). We can think of the stock market

as a technology with no idiosyncratic shocks, i.e., aji = 1 for all i. For simplicity
assume that the aggregate productivities {At+1}∞t=0 are i.i.d. over time11 and

the distribution of aji,t+1 conditional on public and private information depends
only on At+1.

In addition to these technologies, agents can trade an arbitrary set of as-
sets in zero net supply, such as the risk-free asset or derivatives. A sequential
equilibrium is defined by a sequence of individually optimal consumption and
portfolio choices and asset prices such that the asset markets clear. Toda (2012c)
proves that zero net supply assets are not traded in equilibrium (although they
are priced) and that the optimal consumption and portfolio rule and the gross
risk-free rate satisfy

θ∗ ∈ argmax
θ∈∆J−1

1

1− γ
E[R(θ)1−γ ], (3.3a)

c(w) = (1− (β E[R(θ∗)1−γ ])
1
γ )w, (3.3b)

Rf =
E[R(θ)1−γ ]

E[R(θ)−γ ]
. (3.3c)

That is, the portfolio choice and the propensity to consume out of wealth are
common across all agents and constant over time, and the gross risk-free rate is
constant over time. By the budget constraint (3.2) and the optimal consumption
rule (3.3b), we obtain

ci,t+1 = (β E[R(θ∗)1−γ ])
1
γ Ri,t+1(θ

∗)cit. (3.4)

This “equation of motion” has the same structure as that in Appendix B.
Consequently, if households “die” with constant probability and are reborn,
then the cross-sectional consumption distribution obeys the double power law.
The power law exponents can be computed by decomposing the growth rate

11Toda (2012c) develops this model in a Markov setting.
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Gi,t+1 = (β E[R(θ∗)1−γ ])
1
γ Ri,t+1(θ

∗) as in (B.3). For the benchmark “symmet-
ric” case explained in Appendix B, the power law exponents are given by

α = β =

√
2δ

σc
, (3.5)

where 0 < δ < 1 is the death probability between periods and σc > 0 is the
volatility of the idiosyncratic component of log consumption.

3.3 Evidence for consumption

Data construction We use the same data as the real, seasonally adjusted,
quarterly household consumption data used in Kocherlakota and Pistaferri (2009)
constructed from the Consumption Expenditure Survey (CEX).12 By visual in-
spection of histograms, we find that the cross-sectional distribution of log con-
sumption is bell-shaped but has tails heavier than the normal distribution, so
we model log consumption as normal-Laplace. Note that this modeling choice
is theoretically justified: if in the previous model newborn agents inherit wealth
and if the initial wealth distribution is lognormal with the same mean as the
cross-sectional distribution with constant standard deviation σ0, then the cross-
sectional consumption distribution becomes dPlN with parameter (µt, σ0, α, β),
where the power law exponents α = β are given by (3.5). Here the location
parameter µt is time-dependent but other parameters are not. This is because
under the i.i.d. assumption, by the law of large numbers the coefficients of the
quadratic equation (B.5), which determines the power law exponents, are almost
surely constant over time.

It is well known that the consumption data in the CEX are subject to sub-
stantial measurement error, but the double power law survives if the tails of the
error distribution of log consumption are thinner than exponential: the distribu-
tion of observed log consumption will still have exponential tails in that case.13

For example, if observed consumption is the product of actual consumption and
an independent lognormally distributed measurement error (with log standard
deviation σǫ), then the observed consumption is still dPlN with parameters
(µt, σ, α, β), where σ2 = σ2

0 + σ2
ǫ (observed log consumption is normal-Laplace

with the same parameters).
Now suppose that observed log consumption is normal-Laplace with pa-

rameters (µt, σ, α, β). Normalizing log consumption by subtracting the popu-
lation mean, normalized log consumption is normal-Laplace with parameters
(µ, σ, α, β) (where µ is such that the mean is zero), which do not depend on
the sample. Since the CEX samples the same households once in a quarter,
by the above reasoning monthly data of normalized consumption has the same
distribution as the quarterly data of normalized consumption obtained by pool-
ing three consecutive monthly data, which contains no overlapping households.
Making the sample size approximately three times larger in this way, we are
taking a conservative position since it is easier to reject a particular parametric
model with more data.14

12The data is available at http://www.jstor.org/stable/10.1086/599761.
13On the other hand, if the error distribution has fatter tails than exponential, then the

(observed) consumption data will be of little use because most of it will consist of measurement
error.

14Of course, one may object pooling different data sets (although here it is theoretically
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Parameter estimation Having constructed quarterly normalized log con-
sumption data, we estimate the normal-Laplace parameters (µ, σ, α, β) for each
quarter by maximum likelihood. Since the two power law exponents α, β are
almost the same, as predicted by theory (3.5), we estimate the parameters of
the symmetric normal-Laplace distribution by maximum likelihood. The like-
lihood ratio test failed to reject symmetry (α = β) in 77 out of 98 quarters
at significance level 0.05. Therefore we choose the symmetric normal-Laplace
distribution as the benchmark model for normalized log consumption.

Figure 1 shows the histograms of log consumption for 1985:Q1, 1990:Q2,
1995:Q3, and 2000:Q4, together with the fitted symmetric normal-Laplace den-
sity plotted in the range between the minimum and the maximum log consump-
tion of each quarter (other quarters look similar). According to Figure 1, the
symmetric normal-Laplace distribution fits the log consumption data very well.
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(d) 2000:Q4

Figure 1. Histogram and normal-Laplace density fitted to normalized log consumption data.

We can also see that there are large positive and negative values that would
be very unlikely if the distribution were normal. To see this visually, Figure
2 shows the quantile-quantile plot (QQ plot) of log consumption against the
normal distribution. Here the actual quantiles are smaller (larger) than the
case of the normal distribution in the lower (upper) tail beyond two standard
errors, suggesting that the log consumption distribution has fatter tails than
the normal distribution.

justified). As a robustness check, we also perform all subsequent analysis with the original
monthly data.
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Figure 2. Quantile-quantile plot of normalized log consumption against the normal distribution.
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Figure 3 shows the estimate of the power law exponent α for each quarter.
According to Figure 3, the power law exponent α is around 4 (the average across
all quarters was 4.06) and in the range of [3, 5.5]. The standard error computed
by bootstrapping 500 times was smaller than 0.15 in every quarter (the average
across all quarters was 0.073).
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Figure 3. Power law exponent obtained by fitting a symmetric normal-Laplace distribution to
quarterly U.S. normalized log consumption data.

Goodness-of-fit and model selection We evaluate the goodness-of-fit of
the double Pareto-lognormal distribution (with α = β) and the lognormal dis-
tribution. We perform both the Kolmogorov-Smirnov test (Massey, 1951) and
the Anderson-Darling test (Anderson and Darling, 1952) and compute the P
value by bootstrapping 500 times for each quarter. (See Appendix C for de-
tails. Matlab codes are available upon request.) Letting F (x) be the theoret-
ical distribution and FN (x) the empirical cumulative distribution function of
data x = (x1, . . . , xN ), the Kolmogorov-Smirnov and the Anderson-Darling test
statistics are based on the sup norm and the L2 norm

sup
x

|FN (x)− F (x)| ,
∫ ∞

−∞

(FN (x) − F (x))2

F (x)(1 − F (x))
dF (x),

respectively. Note that the Kolmogorov-Smirnov test has a low power for detect-
ing deviations from the theoretical distribution in the tails because FN (x)−F (x)
tends to zero as x → ±∞. On the other hand, the Anderson-Darling test can
detect deviations in the tails because the weighting function [F (x)(1−F (x))]−1

tends to infinity as x → ±∞. Hence, with the Anderson-Darling test the de-
viations in the tails are much more penalized. Since the existence of moments
of the consumption distribution depends only on the tail behavior, for our pur-
pose clearly the Anderson-Darling test is more appropriate. However, we also
perform the Kolmogorov-Smirnov test because it is widely used.

