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Abstract

Using a non-scale R&D-based growth model, an intertemporal bounty regime is

shown to be a Pareto-optimal alternative to the patent regime. Under this alternative,

any innovative capital good is freely licensed and the innovator is rewarded with a per-

petual bounty claim to an infinite stream of future bounties, payable on the marginal-

cost sales of the bountiable capital good at a rate determined by the government. With

bounties paid by lump-sum taxes, an active asset market for bounty claims determines

the equilibrium asset price and delivers a signal to R&D. Calibrating the model to the

US, this paper solves numerically a four-dimensional nonlinear dynamic system with

two state variables (capital & knowledge stocks). The Pareto optimal bounty rate is

computed and the regime switch from patents to bounties generates a welfare gain

equivalent to an increase of about 10 to 20 percent in per capita consumption after

taking transitional dynamics into account.
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1 Introduction

Profit-oriented R&D (research & development) is a critical driver of technological innova-
tion and long-run economic growth. Innovative technologies are often non-rival and have
public goods features. Without a systemic arrangement to prevent free riding on innovative
effort, private agents would not engage in R&D.1 Patents are designed to promote innova-
tion by creating transient monopoly power for the innovator to profit under the markup pric-
ing of patented goods. A patent system must seek to balance short-run static (monopoly)
distortion against long-run dynamic innovation (Nordhaus 1969).

Optimizing the patent system has been a focus in the long literature on the economics
of patents. Many studies seek to improve efficiency by fine-tuning a patent’s length, or
scope, or both; see, for instance, Judd (1985), Gilbert Shapino (1990), Klemperer (1990),
Matutes et al. (1996), and O’Donoghue and Zweimüller (2004).2 Increasing the length of
patents extends the duration of monopoly power over patented goods, whereas broadening
the scope of patents raises the degree of the monopoly power. True, how to fix a patent’s
length and scope is an important policy question. But patents designed to function by
introducing monopolies are doomed to be suboptimal, no matter how one fine-tunes the
length and scope. In addition to the well-known static deadweight losses, the patent system
provides insufficient incentives for innovative effort. This is because patented firms merely
reap a fraction of the entire social surplus that would otherwise result under marginal cost
pricing.3

Nevertheless, the patent system is inflexible in practice to cope with externalities such
as the knowledge spillovers or research congestion. This involves statutory changes in the
length or scope of patents. Even if these statutory changes can be made precisely to adjust
innovating incentives to internalize these externalities, the resulting monopoly distortion
may get worse, albeit not always. For instance, to achieve the goal of better exploiting a
knowledge spillovers externality, it is desirable to raise innovative incentives by extending
the patent length. Yet, this dynamic efficiency gain must go against a static efficiency loss

1Seminal papers on R&D-based endogenous growth models all presume a patent system issuing infinitely
lived patents to incentivize innovative activities; see Romer (1990), Segerstrom et al. (1990), Grossman and
Helpman (1991), and Aghion and Howitt (1992).

2A patent is typically in three dimensions: length, breadth, and height. A patent’s scope refers to breadth
and height. The breadth (or “ lagging breadth”) defines the range of a patent’s claims against imitation,
whereas the height (or “leading breadth”) confers protection against future improvements too close to the
patented good; see van Dijk (1992) and O’Donoghue et al (1998).

3See Kremer (1998) and Grinols and Lin (2011) for discussion of problems with patents.



from the longer duration of monopolies. Optimizing the “length-scope” mix does not lead
to Pareto efficiency whatsoever.

In this paper, I analyze the intertemporal bounty (IB) system as an alternative to the
patent system that prevails in a dynamic macroeconomy. The IB system, proposed by
Grinols and Henderson (2007), was recently examined by Grinols and Lin (2011) using
a Pharmaceutical sectoral equilibrium model. The present paper instead precisely formu-
lates an IB system in a macro-dynamic general equilibrium context. In this context, the IB
system requires three core institutional arrangements: (i) any bountiable technical innova-
tion (design) must be freely licensed so as to force markets to be perfectively competitive
(marginal cost pricing); (ii) For any bountiable innovation, the innovator is rewarded with
a perpetual bounty claim to an infinite stream of future bounties, payable on the marginal-
cost sales of the bountiable capital good at a rate determined by the government; and (iii)
the dynamic bounty flow are paid by lump-sum taxes.4 Under the IB system, bounty claims
are valuable and tradeable. The price of bounty claims reflects the discounted present value
of the ongoing bounty flow. If the price is above (below) the cost of innovating a new good,
more (less) resources flow to R&D. In equilibrium, they both are equalized. The asset
market for bounty claims therefore delivers a signal to R&D.

The IB system is actually an implementation of the idea of the “Hotelling proposal”
discussed more than seven decades ago (Hotelling 1939):5

“... in a specified sense maximum welfare requires that the quantity of each
good consumed or produced by an individual shall be that corresponding to all
sales being at marginal cost. This proposition has revolutionary implications,
for example in electric-power and railway economics, in showing that society
would do well to cut rates drastically and replace the revenue thus lost by
subsidies derived largely from income and inheritance taxes and the site value
of land.”

From the Hotelling proposal, non-convex firms (e.g., electric-power or railway businesses),
4The innovator does not have to keep the bounty claim forever, for there is an active market for bounty

claims. Whoever holds the bounty claim receives the bounty over time (annually), and wherever competitive
producers are, they adopts the same freely-licensed design to contribute to the overall market sales of the
bountiable good.

5To the best of my knowledge, the present paper is the first to formulate a decentralized market mech-
anism to implement the Hotelling proposal using a dynamic macroeconomic growth model. Pioneered by
Guesnerie (1975), there has been an active “marginal cost pricing equilibrium” literature on Hotelling’s pro-
posal examined in the static Arrow-Debreu microeconomic framework. See Quinzii (1992) for a survey of
this literature.
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which operate under increasing returns, should be regulated to charge marginal-cost rates
while society should pay taxes to fully subsidize these firms’ fixed costs, in order to max-
imize social welfare. Similarly but not equally, the IB system is designed to force the
otherwise non-convex firms to transform into constant-return convex firms by making inno-
vative technologies freely available in the public domain, while collecting lump-sum taxes
to pay bounties in support of an active bounty-claim market whereby to direct resources
into R&D activities. The IB system can thus remove monopoly distortions while keeping
technological innovation viable over time.6 This is evidenced in the paper by simulating
a R&D-based growth model calibrated to advanced economies such as the United States.
Besides, the government can adjust the bounty rate to internalize the externalities such as
knowledge spillovers or research congestion. In so doing, a decentralized market mech-
anism can duplicate the model’s social planner optimum in the long run. That is, an IB
system with the right bounty rate can be Pareto optimal in the long run, whereas the patent
system is always suboptimal.

For the analysis, a patent system with a finite patent length is firstly embedded in a non-
scale endogenous growth model with population growing exogenously at a constant rate
and private agents devoting foregone consumption to R&D and physical capital accumula-
tion.7 Patents incentivize R&D to innovate new varieties of patentable capital (or durable)
goods. Initially, the modeled economy is in the steady state along a balanced-growth path,
where the stock of “knowledge” – the variety of capital goods – keeps growing at a con-
stant innovation rate. At a point in time, the patent regime is switched to an IB alternative
according to the aforementioned institutional arrangements. The regime switch forces the
economy to transition over time to a bounty-regime balanced growth path. The dynamics in
transition is governed by a nonlinear system of four first-order ordinary differential equa-
tions (ODE) in two state variables (capital stock, knowledge stock) and two control-like
variables (consumption, bounty-claim price). This presents a nonlinear boundary value
problem (BVP) and is solved numerically with a Python package that wraps a Fortran
BVP_Solver.

Under a set of plausible benchmark parameters, the computed transition paths indicate

6The paper presumes that lump-sum taxes are available. If such taxes are unavailable, the IB system must
turn to taxes on factor incomes and may create a distortion.

7The model of the paper is a modification of Romer (1990) in three dimensions. First, patents are finitely
lived. Second, as in Rivera-Batiz and (1991), research input is from forgone consumption rather than from la-
bor (human capital). Third, as in Jones (1995), the R&D (innovation) function displays diminishing marginal
returns to the research input, thereby removing the empirically implausible scale effects.
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that switching to the Pareto optimal IB regime enables the calibrated U.S. economy to
transition to one much more intensive in both capital and knowledge than under the initial
patent regime (20 years patent length). For instance, on the bounty-regime balanced growth
path, the stock of knowledge is seventeen times as much as on the initial patent-regime bal-
anced growth path, the stock of capital is three times as much, and per capita consumption
is two times as much. Although households experience temporary consumption sacrifices
to accommodate faster capital and knowledge accumulation in transition, the entire cumu-
lative consumption gain after taking into account the short-run losses remains about 10
to 20 percent more than under the patent regime. The market mechanism responsible for
these results and the robustness checks are analyzed in the paper. The central message
is that an intertemporal bounty regime can be a Pareto-optimal alternative to the world’s
long-standing patent system.

Relating to the patent reform literature, the intertemporal bounty represents a tax-
financed public reward system designed to sustain both technological innovation and per-
fectly competitive provision of innovative goods. Detailed discussions of other reward
designs can be seen in Kremer (1998), Hopenhayn el al (2006), and Grinols and Hender-
son (2007). Of the alternative reward designs, the “patent buyout” system is close to the
intertemporal bounty and can date back to Polanvyi (1944). The basic idea of this system
is for the government to purchase patents at a price to reward the innovator once and for
all, while placing these purchased patents in the public domain. In practice, the price of
patents is difficult to estimate, though Kremer proposes an auction mechanism to determine
the patent buyout price. Under the IB system, however, the government has no need to buy
out bounty claims and is flexible to adjust the bounty rate to determine the bounty flow
payable on the ex post market sales of bountiable goods under marginal cost pricing.

The rest of the paper is organized as follows. Section 2 lays out a patent-regime R&D-
based growth model featuring multiple distortions from patents, knowledge spillovers, and
research congestion. Section 3 evaluates the patent regime against the model’s social plan-
ner optimum. Section 4 introduces an intertemporal bounty regime, its dynamic system,
and the Pareto-optimal bounty rate. Section 5 calibrates the model to the initial patent-
regime steady state that largely mimics an innovating economy like the United States and
solves the nonlinear boundary value problem for a four-dimensional ODE system. Transi-
tion paths, welfare gains, and the robustness checks are computed and analyzed. Section 6
concludes.
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2 The Model for Patent Regime

In this paper I formulated a patent regime for a closed economy using a Romer-style
variety-expansion model of endogenous growth. This economy is endowed with labor
L that grows exogenously. Labor and physical capital are employed to produce final output
Y , which can be used for consumption or for investment in either durable (capital) goods
X or R&D (research and development). Investing in durable goods X contributes to the ac-
cumulation of physical capital K, while investing in R&D is to innovate technical designs
for new types of durable goods. Technical designs are indexed by i in a closed interval
[0,V ] ⊂ R+. For each design, the innovator receives a patent for a finite term denoted by
T ∈ (0, ∞). Patents are tradable and perfectly enforced. Within the finite patent term, every
patented firm has the exclusive power to produce and sell a specific type of durable good
X [i]. Yet, once a patent expires, the granted monopoly power vanishes and the out-of-patent
firm reduces to a perfectly competitive firm immediately. All durables are horizontally dif-
ferentiated. Variable V represents not only the number of patents that have been issued, but
also a measure of the variety of available durable goods. Like K measuring the stock of
capital, V is a proxy of the knowledge stock in the model. The growth of V allows for a finer
division of capital and leads to an increase in the level of TFP (total factor productivity) for
the economy.

