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The �nancial crisis has shown that neither VAR nor simple DSGE macro-modelling is fully
ready to deal explicitly with the issue of �nancial frictions and stability that play an important
role in modern business cycle. In particular, DSGE models that incorporate �nancial frictions
could deal with the transmission mechanism of standard shocks changes and how monetary policy
is a¤ected by the presence of frictions, as well as with optimal macroprudential policies and the
impact of capital requirements. In this paper, we conduct a comparative empirical analysis of the
out-of-sample predictive performance of simple and hybrid DSGE models against standard VARs,
Bayesian VARs and Factor Augmented VARs, using datasets from the US economy. We employ
advanced Bayesian techniques in estimating and forecasting the models. From a modelling point
of view we focus on the interaction of frictions both at �rms� level and in the banking sector in
order to examine the transmission mechanism of the shocks and to re�ect on the response of the
monetary policy to increases in interest rate spreads, especially after the �nancial crisis. Overall,
in this study a �rst attempt is made to �nd macro-�nancial models which are able to re�ect reality
better.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are widely used among central banks and in-
stitutions as well as in the academia in order to test alternative monetary, �scal and macroprudential
policies under di¤erent scenarios. However, the �nancial crisis shows that the workhorse of contempo-
rary DSGE modelling is not fully ready to deal explicitly with the issue of credit frictions and �nancial
stability, which play an important role in modern business cycle. In recent times there have been some
e¤orts to model �nancial factors: Goodfriend and McCallum (2007), Christiano, Motto and Rostagno
(2010), Curdía and Woodford (2010), Gerali, Neri, Sessa and Signoretti (2010), Gertler and Kiyotaki
(2010) and Gertler and Karadi (2011) constitute some promising attempts to study the e¤ects of �-
nancial intermediation on business cycle �uctuations and policy design. In particular, DSGE models
with �nancial frictions could deal with many issues, such as: (i) the e¤ect of �nancial shocks on real
variables, (ii) how the transmission mechanism of �standard shocks�changes in presence of imperfect
capital markets (iii) how optimal monetary policy is a¤ected by the presence of �nancial frictions
and (iv) optimal macroprudential policies and the impact of capital requirements. In the literature
there are three main strands of research on �nancial frictions: (i) �nancial frictions at the level of
�rms, following the seminal contribution of Bernanke et al. (1999) (BGG), (ii) frictions at the level of
households in the form of collateral constraint introduced by Kiyotaki and Moore (1997) and Iacoviello
(2005) and (iii) frictions at the level of �nancial intermediaries as in Gertler and Karadi (2011). These
di¤erent modelling techniques capture the problem of asymmetric information between borrowers and
lenders, which leads to a constraint in the borrowers�ability to obtain credit.
The dynamic stochastic general equilibrium models appear to be particularly suited for evaluating

the consequences of alternative macroeconomic policies, as shown in the works of Smets and Wouters
(2003, 2004), Del Negro and Schorfheide (2004), Adolfson et al. (2008) and Christiano et al. (2005).
However, the calibrated dynamic stochastic general equilibrium (DSGE) models face many important
challenges such as the fragility of parameter estimates, statistical �t and the weak reliability of policy
predictions as reported in Stock and Watson (2001), Ireland (2004) and Schorfheide (2010). In recent
years Bayesian estimation of DSGE models has become popular for many reasons, mainly because it is
a system-based estimation approach that o¤ers the advantage of incorporating assumptions about the
parameters based on economic theory. Recently, increasing e¤orts have been undertaken to use DSGE
models for forecasting. DSGE models were not considered as forecasting tools until the works of Smets
and Wouters (2003, 2004) on the predictability of DSGE models compared to alternative non-structural
models. In the macro-econometric literature, hybrid or mixture DSGE models have become popular for
dealing with some of the model misspeci�cations as well as the trade-o¤ between theoretical coherence
and empirical �t (Schorfheide, 2010). They are categorized in additive hybrid models and hierarchical
hybrid models. The hybrid models provide a complete analysis of the data law of motion and better
capture the dynamic properties of the DSGE models. In the recent literature, di¤erent attempts of
hybrid models have been introduced for solving, estimating and forecasting with DSGEs. Sargent
(1989) and Altug (1989) proposed augmenting a DSGE model with measurement error terms that
follow a �rst order autoregressive process, known as the DSGE-AR approach. Ireland (2004) proposed
a method that is similar to the DSGE-AR, but imposing no restriction on the measurement errors,
assuming that residuals follow a �rst-order vector autoregression (DSGE-AR à l�Ireland). A di¤erent
approach called DSGE-VAR was proposed by Del Negro and Schorfheide (2004) and was based on the
works DeJong et al. (1996) and Ingram and Whiteman (1994). The main idea behind the DSGE-VAR
is the use of the VAR representation as an econometric tool for empirical validation, combining prior
information derived from the DSGE model in estimation. However, it has several problems. One of the
main problems in �nding a statistical representation for the data by using a VAR, is over�tting due to
the inclusion of too many lags and too many variables, some of which may be insigni�cant. The problem
of over�tting results in multicollinearity and loss of degrees of freedom, leading to ine¢ cient estimates
and large out-of-sample forecasting errors. It is possible to overcome this problem by using the well-
known "Minnesota" priors (Doan et al., 1984). The use of "Minnesota" priors has been proposed
to shrink the parameters space and thus overcome the curse of dimensionality. Following this idea in
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combining the DSGE model information and the VAR representation, two alternative econometric tools
have been also introduced: the DSGE-FAVAR (Consolo et al., 2009) and the Augmented VAR-DSGE
model (Fernández-de-Córdoba and Torres, 2010). The main idea behind the Factor Augmented DSGE
(DSGE-FAVAR) is the use of factors to improve the statistical identi�cation in validating the models.
Consequently, the VAR representation is replaced by a FAVAR model as the statistical benchmark.
In this work, we conduct an exhaustive empirical exercise that includes the comparison of the out-