Table 2 shows the P value of the Kolmogorov-Smirnov test for the double
Pareto-lognormal specification with α = β and the lognormal specification. The
double Pareto-lognormal distribution is not rejected at significance level 0.05 in

14



79 quarters out of 98. On the other hand, the lognormal distribution is rejected
in 73 quarters. Table 3 shows the P value of the Anderson-Darling test, which
is more relevant because we are interested in the tail behavior. While dPlN
is not rejected in 64 quarters out of 98, lognormal is rejected in 92 quarters.
The fact that the lognormal distribution is rejected much more often by the
Anderson-Darling test suggests that the lognormal distribution fails to fit the
tails of the data. These findings are strong evidence for the double power law
conjecture of consumption and against its lognormality.

Table 2. P values of the Kolmogorov-Smirnov test for fitting a distribution to quarterly U.S.
normalized consumption data. P value larger than 0.05 shown in boldface.

Model double Pareto-lognormal, α = β lognormal
Year Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1979 - - - 0.15 - - - 0.002
1980 0.50 0.13 0.096 0.018 0.001 0.001 0.001 0.001
1981 0.28 0.38 0.43 0.02 0.001 0.001 0.03 0.001
1982 0.64 0.058 0.074 0.60 0.001 0.002 0.008 0.082

1983 0.78 0.84 0.59 0.91 0.014 0.007 0.077 0.032
1984 0.71 0.38 0.14 0.008 0.017 0.004 0.13 0.001
1985 0.34 0.012 0.022 0.022 0.001 0.001 0.001 0.001
1986 0.41 0.068 0.78 0.58 0.001 0.001 0.027 0.28

1987 0.28 0.47 0.78 0.49 0.02 0.035 0.14 0.08

1988 0.97 0.88 0.01 0.62 0.073 0.24 0.007 0.001
1989 0.044 0.11 0.21 0.85 0.001 0.047 0.11 0.001
1990 0.32 0.16 0.056 0.53 0.001 0.025 0.001 0.024
1991 0.62 0.23 0.90 0.32 0.11 0.11 0.12 0.02
1992 0.26 0.32 0.21 0.042 0.001 0.051 0.27 0.001
1993 0.70 0.21 0.17 0.63 0.002 0.043 0.014 0.16

1994 0.29 0.062 0.31 0.78 0.001 0.004 0.077 0.052

1995 0.59 0.36 0.12 0.004 0.044 0.002 0.16 0.018
1996 0.038 0.068 0.092 0.20 0.001 0.012 0.003 0.006
1997 0.41 0.81 0.24 0.26 0.016 0.43 0.079 0.13

1998 0 0.066 0.17 0.51 0.001 0.023 0.037 0.016
1999 0.026 0.034 0.16 0 0.02 0.001 0.052 0.001
2000 0.018 0.004 0.17 0.45 0.001 0.001 0.008 0.05

2001 0.42 0.43 0.93 0.94 0.023 0.004 0.17 0.13

2002 0.29 0.88 0.53 0.66 0.001 0.01 0.006 0.001
2003 0.34 0.018 0.47 0.038 0.001 0.001 0.001 0.001
2004 0.90 - - - 0.001 - - -

We also compare the performance of dPlN to other parametric distributions
using the Bayesian Information Criterion, BIC (Schwarz, 1978). The parametric
distributions that we consider are lognormal, gamma, and generalized beta II
(GB2) (McDonald, 1984). GB2 has four parameters a, b, p, q with density

fGB2(x) =
axap−1

bapB(p, q)(1 + (x/b)a)p+q
,

where b > 0 is a scale parameter, a, p, q > 0 are shape parameters, and B(p, q)
denotes the beta function. The generalized beta II distribution contains the
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Table 3. P values of the Anderson-Darling test for fitting a distribution to quarterly U.S. normalized
consumption data. P value larger than 0.05 shown in boldface.

Model double Pareto-lognormal, α = β lognormal
Year Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1979 - - - 0.034 - - - 0
1980 0.77 0.074 0.002 0.03 0 0 0 0
1981 0.076 0.20 0.47 0.012 0 0 0 0
1982 0.29 0.044 0.002 0.60 0 0 0 0.004
1983 0.57 0.55 0.75 0.91 0 0.002 0.004 0.016
1984 0.61 0.39 0.17 0.004 0.004 0 0.018 0
1985 0.076 0.014 0.004 0 0 0 0 0
1986 0.19 0.058 0.78 0.50 0 0 0.002 0.27

1987 0.42 0.36 0.65 0.07 0 0.004 0.13 0.004
1988 0.70 0.58 0.01 0.59 0.008 0.006 0.002 0
1989 0.084 0.18 0.36 0.30 0 0 0.004 0
1990 0.16 0.24 0.30 0.43 0 0.002 0.004 0.002
1991 0.56 0.21 0.27 0.022 0.02 0.008 0.022 0
1992 0.002 0.32 0.24 0.02 0 0.028 0.11 0
1993 0.15 0.068 0.38 0.35 0 0 0.03 0.14

1994 0.026 0.006 0.15 0.27 0 0 0 0.006
1995 0.48 0.004 0.04 0.018 0.004 0 0.008 0
1996 0.002 0.014 0.006 0.018 0 0 0 0
1997 0.25 0.67 0.062 0.032 0.002 0.092 0.048 0
1998 0 0.12 0.002 0.48 0 0 0.002 0.002
1999 0.006 0 0.17 0 0.002 0 0.002 0
2000 0 0 0.012 0.23 0 0 0 0.01
2001 0.05 0.12 0.90 0.92 0 0 0.058 0.004
2002 0.12 0.50 0.56 0.41 0 0 0 0
2003 0.036 0.038 0.49 0.056 0 0 0 0
2004 0.94 - - - 0 - - -
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exponential, gamma, lognormal, Weibull, Singh-Maddala (Singh and Maddala,
1976), and Dagum (Dagum, 1977) distributions as special or limiting cases, but
not the double Pareto or the dPlN.15 Out of 98 quarters, dPlN performed best
in 78 quarters, GB2 in 15 quarters, and lognormal in 5 quarters. Therefore,
among a large class of parametric distributions, dPlN provides the best fit to
the consumption distribution.

Testing the existence of moments directly Although characterizing the
cross-sectional consumption distribution is interesting in its own right, for com-
paring various stochastic discount factors in incomplete markets asset pricing
models proposed in the literature, whether a moment exists or not is more im-
portant than which parametric distribution fits to data. Fortunately, there is a
simple bootstrap test for testing the existence of moments directly (Fedotenkov,
2011), explained in Appendix D.

Figure 4 shows the upper and lower bounds of the order of moments for
which the existence is not rejected at significance level 0.05. The average of the
upper and lower bounds across all quarters is 5.76 and −6.24, which are close
to the estimated power law exponent (around 4).
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Figure 4. Range of existent moments for quarterly U.S. consumption data.

Testing the lognormal distribution against dPlN Since the lognormal
distribution is nested within the double Pareto-lognormal distribution (by let-
ting the power law exponents α, β to infinity), we can test the lognormal distri-
bution against dPlN by the likelihood ratio test. The test rejects the lognormal
distribution at significance level 0.05 in every quarter except 1993:Q4, with P
value 0.08 (which gives the largest power law exponent 5.5 in Figure 3). There-
fore the consumption distribution is better described by dPlN than lognormal
when we look at the entire sample.