The model described below is for an economy that implements a patent system. It has
four sectors referred to as household, final good, durable (capital) good, and R&D.

2.1 Household

There is a continuum of identical households with measure of one in the economy. Each
household has L identical workers, which also represent the economy’s population of labor.
The population of labor is normalized to one at time t = 0 and is assumed to grow at an
exogenous rate, n. So, the size of a typical household at time t is given by L[t] = ent . Define
C[t] as the rate of the economy’s aggregate consumption of final goods and c[t] ≡ C[t]

L[t] as
the rate of per capita (or per worker) consumption at a point in time. For each household,
its family lifetime utility U [t] at time t is given by

U [t] =

∞̂

t

(
c[s− t]1−γ −1

1− γ

)
e−(ρ−n)(s−t)ds, ρ > 0, γ > 0 (1)
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where ρ and γ are two preference parameters with ρ measuring the rate of time preference
and 1

γ
the elasticity of intertemporal substitution. All labor services are used for final goods

production. Each household owns assets including physical capital and patents. Its per
capita asset stock is a[t] at a point in time and earns the net capital income of r[t]a[t] at the
market rate of interest. From each household, every worker earns wage income w[t] at a
point in time from a perfectly competitive labor market. Hence, a typical household’s flow
budget constraint is given by

ȧ[t]≡ da[t]
dt

= (r[t]−n)a[t]+w[t]− c[t] (2)

Households take as given all market prices such as w[t] and r[t]. From a household’s
intertemporal optimization, the familiar Euler condition is

ĉ[t]≡ ċ[t]
c[t]

=
r[t]−ρ

γ
. (3)

From (1) and (3), for the family lifetime utility to be bounded in the steady state, we invoke
the parameter constraint that ρ > n + (1− γ)ĉ0, where ĉ0 represents a constant steady-
state growth rate of per capita consumption under a patent regime. Throughout the paper,
an overdot defines a time derivative of the associated variable and the symbol ^ indicates
its instantaneous growth rate. Henceforth, the time variable t will be suppressed in most
equations unless otherwise necessary.

2.2 Final goods

We chose final good Y as the numeraire. In the final goods sector there are many identical
(competitive) producers and the aggregate production function is given by

Y = L1−α

(ˆ V

0
X [i]σαdi

)1/σ

, 0 < σ <
1
α

, (4)

where Y is the economy’s aggregate final output or real GDP produced with labor L sup-
plied from households and V types of capital goods X [i] for i ∈ [0, V ] that have been in-
vented. As the functional form implies, production of Y exhibits constant returns in labor
and capital goods and these capital goods are imperfectly substitutable. Each capital good,
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if patented, is priced at a markup equal to η ≡ 1
σα

> 1.8 Profit maximization yields the
following first-order conditions:

w = (1−α)Y/L (5a)

p[i] = αL1−α

(ˆ V

0
X [i]σαdi

)(1−σ)/σ

X [i]σα−1 (5b)

where p[i] is the price of capital good i, the fraction of 1−α in (5a) represents the labor
share, and (5b) is an inverse demand function for any capital good. This demand function
implies that the price elasticity of demand for each durable is equal to ε = 1

1−σα
> 1. The

markup for any patented durable is therefore given by η = ε

ε−1 = 1
σα

> 1. As for out-of-
patent (or unpatented) durables, they are priced at marginal cost.

Final output Y is allocated for consumption C, capital investment IK , and R&D invest-
ment IV . As Y represents the economy’s real GDP, the national income identity requires

Y = C +S = C + IK + IV (6)

where S is the flow of aggregate saving (or forgone consumption) and must be equal to
IK + IV in equilibrium. Define s≡ S

Y = (Y −C)/Y as the saving rate, sK ≡ IK
Y as the the rate

of capital investment, and sV ≡ IV
Y as the rate of R&D investment (or called the economy’s

R&D intensity). Then the flow equilibrium in saving and investment is given by

s = 1−C
Y

= sK + sV (7)

Investment in capital goods (IK) accumulates the stock of capital K, while investment in
R&D (IV ) creates new varieties of capital goods and raises the stock of knowledge V . The
two stocks of the economy evolve over time according to

K̇ ≡ dK
dt

= IK−δK = sKY −δK (8a)

V̇ ≡ dV
dt

= ξ IV = ξ sVY (8b)

8If parameter σ were set equal to one, production function (4) would reduce to Romer’s (1990). As such,
durables would become neither substitutable nor complementary and the markup η ≡ 1

σα
would be 1

α
. In

this paper, σ is less than 1/α so that the markup η is allowed to deviate from the inverse of the capital share
(α), as in Jones and Williams (2000) and Eicher and Turnovsky (2001).
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where δ is the rate of capital depreciation and ξ is an endogenous measure of research
productivity. In contrast to physical capital, the stock of knowledge does not depreciate
over time, as in most endogenous growth models, whereas Eicher and Turnovsky (2001)
introduce knowledge depreciation. The measure of research productivity in (8b) is endoge-
nously determined in terms of ξ = µV φ Iλ−1

V , with µ > 0, 0 < φ < φ̄ < 1, and 0 < λ < 1.
The parameter of µ is an exogenous technology term. The parameter of φ is positive to cap-
ture the phenomenon of knowledge spillovers, but φ must be less than an upper bound φ̄ < 1
to ensure a bounded long-run innovation rate, denoted by lim

t→∞
V̂ [t] < ∞, where V̂ ≡ V̇

V .9 The
parameter of λ is positive but less than one, meaning that research input IV displays social
diminishing marginal return on research productivity. This captures the effect of research
congestion, which may result from too many research firms engaged in similar projects in
patent races.

For simplicity, each unit of foregone consumption can presumably produce a unit of
each type of capital goods, so that the stock of capital is given by K =

´ V
0 X [i]di. Foregone

consumption is partially invested in R&D, thereby enabling the economy to introduce new
types of durables over time. These new capital goods are patentable as soon as they are in-
vented. Active R&D therefore keeps changing the composition of patented and unpatented
durable goods under a patent system, as will be analyzed later. What follows describes
individual firms’ pricing behavior in the durable goods sector.

2.3 Durable (capital) goods

Firms of capital goods may engage in monopolistic competition or perfect competition,
depending on whether or not they are under patent protection. As each unit of any type of
durable goods requires one unit of forgone consumption, r + δ measures the user cost of
capital (interest rate plus capital depreciation). Given p[i] (the rental price of durable i),
p[i]− (r +δ ) measures a firm’s unit profit. The profit function is then given by

π[i] = (p[i]− r−δ )X [i], i ∈ [0,V ]. (9)

At any point in time, there are V firms (or V varieties of available durables) in the capital
goods sector. Of these available durable goods, there are Vp patented durables supplied by

9From (8b), the instantaneous innovation rate is given by V̂ = µV φ−1(sVY )λ . On a balanced-growth path,
it can be shown that the long-run steady-state innovation rate is determined bylim

t→∞
V̂ [t] = λ

1−φ−λ/(εσ(1−α) ,

which is bounded and positive if and only if φ < φ̄ ≡ 1−λ/[εσ(1−α)].
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monopolistic firms and Vnp unpatented (out-of-patent) durables by competitive firms. That
is, V = Vp +Vnp. Patented durables are priced at the markup of η ≡ 1

σα
> 1, while while

unpatented ones obey marginal cost pricing. These pricing conditions are given by

p[i] =

pnp = r +δ for i ∈ [0,Vnp]

pp = η(r +δ ) for i ∈ (Vnp,V ]
(10)

where pnp (= marginal cost) represents the competitive price of unpatented durables and
pp the monopolistic price of patented durables. From (10) and (5b), demands for patented
and unpatented durables are related in terms of:

Xnp = η
εXp (11)

where Xnp = X [i] for i ∈ [0,Vnp], Xp = X [i] for i ∈ (Vnp,V ], and Xnp > Xp due to ηε > 1.
That is, on a per-durable basis, the economy uses more of an unpatented capital good than
a patented one, since each patented durable costs more (pp > pnp). Define ζ ≡ Vp

V as the
fraction of patented durables and 1−ζ ≡ Vnp

V as the fraction for unpatented durables. Then
one can use (11) to derive the stock of capital,

K =
ˆ V

0
X [i]di = V Xnp(η−ε

ζ +1−ζ ) (12)

Note that equation (12) actually represents a market clearing condition for capital goods,
because K is the stock of forgone consumption borrowed to purchase both patented and
unpatented durables.

2.4 Innovation under a patent system

This subsection discusses the innovation function (8b) and explains how the R&D-driven
innovation rate interacts with the dynamic evolution from patented to unpatented durables
over time, given that patents are finitely lived.

2.4.1 Innovation, patent value, and R&D intensity

In the research sector there is a stream of identical firms with measure of one. The inno-
vation function (8b) thus applies to the entire economy and any individual research firm
as well. Under perfect competition research firms borrow forgone consumption to develop
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new designs for capital goods. At the firm level, research input IV and the flow V̇ of capital-
good designs are linearly related, since the research productivity measure of ξ in (8b) is
taken as given in an individual research firm’s decision problem. Under a patent system,
the flow of new designs V̇ dt during an instant means the flow of newly issued patents and
each of these patents has a finite patent term denoted by T > 0. Each newly issued patent
gives birth to a new firm producing a new type of capital goods. Patents are tradable. The
market for patents is perfectly competitive. The price υ of a fresh patent issued at time t

must reflect its future profitability during an entire patent life. Hence,

υ [t] =
ˆ t+T

t
e−R[τ]

π[τ]dτ (13)

where R[τ]≡
´

τ

t r[ω]dω is the cumulative sum of interest rates from t to τ and π measures
the profit flow to any firm holding a legally live patent (see (9)). The vintage of a live patent
has no effects on the profit flow. Under non-arbitrage conditions, the equilibrium price of a
fresh patent must match the cost of developing a new design. That is,

υ [t] = 1/ξ [t]≡ 1/
(

µV [t]φ (IV [t])λ−1
)

(14)

where the inverse of ξ [t] measures the development cost according to (8b).10 If υ > 1/ξ

there would be unbounded R&D demand for foregone consumption. If υ < 1/ξ , there
would be unbounded demand for patents. With well functioning markets, equilibrium R&D
investment IV must be such that the price of fresh patents equals the cost of capital-good
innovation and determines the instantaneous rate of innovation,

V̂ ≡ V̇
V

= µV φ−1Iλ
V , (15)

using (8b). With the identity of V = Vp +Vnp, the innovation rate V̂ is a weighted average
of the growth rate V̂p of patented durables and the growth rate V̂np of unpatented durables.
That is, V̂ = ζV̂p +(1−ζ )V̂np with V̂p ≡

V̇p
Vp

and V̂np ≡
V̇np
Vnp

, where the fraction of patented
durables ζ ≡VP/V and the fraction of unpatented durables 1−ζ =Vnp/V evolve over time
until the economy is in a steady state. The patent length T plays a role in the motions of ζ ,
Vp, and Vnp. We describe their relationships in what follows.