of-sample predictive performance of estimated simple and hybrid DSGE models with that of standard
VARs, Bayesian VARs and Factor Augmented VARs as well as DSGE-VAR and Factor Augmented
DSGE models estimated on the same data set for the US economy. The DSGE model is obtained by
augmenting the small-scale model with �nancial frictions, following Christiano et al. (2009) and Del
Negro and Schorfheide (2012). We start considering the Smets-Wouters model with �nancial frictions
proposed by Del Negro and Schorfheide (2012). After the recent �nancial crisis, the spread is a key
variable measured as the annualized Moody�s Seasoned BAA corporate bond yield spread over the
10-Year Treasury note yield at constant maturity. As in Christiano, Motto and Rostagno (2009) we
include the spread to re�ect on the response of the monetary policy to increases in interest rate spreads.
The variety of estimation techniques employed makes it possible to compare estimations according to
di¤erent criteria: analyzing the posterior means of key parameters, calculating the marginal data
density, building Bayes Factors and forecasting comparison. The main purpose of this paper is to
compare di¤erent econometrics strategies in evaluating a DSGE economy, but mainly to stress the
importance of considering �nancial variables in particular for the US economy during and after the
recent �nancial crisis. We focus on many di¤erent speci�cations of the DSGE models, i.e., the simple
DSGE, the DSGE-VAR and speci�cally on the Factor Augmented DSGE (DSGE-FAVAR) model with
emphasis on Bayesian estimation. We use time series data from 1960:Q4 to 2010:Q4 for the real GDP,
the harmonized Consumer Price Index, the nominal short-term federal funds interest rate and the
yield spread, and we produce their forecasts for the out-of-sample testing period 1997:Q1-2010:Q4.
The motivation comes from a group of recent papers that compares the forecasting performance of
DSGE against VAR models, e.g., Smets and Wouters (2004), Ireland (2004), Del Negro and Schorfheide
(2004), Del Negro et al. (2007), Adolfson et al. (2008), among others. The remainder of this paper
is organized as follows. Section 2 describes the standard and Bayesian VAR as well as the Factor
Augmented VAR model. In section 3 the proposed DSGE model with �nancial frictions is analyzed,
and the hybrid DSGE-VAR and DSGE-FAVAR models are described in detail. In section 4 the data
are described and the empirical results of the comparative forecasting evaluation are illustrated and
analyzed. Finally, section 5 concludes.

2 Vector Autoregressive Models

The standard unrestricted VAR as suggested by Sims (1980) has the following compact format

Yt = Xt�+U (1)

whereYt is a (T�n)matrix with rows Y 0t ; andX is a (T�k)matrix (k = 1+np; p =number of lags) with
rows X 0

t = [1; Y
0
t�1; :::; Y

0
t�p]. U is a (T �n) matrix with rows u0t, � is a (k � n) = [�0;�1;:::;�p]0, while

the one-step ahead forecast errors ut have a multivariate N(0;�u) conditional on past observations of
Y:

2.1 Bayesian VAR

One of main problems in using VAR models is that many parameters need to be estimated, although
some of them may be insigni�cant. Instead of eliminating longer lags, the BVAR imposes restrictions
on these coe¢ cients by assuming that they are more likely to be near zero than the coe¢ cients on
shorter lags (Litterman, 1981; Doan et al., 1984; Todd, 1984; Litterman, 1986; Spencer, 1993). Obvi-
ously, if there are strong e¤ects from less important variables, the data can counter this assumption.
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Usually, the restrictions are imposed by specifying normal prior distributions with zero means and
small standard deviations for all coe¢ cients, with a decreasing standard deviation as the lags increase.
The only exception is the coe¢ cient on a variable�s �rst lag that has a mean of unity. Litterman (1981)
used a di¤use prior for the constant. The means of the prior are popularly called the "Minnesota Pri-
ors" due to the development of the idea at the University of Minnesota and the Federal Reserve Bank
at Minneapolis1 . Formally speaking, these prior means can be written as follows

�i � N(1; �2�i) and �j � N(0; �2�j ); (2)

where �i denotes the coe¢ cients associated with the lagged dependent variables in each equation
of the VAR, while �j represents any other coe¢ cient. The prior variances �2�i and �

2
�j
specify the

uncertainty of the prior means, �i = 1 and �j = 0, respectively. In this study, we impose their prior
mean on the �rst own lag for variables in growth rate, such as a white noise setting (Del Negro and
Schorfheide 2004; Adolfson et al. 2007; Banbura et al. 2010). Instead, for level variables, we use
the classical Minnesota prior (Del Negro and Schorfheide 2004). The speci�cation of the standard
deviation of the distribution of the prior imposed on variable j in equation i at lag m, for all i; j and
m, denoted by S(i; j;m), is speci�ed as follows

S(i; j;m) = [w � g(m)� F (i; j)] �̂i
�̂j
; (3)

where

F (i; j) =

�
1 if i = j

kij otherwise, 0 � kij � 1
(4)

is the tightness of variable j in equation i relative to variable i and by increasing the interaction, i.e.
it is possible for the value of kij to loosen the prior (Dua and Ray, 1995). The ratio �̂i

�̂j
consists of

estimated standard errors of the univariate autoregression, for variables i and j. This ratio scales
the variables to account for di¤erences in the units of measurement, without taking into account the
magnitudes of the variables. The term w measures the standard deviation on the �rst lag, and also
indicates the overall tightness. A decrease in the value of w results in a tighter prior. The function
g(m) = m�d; d > 0 is the measurement of the tightness on lag m relative to lag 1, and is assumed to
have a harmonic shape with a decay of d, which tightens the prior on increasing lags. Following the
standard Minnesota prior settings, we choose the overall tightness (w) to be equal to 0.3, while the lag
decay (d) is 1 and the interaction parameter (kij) is set equal to 0.5.

2.2 Factor Augmented VAR

Recently, Stock and Watson (2002), Forni and Reichlin (1996, 1998) and Forni et al. (1999, 2000) have
shown that very large macroeconomic datasets can be properly modelled using dynamic factor models,
where the factors can be considered as an "exhaustive summary of the information" in the data.
The rationale underlying dynamic factor models is that the behavior of several variables is driven by
few common forces, the factors, plus idiosyncratic shocks. Hence, the factors-approach can be useful
in alleviating the omitted variable problem in empirical analysis using traditional small-scale models.
Bernanke and Boivin (2003) and Bernanke et al. (2005) utilized factors in the estimation of VAR to

1The basic principle behind the "Minnesota" prior is that all equations are centered around a random walk with drift.
This idea has been modi�ed by Kadiyala and Karlsson (1997) and Sims and Zha (1998). In Ingram and Whiteman (1994),
a real business cycle model is used to generate a prior for a reduced form VAR, as a development of the "Minnesota"
priors procedure. Also, a prior is placed on the parameters of a simple linearized DSGE, which is then compared with a
Bayesian VAR in a forecasting exercise. Smets and Wouters (2003) extend this to medium scale New Keynesian models
used in policy analysis. This approach has the advantage of providing information about which behavioural mechanisms
produce forecast error or policy scenarios. However, it seems that it often fails to empirically �t compared to models
with no behavioural structure. In Del Negro and Schorfheide (2004) and Del Negro, Schorfheide, Smets and Wouters
(2007), a DSGE prior is also developed for a VAR.
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generate a more general speci�cation. Chudik and Pesaran (2011) illustrated how a VAR augmented
by factors could help in keeping the number of estimated parameters under control without loosing
relevant information.
Let Xt denote an N � 1 vector of economic time series and Yt a vector of M � 1 observable

macroeconomic variables which are a subset of Xt: In this context, most of the information contained
in Xt is captured by Ft, a k�1 vector of unobserved factors. The factors are interpreted as an addition
to the observed variables, as common forces driving the dynamics of the economy. The relation between
the "informational" time series Xt, the observed variables Yt and the factors Ft is represented by the
following dynamic factor model:

Xt = �
fF+�yYt + et (5)

where �f is a N � k matrix of factor loadings, �y is a N �M matrix of coe¢ cients that bridge the
observableYt and the macroeconomic dataset, and et is the vector ofN�1 error terms. These terms are
mean zero, normal distributed, and uncorrelated with a small cross-correlation. In fact, the estimator
allows for some cross-correlation in et that must vanish as N goes to in�nity. This representation nests
also models where Xt depends on lagged values of the factors (Stock and Watson, 2002). For the
estimation of the FAVAR model equation (5), we follow the two-step principal components approach
proposed by Bernanke et al. (2005). In the �rst step factors are obtained from the observation
equation by imposing the orthogonality restriction F0F=T = I:This implies that F̂ =

p
T Ĝ, where Ĝ

are the eigenvectors corresponding to the K largest eigenvalues of XX
0
; sorted in descending order.

Stock and Watson (2002) showed that the factors can be consistently estimated by the �rst r principal
components of X, even in the presence of moderate changes in the loading matrix �. For this result to
hold it is important that the estimated number of factors, k, is larger or equal than the true number r:
Bai and Ng (2000) proposed a set of selection criteria to choose k that are generalizations of the BIC
and AIC criteria. In the second step, we estimate the FAVAR equation replacing Ft by F̂t: Following
Bernanke et al. (2005), Yt is removed from the space covered by the principal components. In a recent
paper, Boivin et al. (2009) impose the constraint that Yt is one of the common components in the �rst
step, guaranteeing that the estimated latent factors F̂t recover the common dynamics which are not
captured byYt. The authors, comparing the two methodologies, concluded that the results are similar.
As in Bernanke et al. (2005) we partition the matrix Xt in two categories of information variables:
slow-moving and fast-moving. Slow-moving variables (e.g., real variables such as wages or spending) do
not respond contemporaneously to unanticipated changes in monetary policy, while fast-moving (e.g.,
interest rates) respond contemporaneously to monetary shocks. We proceed to extracting two factors
from slow variables and one factor from fast variables and we call them respectively "slow factors"
and "fast factor". As suggested by Bai and Ng (2000) we use information criteria to determine the
number of factors but, as they are not so decisive, we limit the number of factors to three (two slows
and one fast) to strike a balance between the variance of the original series explained by the principal
components and the di¤erence in the parameterization of the VAR and the FAVAR. It is also worth
noting that the factors are not uniquely identi�ed, but this is not a problem in our context because
we will not attempt a structural interpretation of the estimated factors. Finally, having determined
the number of factors, we specify a Factor Augmented VAR by considering only one-lag of the factors
according to BIC criterion. The potential identi�cation of the macroeconomic shocks can be performed
according to Bernanke et al. (2005) using the Cholesky decomposition.

3 DSGE model with �nancial frictions

The model proposed is a simple DSGE model obtained as a special case of Smets and Wouters (2007)
model. We augment the small scale DSGE model by �nancial frictions as shown in Del Negro and
Schorfheide (2012), following the work of Bernanke et al. (1999) and Christiano et al. (2009). We
maintain a simpli�ed version of capital to introduce the concept of �nancial friction with a small scale
DSGE model. We follow the approach proposed by Del Negro and Schorfheide (2012), in that we
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detrend the non-stationary model variables by a stochastic trend rather than a determinist trend.
Del Negro and Schorfheide (2012) propose this approach to express almost all equilibrium conditions
in a way that encompasses both the trend-stationary total factor productivity process in Smets and
Wouters (2007) as well as when the technology follows a unit root process.
Let ~zt be the linearly detrended log productivity process which follows the autoregressive AR(1)

law of motion as exogenous shock:

~zt = �z~zt�1 + �z�z;t; (6)

where �z;t is iid standard normal. Equation (6) implies that the growth rate of the trend process
evolves according to:

zt = ln(
Zt
Zt�1

)�  = 1

1� � (�z � 1)ezt�1 + 1

1� ��z�z;t

since we detrend all non stationary variables by Zt = et+
1

1�� ezt ; where  is the steady state growth
rate of the economy. The consumption Euler equation takes the form:

ct = Et[ct+1 + zt+1]�
1

�c
(Rt � Et[�t+1]) (7)

where ct is consumption, Rt is the nominal interest rate, Rt � Et[�t+1] is the riskless return, �t is
in�ation and �c is the relative degree of risk aversion. In this model we do not assume investment,
consequently the capital accumulation process is given:

kt = kt�1 � zt + ���t�1 + ����;t

The arbitrage condition between the return to capital and the riskless rate is modi�ed as proposed
by Del Negro and Schorfheide (2012):

E[ eRkt+1 �Rt] = �sp(kt � nt) + e�!;t
and

eRkt � �t = rk�
rk� + (1� �)

rk� (8)

where rk� is the rental rate of capital of steady state, � is the depreciation rate, eRkt is the gross nominal
return on capital for entrepreneurs, nt is entrepreneurial equity which depends on equation (8) ande�!;t captures mean-preserving changes in the cross-sectional dispersion of ability across entrepreneurs
(Christiano et al., 2009) and follows an AR(1) process with parameters ��! and ��!: The �rst condition
determines the spread between the expected return on capital and the riskless rate (if �sp = 0, the
�nancial friction shocks are zero), while the second condition de�nes the return on capital. Capital
is subject to variable capacity utilization ut. The relationship between kt and the amount of capital
e¤ectively rented out to �rms kt is:

kt = ut � zt + kt�1
The optimality condition determining the rate of utilization is given by:

1�  
 

rkt = ut

where  captures the utilization costs in terms of foregone consumption. From the optimality condi-
tions of goods producers it follows that all �rms have the same capital-labor ratio:
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kt = wt � rkt + Lt
The real marginal costs are given by:

mct = wt + �Lt � �kt
where � is the income share of capital in the production.
The Phillips curve takes the form:

�t =
(1� �p�)(1� �p)
(1 + �p�)�p

mct +
�

1 + �p�
Et[�t+1] +

�p
1 + �p�

�t�1 (9)

where �p, and �p are the Calvo parameter and the degree of indexation. We assume that the central
bank only reacts to in�ation and output growth and that the monetary policy shock is iid. The policy
rule is:

Rt = �RRt�1 + (1� �R) [ 1�t +  2(yt � yt�1 + zt)] + �R�R;t (10)

where �R;t is iid standard normal. The aggregate resource constraint is:

yt = ct + gt + kt

where gt is an exogenous shock process, evolving such as an AR(1):

gt = �ggt�1 + �g�g;t

and �g;t is iid standard normal.
The previous set of equations can be recasted into a set of matrices (�0;�1; C;	;�) accordingly to

the de�nition of the vectors ~Zt and �t

�0 ~Zt = C + �1 ~Zt�1 +	�t +��t (11)

where �t+1, such that Et�t+1 � Et (yt+1 � Etyt+1) = 0, is the expectations error. As a solution to
(11), we obtain the following transition equation as a policy function

~Zt = T (�) ~Zt�1 +R (�) �t (12)

and in order to provide the mapping between the observable data and those computed as deviations
from the steady state of the model. The small-scale model is estimated based on four quarterly
macroeconomic time series: The measurement equations for real output growth, in�ation, short term
interest rate and spread:

� lnxt = ln  +�~xt + ~zt
� lnPt = ln�

� + ~�t

lnRat = 4
h
(ln r� + ln��) + ~Rt

i
SPt = SP� + 100Et[ eRkt+1 �Rt]

(13)

where all variables are measured in percent and ��; R� and SP� measure the steady state level of
in�ation, short term interest rate and spread. This can be also casted into matrices as

Yt = �0 (�) + �1 (�) ~Zt + vt (14)

where Yt = (� lnxt;� lnPt; lnRt; SPt)
0, vt = 0 and �0 and �1 are de�ned accordingly. For com-

pleteness, we write the matrices T , R, �0 and �1 as a function of the structural parameters in the
model, �. Such a formulation derives from the rational expectations solution. The evolution of the
variables of interest, Yt, is therefore determined by (12) and (14) which impose a set of restrictions
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across the parameters on the moving average (MA) representation. Given that the MA representation
can be very closely approximated by a �nite order VAR representation, Del Negro and Schorfheide
(2004) propose to evaluate the DSGE model by assessing the validity of the restrictions imposed by
such a model with respect to an unrestricted VAR representation. The choice of the variables to be
included in the VAR is however completely driven by those entering in the DSGE model regardless of
the statistical goodness of the unrestricted VAR.

3.1 Estimation of the linearized DSGE Model

Several econometric procedures have been proposed to parameterize and evaluate DSGE models. Kyd-
land and Prescott (1982) use calibration, Christiano and Eichenbaum (1992) consider the generalized
method of moments (GMM) estimation of equilibrium relationships, while Rotemberg and Woodford
(1997) and Christiano et al. (2005) use the minimum distance estimation based on the discrepancy
among VAR and DSGE model impulse response functions. Moreover the full-information likelihood-
based estimation is considered by Altug (1989), McGrattan (1994), Leeper and Sims (1994) and Kim
(2000). In last years, Bayesian estimation became very popular. According to An and Schorfheide
(2007) there are essentially three main characteristics. First, the Bayesian estimation is system-based
and �ts the solved DSGE model to a vector of aggregate time series, as opposed to the GMM which
is based on equilibrium relationships, such as the Euler equation for the consumption or the monetary
policy rule. Second, it is based on the likelihood function generated by the DSGE model rather than
the discrepancy between DSGE responses and VAR impulse responses. Third, prior distributions can
be used to incorporate additional information into the parameter estimation.
Priors distributions are important to estimate DSGE models. According to An and Schorfheide

(2007) priors might downweigh regions of the parameter space that are at odds with observations which
are not contained in the estimation sample. Priors could add curvature to a likelihood function that is
(nearly) �at for some parameters, given a strong in�uence to the shape of the posterior distribution.
Table 1 lists the prior distributions for the structural parameters of the DSGE model which are adopted
from Del Negro and Schorfheide (2012).

In the Bayesian framework, the likelihood function is reweighted by a prior density. The prior is useful
to add information which is contained in the estimation sample. Since priors are always subject to
revisions, the shift from prior to posterior distribution can be considered as an indicator of the di¤erent
sources of information. If the likelihood function peaks at a value that is at odds with the information
that has been used to construct the prior distribution, then the marginal data density (MDD) of the
DSGE model is de�ned as:

p(Y ) =

Z
L(�jY )p(�)d�

The marginal data density is the integral of the likelihood (L(�jY )) taken according to the prior
distribution (p(�)), that is the weighted average of likelihood where the weights are given by priors.
The MDD can be used to compare di¤erent modelsMi; p(Y jMi):We can rewrite the log-marginal data
density as:

ln(p(Y jM) =
TX
t=1

ln p(ytjY t�1;M) =

=
TX
t=1

ln

�Z
p(ytjY t�1; �;M)p(�jY t�1;M)d�

�
where ln(p(Y jM) can be interpreted as a predictive score (Good, 1952) and the model comparison
based on posterior odds captures the relative one-step-ahead predictive performance. To compute the
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Table 1: Prior Distributions for the DSGE model parameters

Name Density Mean Standard deviation
Policy Parameters

 1 Gamma 1.500 0.250
 2 Gamma 0.120 0.050
�R Beta 0.750 0.100

Normal Rigidities Parameters
&p Beta 0.500 0.100
Other Endogenous Propagation and Steady State Parameters
� Normal 0.300 0.050
�p Beta 0.500 0.150
r� Gamma 0.250 0.100
�� Gamma 0.620 0.100
 Normal 0.400 0.100
�c Normal 1.500 0.370
 Beta 0.50 0.150
�z Beta 0.500 0.200
�� Beta 0.500 0.200
�g Beta 0.500 0.200
�Z Inv.Gamma 0.100 2.000
�� Inv.Gamma 0.100 2.000
�g Inv.Gamma 0.875 0.430

Financial Frictions
SP � Gamma 2.000 0.100
��! Beta 0.750 0.150
&sp Beta 0.050 0.005
��! Inv.Gamma 0.050 4.000

Note: The model parameters are �xed in Del Negro and Schorfheide (2012): � = 0:025, and g� = 0:18: The

Inverse Gamma priors are of the form p(�j�; s) / ����1e��s
2=2�2 , where v=4 and s equals 0.2, 0.5, and 0.7,

respectively. Approximately 1.5% of the prior mass lies in the indeterminacy region of the parameter space.
The prior is truncated to restrict it to the determinacy region of the DSGE model, to avoid multiple
equilibria typical in rational expectations models .