This finding does not contradict to those of Battistin et al. (2009) because
they look at the consumption distribution within age cohorts, not the entire

15However, GB2 obeys the double power law with exponent α = aq and β = ap. Because
power law exponents can be estimated easily, the maximum likelihood estimation of GB2
parameters is quicker and more stable by maximizing over (a, b, α, β) instead of (a, b, p, q).
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cross-section. Since the double power law emerges from the geometric age dis-
tribution (Theorem A.1), we would expect that the cross-sectional consump-
tion distribution is more lognormal within age cohorts than in the entire cross-
section. To evaluate this conjecture, we perform the likelihood ratio test and
goodness-of-fit tests for the lognormal distribution for each age cohort. The
groups are household head age 30 or less, 31 to 40, 41 to 50, 51 to 60, and 60
or more. The likelihood ratio test fails to reject lognormality in 46, 38, 37, 56,
and 32 quarters out of 98 for each age group, respectively. The Kolmogorov-
Smirnov test fails to reject lognormality in 67, 69, 63, 72, and 43 quarters for
each age group, and the Anderson-Darling test fails to reject in 51, 51, 50, 64,
and 23 quarters, respectively. Therefore the lognormal distribution fits reason-
ably well to the cross-sectional distribution of consumption for each age group,
in agreement with Battistin et al. (2009). Our finding that the double power
law emerges only in the entire cross-section and not within age cohorts strongly
suggests that it is the age distribution driving the power law (as in Appendix
B) and not measurement error: we have no reason to believe that measurement
error is correlated with age.

The range of moment existence is [−6.6, 8.1] for 30 or less, [−7.8, 7.5] for 31
to 40, [−8.4, 7.0] for 41 to 50, [−8.5, 8.0] for 51 to 60, and [−8.5, 6.5] for 61 or
more. These ranges are wider than for the entire cross section. Since we only
checked moments of order between −10 and 10, the actual range of existence is
likely to be even wider.

Robustness with monthly data So far, we have normalized and pooled
consecutive months to make the sample size larger, and the model of Section
3.2 justifies this procedure. In case the model is false, as a robustness check, we
perform all previous exercises with the original monthly data.

Figure 5(a) shows the estimated power law exponents. The power law ex-
ponent α is around 4 (the average across all months was 4.31), which is qual-
itatively the same as with the pooled data (Figure 3). However, occasionally
there are large exponents (i.e., tails are thin) of around 10 because with smaller
sample sizes there are fewer extreme observations, which determine the tail
behavior.

The likelihood ratio test rejects the lognormal distribution against dPlN in
240 months out of 291 (82% of the time). The Kolmogorov-Smirnov test failed
to reject dPlN in 263 months (90% of the time) and rejected the lognormal
distribution in 104 months (36% of the time), whereas the Anderson-Darling
test failed to reject dPlN in 250 months (86% of the time) and rejected the
lognormal distribution in 165 months (57% of the time). Considering the low
power of the Kolmogorov-Smirnov test, the result of the Anderson-Darling test
is more relevant. Again dPlN fits much better than the lognormal in monthly
data.

Figure 5(b) shows the upper and lower bounds of the order of moments for
which the existence is not rejected at significance level 0.05. The averages of the
upper and lower bounds across all months are 6.73 and −7.16, which are slightly
larger than the estimated power law exponent (around 4.3), but the results are
qualitatively the same as with quarterly data.
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(a) Power law exponent obtained by fitting a
symmetric normal-Laplace distribution.
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(b) Range of existent moments.

Figure 5. Estimation results with monthly consumption.

3.4 Evidence for consumption growth

Next we turn to the distribution of consumption growth. By the equation of
motion (3.4) for consumption, we obtain

ci,t+1

cit
= (β E[R(θ∗)1−γ ])

1
γ Ri,t+1(θ

∗),

so the distribution of consumption growth is the same as that of portfolio return
Ri,t+1(θ

∗), except for a multiplicative constant. Since asset returns are known
to have fat tails, we conjecture that idiosyncratic productivity shocks also have
fat tails, meaning the high order moments of consumption growth may not exist.

Given the robustness of the Laplace distribution and the double Pareto dis-
tribution (Theorem A.1) and considering the possibility of measurement error,
the most natural parametric distribution to fit consumption growth is again
the double Pareto-lognormal distribution. Therefore we estimate the normal-
Laplace parameters (µ, σ, α, β) for each month (pooling months is not justified
for consumption growth) by maximum likelihood. Since the two power law ex-
ponents α, β are almost the same, we further estimate the parameters of the
symmetric normal-Laplace distribution by maximum likelihood. The likelihood
ratio test rejects symmetry (α 6= β) in only 6 months out of 291 at significance
level 0.05. Therefore we choose the symmetric normal-Laplace distribution as
the benchmark model for log consumption growth.

Figure 6 shows the histograms of log consumption growth for March 1985,
June 1990, September 1995, and December 2000, together with the fitted sym-
metric normal-Laplace density plotted in the range between the minimum and
the maximum log consumption growth of each month (other months look sim-
ilar). Again the normal-Laplace distribution fits very well. Compared to the
log consumption distribution, the peak of log consumption growth distribution
is sharper. Therefore, by visual inspection alone the normal distribution seems
inappropriate. In fact, the likelihood ratio test rejects the lognormality of con-
sumption growth against dPlN in every single month.

Figures 7(a) and 7(b) show the estimated power law exponent and the upper
and lower bounds of the order of moments for which the existence is not rejected
at significance level 0.05. The average of the exponent and the upper and lower
bounds across all months was 4.05, 6.80, and −6.83, respectively.
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(d) December 2000

Figure 6. Histogram and normal-Laplace density fitted to log consumption growth.
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(a) Power law exponent obtained by fitting a
symmetric normal-Laplace distribution.
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Figure 7. Estimation results with consumption growth.
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Finally, we evaluate the goodness-of-fit of the double Pareto-lognormal dis-
tribution (with α = β) and the lognormal distribution. While the Kolmogorov-
Smirnov test and the Anderson-Darling test fail to reject dPlN in 265 and 260
months, respectively, the Kolmogorov-Smirnov test rejects the lognormal distri-
bution in all but 3 months and the Anderson-Darling test rejects the lognormal
distribution in every single month. Therefore dPlN fits consumption growth
even better than it does the consumption level. Using BIC, dPlN provides the
best fit in all but 7 months. GB2 performs best in 6 months, and gamma
performs best in one month. Overall, the performance of dPlN is outstanding.

4 Estimation and robustness

In this section we estimate the relative risk aversion coefficient γ using various
asset pricing models and study the robustness of the performance of each model.

4.1 Data

As in Section 3, we use the real, seasonally adjusted consumption data in
Kocherlakota and Pistaferri (2009) constructed from the CEX. Their dataset
has monthly observations from December 1979 to February 2004, but each num-
ber corresponds to a household’s consumption over the previous 3 months. So,
while there are households for each month, no household appears in consecutive
months. Therefore, despite the fact that we have an SDF and excess return
realization for each month, the data for each month reflect a quarter of infor-
mation, and the return series are 3 month moving averages. For example, the
sample analog of the PIPO SDF is defined by

m̂PIPO
t (γ) =

1
It−3

∑It−3

i=1 cγi,t−3

1
It

∑It
i=1c

γ
it

,

where It is the number of households at time t and cit is the consumption
of household i at time t. This gives 288 SDF observations for RA, MU, and
PIPO and 287 for IMRS (we lose one quarter for IMRS because household IDs
were reset in 1986). In total, we have 410,788 consumption data points and
270,428 consumption growth data points (there are fewer consumption growth
data points because many households participate the survey for only one quar-
ter). See Kocherlakota and Pistaferri (2009) for further details on the construc-
tion of real consumption and the U.S. equity premium.