10The research input of IV generates V̇ patents at time t. So, the present-time cost of developing a patent
(or a new design) is measured by IV /V̇ = 1/ξ in terms of (8b).
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2.4.2 Patent length and the dynamic evolution from patented to unpatented durables

First, with an active R&D sector, there are V̇ [t] patents issued at a point in time and these
newly issued patents will expire at a future date, t +T . That is, it holds that V̇ [t] = V̇np[t +T ]
and this equality relation implies V̇np[t] = V̇ [t−T ]. As such, V̇np[t] is pre-determined by
previous innovations at a time of t − T . With a finite patent length, the growth rates of
unpatented and patented durables are therefore given by11

V̂np[t] =
(

1
1−ζ [t]

)
V̂ [t−T ]e−

´ t−
t−T V̂ [τ]dτ (16a)

V̂p[t] =
(

1
ζ [t]

)
(V̂ [t]−V̂ [t−T ]e−

´ t−
t−T V̂ [τ]dτ) (16b)

where t− is asymptotically close to t and
´ t−

t−T V̂ [τ]dτ represents the cumulative sum of
innovation rates between t−T and t. Differentiating ζ ≡ Vp

V with respect to time t yields

ζ̇ [t] = (V̂p[t]−V̂ [t])ζ [t] (17)

As indicated, ζ̇ > 0 if the growth rate of patented durables, V̂p , exceeds the innovation rate,
V̂ . If it is the case, there is an increase in the fraction of patented durables and a decrease in
the fraction of unpatented durables. From (17), ζ is driven by the two motions of V̂ and V̂p

in terms of (17). These motions underlie the patent-created innovating mechanism in a dy-
namic general-equilibrium context. This mechanism contributes to total factor productivity
(TFP) by introducing new types of capital goods, but it can also induce a technical distor-
tion to offset the TFP enhancement to some extent. The following analysis will unfold this
problem.

2.5 Innovation and monopoly distortion

In the model patents incentivize innovation of new capital goods by creating monopoly
distortions. In this environment, the relative prices of patented and unpatented capital goods
are distorted and prevent society from adopting the technically optimal mix of durables,
although individual final goods producers always choose their cost-minimizing techniques

11(16a) can be obtained using: (i) V̇np[t] = V̇ [t − T ], (ii) V̂np[t] ≡
V̇np[t]
Vnp[t] = V̇ [t−T ]

V [t−T ] ×
V [t−T ]

V [t] ×
V [t]

Vnp[t] , (iii)

V [t]
Vnp

= 1
1−ζ [t] , and (iv) V [t] = V [t−T ]e

´ t−
t−T V̂ [τ]dτ , where the upper bound t− is asymptotically close to t. Then

with (16a) and the identity V̂ = ζV̂p +(1−ζ )V̂np, (16b) holds evidently.
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for whatever relative prices. This problem is missing in almost all endogenous growth
models where patents are presumed to be infinitely lived.

2.5.1 Monopoly-distorted TFP

Consider symmetries of capital goods permitting to use Xnp for X [i], i ∈ [0, Vnp] and Xp for
X [i], i ∈ (Vnp, V ]. From (11) and (12), the final goods production function can reduce to :

Y = F [L, K; A, z, α, ] = z(AL)1−αKα (18)

where A ≡ V
1

εσ(1−α) is an endogenous technology term, zA1−α ( = zV
1

εσ ) is a measure of
TFP, and z is the monopoly-induced technical distortion term defined as

z = z[ζ ] =

(
η1−εζ +1−ζ

)1/σ

(η−εζ +1−ζ )α (19)

It can be verified that z bears a convex relationship with ζ ∈ [0,1], has a local minimum at
ζ = ε([1− ( 1

η
)ε ]−1− ( 1

η
)[1− ( 1

η
)ε−1]−1) > 0, and rises to one if ζ moves to either end of

its domain. This relationship is demonstrated in Figure 1, which presumes α = 1/3 and σ =
1.75 or 2.00.12. Note that the socially optimal technique for final goods production ought to
involve symmetric use of all available capital goods in accordance with (4). But under the
patent regime the relative prices of patented and unpatented durables are distorted, causing
final goods producers’ use of capital goods biased toward those that are marginal cost
priced. This bias gives rise to a socially inefficient technique in production of final goods
and translates into an economy-wide drag on the level of TFP (due to zA1−α < A1−α ). Thus,
TFP fails to attain its potential level (= A1−α ), unless patents are either infinitely lived
(T → ∞) or non-existent (T = 0). In the latter case, the R&D sector must vanish, however.
R&D-based growth models often presume perpetual patents (T → ∞, ζ = 1) and therefore
ignore a finitely-lived patent’s negative effects on the level of TFP. For instance, these
models include Romer (1990), Segerstrom (1990), Grossman Helpman (1991), Aghion
and Howitt (1992), Jones (1995), Jones and Williams (2000), and Eicher and Turnovsky
(2001).

12Recall that 0 < σ < 1
α

, ε = 1
1−σα

> 1, η = 1
σα

> 1, and 0 < ζ < 1. Given these parameters and (19), if
ζ = 1, z = η(1−ε)/σ+εα = 1 due to (1− ε)/σ + εα = 0. As well, if ζ = 0, the result of z = 1 is self-evident.
Certainly, both z and ζ are determined simultaneously in equilibrium.
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Figure 1: The convex relationship between z and ζ = Vp/V

2.5.2 Monopoly-distorted factor income shares

Next, let us look at how factor income shares are influenced by monopoly distortions. Con-
sider the flow of gross capital income

´ V
0 p[i]X [i]di that can be decomposed into aggregate

(gross) rental income (r + δ )K and aggregate profit Π = Vpπ = ζV π , where ζV is the
number of patented firms. The labor share is wL

Y = 1−α , so parameter α represents the
gross capital income share and must satisfy the identity relationship that α = Π

Y + (r+δ )K
Y ,

where the shares of profit and gross rental income are given by13

Π

Y
= mα, with m =

ζ (η−1)
(1−ζ )ηε +ζ η

∈ (0, 1) (20a)

(r +δ )K
Y

= (1−m)α (20b)

Note that the fraction term m determines how much of the the gross capital income share,
α , goes to monopolistic profits. Certainly, (1−m)α is the remaining capital income share

13Aggregate profit is Π = ζV π = (η−1)(r +δ )ζV Xp based on (9) and (10) and aggregate rental income
is (r +δ )K = (r +δ )V Xnp (η−ε ζ +1−ζ ) according to (12). Hence, using (11), the ratio of Π/[(r +δ )K] is
determined by ζ (η−1)

ζ+(1−ζ )ηε . Using this ratio, we can solve the identity α = Π

Y + (r+δ )K
Y for (20a) and (20b).
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going for rents and capital depreciation, subject to the relative magnitude of r and δ . Since
∂m
∂ζ

= ηε > 0, the profit share, Π/Y , rises if patented firms account for a larger fraction
in the entire capital goods sector. If this fraction is one (ζ = 1), the profit share reaches
its maximum at

(
η−1

η

)
α and the gross rental share drops to its minimum at α

η
. To the

contrary, ζ = 0 (no monopoly) dictates that the entire capital share, α , goes for gross rents.

2.6 Patent regime’s steady-state dynamic system

The patent-regime economy is in the steady state by assumption. Let us close the patent
regime model by presenting its balanced-growth dynamic system and its core variables’
steady state equilibrium in this subsection. Later the economy will be perturbed at time t =
0 by replacing the patent regime with an intertemporal-bounty (IB) regime. To differentiate
one regime from the other other, let us label the initial patent steady state with subscript 0
and a new IB steady state with subscript 1. From (8a), (8b), (3), and (13), the patent-regime
dynamic system on a balanced-growth path is represented by four ordinary differential
equations:14

K̇0[t] = (1− sV 0)Y0[t]−C0[t]−δK0[t] (21a)

V̇0[t] = µV0[t]φ (sV 0Y0[t])λ (21b)

Ċ0[t] = C0

(
r−ρ

γ
+n
)

(21c)

υ̇0[t] = r0υ0[t]−π0[t](1− e−(r0−π̂0)T ) (21d)

where Y0[t] = z0(A0[t]L[t])1−αKα
0 and π0[t] = αm0Y0[t]/ζ0V0[t] according to (18) and (20a).

On the balanced-growth path, the non-stationary variables including K0[t], V0[t], Y0[t], C0[t],
υ0[t], and π0[t] continue to grow over time at their constant growth rates. In contrast,
the stationary variables such as interest rate r0, R&D investment rate sV 0, capital invest-
ment rate sK0, and patented durables share ζ0 all stay unchanged over time. For those
non-stationary variables, their constant steady-state growth rates are given as follows (see
Appendix A for derivations):

K̂0 = Ŷ0 = Ĉ0 = θKn (22a)

V̂0 = θV n; Â0 = θAn (22b)

υ̂0 = π̂0 = θυn≡ (θK−θV )n (22c)

14By Leibniz’s rule, differentiating (13) on a balanced growth path yields the differential equation of (21d).
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where each of terms θV , θA, θK and θυ is a structural composite of growth-relevant param-
eters for a specific variable or for a set of specific variables, as given below,

θV =
λ

1−φ −λ/[εσ(1−α)]
; θA =

λ

(1−φ)[εσ(1−α)]−λ
; θK = θA +1 = (

1−φ

λ
)θV .

(23)
To facilitate subsequent discussions, let us call these structural composites “growth ker-

nels,” which readily translate the population growth rate n into a relevant variable’s long-
run growth rate. For instance, θV n is the long-run innovation rate of V , θAn the long-run
growth rate of A, and θKn the long-run growth rate of K, Y , and C.15 Certainly, on per
capita terms, (θK − 1)n (= θAn) determines the long-run growth rate of k, y, and c due to
k̂ = K̂− n, ŷ = Ŷ − n and ĉ = Ĉ− n. As for a fresh patent’s price υ and a patented firm’s
profit flow π , they share the same growth kernel represented by θυ (or θK minus θV ), and
thereby their long-run growth rate is given by θυn or (θK − θV )n, as indicated by (22c).
This actually makes intuitive sense, because final output growth (θKn) expands the market
for capital goods, whereas the arrival of newer capital goods (θV n) dilutes the market.

Note that the structural parameters (α , σ , ε λ , φ ) that form the growth kernels are
from the production functions of final goods and technical designs of capital goods. The
population growth rate n is a parameter, too. Therefore, the long-run innovation rate V̂0 and
all other long-run growth rates mentioned above are exogenous, independent of the size
of the economy and the patent length. Also, as noted earlier (see Footnote 9), a bounded,
positive long-run innovation rate, V̂0, requires that φ be less than the upper bound φ̄ (=
1−λ/[εσ(1−α)] < 1). Once V̂0 is bounded, all other non-stationary variables are bounded
as well.