MDD, we consider the Geweke (1999) modi�ed harmonic mean estimator. Harmonic mean estimators
are based on the identity:

1

p(Y )
=

Z
f(�)

L(�jY )p(�)p(�jY )d�

where f(�) has the property that
R
f(�)d� = 1 (Gelfand and Dey, 1994). Conditional on the choice of

f(�), an estimator is:

bpG(Y ) = " 1

nsim

nsimX
s=1

f(�(s))

L(�(s)jY )p(�(s))

#�1
(15)

where �(s) is drawn from the posterior p(�jY ): For a numerical approximation e¢ cient, f(�) should be
chosen so that the summands are of equal magnitude. Geweke (1999) proposed to use the density of
a truncated multivariate normal distribution:
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f(�) = ��1(2�)�
d
2 jV�j�

1
2 exp

�
�0:5(� � �)0V �1� (� � �)

�
�I
n
(� � �)0V �1� (� � �) � F�1

�2d
(��)

o
In the above � and V� are the posterior mean and covariance matrix computed from the output of the
posterior simulator, d is the dimension of the parameter vector, F�2d is the cumulative density function
of a �2 random variable with d degrees of freedom, and � 2 (0; 1). If the posterior of � is in fact normal
then the summands in eq. (15) are approximately constant.

3.2 The Del Negro-Schorfheide DSGE-VAR

Based on the study of Ingram and Whiteman (1994), Del Negro and Schorfheide (2004) designed the
DSGE-VAR approach to improve forecasting and monetary policy analysis with VARs. Del Negro-
Schorfheide�s (2004) approach is to use the DSGE model to build prior distributions for the VAR.
Basically, the estimation initializes with an unrestricted VAR of order p

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut (16)

In compact format:

Y = X�+U (17)

Y is a (T � n) matrix with rows Y 0t ; X is a (T � k) matrix (k = 1+ np; p =number of lags) with rows
X 0
t = [1; Y

0
t�1; :::; Y

0
t�p], U is a (T � n) matrix with rows u0t and � is a (k � n) = [�0;�1;:::;�p]0:The

one-step-ahead forecast errors ut have a multivariate normal distribution N(0;�u) conditional on past
observations of Y: The log-likelihood function of the data is a function of � and �u

L(Yj�;�u) / j�uj�
T
2 exp

�
�1
2
tr
�
��1u (Y0Y ��0X0Y �Y0X�+�0X0X�)

��
(18)

The prior distribution for the VAR parameters proposed by Del Negro and Schorfheide (2004) is
based on the statistical representation of the DSGE model given by a VAR approximation. Let ��xx;
��yy; �

�
xy and �

�
yx be the theoretical second-order moments of the variables Y and X implied by the

DSGE model, where

�� (�) = ���1xx (�) ��xy (�)
�� (�) = ��yy (�)� ��yx (�) ���1xx (�) ��xy (�)

(19)

The moments are the dummy observation priors used in the mixture model. These vectors can be
interpreted as the probability limits of the coe¢ cients in a VAR estimated on the arti�cial observations
generated by the DSGE model. Conditional on the vector of structural parameters in the DSGE model
�, the prior distributions for the VAR parameters p(�;�uj�) are of the Inverted-Wishart (IW) and
Normal forms

�u j� � IW ((�T��u (�) ; �T � k; n)
� j�u; � � N

�
�� (�) ;�u 
 (�T�XX (�))�1

� (20)

where the parameter � controls the degree of model misspeci�cation with respect to the VAR: for small
values of � the discrepancy between the VAR and the DSGE-VAR is large and a sizeable distance is
generated between the unrestricted VAR and DSGE estimators. Large values of � correspond to small
model misspeci�cation and for � =1 beliefs about DSGE misspeci�cation degenerate to a point mass
at zero. Bayesian estimation could be interpreted as estimation based on a sample in which data are
augmented by a hypothetical sample in which observations are generated by the DSGE model, the
so-called dummy prior observations (Theil and Goldberg, 1961; Ingram and Whiteman, 1994). Within
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this framework � determines the length of the hypothetical sample. The posterior distributions of the
VAR parameters are also of the Inverted-Wishart and Normal forms. Given the prior distribution,
posterior distributions are derived by the Bayes theorem

�u j�;Y � IW
�
(�+ 1)T �̂u;b (�) ; (�+ 1)T � k; n

�
(21)

� j�u; �;Y � N
�
�̂b (�) ;�u 
 [�T�XX (�) +X0X]

�1
�

(22)

�̂b (�) = (�T�XX (�) +X
0X)

�1
(�T�XY (�) +X

0Y) (23)

�̂u;b (�) =
1

(�+ 1)T

h
(�T�Y Y (�) +Y

0Y)� (�T�XY (�) +X0Y) �̂b (�)
i

(24)

where the matrices �̂b (�) and �̂u;b (�) have the interpretation of maximum likelihood estimates of
the VAR parameters based on the combined sample of actual observations and arti�cial observations
generated by the DSGE. Equations (21) and (22) show that the smaller � is; the closer the estimates are
to the OLS estimates of an unrestricted VAR. Instead, the higher � is, the closer the VAR estimates
will be tilted towards the parameters in the VAR approximation of the DSGE model (�̂b (�) and
�̂u;b (�)). In order to obtain a non-degenerate prior density (20), which is a necessary condition for
the existence of a well-de�ned Inverse-Wishart distribution and for computing meaningful marginal
likelihoods, � has to be greater than �MIN

�MIN � n+ k

T
; k = 1 + p� n

p = lags

n = endogenous variables.

Hence, the optimal lambda must be greater than or equal to the minimum lambda
�
�̂ � �MIN

�
.

Essentially, the DSGE-VAR tool allows the econometrician to draw posterior inferences about the
DSGE model parameters �: Del Negro and Schorfheide (2004) explain that the posterior estimate of
� has the interpretation of a minimum-distance estimator, where the discrepancy between the OLS
estimates of the unrestricted VAR parameters and the VAR representation of the DSGE model is a sort
of distance function. The estimated posterior of parameter vector � depends on the hyperparameter �.
When �! 0, in the posterior the parameters are not informative, so the DSGE model is of no use in
explaining the data. Unfortunately, the posteriors (22) and (21) do not have a closed form and we need
a numerical method to solve the problem. The posterior simulator used by Del Negro and Schorfheide
(2004) is the Markov Chain Monte Carlo Method and the algorithm used is the Metropolis-Hastings
acceptance method. This procedure generates a Markov Chain from the posterior distribution of �
and this Markov Chain is used for Monte Carlo simulations. The optimal � is given by maximizing
the log of the marginal data density

�̂ = argmax
�>�MIN

ln p(Yj�)

According to the optimal lambda
�
�̂
�
, a corresponding optimal mixture model is chosen. This hybrid

model is called DSGE-VAR
�
�̂
�
and �̂ is the weight of the priors. It can also be interpreted as the

restriction of the theoretical model on the actual data.
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3.3 Factor Augmented DSGE (DSGE-FAVAR)

Following Bernanke et al. (2005), a FAVAR benchmark for the evaluation of a DSGE model will
include a vector of observable variables and a small vector of unobserved factors extracted from a large
data-set of macroeconomic time series, that capture additional economic information relevant to model
the dynamics of the observables. In this study we implement the DSGE-FAVAR model of Consolo et
al. (2009). The statistical representation has the following speci�cation:

�
Yt

Ft

�
=

�
�11(L) �12(L)
�21(L) �22(L)

��
Yt�1
Ft�1

�
+

�
uYt
uFt

�
(25)

Yt = (� lnxt;� lnPt; lnRt; SPt)

Ft =
�
F s1t; F

s
2t; F

f
3t

�
where Yt are the observable variables included in the simple DSGE model and Ft is a small vector
of unobserved factors relevant to modelling the dynamics of Yt (F s1t; F

s
2t are the two slow factors and

F f3t is the fast factor). The system reduces to the standard VAR when �12(L) = 0. Importantly, and
di¤erently from Boivin and Giannoni (2006), this FAVAR is not interpreted as the reduced form of a
DSGE model at hand. In fact, in this case the restrictions implied by the DSGE model on a general
FAVAR are very di¢ cult to trace and model evaluation becomes even more di¢ cult to implement. A
very tightly parameterized theory model can have a very highly parameterized reduced form if one
is prepared to accept that the relevant theoretical concepts in the model are a combination of many
macroeconomic and �nancial variables. The DSGE-FAVAR is implemented in the same way as the
DSGE-VAR.

4 Empirical estimation

In this work we use quarterly data of the US economy from 1960:Q4 to 2010:Q4 with an out-of sample
period that spans 1997:Q1 to 2010:Q4. The data for real output growth comes from the Bureau
of Economic Analysis as Gross Domestic Product (GDP), while Consumer price index (CPI) data
(seasonally adjusted, 1982-1984=100) are derived from the Bureau of Labor Statistics. Both series are
taken in �rst di¤erence logarithmic transformation. The interest rate series (FR rate) are constructed as
in Clarida, Galì and Gertler (2000), namely for each quarter the interest rate is computed as the average
federal funds rate during the �rst month of the quarter, including business days only. In the estimation
of the DSGE model with �nancial frictions we measure the Spread as the annualized Moody�s Seasoned
BAA Corporate Bond Yield spread over the 10-Year Treasury Note Yield at Constant Maturity.
The complete dataset is used to extract factors for FAVAR and DSGE-FAVAR models. In order

to construct the FAVAR we extract factors from a balanced panel of 109 monthly and quarterly
macroeconomic and �nancial time series, following the dataset built by Stock and Watson (2002).
The dataset involves several measures of industrial production, interest rates, various price indices,
employment and other important macroeconomic and also �nancial variables. In this set-up, the
number of informational time series N is large (larger than time period T ) and must be greater than
the number of factors and observed variables in the FAVAR system (k + M � N). In the panel
data used, there are some variables in monthly format, which are transformed into a quarterly data
using end-of-period observations. All series have been transformed to induce stationarity. The series
are taken as levels or transformed into logarithms, �rst or second di¤erence (in level or logarithms)
according to series characteristics 2 . Following Bernanke et al. (2005), we partition the data into two
categories of information variables: slow and fast. Slow-moving variables (e.g., wages or spending)
do not respond contemporaneously to unanticipated changes in monetary policy, while fast-moving
variables (e.g., asset prices and interest rates) do respond contemporaneously to monetary shocks.

2The Appendix contains a detailed description of all series and their corresponding transformations.
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Then we extract two factors from the slow variables and one factor from the fast variables. The
methodology implemented to extract the factors is principal components. Stock-Watson (1998) showed
that factors can be consistently estimated by the �rst r principal components of a matrix X, even in
the presence of moderate changes in the loading matrix �. For this result to hold it is important that
the estimated number of factors k, is larger than or equal to the true number, r. Bai and Ng (2000)
propose a set of selection criteria to choose k that are generalizations of the BIC and AIC criteria.
As they suggest, we use information criteria to determine the number of factors but, as they are not
so decisive, we limit the number of factors to three to strike a balance between the variation in the
original series explained by the principal components and the di¤erence in the parameterization of the
VAR and the FAVAR. It is also worth noting that the factors are not uniquely identi�ed, but this is
not a problem in our context because we will not attempt a structural interpretation of the estimated
factors.
We compare the out-of-sample forecasting performance of VARmodels including BVAR and FAVAR

and of the DSGE class including DSGE-VAR, DSGE-FAVAR, in terms of the Root Mean Squared Fore-
cast Error (RMSE) for the optimal lag speci�cations (one to four) selected by the Schwartz Bayesian
information criterion (SIC). More importantly, we compare the log of the marginal data densities
(MDD). Based on the MDD a forecasting exercise is provided using a rolling procedure for h-steps-
ahead. The GDP, CPI, FR rate and SP forecasts are estimated for the out-of-sample testing period
1997:Q1 - 2010:Q4. The forecasting investigation for the quarterly US data is performed over the one-,
two-, three- and four-quarter-ahead horizon with a rolling estimation sample, based on the works of
Marcellino (2004) and Brüggemann et al. (2008) for datasets of quarterly frequency. In particular, the
models are re-estimated each quarter over the forecast horizon to update the estimate of the coe¢ -
cients, before producing the quarter-ahead forecasts. Finally, in order to evaluate the models�forecast
accuracy, we use the cross-model test statistic of Diebold and Mariano (1995). In particular, the
modi�ed Diebold and Mariano test (MDM) proposed by Harvey, Leybourne and Newbold (1997) is
applied. The application of the MDM test is required as the DM could be seriously over-sized when
the prediction horizon increases.
Firstly, we report estimation results for the log of Marginal Data Density (MDD). In particular,

following Del Negro and Schorfheide (2006) we adopt the MDD as a measure of model �t, which arises
naturally in the computation of posterior model odds. The prior distribution for the DSGE model
parameters (�), which are similar to the priors used by Del Negro and Schorfheide (2004), were already
illustrated in Table 1. This MDD measure has two dimensions: goodness of in-sample �t on the one
hand and a penalty for model complexity or degrees of freedom on the other hand. The DSGE-VAR
and the DSGE-FAVAR are estimated with a di¤erent number of lags on the sample 1960:Q4 -1996:Q4.
From 1997:Q1, we start our forecasting evaluation as implemented in Herbst and Schorfheide (2012).
The parameter � is chosen from a grid which is unbounded from above. In our empirical exercise, the
log of the MDD is computed over a discrete interval, ln p(Y j�;M): The minimum value, �min = n+k

T ,
is model dependent and is related to the existence of a well-de�ned Inverse-Wishart distribution. For
completeness, it is worth mentioning that � = 0 refers to the VAR and the FAVAR model with no prior
and it is not possible to compute the marginal likelihood in this particular case. Therefore, we can
show the log of MDD for any value of � larger than �min: Importantly, �min depends on the degrees
of freedom in the VAR or FAVAR and therefore, given estimation on the same number of available
observations, �min for a DSGE-FAVAR will always be larger than �min for a DSGE-VAR3 .