In one of our exercises described below, we split households into age groups,
where we define the age of a household by the age of the oldest head of household.
We get these ages from the NBER Consumer Expenditure Survey Family-Level
Extracts webpage.16 However, since the NBER data cover fewer households, the
merge leaves us with 373,785 data points for consumption levels and 253,549 for
growth. (Thus we lose 9% of consumption level and 6% of consumption growth,
respectively.) Also, for consumption growth the number of SDF observations
falls to 286 due to changes in the CEX in 1996.

16http://www.nber.org/data/ces_cbo.html
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4.2 Estimation

For any SDF j ∈ {RA, IMRS,MU,PIPO}, define

f j
t (γ) =

(
m̂j

t (γ)
) (

Rs
t −Rb

t

)
,

gjT (γ) =
1

T

T∑

t=1

f j
t (γ),

where T is the number of observation for SDF j, Rs
t is the stock market return,

and Rb
t is the Treasury bill rate. The GMM estimator of γ and the pricing error

are

γ̂j = argmin
γ

T
(
gjT (γ)

)2

,

ej = gjT
(
γ̂j
)
=

1

T

T∑

t=1

(
m̂j

t

(
γ̂j
)) (

Rs
t −Rb

t

)
.

Following Kocherlakota and Pistaferri (2009), we report the Newey and West
(1987) standard errors (with truncation parameter equal to 4), which account
for the sampling error in the time series but abstract from uncertainty regarding
cross-sectional moments of consumption.

In addition, we report standard errors from a bootstrap procedure based
on Politis and Romano (1994) that also account for the sampling error in the
cross-section. We sample with replacement from the original data to generate
B bootstrap samples, indexed by b = 1, . . . , B. Each is of length T and has
statistical properties like the original sample. Each bootstrap sample yields risk
aversion estimate γ̂j

b and pricing error ejb. The bootstrap standard error is the

sample standard error of
{
γ̂j
b

}B

b=1
. The explicit procedure for generating each

sample b is as follows:

1. For each t ∈ T = {1, . . . , T}, draw with replacement It observations from

{cit}Iti=1, yielding
{
cbit

}It

i=1
.

2. Let M be the average block length and set p = 1/M . (We choose M =√
T .) Draw τb1 uniformly from T. For s = 2, . . . , T , with probability

1 − p set τbs = τbs−1 + 1 modulo T (hence τbs = 1 if τbs−1 = T ), and with
probability p draw τbs uniformly from T.

3. The bootstrap sample b consists of all c̃bis, s = 1, . . . , T , where we define
c̃bis = cbi,τb

s
for i = 1, . . . , Iτb

s
.

The process for bootstrapping consumption growth and asset returns is anal-
ogous. The one caveat concerns the calculation of SDF j ∈ {RA,MU,PIPO}.
Consider PIPO for example. We use

m̂PIPO,b
s (γ) =

1
I
τb
s−3

∑I
τb
s−3

i=1

(
cbi,τb

s−3

)γ

1
I
τb
s

∑I
τb
s

i=1

(
c̃bis

)γ .
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That is, the bootstrap time s SDF is formed from actual time τbs and τbs−3 data,
not actual time τbs and τbs−3 data in order to preserve the statistical properties
of the SDF.

Below, we use B = 500 bootstrap replications.

4.3 Results and robustness to outliers

The first two columns of the Table 4 below replicate Table 2 on p. 581 of
Kocherlakota and Pistaferri (2009) and display the estimation results for IMRS.
The IMRS SDF, like MU, fails to explain the equity premium.

Table 4. GMM estimation of relative risk aversion (RRA) γ and pricing errors ej . The first and
second numbers in parentheses are the Newey-West and bootstrap standard errors.

Full KP sample Without Outliers
Model RRA (γ) Pricing error RRA (γ) Pricing error

RA
53.26
(29.41)
(20.19)

0.000
53.10
(30.85)
(21.24)

−0.000

MU
1.52
(5698)
(0.90)

0.019
2.51
(9960)
(1.86)

0.019

PIPO
5.33
(1.42)
(1.98)

0.000
2.23
(8010)
(1.68)

0.019

IMRS
0.03
(1035)
(0.08)

0.019
0.03
(1297)
(0.21)

0.019

The first and second numbers in parentheses are, respectively, the Newey-
West and bootstrap standard errors. Our Newey-West standard errors are
slightly larger than those in Kocherlakota and Pistaferri, probably because they
use the Hansen and Hodrick (1980) serial correlation correction. For RA and
PIPO, the bootstrap standard errors (which account for cross-sectional sampling
error) are similar to the Newey-West ones. This is not true for MU and IMRS.
However, it is not clear how to interpret these Newey-West numbers anyway,
because in each case γ is exactly identified but the pricing error is away from
0 (as returns are quarterly, 0.02 is essentially the entire equity premium). For
this reason, Kocherlakota and Pistaferri do not report a standard error for MU.
Another reason for the large standard errors in MU and IMRS might be again
the fat tails. For example, even if the pricing error f j

t (γ) = m̂j
t (γ)(R

s
t −Rb

t) has
a finite first moment, it may not have a finite second moment, in which case we
cannot apply the standard asymptotic theory of the GMM estimator.

Oddly, γ̂IMRS is very low. One explanation for this result is that since the
exact IMRS SDF is the weighted average of the −γth power of each household’s
consumption growth, whenever γ is large the SDF will be huge because there are
always households with consumption growth much smaller than 1. Therefore
the GMM criterion may be a huge number when γ is large. In this way, small
consumption growth observations may drive γ toward zero.

The last two columns of Table 4 are what we get when we drop a small
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number of outliers relative to the total number of data points. Specifically, we
drop the top 100 and bottom 100 consumption observations from the entire
sample. For IMRS, we also drop the top 100 and bottom 100 consumption
growth observations. As there are 410,788 data points, for consumption levels
the points we drop account for less than 0.05% of the entire sample. Note that
these outliers are spread roughly uniformly across the quarters, so on average
we are dropping less than 1 observation point per quarter since there are 288
quarters.

We see that the results for the RA SDF, which should not be affected by the
nonexistence of higher moments, barely change. We continue to reject MU and
IMRS. PIPO, however, is now unable to explain the equity premium. Figure 8
below shows the GMM criterion for PIPO as a function of γ, with and without
the outliers. Just a few outliers generate the trough at 5.33. Perhaps not
coincidentally, γ = 5 is near the beginning of the moment nonexistence region.
Without the outliers, the γ estimate falls to 2.23, well within the existence
region.
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RRA Coefficient

 

 

Full KP Sample
Without Outliers

Figure 8. PIPO GMM criterion with and without largest and smallest 100 consumption outliers
out of 410,788.

Another way to see that the positive PIPO evidence may be the result of the
power law tails is to analyze the bootstrap distributions for the pricing error and
γ estimate. Figure 9 displays histograms of ePIPO

b , with and without outliers.
We see that when we bootstrap with all data, there is an odd mass of pricing
errors at 0. Without outliers, the pricing error bootstrap distribution is centered
around ePIPO, as it should be, with much less mass at zero.

Finally, Figure 10 is a scatter plot of the bootstrap estimates γ̂j
b and pricing

errors ejb. There is a clear inverse relationship between the pricing error and the
γ estimate. Indeed, most of the zero pricing errors correspond to γ estimates
in the moment nonexistence range (> 4); when the pricing error is greater than
0.01, the corresponding γ estimate tends to be less than 3.