In the model ongoing growth makes non-stationary variables unbounded and grow
exponentially at different paces in the long run. These features call for multiple nor-
malization factors to transform non-stationary into stationary variables. The “growth-
kernel powered labor forces” defined by LθK , LθV , LθA and LθK−θV provide a systemic
way to build such normalization factors. For instance, K, V , A and υ can be normal-
ized to K̃ ≡ K/LθK , Ṽ ≡ V/LθV , Ã ≡ A/LθA , and υ̃ ≡ υ/Lθυ , respectively. In so do-
ing, each variable with tilde is a bounded, measurable scale-adjusted quantity, because
ˆ̃x[t] = x̂[t]− θxn = 0, x ∈ {K, V, A, υ} as t goes to infinity.16 We close the patent regime
model by deriving the long-run steady-state equilibria of a set of scale-adjusted variables

15The economy’s long-run TFP growth rate is determined by (1−α)θAn in terms of (18).
16Similar normalization factors are used in Eicher and Turnovsky (2001).
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for further analysis (see Appendix A for detailed derivations):

K̃0 = Ã0

(
z0sK0

δ +θKn

)1/(1−α)

(24a)

Ṽ0 =

[
sV 0

(
z0sK0

δ +θKn

)α/(1−α)(
µ

θV n

)1/λ
]θV

(24b)

C̃0 = (1− s0)Ỹ0 (24c)

υ̃0 =
sV 0Ỹ0

V̂0Ṽ0
=

αm0Ỹ0

ζ0Ṽ0

(
1− e−(r0−Ŷ0+V̂0)T

r0− Ŷ0 +V̂0)

)
(24d)

where

sK0 = α(1−m0)
(

δ +n+ Â0

r0 +δ

)
, (25a)

sV 0 = V̂0

(
αm0

ζ0

)(
1− e−(r0−Ŷ0+V̂0)T

r0− Ŷ0 +V̂0)

)
, (25b)

r0 = ρ + γÂ0, (25c)

ζ0 = 1− e−V̂0T , (25d)

and our earlier definitions suffice to recognize that Ã0 = Ṽ 1/(εσ(1−α))
0 is a scale-adjusted

technology term, Ỹ0 = z0Ã1−α

0 K̃α
0 is a scale-adjusted GDP, z0 is a monopoly-induced tech-

nical distortion on TFP (see (19), α(1−m0) is the gross rental income share, αm0 is the
profit share (see (20a) and (20b)), and s0 ≡ sK0 + sV 0 is the steady-state saving rate.17

Equations (24a) - (25b) imply the roles of patent length (T ) and patent-created monopoly
distortions (z0, m0). For instance, given the long-run innovation rate V̂0 = θV n, equation
(25d) says that the patent length determines the size of the monopolistic sector: the greater
the patent length, the greater is the share ζ0 of monopolistic (patented) firms in the capital
goods sector. The patent length and the resulting monopoly distortions then exert effects
on investment rates (sK0, sV 0), which in turn have influences on the stocks of capital and
knowledge (K̃0, Ṽ0). The paper is not to fine-tune the patent length for an existing patent
regime, however.

17A = V
1

εσ(1−α) implies Ã = Ṽ
1

εσ(1−α) using A = ÃLθA , V = Ṽ LθV , and θV
εσ(1−α) −θA = 0; see (23).
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The paper is instead aimed at examining whether or not it is socially desirable to replace
the entire patent regime with an intertemporal bounty regime that will be laid out later in
Section 4. To this end, it is conductive to evaluate the patent regime and the proposed al-
ternative, respectively, against the economy’s Pareto optimality. The next section evaluates
the patent regime.

3 Evaluating Patent Regime against Pareto Optimality

How efficient is a decentralized patent-regime economy in allocating resources? This ques-
tion relates to private agents’ saving and investment decisions, but let us firstly look at the
economy’s Pareto optimal allocation as a benchmark.

3.1 Pareto optimality

The Pareto optimal allocation can be obtained by maximizing household’s lifetime utility,
subject to the economy’s initial resource endowments (K0, V0, L0 = 1) and technological
constraints. Hence, the social planner optimization problem is given by18

max
c, IK , IV

∞̂

0

c1−γ −1
1− γ

e−(ρ−n)tdt, s.t.: (26a)

Y = (AL)1−αKα = C + IK + IV , C = cL (26b)

K̇ = IK−δK, K[0] = K0; V̇ = µV φ Iλ
V , V [0] = V0 (26c)

where L[t] = ent . With no market imperfections in such a centralized economy, we need
to set ζ at ζ ∗ = 0 and z at z∗ = 1.19 This makes final goods production function (18)
reduce to (26b). We can solve the social planner problem for c, IK , and IV , which can then
translate into s, sK , and sV , respectively.20 Using these Pareto-optimal investment rates,

18Romer (1990) examines the social planner problem in an endogenous R&D-based growth model with
the scale effects, where the long-run socially optimal innovation rate is derived. The present paper uses a
non-scale growth model with a long-run innovation rate parametrized by θV n (see (22b)), so the focus is
on the socially optimal allocation of resources, as in Jones and Williams (2000), and Eicher and Turnovsky
(2001).

19Hereafter, a variable with an asterisk indicates a centralized economy’s steady-state equilibrium.
20As a standard procedure, one can obtain the socially optimal solution by maximizing the Hamiltonian,

H ≡
(

c1−γ −1
1− γ

)
e−(ρ−n)t +ψK ·

(
V

1
εσ L1−α Kα − cL− IV −δK

)
+ψV ·µV φ Iλ

V
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we can derive the Pareto-optimal scale-adjusted stocks of capital and knowledge in the
same way as we did earlier for the patent regime. Also, as we have analyzed, the long-
run growth rates of non-stationary variables are parametrized by their associated growth
kernels and the population growth rate (see (22a) - (22c)). Certainly, those long-run growth
rates hold for the centralized economy; that is, K̂∗ = Ŷ ∗ = Ĉ∗ = θKn, V̂ ∗ = θV n, Â∗ = θAn,
and υ̂∗ = π̂∗ = (θK − θV )n. However, except for the real interest rate r, the centralized
economy has a different set of stationary equilibria given below:

K̃∗ ≡ K
LθK

= Ã∗
(

s∗K
δ +n+ Â∗

)1/(1−α)

(27a)

Ṽ ∗ ≡ V
LθV

=

[
s∗V

(
s∗K

δ +θKn

)α/(1−α)(
µ

θV n

)1/λ
]θV

(27b)

s∗K = α ·
(

δ +n+ Â∗

r∗+δ

)
(27c)

s∗V = V̂0

(
1

εσ

)(
λ

r∗− (Ŷ ∗−V̂ ∗)−φV̂ ∗

)
(27d)

r∗ = r0, ζ
∗ = 0 (27e)

where s∗K + s∗V = s∗ is the long-run saving rate. By comparing equations (27a) - (27e) to
equations (24a), (24b), (25a) and (25b), one can verify that a decentralized patent-regime
economy can never attain Pareto optimality in the long run, no matter how one fine-tunes
the patent regime. The analysis is presented below.

3.2 Patent regime is suboptimal

To show that a patent-regime economy is always suboptimal, we derive the ratios of (24a)
to (27a), (24b) to (27b), (25a) to (27c), and (25b) to (27d):

K̃0

K̃∗
=

(
Ṽ0

Ṽ ∗

)1/[εσ(1−α)](
z0sK0

s∗K

)1/(1−α)

(28a)

where ψK and ψV are Lagrangian multipliers.
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Ṽ0

Ṽ ∗
=
(

sV 0

s∗V

)θV
(

z0sK0

s∗K

)αθV /(1−α)

(28b)

sK0

s∗K
= 1−m0 (28c)

sV 0

s∗V
=

(
αm0/ζ0

1/(εσ)

)(
1− e−(r0−Ŷ0+V̂0)T

1

)(
1/(r0− Ŷ0 +V̂0)

1/(r0− Ŷ0 +V̂0−φV̂0)

)(
1
λ

)
(28d)

It is clear from (28a) that as long as there is a non-zero patent length (T > 0), patent-
regime agents must underinvest in the capital stock (because sK0

s∗K
< 1 due to 0 < m0 < 1):

the greater the share m0 of monopoly profits in the economy’s gross capital income, the
greater is the extent of underinvestment. The market mechanism is straightforward: patent-
created monopolies raise the prices of capital goods above marginal costs and decrease the
market incentive to build the stock of capital. Further, as we had mentioned earlier, there is
a monopoly-induced technical distortion, denoted by z0, that can decrease the economy’s
total factor productivity (see (19)). As a result, through the sK0− cum− z0 channel, a
patent regime’s stock of capital must fall below the Pareto optimal level. This is exactly
what (28a) indicates. As well, through the same sK0− cum−z0 channel, a patent-regime’s
stock of knowledge must be short of the Pareto optimal level according to (28b). The
monopoly-restrained knowledge stock, in turn, puts a drag on the stock of capital, because
the knowledge-stock ratio Ṽ0/Ṽ ∗ is also a determinant of the capital-stock ratio K̃0/K̃∗ in
equation (28a).

Aside from the aforementioned sK0−cum−z0 channel, there is the sV 0 channel through
which the patent-regime steady-state capital and knowledge stocks can be affected. How-
ever, this channel is complicated. For purposes of exposition, we break the determinants of
the R&D investment ratio sV 0/s∗V in (28d) into four sources:

(i) From the first parenthesized term, the private valuation of a differentiated capital
good is always less than its social valuation at any point in time (i.e. αm0ζ0 < 1/(εσ)).21

This is a static valuation distortion, making patent-regime agents underinvest in R&D. (ii)

21Recall that ε = 1/(1−σα) > 1 is the price elasticity of demand for a capital good. The social valuation
of the variety of capital goods is reflected in term 1/(εσ), which is the elasticity of final output Y with respect
to the measure of variety V . That is, V

Y
∂Y
∂V = 1/(εσ) in terms of (18). The private valuation of a patented

capital good is αm0/ζ0 = α

(
η−1

(1−ζ )ηε +ζ η

)
=
(

ζ η

(1−ζ )ηε +ζ η

)
·α/ε according to (20a) and η = ε/(ε−1) > 1.

Since ζ η

(1−ζ )ηε +ζ η
< 1 and α < 1

σ
from (4), the private valuation must be unambiguously less than the social

valuation.
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From the second term, patent-regime agents underinvest in R&D again, because a finite
patent length is always too short to reflect an innovative durable’s permanent contribution
to household’s welfare. This is a dynamic valuation distortion inherent in any patent sys-
tem that rewards an innovation only for a finite duration. The static and dynamic valuation
distortions combine to create the “surplus-appropriability” problem. (iii) The third term
represents a positive technical externality, making patent-regime agents underinvest in
R&D, because they do not internalize knowledge spillovers (0 < φ < 1) in their private
R&D decisions (see (8b)). (iv) Lastly, from the fourth term, 1/λ is greater than one, due
to the research congestion externality (λ < 1) (see (8b)). For this negative technical exter-

nality, patent-regime agents overinvest in R&D. In contrast to patent-regime agents, the
social planner internalizes both positive and negative externalities.