Table 2 shows the main results related to the DSGE-VAR implemented using a di¤erent number of
lags (from 1 up to 4). Each minimum � (�MIN ) is given by the features of the model (number

3 For the DSGE-VAR over the sample 1960:Q4-1996:Q4, the lambda grid is given by � =�
0, 0.05, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25,

0.30, 0.35, 0.40 0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 100

�
.

For the DSGE-FAVAR over the sample 1960:Q4-1996:Q4, the lambda grid is given by � =�
0, 0.08, 0.1, 0.12, 0.14,0.15, 0.2, 0.25,

0.3, 0,35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 100

�
:

In both lambda intervals, we consider the �MIN across lags from 1 to 4.
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Table 2: Optimal lambda for the DSGE-VAR and DGSE-FAVAR calculated with Markov Chain
Monte Carlo and Metropolis Hastings method

�MIN �̂ �̂� �MIN
�̂��MIN

�MIN
ln p(Y j�̂;M) Bayes Factor vs M1

DSGE-VAR(1) 0.06 0.15 0.09 1.5 -671.626 exp[�1:468]
DSGE-VAR(2) (M1) 0.09 0.15 0.06 0.66 -671.493 exp[�1:601]
DSGE-VAR(3) 0.11 0.20 0.09 0.82 -672.247 exp[�0:847]
DSGE-VAR(4) 0.14 0.25 0.11 0.79 -673.094 1

�MIN �̂ �̂� �MIN
�̂��MIN

�MIN
ln p(Y j�̂;M) Bayes Factor vs M2

DSGE-FAVAR(1) 0.08 0.10 0.02 0.25 -649.802 exp[15:078]
DSGE-FAVAR(2) 0.10 0.15 0.05 0.50 -642.442 exp[7:718]
DSGE-FAVAR(3) 0.12 0.20 0.08 0.66 -638.746 exp[4:022]
DSGE-FAVAR(4) (M2) 0.15 0.25 0.10 0.66 -634.724 1

of observations, number of endogenous variables, number of lags), and the optimal lambda (b�) is
calculated using the Markov Chain Monte Carlo with Metropolis Hastings acceptance method (with
110,000 replications, we discard the �rst 10,000 ones). ln p(Y jM) is the log-MDD of the DSGE model
speci�cations computed based on Geweke�s (1999) modi�ed harmonic mean estimator. The Bayes
factor (ratio of posterior odds to prior odds), as in An and Schorfheide (2007) helps us to understand the
improvement of the log-MDD of a speci�c model. We compare di¤erent models against the benchmark
model (M) maximizing the MDD. According to Table 2, we select the DSGE-VAR with 2 lags for the
full sample 1960-1996. We repeat our exercise for the DSGE-FAVAR. We select one lag for the factors
and we implement - as in case of the DSGE-VAR, - the DSGE-FAVAR with a di¤erent number lags
from 1 to 4. As Table 2 shows, the DSGE-FAVAR with 4 lags is chosen. In Table 3, we compare
the logarithm of the MDD of the hybrid models, DSGE-VAR and DSGE-FAVAR against the DSGE,
the Bayesian VAR, the VAR and the Factor Augmented VAR. The FAVAR with 4 lags shows the
maximum MDD.

Table 3: Log of the Marginal Data Density and Bayes Factor for the sample 1960:Q4-1996:Q4

lnp(Y jM)
DSGE -693.765
DSGE-VAR(2) -671.493
DSGE-FAVAR(4) -634.724
BVAR(1) -688.878
BVAR(2) -671.757
BVAR(3) -657.057
BVAR(4) -645.230
VAR(1) -673.906
VAR(2) -672.368
VAR(3) -672.636
VAR(4) -672.046
FAVAR(1) -649.580
FAVAR(2) -646.821
FAVAR(3) -642.736
FAVAR(4) -639.839

Table 4 reports the RMSE for all models and variables. An exhaustive exercise was conducted on
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VAR and BVAR models with one to four lags based on the Schwartz Bayesian information criterion
(SIC). The results provide evidence that in general four lags is the optimal number for these models.
Overall, the results from RMSE are in accordance with those from the MDD estimation. In particular,
for the GDP series the BVAR model provides the lowest RMSE for the one-, two- and three-steps
ahead while only for the four-quarters-ahead the FAVAR outperforms the other models. The next two
best performers are the FAVAR and DSGE-VAR models. The VAR, DSGE and DSGE-FAVAR models
present similar predictive performance and on average they generate the highest forecast errors. Next,
in case of the CPI variable, the DSGE model with �nancial frictions clearly outperforms all other
models for all steps-ahead. The simple VAR and the DSGE-FAVAR outrank with a few exceptions
the other model classes. The FAVAR model seems slightly better than BVAR, whilst the DSGE-VAR
provides with relatively high scores for the RMSE for all quarters-ahead. The results for the FF rate
series provide further evidence of the superiority of the DSGE with �nancial frictions. Speci�cally,
when comparing the RMSE scores of all model classes, the DSGE is consistently the best performer in
each forecasting horizon. The next lowest error is produced by the VAR model for all quarters-ahead.
The DSGE-FAVAR model is better than the other for all steps-ahead, while the BVAR provides with
the highest error. Finally, for the spread variable SP the BVAR model outperforms all models for the
�rst three steps-ahead, with the exception of the four-quarter forecast where the DSGE with �nancial
frictions provides the lowest RMSE. Overall, the simple VAR shows the worst performance, whilst the
DSGE-FAVAR underperforms relatively to the other models in one- and four-quarters ahead and the
simple DSGE in the other two forecasting horizons.

Table 4: Root Mean Square Forecast Error (RMSE) for GDP, CPI, FFR and SP

VAR BVAR FAVAR DSGE DSGE-VAR DSGE-FAVAR
GDP
1 0.734 0.729 0.730 0.739 0.731 0.737
2 0.743 0.734 0.735 0.755 0.738 0.747
3 0.739 0.731 0.732 0.754 0.734 0.743
4 0.737 0.737 0.735 0.754 0.741 0.745

CPI
1 0.870 0.892 0.885 0.856 0.898 0.870
2 0.875 0.893 0.886 0.836 0.897 0.875
3 0.876 0.897 0.890 0.829 0.902 0.875
4 0.882 0.888 0.883 0.811 0.891 0.879

FFR
1 3.753 3.992 3.954 3.694 3.977 3.821
2 3.725 4.009 3.962 3.515 3.968 3.791
3 3.845 4.127 4.085 3.594 4.105 3.909
4 4.034 4.178 4.146 3.775 4.180 4.057