We take this collection of observations as strong evidence that the heavy
tail of the consumption distribution aids mechanically in zeroing the pricing
error. At least, such CEX-based asset pricing exercises seem quite sensitive to
outliers. This, in conjunction with measurement error and the limited cross-
sectional sample size, leads one to question the usefulness of CEX ‘Law of Large
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Figure 9. Histogram of bootstrapped PIPO pricing errors with and without largest and smallest
100 consumption outliers out of 410,788.
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Figure 10. Scatter plot of bootstrapped PIPO RRA estimates and pricing errors.
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Numbers’ SDFs.17

4.4 Robust estimation using age data

What can we do to circumvent the fat tail issue in the estimation of γ? One
solution is to find an exogenous variable such that the conditional consumption
distribution does not have fat tails. When we tested the double power law
conjecture of consumption in Section 3.3, for each quarter t we divided the
cross-section into five age cohorts, 30 years or younger, 31 to 40, 41 to 50, 51 to
60, and older than 60. Call these Ht,1, . . . , Ht,5. We found that at each t, within
cohort the consumption distribution is approximately lognormal. At least, more
moments exist within cohort than for the entire cross-section. With this in
mind, we perform an overidentified GMM exercise that (i) is less susceptible to
the nonexistent moment issue18 and (ii) allows for overidentifying tests of the
different models.

Specifically, we exploit the fact that the Euler equation aggregation in Sec-
tion 2 that gave us the SDFs also works within a particular age cohort because
age is an exogenous variable. That is, instead of averaging across all agents, we
can average across a particular age group. For example, we can form the Ht,5

(> 60) MU SDF by

m̂MU,5
t (γ) =

1
It,5

∑
i∈Ht,5

c−γ
it

1
It−3,5

∑
i∈Ht−3,5

c−γ
i,t−3

.

For any j ∈ {RA, IMRS,MU,PIPO}, define

F j
t (γ) =



m̂j,1

t (γ)
...

m̂j,5
t (γ)



(
Rs

t −Rb
t

)
,

Gj
T (γ) =

1

T

T∑

t=1

F j
t (γ).

The overidentifed GMM estimator of γ is

γ̂j = argmin
γ

TGj
T (γ)

′WGj
T (γ),

where W is the weighting matrix. (We always use the identity matrix as the
weighting matrix.)

We calculate standard errors via the above bootstrap procedure because the
Newey-West standard errors may be misleading according to the results of Table
4. Furthermore, for each SDF we bootstrap a P value for the null hypothesis
that the pricing error is 0 (that is, that the model is correct). The following is
a description of the calculation of these P values:

17In their online appendix, Kocherlakota and Pistaferri (2009) find that the success of PIPO
is robust to (i) dropping large SDF values and (ii) dropping observations with particularly
high consumption-wealth ratios. Beyond their initial data-cleaning, however, they do not try
dropping the largest and smallest observations.

18Technically, if the ηth moment does not exist for the entire cross-section, it must not exist
for at least one age group because the moment of the entire cross-section is a weighted average
of the moments of the age groups.
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1. Dropping the SDF superscript, let GT,b (γ̂b) be the vector of pricing errors
corresponding to bootstrap sample b.

2. For each bootstrap sample b, define

JT,b = T (GT,b (γ̂b)−GT (γ̂))
′
W (GT,b (γ̂b)−GT (γ̂)) .

Also define the minimized sample criterion

JT = TGT (γ̂)
′
WGT (γ̂) .

3. Calculate the P value by

p =
1

B

B∑

b=1

1 {JT,b ≥ JT } .

Why should this work? The idea of the bootstrap is that the empirical
distribution of GT,b around GT approximates the distribution of GT around
G∞, which is 0 under the null. It follows that under the null the empirical
distribution of JT,b approximates the distribution of JT . Finally, if the null
fails and GT converges to something different from 0, then JT is not properly
centered and will diverge as T → ∞.

Table 5 presents the robust GMM γ estimates and the boostrapped P values.

Table 5. Robust GMM estimation of relative risk aversion (RRA) γ and P value of overidentifying
tests. Numbers in parentheses are bootstrapped standard errors.

Model RRA (γ) P value

RA
2.62
(1.68)

0.00

MU
1.22
(0.63)

0.00

PIPO
1.88
(0.88)

0.00

IMRS
0.04
(0.10)

0.00

We see that with the robust method, the RA, MU, and PIPO γs are all
between 1 and 3, well within the moment existence range. The IMRS estimate,
as before, is around 0. This is because unlike with the consumption level,
the double power law in consumption growth holds also within age groups, so
splitting households into age cohorts does not mitigate the fat tail issue for the
IMRS SDF. The standard errors for the former three SDFs are, respectively,
1.68, 0.63, and 0.88, meaning the risk aversion estimates of these models are
statistically close. Moreoever, the overidentifying tests reject all of the models
at the 1% significance level.

This result corroborates the rejection of RA andMU by Kocherlakota and Pistaferri
(2009). Recall, though, that their exercise employs data from the U.K. and Italy
and not from different age cohorts within the U.S. Our estimation and rejection
of the IMRS SDF is a new but unsurprising result, given the performance of MU,
which comes from the same model. With respect to PIPO, the model rejection
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and low γ estimate are further evidence that the power law was a factor in the
earlier success of PIPO. This is because, to reiterate, the approximate within-
cohort lognormality means the robust GMM procedure dampens the impact
of nonexistent moments. One more piece of evidence is Figure 11, which is a
histogram of the average pricing error, (1′GT (γ̂)) /5, across bootstrap samples.
As when we drop outliers (compare to Figure 9), there is no spike at 0.
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Figure 11. Histogram of bootstrapped PIPO pricing errors with robust GMM estimation.

5 Estimation with simulated data

So far, by both dropping outliers and bootstrapping the actual data, we have
provided support for our conjecture that the power law interferes with model se-
lection and the estimation of parameters. In this section we present more direct
evidence of this interference. Specifically, we construct an artificial economy in
which the consumption distribution obeys the double power law with a known
exponent and then perform some of the above exercises using simulated data.

5.1 Simulating a GEI economy

To simulate a sufficiently rich example of a general equilibrium model with in-
complete markets (GEI) described in Section 3.2, we need a stock market (to
study the equity premium) and idiosyncratic shocks (to have a nondegenerate
wealth distribution), so at least two technologies are necessary. Let technolo-
gies 1 and 2 be the “stock market” and “private equity”, with productivities
(A1, A2

i ) = (As, aiAp). Assume that all shocks are lognormally distributed, with
joint distribution



logAs

logAp

log ai


 ∼ N






µs

µp

−σ2
i /2


 ,




σ2
s ρσsσp 0

ρσsσp σ2
p 0

0 0 σ2
i




 .

(E[log ai] = −σ2
i /2 ensures that E[ai] = 1.)

To numerically solve the optimal portfolio problem (3.3a), we write the joint
distribution of the log returns of the two technologies as

[
logAs

log(aiAp)

]
∼ N

([
µs

µp − σ2
i /2

]
,

[
σ2
s ρσsσp

ρσsσp σ2
p + σ2

i

])
=: N (µ,Σ).

28



We discretize this distribution as follows. First we find a matrix C such that
Σ = CC′, say using the Cholesky decomposition. Second, we approximate a
standard normal variable using the technique described in Tanaka and Toda
(2013) with K = 81 equally spaced grid points on the interval [−4, 4], denoted

by {xk}Kk=1, and obtain the probabilities {pk}. Finally, we assign the probability
qkl = pkpl to the point (yk, yl) = µ+C(xk, xl) ∈ R

2. This way, the multinomial
distribution on the points {(yk, yl)}1≤k,l≤K with probability {qkl} approximates
N (µ,Σ). Then we numerically solve the optimal portfolio problem (3.3a) and
compute the optimal consumption rule (3.3b) and gross risk-free rate (3.3c).