The above analysis indicates more distortions tending to cause underinvestment in R&D
in a decentralized patent-regime economy, whereas only the research-congestion distortion
tends to the opposite. Empirical estimates seem to suggest that the research-congestion
distortion alone should not dominate.22 Thus, compared to the Pareto optimum, the patent
regime should tend to have a smaller R&D intensity (sV ) and should tend to build a smaller
stock of capital and knowledge, respectively, on account of (28a) and (28b). Simulation
of the model later will lend support to these tendencies. Regardless, a patent system is
apparently suboptimal, with no hope to duplicate the social planner’s optimal solution.23

4 Switching to the Intertemporal Bounty Regime

Can a decentralized economy attain the Pareto optimum characterized by (27a) - (27e) if
the patent regime is replaced with an alternative that rewards technological innovation with
intertemporal bounties payable on the marginal-cost sales of bountiable goods? This is
the central question of the paper. To facilitate the analysis, I firstly describe institutional
arrangements for the intertemporal bounty regime to be a patent replacement.

22For instance, Jones and Williams (1998) find that an innovating economy’s socially optimal R&D invest-
ment is at least four time greater than actual spending.

23For instance, if the patent length goes to infinity (T → ∞), z0→ 1, ζ0→ 1, m0→ (η−1)/η = 1/ε , and
αm0/ζ0
1/(εσ) → σα < 1. These changes only mitigate to some extent the monopoly-created distortions. Adjusting

the patent breadth (equivalent to changing the markup rate, η) cannot fix the suboptimality problem, either.
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4.1 Institutional arrangements

A feasible intertemporal bounty regime requires the following institutional arrangements:24

First, any bountiable innovation of a differentiated capital good must be freely licensed.
This creates a free entry condition to establish a perfectly competitive market for the boun-
tiable durable that must sell at marginal cost. That is, p = r +δ with η = 1 (see (10)).

Second, the innovator is rewarded with a perpetual bounty claim to an infinite stream of
future bounties, payable on the ex post marginal-cost sales of a specific bountiable capital
good at a rate determined by the government. Denote by β the bounty rate. Then given
the ex post market sales pX of the bountiable good, the bounty flow, denoted by b, paid to
the holder of a bounty claim at a point in time is determined by b = β pX . Note that the
number of bountiable goods is the same as the number of bounty claims.

Third, the government collects taxes from households to make bounty payments. For
simplicity, the paper presumes a non-distortionary lump-sum tax available to fund such
intertemporal bounties. The tax-financed bounty payment must be creditable so as to form
an active asset market for tradeable bounty claims.25 The equilibrium price of a typical
bounty claim must therefore reflect the discounted present value of an infinite stream of
future bounties, delivering a signal to R&D investment. Households are the owners of
bounty claims. So, as a government transfer payment, the collected lump-sum tax must
return to the household sector.

Fourth, the intertemporal-bounty regime grandfathers all those previously innovated
durables whose patents are still legally live at the moment of the regime switch, which oc-
curs at t = 0 with live patents amounting to Vp[0] = ζ0V [0]. Thus, at t = 0, the government
needs to issue ζ0V [0] bounty claims immediately, and variable ζ henceforth needs to be
redefined as the fraction of bountied ( not patented) durables. Eliminating the grandfather
clause would allow bounties and patents to co-exist within the remaining patent life. This
would complicate the model and delay the gain from removing monopolies.

Under the above arrangements, all capital goods, either bountied or non-bountied, sell
at the same marginal cost. This simplifies calculation of bounties. The government’s ag-
gregate bounty payments, denoted by B, at a point in time are equal to B = βαY ζ =
β (r +δ )Kζ , where αY or (r +δ )K is aggregate capital spending. That is, the government

24These arrangements bear similarities to Grinols and Henderson (2007) and Grinols and Lin (2011) ex-
cept for discussions of an asset market for bounty claims and tax-financed bounties in a dynamic general
equilibrium framework.

25In practice, a bounty claim can split into shares to make it more liquid on the market.

21



needs to collect from households a lump-sum tax equal to B, which results from all final
goods producers’ spending decisions on capital goods. Certainly, b = B/ζV = βαY/V ,
since b is the bounty flow to an individual bounty claim and ζV is the number of bounty
claims. We now can make the patent-regime model switch to a bounty-regime model by
changing some parameters, as will be shown below.

4.2 Dynamic system under the intertemporal bounty regime

Now, we replace η > 1 with η = 1, monopoly profit π with bounty b, and T < ∞ with
T → ∞ in the patent-regime model.26 In so doing, we parameterized a regime switch from
patents to intertemporal bounties. This switch pushes the economy off the initial patent-
regime balanced-growth path defined by (21a) - (21d) and gives rise to a bounty-regime
dynamic system that evolves for t ∈ [0, ∞) as given below:

K̇[t] = (1− sV [t])Y [t]−C[t]−δK[t] (29a)

V̇ [t] = µV [t]φ (sV [t]Y [t])λ (29b)

Ċ[t] = C[t](
r[t]−ρ

γ
+n) (29c)

υ̇ [t] = r[t]υ [t]−b[t] (29d)

where Y [t], sV [t], r[t] and b[t] are determined by

Y [t] = (A[t]L[t])1−αK[t]α (30a)

sV [t] = υ [t]1/(1−λ )(µV [t]φ )1/(1−λ )/Y [t] (30b)

r[t] =
αY [t]
K[t]

−δ (30c)

b[t] = βαY [t]/V [t] (30d)

ζ [t] = 1− (1−ζ0)e−
´ t

0 V̂ [τ]dτ , ζ [0] = ζ0, ζ [∞] = 1 (30e)

26The bounty regime requires T → ∞ for bounty claims are perpetual and some other adjustments. For the
flow budget constraint (2), per-capita lump-sum tax needs to included so that ȧ = (r−n)a+w−c− B

L , where
asset stock a includes physical capital and bounty claims that earn net capital income consisting of the earned
bounty flow. Individual households treat the lump sum tax as given in their intertemporal decisions. Also,
we need to re-interpret pp (pnp) as the price of bountied (unbountied) durables, and Vp (Vnp) as the number
of bountied (unbountied) durables.
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This is a nonlinear dynamic system of four first-order ordinary differential equations. This
system start at t = 0, driving the economy to transition to a new balanced-growth path in
the long run. It contains new elements that warrant attention in some respects:

First, in contrast to (21d), (29d) is a no-arbitrage condition applying to infinitely lived
bounty claims, where υ [t] is reinterpreted as the market price of a bounty claim (not a
patent) and b[t] is the bounty flow to the holder of a typical bounty claim. Second, the
bounty flow b[t] is based on the government-determined bounty rate β and the market size
of a bountied durable, αY [t]/V [t], according to (30d). Third, the TFP-distortion term z

jumps to one as η is set to one at the moment of the regime switch, thereby raising TFP
to the distortion-free level, as implied by (30a). Fourth, using (14) and sVY = IV , one can
readily derive (30b) to determine the R&D investment rate sV [t]. Fifth, setting m = 0 (due to
η = 1) in (20b) yields equation (30c) for the interest rate r[t] at any moment. Lastly, (30e)
determines the fraction ζ [t] of bountied durables. This is a state variable evolving to one
in the long run, but it does not enter the dynamic system, since bountied and unbountied
durables are equally priced.27

To examine how the regime switch is to impact the economy, we must solve the dy-
namic system of (29a) - (29d) for a nonlinear stable manifold in the two-dimensional state
space of capital and knowledge stocks. This is tantamount to computing the transition
paths of K[t], V [t], C[t] and υ [t], t ∈ [0, ∞). But this is infeasible in that these variables are
unbounded in the long run. Thus as under the patent regime, the bounty-regime dynamic
system must be transformed into a stationary one.

4.3 Normalization of bounty-regime dynamic system

Normalizing the dynamic system of (29a) - (29d) requires four normalization factors, as
we did for the patent regime. More details are given in what follows.

4.3.1 Growth kernel-powered labor forces as normalization factors

Note that long-run growth rates are regime-independent in the model. They are parametrized
by their associated growth kernels (θV , θA, θK , θυ ) and the population growth rate (n)
in accordance with (22a) - (22c) and (23). As under the patent regime, these growth
kernel-powered labor forces (LθK , LθV , LθA , Lθυ ) serve as normalization factors such that

27Perpetual bounty claims implies V̇p = V̇ and V̂p = V
Vp

V̇
V = V̂/ζ . Therefore, (17) needs to be changed to

ζ̇ = (1−ζ )V̂ , which solves for 30e.
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K̃ = K/LθK , Ṽ =V/LθV , Ã = A/LθA , C̃ =C/LθK , Ỹ =Y/LθK , υ̃ = υ/Lθυ , and b̃ = b/Lθυ .28

These scale-adjusted quantities (K̃, Ṽ , Ã, C̃, Ỹ , υ̃ , b̃) are stationary and measurable as t goes
to infinity. Using this normalization approach and noting how those growth kernels are in-
terrelated in terms of (23), we can transform (29a) - (29d) into a stationary dynamic system
as given below:

˙̃K[t] = f1[~ω[t]]≡ sK[t]Ỹ [t]− (δ +θKn)K̃[t] (31a)

˙̃V [t] = f2[~ω[t]]≡ µṼ [t]φ (sV [t]Ỹ [t])λ −θV nṼ [t] (31b)

˙̃C[t] = f3[~ω[t]]≡ C̃[t](
r[t]−ρ

γ
−θAn) (31c)

˙̃υ [t] = f4[~ω[t]]≡ r[t]υ̃ [t]− b̃[t]− (θK−θV )nυ̃ [t] (31d)

subject to

K̃[0] = K̃0, Ṽ [0] = Ṽ0; K̃[∞] = K̃1, Ṽ [∞] = Ṽ1, C̃[∞] = C̃1, υ̃ [∞] = υ̃1 (31e)

where ~ω[t] ≡ [K̃[t], Ṽ [t], C̃[t], υ̃ [t]] is a vector of four unknown scale-adjusted quantities
and the other variables that depend on ~ω[t] are scale-adjusted final output Ỹ , scale-adjusted
bounty flow b̃, capital investment rate sK , R&D investment rate sV , interest rate r, subject
to the following static equilibrium conditions:

Ỹ [t] = Ã[t]1−α K̃[t]α , with Ã[t] = Ṽ 1/(εσ(1−α)) (32a)

b̃[t] = βαỸ [t]/Ṽ [t] (32b)

sK[t] = (1− sV [t])− C̃[t]
Ỹ [t]

(32c)

sV [t] = (υ̃ [t] ·µṼ [t]φ )1/(1−λ )/Ỹ [t] (32d)

r[t] =
αỸ [t]
K̃[t]

−δ (32e)

28From (30d), the instantaneous growth rate of the bounty flow b is b̂[t] = Ŷ [t]− V̂ [t] and b̂[∞] = (θK −
θV )n≡ θυ n in steady state. Therefore, Lθυ serves as a normalization factor for b, as in the case of υ .
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ζ [t] = 1− (1−ζ0)e−
´ t

0( ˆ̃V [τ]+θV n)dτ , ζ [0] = ζ0, ζ [∞] = 1 (32f)

Equation (32f) results from (30e) by replacing the innovation rate V̂ with ˆ̃V [τ]+θV n due to
V = Ṽ L. The normalized system features two state variables (K̃, Ṽ ) and jump variables (C̃,
υ̃). The two state variables – capital and knowledge stocks – are predetermined at any point
in time and must evolve smoothly over time, whereas the two jump variables – aggregate
consumption and price of bounty claim – are free to make a discrete change in response
to shocks. The normalized system is subject to two initial-value boundary conditions rep-
resented by K̃[0] = K̃0 and Ṽ [0] = Ṽ0 at t = 0 as well as four other boundary conditions
represented by K̃[∞] = K̃1, Ṽ [∞] = Ṽ1, C̃[∞] = C̃1, and υ̃ [∞] = υ̃1 at t → ∞.29 Hence, this
is a nonlinear two-point boundary value problem and can only be solved numerically. Yet,
before we proceed to solve the boundary value problem in Section 5, the long-run Pareto
optimal bounty rate must be determined for the bounty regime. This is because the bounty
rate has effects on the boundary conditions at t→ ∞.