We simulate an economy with N agents and T time periods as follows. First,
to create the panel of ages, we generate N × T Bernoulli variables with death
probability 0 < δ < 1. The initial wealth of each household at time 0 is wi0 = 1.
We assume that a newborn household inherits the cross-sectional average wealth
times a lognormal perturbation wini, where logwini ∼ N (−σ2

0/2, σ
2
0), i.i.d. across

agents and time. Second, we generate T aggregate shocks {(As,t+1, Ap,t+1)}T−1
t=0

and N ×T idiosyncratic shocks {(ai,t+1)i∈I}T−1
t=0 and compute the consumption

path of each household, denoted by {cit}. Finally, we multiply cit by the “mea-
surement error” eǫ, where ǫ ∼ N (−σ2

ǫ /2, σ
2
ǫ ), again i.i.d. across agents and time.

In this way we obtain a sequence of stock market returns {As,t+1}T−1
t=0 and an

N × T panel of observed consumption and age.
Because the initial wealth and the measurement error are both lognormal,

by Theorem A.1 the cross-sectional consumption distribution for large enough
time periods becomes approximately double Pareto-lognormal. One may cal-
culate the power law exponent α either theoretically using (3.5) or numerically
by fitting the normal-Laplace distribution to the log observed consumption dis-
tribution by maximum likelihood. (In our simulation they are almost the same
number, as they should be.) We find that the economy typically converges to a
stochastic steady state after 4/δ periods (4 times the average age of households).
In practice, we generate a much longer sample (say 5/δ) than T and use only
the last T .

5.2 Calibration and estimation

We simulate a GEI economy at the quarterly frequency. We set the one pe-
riod discount factor β = 0.99 (0.96 annually), relative risk aversion γ = 4,
death probability δ = (1/75)/4 (an average lifespan of 75 years), expected stock
market and private equity returns µs = µp = 0.07/4 (7% annually), volatil-
ities (σs, σp, σi) = (0.15, 0.1, 0.15)/

√
4, correlation between the stock market

and private equity ρ = 0.5, and standard deviation of initial log wealth and
measurement error (σ0, σǫ) = (0.5, 0.25). Some households live for much longer
than 75 years, which is clearly unrealistic if we interpret lifespan literally as the
age of a household member. However, we interpret households as dynasties,
and we allow the possibility of very long lived households in order to generate
the cross-sectional power law.19 We simulate the economy 200 times, each run
consisting of 300 quarters and 4000 households at any given time (when one
dies, it is immediately replaced by a new one).

19Note, by (3.5), that the power law exponent α is proportional to
√
δ, so a longer average

lifespan 1/δ yields a lower power law exponent.
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With these parameters the implied quarterly equity premium is 1.47% (5.86%
annually), the risk-free rate computed by (3.3c) is 1.14% annually, and the power
law exponent computed by (3.5) is 3.24 for consumption. In this case, we know
that there is a power law in consumption, and we know that if not for this rea-
son, the MU SDF would give us consistent estimates of γ, using simulated data.
The question then is, how does MU behave in the presence of the power law?
Since the power law exponent is close to but below the true RRA coefficient
(γ = 4), we expect that the MU SDF will perform poorly.

We uncover three interesting observations. First, the PIPO and MU SDFs
are identical in the context of this model for the following reason. Under the
model of Section 3.2, the cross-sectional consumption distribution at time t is
dPlN with parameter (µt, σt, αt, βt), where σt = σ =

√
σ2
0 + σ2

ǫ is time inde-
pendent and αt = βt. Now suppose that X is dPlN with parameter (µ, σ, α, β).
Then the ηth moment of X is

E[Xη] =
αβ

(α− η)(β + η)
eµη+

1
2
σ2η2

.

(To derive this, use the fact that dPlN is the product of the lognormal and
the double Pareto distributions, compute the moments for each, and take the
product.) Hence if ct is dPlN with parameter (µt, σt, αt, βt) and αt = βt, then
after some algebra we obtain

mPIPO
t+1

mMU
t+1

=
E[cγt ] E[c

−γ
t ]

E[cγt+1] E[c
−γ
t+1]

= e−γ2(σ2
t+1−σ2

t ),

so the ratio of PIPO and MU SDFs depends only on the difference of σ2 and
not on other parameters. But for our model we know that σt = σ is time
independent, so PIPO and MU SDFs are identical. This might explain why
the MU and PIPO estimation results in Table 4 without outliers and in Table
5 are similar. We conjecture that, in general, the PIPO and MU SDFs will
behave similarly when higher moments of the consumption distribution do not
vary much over time, even when the mean fluctuates.

Second, across simulations there is an inverse relationship between the γ
estimate and the pricing error. As with the boostrap PIPO exercise, when the
MU model is able to almost exactly zero the pricing error, the γ estimate is often
well above the start of the nonexistence range, > 3.24 (Figure 12(a)). However,
splitting households into age groups20 and performing the robust GMM, we no
longer see this pattern: the large γ estimates corresponding to the zero pricing
error in Figure 12(a) has disappeared in the robust GMM of Figure 12(b).

Third, in some runs (54 out of 200 simulations), the GMM criterion has
multiple troughs, one near the true γ and one in the moment nonexistence
range. Indeed, for these 54 second troughs, the 10th and 90th percentiles are
at γ equal to, respectively, 6.70 and 19.42. It seems nonexistent moments may
introduce spurious troughs, and in some instances, only the spurious one is
close to zero. This occurs in 12 out of 200 simulations. Figure 13 illustrates this
scenario. If sample versions of nonexistence moments do indeed cause GMM
to behave this way, they have the ability to cause researchers to fail to reject
incorrect models.

20The age group cutoffs are at the 20th, 40th, 60th, and 80th percentiles, pooling all simu-
lated age observations.
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(a) Standard GMM
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(b) Robust GMM

Figure 12. Scatter plot of simulated MU RRA estimates and pricing errors.

In contrast, the robust GMM criterion has multiple troughs in just 2 out of
200 simulations, and in neither case is the spurious one closer to zero.
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Figure 13. MU GMM criterion from simulation 9.

6 Discussion and Conclusion

In her recent consumption-based asset pricing survey (Ludvigson, 2012), Sydney
Ludvigson writes,

It is difficult to draw general conclusions from the results [of the em-
pirical heterogeneous consumer asset pricing literature]. The mixed
results seem to depend sensitively on a number of factors, including
the sample, the empirical design, on the method for handling and
modeling measurement error, the form of cross-sectional aggregation
of Euler equations across heterogeneous agents, and the implementa-
tion, if any, of linear approximation of the pricing kernel. A tedious
but productive task for future work will be to carefully control for
all of these factors in a single empirical study, so that researchers
may better assess whether the household consumption heterogeneity
we can measure in the data has the characteristics needed to explain
asset return data.
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In addition to establishing the excellent fit of the double Pareto-lognormal dis-
tribution to cross-sectional U.S. consumption and consumption growth data, we
have addressed some of the issues presented in this quotation. Holding the esti-
mation sample constant and accounting for the fat tails, we find that Consumer
Expenditure Survey data do not seem to support any of the heterogeneous agent
general equilibrium models we consider. Our bootstrap and simulation evidence
show that it is at least plausible that the mixed results of this literature stem
from the erratic behavior of sample analogs of nonexistent moments. However,
even if all consumption moments exist, it is clear that tail observations impact
these exercises. Thus, given the Consumer Expenditure Survey’s measurement
error and limited cross-sectional sample size, we question its usefulness in ex-
plaining asset prices.

The common elements in this literature are identical constant relative risk
aversion utility, interior solutions (Euler equations), and use of the Consumer
Expenditure Survey. Consequently, both authors of this paper are in the process
of using different data sources to test the asset pricing implications of models
with non-identical or non-constant relative risk aversion utility, with binding fi-
nancial constraints, or with both. For example, Toda (2012b) builds a dynamic
general equilibrium model with many agents that have heterogeneous prefer-
ences (except a common relative risk aversion coefficient γ) with very general
recursive structures, proves that the −γth power of the market return is a valid
stochastic discount factor, tests the asset pricing implications bypassing con-
sumption data altogether, and fails to reject the model with γ ≈ 3.

A Laplace and normal-Laplace distributions

Definitions A Laplace random variable is the logarithm of a double Pareto
variable. By changing variables in (3.1) and setting m = logM , the density of
the Laplace distribution is given by

fL(x) =

{
αβ
α+β e

−α|x−m|, (x ≥ m)
αβ
α+β e

−β|x−m|, (x < m)
(A.1)

where m is the mode and α, β > 0 are scale parameters. A Laplace distribution
is said to be asymmetric if α 6= β. A comprehensive review of the Laplace
distribution can be found in Kotz et al. (2001).

The logarithm of a double Pareto-lognormal variable is said to be normal-

Laplace (Reed and Jorgensen, 2004; Reed and Wu, 2008), which is simply the
convolution of independent normal and Laplace random variables. The normal-
Laplace distribution has four parameters, a location parameter µ and three scale
parameters σ, α, β > 0, with probability density function

fNL(x)

=
αβ

α+ β

[
e

α2σ2

2
−α(x−µ)Φ

(
x−µ
σ − ασ

)
+ e

β2σ2

2
+β(x−µ)Φ

(
−x−µ

σ − βσ
)]

(A.2)
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and cumulative distribution function

FNL(x) = Φ

(
x− µ

σ

)
− 1

α+ β

[
βe

α2σ2

2
−α(x−µ)Φ

(
x−µ
σ − ασ

)

−αe
β2σ2

2
+β(x−µ)Φ

(
−x−µ

σ − βσ
)]
. (A.3)

Again the Laplace and the normal distributions are special cases of the normal-
Laplace distribution by letting σ → 0 and α = β → ∞, respectively, and
therefore can be tested against the normal-Laplace distribution by the likelihood
ratio test.

Characteristic function Using (A.1), the characteristic function of a Laplace
random variable X is

φX(t) =

∫ m

−∞

eitx
αβ

α+ β
e−β|x−m|dx+

∫ ∞

m

eitx
αβ

α+ β
e−α|x−m|dx

=
eimt

1− i( 1
α − 1

β )t+
t2

αβ

, (A.4)

from which we obtain the mean m+ 1
α − 1

β and the variance 1
α2 +

1
β2 . It is often

useful to parameterize the Laplace distribution in terms of its characteristic

function. Letting a = 1
α − 1

β be an asymmetry parameter and σ =
√

2
αβ be a

scale parameter in (A.4), we write X ∼ AL(m, a, σ) if

φX(t) =
eimt

1− iat+ σ2t2

2

. (A.5)

The mean, mode, and variance of AL(m, a, σ) are m + a, m, and a2 + σ2,
respectively. Comparing (A.4) and (A.5), we obtain 1/α− 1/β = a and αβ =
2/σ2, so −α and β are the solutions to the quadratic equation

σ2

2
ζ2 − aζ − 1 = 0. (A.6)

Limit theorem Perhaps the most important property of the Laplace distri-
bution is that it is the only limit distribution of geometric sums. Theorem A.1
below shows that it is a robust property that the limit of a geometric sum is a
Laplace distribution.

Theorem A.1 (Toda (2012c)). Let {Xn}∞n=1 be a sequence of zero mean ran-

dom variables such that the central limit theorem holds, N−1/2
∑N

n=1 Xn
d−→

N (0, σ2); {an}∞n=1 be a sequence such that N−1
∑N

n=1 an → a; and νp be a ge-

ometric random variable with mean 1/p independent from {Xn}∞n=1. Then as

p → 0 we have

p
1
2

νp∑

n=1

(Xn + p
1
2 an)

d−→ AL(0, a, σ).
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B Generative model of double power law

This appendix, which draws heavily from Toda (2012c), describes a generative
model of the double power law and explains its robustness.

Consider an economy consisting of many “units” (households, firms, cities,
etc.). Let Sit be the “size” (income, wealth, consumption, revenue, population,
etc.) of unit i at time t. Let us characterize the cross-sectional size distribution
when units grow multiplicatively.

Equation of motion Suppose that the size grows multiplicatively (Gibrat
(1931)’s law of proportionate effect) according to

Si,t+∆t = Gi,t+∆tSit, (B.1)

where ∆t is the time step and Gi,t+∆t is the gross growth rate of unit i between
time t and t+∆t. Iterating (B.1), the log size of unit i is given by

logSit = logSi0 +

Nit∑

n=1

logGi,t+∆t−n∆t, (B.2)

where Si0 is the initial size and Nit is the number of time periods unit i has
been alive up to time t.

Distributional assumptions Assume that Git decomposes into the aggre-
gate and the purely idiosyncratic components such that Git = gitGt. Since we
are interested in the limiting case in which the time step ∆t is small, define the
“per unit of time” shocks by Xat = logGt/∆t and Xit = log git/

√
∆t. By con-

struction the idiosyncratic shock Xit has zero mean conditional on the history
of (the σ-algebra generated by) aggregate shocks Ft := σ({Xas}s≤t).

21 Then
we obtain

logGit = Xat∆t+Xit

√
∆t. (B.3)

Let us further assume that the idiosyncratic component {Xit} is independent
over time and that the central limit theorem holds.

If units are infinitely lived, by (B.2) with Nit = t/∆t, (B.3), and the
Lindeberg-Feller central limit theorem, letting ∆t → 0 the cross-sectional size
distribution (relative to initial size) becomes approximately lognormal.

Things dramatically change when units die. The simplest way to model
death is to assume that units die at a constant Poisson rate δ > 0. Think
of “death” as breaking up of households, financially disastrous events, and so
on. For now assume that all units start from (a common) initial size S0 and
when a unit dies, it is reborn with the same initial size S0. (We will relax this
assumption later.) Hence, the population is constant overtime.

Emergence of double Pareto distribution Letting p = δ∆t, the number of
time periods unit i has been alive isNit = min {νp, t/∆t}, where νp is distributed

21One can think of Xat as the “drift” and E[X2
it| {Xas}s≤t] as the “volatility”.
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as a geometric random variable with mean 1/p. By (B.2) and (B.3), the log size
of unit i at time t is given by

logSit = logS0 + p
1
2

Nit∑

n=1

(
Xi,t+∆t−n∆t/

√
δ + p

1
2Xa,t+∆t−n∆t/δ

)
. (B.4)

The following theorem shows that for large t the cross-sectional size distri-
bution is approximately double Pareto with mode equal to the initial size.

Theorem B.1. Let everything be as above, where {Xat} and {Xit} are the

stochastic processes defined on a probability space (Ω,F , P ) describing the ag-

gregate and idiosyncratic components as in (B.3) and Ft = σ({Xas}s≤t) is

the σ-algebra generated by the aggregate shock. Assume that for the realization

ω ∈ Ω the time averages of the “drift” and “volatility” have limits:

µS(ω) := lim
t→∞

1

t

∫ t

0

Xas(ω)ds,

σ2
S(ω) := lim

t→∞

1

t

∫ t

0

E[X2
is|Fs](ω)ds.

Then for ω ∈ Ω the cross-sectional distribution of {Sit}i∈I converges in distri-

bution to the double Pareto distribution with mode S0 and power law exponents

α, β as t → ∞ and ∆t → 0, where −α and β are solutions to the quadratic

equation
σ2
S(ω)

2
ζ2 − µS(ω)ζ − δ = 0. (B.5)

Proof. See Toda (2012c).

Robustness of the double power law So far we have assumed that units
are ex ante identical, i.e., they have the same initial size and obey the same
stochastic process. However, the double power law holds under weaker assump-
tions.