4.3.2 Optimal bounty rate and the new balanced-growth path

Setting ˙̃K = ˙̃V = ˙̃C = ˙̃υ = 0 in (31a) - (31d) allows us to solve for the steady-state boundary
conditions at t→ ∞ (see Appendix B for derivations):

K̃1 =
(

sK1

δ +θKn

)1/(1−α)

Ã1 (33a)

Ṽ1 =

[
sV 1

(
sK1

δ +θKn

)α/(1−α)(
µ

θV n

)1/λ
]θV

(33b)

C̃1 = (1− s1)Ỹ1 (33c)

υ̃1 =
sV 1Ỹ1

V̂1Ṽ1
=

βαŶ1

Ṽ1

(
1

r1 +V̂1− Ŷ1

)
(33d)

where

sK1 = s∗K, sV 1 =
βαV̂1

r1 +V̂1− Ŷ1
, ζ

Bountied
1 = 1 (33e)

Note that Ã1 = Ṽ 1/(εσ(1−α))
1 and Ỹ1 = Ã1−α

1 K̃α
1 due to z = 1, while ζ Bountied

1 = ζ [∞] = 1
in terms of (32f). On the bounty-regime balanced-growth path, we have K̂1 = Ĉ1 = Ŷ1 =

29Recall that we label a variable with subscript 0 (1) to indicate the variable associated with the balanced-
growth patent (bounty) regime.
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θKn, V̂1 = θV n, Â1 = θAn, and υ̂1 = b̂1 = (θK −θV )n, for these long-run growth rates are
regime-independent. The long-run interest rate is parametrized too, with r1 = r0 = r∗. As
(33e) indicates, on the balanced-growth path, the decentralized bounty regime always has
the same physical capital investment rate as the social planner optimum (i.e., sK1 = s∗K),
irrespective of the magnitude of the bounty rate of β . However, the R&D investment rate
for the bounty regime differs from the Pareto optimal level in general (i.e., sV 1 6= s∗V ).30

That is, unless the bounty rate, β , is set rightly, the bounty regime will not see a R&D
investment rate that matches the Pareto optimal level. This problem can be fixed, however.
Solving the equation, sV 1 = s∗V , based on (27d) and (33e), actually yields a bounty rate, β ∗,
that is Pareto optimal:

β
∗ =

λ

ε−1
·
(

r0 +V̂0− Ŷ0

r0 +(1−φ)V̂0− Ŷ0

)
(34)

Replacing β with β ∗ in (33e) therefore ensures that the resulting bounty regime has the
same R&D investment rate as the socially planner optimum. As such, with sK1 = s∗K and
sV 1 = s∗V , it must hold that K̃1 = K̃∗ and Ṽ1 and Ṽ ∗. Such a bounty regime fully removes
monopoly distortions and builds a distortion-free capital stock, while enabling an active
bounty claims market that delivers the right signal to allocate the Pareto optimal level of
social resources (labor) to accumulate knowledge in the new steady state.

5 Numerical Analysis: Transition Paths & Welfare

The regime switch cannot make the economy jump all the way to the new steady state,
however. The capital (K) and knowledge (V ) stocks can only evolve smoothly through
time. It is therefore critical to observe how the economy behaves in transitional periods,
before one can evaluate the cumulative welfare impact of replacing patents with bounties.
To this end, this section presents numerical analysis.

5.1 Calibration of the model and steady-state simulations

At the outset we use a set of benchmark parameters to calibrate the patent-regime model
to an innovating economy like the United States. These parameters, given in Table 1, are

30There is a short cut to deriving either sK1 or sV 1: setting m0 = 0 in (25a) yields sK1, while replacing
αm0V̂0 with βαV̂1 and letting T → ∞ in (25b) yields sV 1. In Appendix B, sK1 and sV 1 are derived from
steady-state equilibrium conditions.
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identical to or close to those used in previous calibration exercises.31

Table 1: Benchmark parameters for model calibration

Production: α = 0.36, σ = 1.80, µ = 0.21 φ = 0.50, λ = 0.65,

Preference: ρ = 0.04, γ = 1.0,

Depre. & Pop.: δ = 0.05, n = 0.015,

Patent Length: T = 20.

In calibration of the final goods production function, the parameter of α is set equal to
0.36, meaning that the gross capital income share in GDP is 36% and the labor share is 64%.
The parameter of σ is set equal to 1.80, which reflects the substitutability of capital goods
and must be less than 1/α , as noted earlier. The two parameters lead to a price elasticity
of demand for a typical capital good equal to 2.84 (= ε = 1/(1−σα)) and the markup
rate of about 1.54 (= η = 1

σα
) for patented capital goods.32 For the production function of

durable-good designs, the knowledge-spillover parameter, φ , is set equal to 0.50, which is
less than the upper bound of φ̄ = 1−λ/(εσ(1−α))≈ 0.80 (see Footnote 9); the research-
congestion parameter, λ , is set equal to 0.65; but the research productivity parameter, µ ,
requires more elaboration and is to be calibrated later. For the preference parameters, the
rate of time preference, ρ , is constant at 0.04 and the elasticity of intertemporal substitution
is assumed to be 1/γ = 1 (that is, γ = 1). Another three parameters are the rate of physical
capital depreciation set at δ = 0.05, the growth rate of labor supply (population) at n =
0.015, and the patent length at T = 20. The parameter of T = 20 means that any newly
granted patent expires in a finite period of twenty years, which is consistent with US and
WTO (World Trade Organization) patent policy.

Now let us return to calibration of the research productivity parameter, µ . First, the
above-calibrated production parameters (α , σ , φ , λ ) are sufficient to compute the three
growth kernels in terms of (23), which are θV = 2.1567 , θA = 0.6590, and θK = 1.6590.
The labor supply growth rate of n = 0.015 multiplied by these computed growth kernels
then deliver the following long-run growth rates of important macroeconomic variables for
the benchmark patent regime: V̂0 = 0.0324, Â0 = 0.0099, ˆT FP0 = (1−α)Â0 = 0.0063, and

31See, for instance, Jones and Williams (2000) and Eicher and Turnovsky (2001).
32In contrast, the markup rate for unpatented durables equals one. Given the share of patented durables less

than 50% (as will be shown in the benchmark case, the share is 47.6%), the industry-wide average markup
rate is about 1.26, which falls onto the empirical evidence range (see Norrbin 1993 and Basu 1996).
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K̂ = Ŷ = Ĉ = 0.0249. Second, since labor supply L is exogenous, we chose L[0] = L0 = 1.

Also, since there is only one remaining parameter, µ , to be calibrated, we have a degree
of freedom to choose either K0 or V0 at t = 0, and we chose V0 = 1, which implies Ṽ0 =
V0/LθV

0 = 1. Third, with Ṽ0 = 1 and all the already-calibrated parameters, we can solve
the eight equations of (24a) - (24d) and (25a) - (25d) for parameter µ and the other seven
variables (K̃0, Ã0, ζ̃0, C̃0, r0, sK0, sV 0). Using this procedure, parameter µ is calibrated at
0.21, as indicated in Table 1.

From the above calibration of the µ parameter, we have generated the initial patent-
regime steady state. Now with a complete set of benchmark parameters (1), we can also
solve (33a) - (33e) and (34) for the Pareto optimal steady state under an intertemporal
bounty regime that implements the Pareto-optimal bounty rate. The steady state results for
the two regimes are summarized in Table 2 and analyzed as follows:

First, for the decentralized bounty-regime economy to mimic the Pareto optimum, the
required optimal bounty rate is set at β ∗ = 0.49. That is, for each $1.00 sales in a year
of a typical bountied durable under marginal cost pricing, the government pays a bounty
flow of about 49 cents annually to the bounty-claim holder. The resulting annual aggregate
bounty flows (B) account for 18% of GDP (= Y ), which is funded by a lump-sum tax. In
contrast, under the patent regime with a markup rate (η) of 1.54, the patent holder receives
a profit margin of 54 cents from each $1.54 sales of a patented durable. Such patent-created
monopoly profits (Π) account for about 4% of GDP.

Second, the steady-state of the benchmark patent regime pretty much matches the
United States macroeconomic features including the R&D intensity (sV 0) of about 3%, the
physical capital investment rate (sK0) of 24%, the consumption/GDP ratio (C̃0/Ỹ0) of 73%
(= 1− sK0− sV 0), the capital/output ratio (K̃0/Ỹ0) of 3.24, in addition to the real interest
rate r and long-run growth rates of GDP and TFP (see Remarks of Table 2). The knowl-
edge/output ratio (Ṽ0/Ỹ0) is 0.53. Empirically, this ratio is not precisely available. Under
the patent regime, 48% of durable goods firms are patented (ζ0 ≈ 0.48) and the resulting
monopoly-induced technical distortion makes TFP about 2% below its potential level, as
implied by z0 ≈ 0.98.

Third, the regime switch removes monopoly distortions and optimizes the allocation
of resources. This allows the economy to attain the Pareto optimum in the long-run. As
the figures indicate, the economy becomes much more relatively intensive in both capital
and knowledge under the bounty regime. The stock of scale-adjusted capital (K̃) rises from
6.07 to17.05. Even more significant is a remarkable increase in the stock of scale-adjusted
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knowledge (Ṽ ) from 1.00 to 16.66. As a result, the regime switch raises the capital/output
ratio from 3.24 to 3.60 and the knowledge/output ratio sharply from 0.53 to 3.43. This
explains why the regime switch generates a long-run consumption gain of about 124% by
comparing C̃1≈ 3.06 to C̃0≈ 1.36. A drop of the consumption/GDP ratio from 0.73 to 0.63
is, in fact, indispensable, since the bounty regime requires more foregone consumption to
establish a more knowledge-intensive, more capital-intensive economy.

Table 2: Steady states of patent and Pareto-optimal bounty regimes

Patent Regime Steady State
(benchmark)

Bounty Regime Steady State

K̃0 6.07 K̃1 17.51

Ṽ0 1.00 Ṽ1 16.66

Ỹ0 1.87 Ỹ1 4.86

C̃0 1.36 C̃1 3.06

υ̃0 1.72 υ̃1 0.90

sK0 0.24 sK1 0.27

sV 0 0.0297 sV 1 0.0999

C̃0/Ỹ0 = C0/Y0 0.73 C̃1/Ỹ1 = C1/Y1 0.63

K̃0/Ỹ0 = K0/Y0 3.24 K̃1/Ỹ1 = K1/Y1 3.60

Ṽ0/Ỹ0 0.53 Ṽ1/Ỹ1 3.43

z0 0.98 z1 1.00

ζ Patented
0 0.48 ζ Bountied

1 1.00

η−1 0.54 β = β
∗ 0.49

Π/Y = αm0 0.04 B/Y = αβ 0.18

Remarks: Independent of the regime change are the real interest of r0 = r1 ≈ 0.0499 and
the long-run growth rates: V̂0 = V̂1 ≈ 0.0324; K̂0 = Ŷ0 = Ĉ0 = K̂1 = Ŷ1 = Ĉ1 ≈ 0.025,

ˆT FP0 = ˆT FP1 ≈ 0.063. Computing Π/Y requires m0 = 0.1022. Figures are computed
using the benchmark parameters in Table 1.

In sum, the steady-state welfare improvement from the regime switch is enormous.
However, to present a complete welfare analysis, we must take transitional dynamics into
account. The next subsection is to trap how the dynamic system evolves in transition.
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Figure 2: Absolute errors of solving (31a) -(31d) with Python’s scikits.bvp_solver
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Remarks: ~ω ≡ [K̃, Ṽ , C̃, υ̃ ] for t ∈ [0,1000] and −1×10−10 < error < 1×10−10.

5.2 Dynamics in transition

Numerical solution The dynamic system of (31a) - (31d) calibrated by the benchmark
parameter set (Table 1) is found to display saddle path stability around its long-run station-
ary equilibrium, which refers to the bounty-regime steady state, [K̃1, Ṽ1, C̃1, υ̃1], shown
in Table 2. The regime switch from patents to the intertemporal bounty means a struc-
tural change taking place at t = 0. Computing the transitional dynamics should proceed by
trapping the calibrated model’s nonlinear stable manifold rather than its linearized model’s
local saddle path around the bounty-regime steady state. I used a Python boundary value
problem solver (scikits.bvp_solver 1.1) to solve the calibrated system of (31a) - (31d) for
the approximate solution ~ω = [K̃, Ṽ , C̃, υ̃ ].33 The calibrated system is defined on [0, ∞),

33scikits.bvp_solver (http://pypi.python.org/pypi/scikits.bvp_solver) is a Python package that wraps a For-
tran BVP_Solver based on Mono Implicit Runge Kutta methods; see Shampine et al. (2006). All compu-
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a semi-infinite time interval. To apply the Python bvp solver, I truncated it into a finite
time interval, [0, tmax], where tmax = 1000, and it turns out that one thousand years is long
enough for economy to work out all transitional effects.34 Indeed, the Python bvp solver
proved fast in just a few seconds and generated precise enough results. As Figure 2 indi-
cates, the approximate solution is precise to the extent that its absolute errors (or residuals)
are all less than 10−10 in absolute value.

Figure 3: Numerical solution of dynamic system (31a) - (31d)
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(d) Bounty claims price

The approximate solution is shown in Figure 3 including the transition paths of the
dynamic system’s two state variables (K̃, Ṽ ) and two jump variables (C̃, υ̃). The stocks of
capital K̃[t] and knowledge Ṽ [t] have continued to rise in transition until they both reached
their long-run steady state equilibrium, respectively. At the moment of the regime switch,

tations for the present paper are implemented using Python 2.7.3 on Mac OS 10.6.8. The Python code is
available from the author upon request. A Matlab code using bvp4c is also available.

34The boundary conditions at t → ∞ need to be approximately satisfied at tmax. If not, we must increase
the value of tmax until the errors are negligible.
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the consumption flow C̃ jumps down from C̃0 to C̃[0] and then starts to grow over time
toward a higher steady-state level. To the contrary, the price of the bounty claim υ̃ jumps
up from υ̃0 to υ̃ [0] and then starts to fall over time toward a lower steady-state level.

Figure 4: Transition paths: V̂ , T̃ FP, Ỹ , ζ , and B/Y
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Ỹ[∞]

Ỹ0
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The above-described solution allows to compute other variables’ trajectories. Figure
4 indicates that: (i) at the moment of the regime switch, the innovation rate V̂ ≡ V̇/V

jumps up remarkably from V̂0 to V̂ [0] and then drifts down smoothly in transition to the
same steady state level (V̂0 = V̂1 = θV n) (panel (a)); (ii) to a lesser degree, both total factor
productivity T̃ FP (= Ã1−α = Ṽ 1/(εσ)) and final output Ỹ jump up at t = 0, but unlike the
innovation rate, they both continue to rise in transition to their long-run steady state levels
(panels (b) & (c)); and (iii) driven by persistent innovation (V̂ [t] > 0), the bountied fraction
ζ of capital goods keeps rising all the way toward one (its long-run steady state level), while
the bounty/output ratio B/Y also keeps increasing in transition to a higher steady state ratio
equal to 0.18 – this ratio is greater than the patent-regime steady state profit/output ratio
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Figure 5: Transition paths: K̃
Ỹ

, Ṽ
Ỹ
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Π0/Y0 ≈ 0.04 (Table 2 or pane d)
Notably, the regime switch makes the economy transition to one much more inten-

sive in both capital and knowledge. Figure 5 indicates this feature: the capital/output and
knowledge/output ratios ( K̃

Ỹ
, Ṽ

Ỹ
) have trended upward over time remarkably to their new

steady state equilibrium, although these ratios experience a small drop at the moment of the
regime switch when final output Y jumps up slightly. All these transition paths described
above make intuitive sense: a more capital-intensive, more knowledge-intensive economy
must require the dual occurrences of short-run consumption sacrifices and bounty-claim
appreciation (compared to the initial patent value υ̃0) so as to draw more resources into
capital accumulation and R&D investment. The simulated bounty regime that implements
the Pareto bounty rate β ∗ can therefore raise the long-run productive capacity to sustain an
eventually higher level of consumption than does the initial patent regime.
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Figure 6: Transition paths: sK , sV , s, r, b̃
υ̃
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Market mechanism How does the decentralized market mechanism work to drive a
patent-regime economy initially in its steady state to transition to the Pareto optimal bounty-
regime balanced growth path, as characterized above by Figures 3 - 5? Ostensibly, this
involves a removal of all-patent created distortions and the initiating of the Pareto-optimal
bounty rate that fixes another two distortions stemming from the externalities of knowledge
spillovers and research congestion while also presenting research rewards strong enough to
strengthen an innovative sector. As such, at the moment of the regime switch, the mar-
ket for capital goods becomes perfectly competitive immediately and all durables sell at
marginal cost. This boosts market demand especially for those durables whose patents
have not yet expired and removes the patent-induced technical distortion on total factor
productivity (i.e., z0 jumps to z[0] = 1). This market mechanism explains why both total
factor productivity and GDP ( T̃ FP, Ỹ ) jump up at t = 0 (Figure 4 (b) & (c)), accompanied
by the capital /output ratio ( K̃

Ỹ
) and the knowledge/output ratio (Ṽ

Ỹ
) jumping down at the
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same time (Figure 5), given that K̃ and Ṽ are predetermined at any point in time.
Further, at the moment of the regime switch, the Pareto-optimal bounty rate β ∗ is strong

enough to reward technological innovation, thereby not only creating bounty claims more
valuable than patents (υ̃ jumps up at t = 0; Figure 3 (d)) in the asset market, but also gen-
erating a bounty flow relative to the value of a bounty claim, b̃

υ̃
, greater than the monopoly

profit flow relative to the value of a fresh patent, π̃

υ̃
(Figure 6 (d)). Thus, switching to the

bounty regime presents strong incentives to boost investment in both physical capital and
R&D, causing both sK and sV to jump up at t = 0 (Figure 6 (a)). The resulting strong de-
mands for foregone consumption therefore make the real interest rate r (Figure 6 (c)) and
the saving rate s (Figure 6 (b)) jump up, respectively, at the moment of the regime switch.
A more capital-intensive, more knowledge-intensive economy is then in the making in tran-
sition.

5.3 Welfare change in transition to the bounty-regime steady state

Using the numerical trajectory of consumption shown earlier in Figure 3 (c), one can com-
pute the welfare change for the regime switch from patents to an intertemporal bounty
that allows a decentralized economy to attain Pareto optimality in the long run. Following
Lucas (1987), the welfare change is the measure of Ω[t] that obeys 35

U [{(1+Ω[t])c[τ]Patent}tτ=0] = U [{c[τ]Bounty}tτ=0], 0≤ τ ≤ t < ∞ (35)

where {c[τ]Patent}t
τ=0 is a stream of per capita consumption for the time interval of [0, t]

under the steady-state patent regime and {c[τ]Bounty}t
τ=0 is the stream of per capita con-

sumption for the same time interval under the bounty regime. As such, starting from the
moment of the regime switch, Ω[t] measures a consumption gain for a time interval with
the length of duration equal to t, whereas Ω[∞] is the consumption gain for the entire semi-
infinite time interval, [0, ∞). For instance, if Ω[t] turns out to be positive, it means that
in time interval [0, t], the regime switch generates a welfare gain equivalent to a percent
(= Ω[t]×100%) increase from the patent-regime steady state.

Formulae for Ω Note that per capita consumption c[t] ≡ C[t]/L[t] can be written as
c[t] = C̃[t]L[t]θK−1 = C̃[t]L[t]θA = C̃[t]eθAn in terms of (23) and L[t] = ent . Now, given

35The same approach was used in King and Rebelo (1990), Ireland (1994), and Lin and Russo (1999).
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the initial steady state consumption of C̃0 and the bounty-regime transition path of C̃[t], one
can compute the welfare measure of Ω[t], t ∈ [0, ∞), based on the following formulae:

Ω[t] =


ψa[t]1/(1−γ)−1, with ψa[t] =

´ t
0 C̃[τ]1−γ e−(ρ−n−(1−γ)θAn)τ dτ´ t

0 C̃1−γ

0 e−(ρ−n−(1−γ)θAn)τ dτ
, γ 6= 1

eψb[t]−1, with ψb[t] =
´ t

0 log[C̃[τ]/C̃0]e−(ρ−n)τ dτ´ t
0 e−(ρ−n)τ dτ

, γ = 1

(36)

If one overlooked the transitional impacts by presuming that the economy jumps from the
initial patent-regime balanced-growth path directly to the new bounty-regime balanced-
growth path, then the bounty-regime scale-adjusted consumption C̃ would jump to C̃1 from
C̃0 at t = 0 and formulae (36) would reduce to

Ω[t] =
C̃1

C̃0
−1≡Ω, t ∈ [0, ∞), (37)

irrespective of whether γ 6= 1 or γ = 1.