First, instead of assuming a common initial size Si0 = S0, assume that Si0

is random (i.i.d. across units). Since the double power law implies that the
cross-sectional log size distribution has exponential tails (which follows from
the argument relating the double Pareto distribution (3.1) and the Laplace
distribution (A.1)), the double power law still holds as long as the distribution
of the initial log size has tails thinner than exponential.

Second, instead of assuming a constant initial size S0, suppose that initial
log size of a unit born at time t is the cross-sectional average of log size at time t.
(Think about inheriting financial and human capital wealth when born.) Then
(B.4) becomes

logSit = logS0 +∆t

t/∆t∑

n=1

Xa,t+∆t−n∆t + p
1
2

Nit∑

n=1

Xi,t+∆t−n∆t/
√
δ. (B.6)

We can still apply Theorem A.1 to the third term in (B.6), use (B.5), and see
that the log size distribution is approximately (symmetric) Laplace, with power
law exponent

α = β =

√
2δ

σS(ω)
. (B.7)
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The first and second terms of (B.6) simply determine the common mode.
Finally, suppose that there are finitely many types of units denoted by h ∈

H = {1, . . . , H}, each obeying a stochastic process for the growth rate Gh
i,t+∆t.

Then the double power law holds for each type, with corresponding power law
exponents (αh, βh)h∈H . Letting α = minh αh and β = minh βh, the double
power law with exponents α, β holds in the entire economy because the tail of
the entire population is determined by the fattest tail among all subpopulations.

C Implementing goodness-of-fit tests

This Appendix explains how to implement the Kolmogorov-Smirnov test and
the Anderson-Darling test by parametric bootstrap. Let x = (x1, . . . , xN ) be

the data and FN (x) = 1
N

∑N
n=1 1 {x ≤ xn} be the empirical distribution func-

tion. Given a parametric model {f(x; θ)}θ∈Θ, the first step is to estimate θ by

maximum likelihood. Let θ̂ be the maximum likelihood estimate, and compute
the Kolmogorov-Smirnov and Anderson-Darling statistics defined by

KSdata = sup
x

∣∣∣FN (x) − F (x; θ̂)
∣∣∣ ,

ADdata = −N −
N∑

n=1

2n− 1

N

[
logF (xn; θ̂) + log(1− F (xN+1−n; θ̂))

]
,

where for the Anderson-Darling statistic the data must be sorted in ascending

order: x1 ≤ x2 ≤ · · · ≤ xN . Second, we generate B bootstrap samples
{
xb
}B

b=1

(each of size N) drawn from F (x; θ̂), and for each bootstrap sample xb we

compute the maximum likelihood estimate θ̂b. Again compute the Kolmogorov-
Smirnov and Anderson-Darling statistics defined by

KSb = sup
x

∣∣∣F b
N (x) − F (x; θ̂b)

∣∣∣ ,

ADb = −N −
N∑

n=1

2n− 1

N

[
logF (xb

n; θ̂
b) + log(1− F (xb

N+1−n; θ̂
b))

]
,

where F b
N (x) is the empirical distribution function of the synthetic data xb. Fi-

nally, compute the P value by p = 1
B

∑B
b=1 1{KSb > KSdata

}
for the Kolmogorov-

Smirnov test and similarly for the Anderson-Darling test.
In order to implement the goodness-of-fit tests for the normal-Laplace distri-

bution, we need to generate random numbers. Since the normal-Laplace distri-
bution is the convolution of the normal and the Laplace distributions, it suffices
to generate Laplace random numbers. Letting U, V be independent uniform
random variables on [0, 1],

X = − 1

α
logU +

1

β
logV

has a Laplace distribution with mode 0 and exponents α, β. To see this, note
that

E[exp(itλ logU)] = E[U itλ] =

∫ 1

0

uiλtdu =
1

1 + iλt
,
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so setting λ = −1/α, 1/β, the characteristic function of X is

φX(t) = E[exp(itX)] =
1

1− it/α

1

1 + it/β
=

1

1− i( 1
α − 1

β )t+
t2

αβ

,

which is the characteristic function of the Laplace distribution with mode 0 and
exponents α, β given by (A.4).22

Because the maximum likelihood estimator of the parameters of the normal-
Laplace distribution has no closed-form, implementing goodness-of-fit tests for
the normal-Laplace distribution requires numerically maximizing the likelihood
function for many times, which is time consuming.

D Testing moment existence

This Appendix explains how to test the existence of moments directly follow-
ing Fedotenkov (2011). Suppose that the random variable X is nonnegative
(consider |X | if X can be negative) and {Xn}∞n=1 are i.i.d. copies of X . If

E[Xη] = ∞, then the sample moment 1
N

∑N
n=1 X

η
n tends to infinity as N → ∞.

Therefore if we take a number M(N) such that M → ∞ and M/N → 0 as
N → ∞, and {Ym}∞m=1 are independent and have the same distribution as X ,
then for 0 < ξ < 1 the quantity

F = 1{ 1

M

M∑

m=1

Y η
m ≥ ξ

1

N

N∑

n=1

Xη
n

}

tends to zero almost surely as N → ∞, where 1 {·} denotes the indicator func-

tion. This is because both ξ 1
N

∑N
n=1 X

η
n and 1

M

∑M
m=1 Y

η
m tend to infinity, but

the former does so at a faster rate. On the other hand, if E[Xη] is finite, then
by the law of large numbers F tends to 1 almost surely because both sample
means converge to the same population mean, but since 0 < ξ < 1 as N tends
to infinity ξ 1

N

∑N
n=1 X

η
n is almost surely smaller than 1

M

∑M
m=1 Y

η
m.

Given this result Fedotenkov (2011) constructs a bootstrap test of moment
existence as follows. Let x = (x1, . . . , xN ) be the data. First, we choose the
bootstrap sample size M(N), the parameter ξ, and bootstrap repetition B (Fe-
dotenkov suggests taking M(N) = ⌊logN⌋, ξ = 0.999, and B = 10, 000). Sec-
ond, for each b = 1, . . . , B, we generate a bootstrap sample xb of size M drawn
randomly with replacement from the data, and compute

F b = 1{ 1

M

M∑

m=1

(xb
m)η ≥ ξ

1

N

N∑

n=1

xη
n

}
.

Finally, the P value is defined by p = 1
B

∑B
b=1 F

b.

22There is another way of generating Laplace random numbers: if Y,Z are independent
exponential random variables with mean 1/α, 1/β, respectively, then X = m + Y − Z is
Laplace with mode m and exponents α, β.
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Dirk Krueger, Hanno Lustig, and Fabrizio Perri. Evaluating asset pricing
models with limited commitment using household consumption data. Jour-

nal of the European Economic Association, 6(2-3):715–726, April-May 2008.
doi:10.1162/JEEA.2008.6.2-3.715.

Per Krusell and Anthony A. Smith, Jr. Income and wealth heterogeneity, port-
folio choice, and equilibrium asset returns. Macroeconomic Dynamics, 1(2):
387–422, June 1997. doi:10.1017/S1365100597003052.

Per Krusell and Anthony A. Smith, Jr. Income and wealth heterogeneity in the
macroeconomy. Journal of Political Economy, 106(5):867–896, October 1998.
doi:10.1086/250034.

Robert E. Lucas, Jr. Asset prices in an exchange economy. Econometrica, 46
(6):1429–1445, November 1978.

Sydney C. Ludvigson. Advances in consumption-based asset pricing: Empirical
tests. In George M. Constantinides, Milton Harris, and René M. Stultz, edi-
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Benôıt Mandelbrot. The Pareto-Lévy law and the distribution of income. In-

ternational Economic Review, 1(2):79–106, May 1960.
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