Magnitudes of Ω[t], Ω[∞] and Ω From the forgoing transitional analysis, the time profile
of the consumption flow (Figure 3 (c)) must imply that that Ω[t]≤Ω[∞] < Ω for t ∈ [0, ∞).
Indeed, under the benchmark parameter set, Ω ≈ 1.24 implies that the welfare improve-
ment resulting from the regime switch is equivalent to a remarkable increase of 124% in
steady-state consumption. If one takes into account short-run consumption sacrifices in
transition, then the measure of Ω[∞] ≈ 0.2180 implies a consumption gain of 21.80%,
which remains impressive enough, though. Figure 7 demonstrates the transition path of
Ω[t] as the calibrated economy evolves toward a new balanced-growth path. As indicated,
the initial welfare loss from the regime switch appears significant: for the first year (t = 1),
this loss is about a 20% decrease in consumption, but it keeps diminishing over time. By
the time of t ≈ 35, the economy has fully recouped the losses of the earlier periods and
will eventually secure a net gain up to 21.80% in the long run (Ω[t] converges to 21.80 as
t→ ∞).

Robustness checks The dynamic system of (31a) - (31d) exhibits saddle-path stability.
This feature appears robust to parameter changes according to numerous experiments. The
welfare measure of Ω[∞], however, is sort of sensitive to the change in γ (intertemporal
substitution) and rather sensitive to the change in λ (research congestion). As shown in
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Figure 7: Changing welfare in transition based benchmark parameters including γ = 1
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Table 3, for instance, an increase in the value of γ from 1.00 (benchmark) to 2.00 causes
Ω[∞] to drop from 0.2180 to 0.1273 under the benchmark parameter of λ = 0.65. That is, if
the elasticity of intertemporal substitution in consumption (1/γ) is decreased from 1.00 to
0.5(= 1/2.00), the percent gain in consumption drops significantly from 21.80% to 12.73%
for the entire time horizon, although the steady-state consumption gain, measured by Ω,
appears quite insensitive to this parameter change. This is consistent with our economic
intuition: if future consumption is less substitutable for present consumption, the measure
of Ω[∞] must get smaller.

Even more sensitive is the measure of Ω[∞] with respect to parameter λ , which in-
versely reflects the extent of research congestion. For instance, given the benchmark pa-
rameter of γ = 1.00, a decrease in λ from 0.65 to 0.50 causes the measure of Ω[∞] to drop
sharply from 0.2180 to 0.0966 and the measure of Ω to fall from 1.24 to 0.64. Namely, if
the extent of research congestion is so significant that λ decreases to 0.50, the welfare im-
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provement resulting from the regime switch is reduced to a gain of 9.66% in consumption,
compared to the 21.80% gain under the benchmark parameter set. Regardless, the central
message of these numerical experiments maintains that an intertemporal bounty regime can
be a welfare-improving Pareto optimal alternative to the world’s patent system.

Table 3: Sensitivity analysis of parameters γ and λ on welfare change

γ
λ = 0.65∗ λ = 0.50

Ω Ω[∞] Ω Ω[∞]

2.00 1.12 0.1273 0.58 0.0668

1.50 1.18 0.1624 0.61 0.0792

1.00∗ 1.24 0.2180 0.64 0.0966

0.75 1.28 0.2582 0.65 0.1082

0.50 1.32 0.3109 0.67 0.1233

Remark: ∗ indicates a benchmark parameter.

6 Concluding Remarks

First-generation endogenous growth models feature the empirically implausible scale ef-
fects, implying a faster steady-state growth rate for a larger economy. The progression to
non-scale growth models removes the unwanted scale effects, but at the expense of raising
the dimensionality. The present paper is no exception. It has to deal with a four dimen-
sional dynamic system that governs the transitional dynamics when the initial patent regime
is switched to an intertemporal bounty regime that implements the Pareto optimal bounty
rate to reward technological innovation. This system consists of two state variables – cap-
ital & knowledge stocks – evolving at different paces and must be normalized into a sta-
tionary one using multiple normalization factors. Python’s boundary value problem solver
(scikits.bvp_solver) proved fast and precise in solving the normalized dynamic system.

The paper has demonstrated that a decentralized market mechanism via the proposed in-
tertemporal bounty system can duplicate Pareto optimality, provided that the rate of bounty

38



is set rightly to internalize externalities. The paper can extend by allowing bounty claims
to be finitely lived. In general, infinitely-lived bounty claims and the associated Pareto
optimal bounty rate should not be the only institutional arrangement that can attain Pareto
optimality. Instead, there should be a stream of bounty terms (length) and rate combina-
tions that are Pareto efficient in the long run. So, what is the optimal mix for a bounty’s
length and rate? This question is important and will become complicated if the intertempo-
ral bounty must be financed by factor income taxes rather than the lump-sum tax presumed
for the present study. The socially optimal mix of bounty length and rate should be the
one that can minimize the tax-induced efficiency loss and short-run consumption sacrifices
needed to enable the economy to evolve toward Pareto optimality in the long run.
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Appendix

A Patent regime’s balanced growth paths

Along a balanced-growth path, every variable grows at a constant rate, including zero
growth. Such steady-state growth rates (V̂0 ≡ V̇0

V0
, Â0 ≡ Ȧ0

A0
, K̂0 ≡ K̇0

K0
and Ŷ0 ≡ Ẏ0

Y0
) can

be obtained by solving the four equations system:

Ŷ0− K̂0 = 0 (A.1a)

(φ −1)V̂0 +λŶ0 = 0 (A.1b)

Ŷ0− (1−α)Â0−αK̂0 = (1−α)n (A.1c)

Â0−
1

εσ(1−α)
V̂0 = 0 (A.1d)
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These equations result from (21a), (21b), (18), and the definition of A. For instance, (21a)
implies Ŷ0 = K̂0 = Ĉ0. Solving (A.1a) - (A.1d) yields (22a) - (22c). From (14) and (8b), the
patent price equation is given by υ = sVY/V̇ = sVY/(V̂V ). Along a balanced-growth path,
both sV and V̂ are stationary. Thus, differentiating the patent price equation yields

υ̂0 ≡
υ̇0

υ0
= Ŷ0−V̂0 = (θK−θV )n (A.2)

Derivations of the remaining stationary variables are in order. First, from the Euler condi-
tion (3) and using the growth kernel θA, the steady-state interest rate is given by

r0 = ρ + γθAn (A.3)

Next, from (20b), the steady-state capital/output ratio is given below

K0

Y0
=

α(1−m0)
r0 +δ

(A.4)

This result and (8a) combine to imply the steady-state capital investment rate,

sK0 =
α(1−m0)

r0 +δ
(δ +θKn) (A.5)

Recall that Π denotes aggregate profit flows and π = Π/(ζV ) measures a patented firm’s
profit flow. Using (20a) and (13) yields the steady-state price of a newly issued patent,

υ0[t] =
αm0Y0[t]
ζ0V0[t]

(
1− e−(r0−Ŷ0+V̂0)T

r0− Ŷ0 +V̂0)

)
, or υ̃0 =

αm0Ỹ0

ζ0Ṽ0

(
1− e−(r0−Ŷ0+V̂0)T

r0− Ŷ0 +V̂0)

)
(A.6)

where υ̃0 = υ0[t]/L[t]θK−θV , Ỹ0 = Y0[t]/L[t]θK , and Ṽ0 = V0[t]/L[t]θV are constant on a
balanced-growth path. Also, with ζ̇0 = 0 and V̂ = V̂p = V̂np = θV n in the steady state,
either (16a) or (16b) implies the equilibrium patented goods fraction,

ζ0 = 1− e−V̂0T (A.7)

The R&D equilibrium condition (14) requires ξ [t]υ [t] = 1 at any instant, which implies
υ [t]V̇ [t] = sV [t]Y [t] in terms of (8b). Along a balanced growth, we therefore have sV 0 =
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υ0V̂0V0/Y0, which, together with (A.6), implies

sV 0 = V̂0

(
αm0

ζ0

)(
1− e−(r0−Ŷ0+V̂0)T

r0− Ŷ0 +V̂0

)
(A.8)

Lastly, the two stock variables (K, V ) are non-stationary. Using these scale-adjusted
quantities, K̃ ≡ K/LθK , Ỹ ≡ Y/LθK , and Ã = A/LθA , we can transform the final goods
production function (18) into its intensive form, Ỹ = zÃ1−α K̃α , and the motion of capital
accumulation (12) into ˙̃K ≡ dK̃

dt = sKỸ − (δ +θKn)K̃. Setting ˙̃K = 0 then yields the steady
state scale-adjusted stock of capital,

K̃0 = Ã0

(
z0sK0

δ +θKn

)1/(1−α)

, (A.9)

On a balanced-growth path, the stock of knowledge capital V keeps growing at a rate equal
to θV n. But we can normalize V to Ṽ ≡V/LθV . Then dividing each side of the innovation
equation (21b) by V0 while replacing V0 and Y0 with Ṽ0LθV and Ỹ0LθK in this equation, we
obtain

V̇0

V0
= θV n = µṼ φ−1

0 (sV 0Ỹ0)λ L(φ−1)θV +λθK (A.10)

where term L(φ−1)θV +λθK can drop out due to (φ −1)θV +λθK = 0 (see (23)). Now using
Ỹ0 = z0Ã1−α

0 K̃α
0 , Ã0 = Ṽ 1/(εσ(1−α))

0 , and result (A.9), we can easily solve (A.10) for the
steady state scale-adjusted stock of knowledge, which is given in (24b).

B Steady state of the normalized dynamic system

First, setting ˙̃K = 0 in (29a) and using (32a) yield the stationary equilibrium of K̃,

K̃1 =
(

sK

δ +θKn

)1/(1−α)

Ã1 (B.1)

Second, setting ˙̃K = 0 in (29a) and using (32e) yield the equilibrium capital investment
rate,

sK1 = (δ +θKn)
K̃1

Ỹ1
= (δ +θKn)

(
α

r1 +δ

)
(B.2)

Third, setting ˙̃V = 0 in (31b) yields (sV 1Ỹ1)λ = θV n
µṼ φ−1

1
and (32d) implies (sV 1Ỹ1)1−λ =
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µυ̃1Ṽ φ

1 . Combining these two equations yields the equilibrium level of R&D,

sV 1Ỹ1 = υ̃1Ṽ1θV n (B.3)

Fourth, replacing b̃ with (32b) and setting ˙̃υ = 0 in (31d), we obtain

r1−βα
Ỹ1

υ̃1Ṽ1
= (θK−θV )n (B.4)

Then replacing υ̃1Ṽ1 in (B.4) with sV 1Ỹ1/θV n based on the result of (B.3), we obtain the
equilibrium R&D investment rate,

sV 1 =
βα ·θV n

r1− (θK−θV )n
(B.5)

where r1 = r0 = ρ + γθAn. Substituting sV 1into (B.3) yields (33d) in the text.
Fifth, using Ỹ = Ã1−α K̃α and (B.1), we can rewrite (sV 1Ỹ1)λ = θV n

µṼ φ−1
1

(from step 3) as

sλ
V 1

(
sK1

δ +θKn

)λα/(1−α)

Ãλ
1 =

θV n

µṼ φ−1
1

(B.6)

Then replacing Ã1 with Ṽ 1/(εσ(1−α))
1 and collect the Ṽ1 terms in (B.6), we obtain (33b) in

the text.
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