SP
1 1.261 1.216 1.221 1.243 1.221 1.250
2 1.305 1.249 1.255 1.297 1.264 1.296
3 1.308 1.253 1.259 1.304 1.261 1.298
4 1.283 1.250 1.257 1.240 1.252 1.279

In the next step, the Modi�ed Diebold-Mariano (MDM) pairwise test is employed in order to eval-
uate the comparative forecast accuracy. The results are reported in Tables 5, 6, 7 and 8. The Modi�ed
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Table 5: Pairwise forecast comparison for the GDP with the Modi�ed Diebold-Mariano test

GDP PERIODS
1 2 3 4

VAR vs BVAR 1.090 1.946 1.305 0.058
VAR vs FAVAR 0.992 1.473 1.321 2.070
VAR vs DSGE 1.414 2.025 2.528 1.743
VAR vs DSGE-VAR 0.817 1.830 1.266 1.526
VAR vs DSGE-FAVAR 4.234 3.402 2.575 2.498
BVAR vs FAVAR 1.174 0.948 0.209 1.714
BVAR vs DSGE 2.298 3.212 2.265 1.778
BVAR vs DSGE-VAR 1.307 1.621 1.166 4.569
BVAR vs DSGE-FAVAR 1.663 2.373 1.577 2.835
FAVAR vs DSGE 2.273 3.222 2.254 2.119
FAVAR vs DSGE-VAR 0.974 1.425 1.098 2.844
FAVAR vs DSGE-FAVAR 1.599 2.389 1.591 2.573
DSGE vs DSGE-VAR 2.080 2.757 2.541 1.493
DSGE vs DSGE-FAVAR 0.625 1.279 1.964 0.862
DSGE-VAR vs DSGE-FAVAR 1.696 2.603 1.682 1.626

Notes: The Modi�ed Diebold-Mariano (1995) test is based on squared prediction errors and is distributed as
Student with (T-1 ) degrees of freedom, where T the out-of-sample sample period. The reported numbers are
the t -scores.

Diebold-Mariano test is based on the squared prediction errors. The MDM test statistics for GDP
lead to a diverse and variant assessment of di¤erential predictability, albeit many pairwise comparisons
produce a statistically signi�cant MDM score. It appears that no particular model consistently and
comparatively outperforms any of the other in all steps-ahead, while the RMSE results for the BVAR
are not consistently veri�ed at the 10%, 5% or 1% level in all pairwise comparisons. Hence, in some
pairs of the BVAR model (e.g., BVAR vs. DSGE in all steps-ahead, BVAR vs. DSGE-FAVAR for two-
and four-steps ahead etc.) di¤erential predictability is signi�cant at the 1% level, yet for most others
this is not corroborated by the results. Considering the other pairs, the VAR model produces a signif-
icant predictability compared to DSGE and DSGE-FAVAR, the FAVAR vs. DSGE and the DSGE vs.
DSGE-VAR and DSGE-FAVAR. The other examined cases in this study for GDP show weak or no
di¤erential predictability. On the contrary for the CPI series, the DSGE model with �nancial frictions
in any pair shows a distinctively signi�cant predictability at 1% (or 5%) in all step-ahead forecasts.
This is in accordance with the RMSE results and in favor of the superior predictability of the DSGE
model. In fact, most models for all forecast horizons appear to have a signi�cant pairwise predictability
at 5% or 1% level. The only exception is the pair VAR vs. DSGE-FAVAR for all steps-ahead and
the pairs VAR-BVAR and VAR-FAVAR for the long forecast horizon of four quarters and FAVAR
vs. DSGE-FAVAR also in four-steps-ahead. Thus, based on the MDD, RMSE and MDM results it
is evident that in case of CPI the DSGE set-up including �nancial frictions outperforms the other
models. Similar conclusions emerge from the investigation of the pairwise forecast comparison in case
of FF Rate series. In particular, the results are indicative of a consistent outranking classi�cation of
the DSGE model vs. other models for all forecasting horizons. The DSGE model with the spread
proxy produced the lowest RMSE in a previous examination and in conjunction with the MDM results
it is shown that it consistently outperforms any of the other models for all quarter-ahead forecasts,
namely the di¤erential predictability is strongly signi�cant at 1% level. Finally, in case of the SP vari-
able the MDM scores depict in the majority of cases a statistically signi�cant pairwise forecastability,
albeit with many exceptions especially for the longer horizon. More importantly, the BVAR model
that provided with the best performance in terms of the RMSE in this case - as opposed to the GDP
series - in all pairs presents a consistent assessment of di¤erential predictability i.e., comparatively
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outperforms any of the other in all steps-ahead. However, the examination of other pairs is not in-
dicative of statistically signi�cant predictability. For example, VAR does not outperform the DSGE
in any quarter-ahead forecast, the DSGE vs. DSGE-FAVAR pair is not producing signi�cant scores
even at the 10% level and the FAVAR is not comparatively di¤erent to the DSGE-FAVAR in almost
all steps-ahead.

Table 6: Pairwise forecast comparison for the CPI with the Modi�ed Diebold-Mariano test

CPI PERIODS
1 2 3 4

VAR vs BVAR 4.659 2.910 2.702 1.673
VAR vs FAVAR 4.090 2.245 2.282 0.488
VAR vs DSGE 1.943 3.309 2.866 2.856
VAR vs DSGE-VAR 4.906 3.034 2.803 1.943
VAR vs DSGE-FAVAR 0.031 0.364 0.461 1.584
BVAR vs FAVAR 5.375 4.662 4.182 4.056
BVAR vs DSGE 3.596 3.799 3.239 3.011
BVAR vs DSGE-VAR 5.554 2.694 3.136 2.173
BVAR vs DSGE-FAVAR 5.118 3.145 3.024 2.319
FAVAR vs DSGE 3.294 3.666 3.130 2.949
FAVAR vs DSGE-VAR 5.615 4.052 3.703 3.095
FAVAR vs DSGE-FAVAR 4.793 2.558 2.658 1.438
DSGE vs DSGE-VAR 3.847 3.812 3.298 3.045
DSGE vs DSGE-FAVAR 1.954 3.456 2.882 2.886
DSGE-VAR vs DSGE-FAVAR 5.313 3.271 3.090 2.393

Notes: As in Table 5

5 Conclusions and policy implications

The �nancial crisis revealed that the workhorse of contemporary DSGE modelling is not fully ready to
deal with the issue of credit frictions and �nancial stability, which play an important role in modern
business cycle theory. Recently there have been some e¤orts to model �nancial factors mainly by
Goodfriend and McCallum (2007), Christiano et al. (2010), Curdía and Woodford (2010), Gerali et al.
(2010), Gertler and Kiyotaki (2010) and Gertler and Karadi (2011). These constitute some promising
attempts to study the e¤ects of �nancial intermediation on business cycle �uctuations and policy design.
In particular, DSGE models with �nancial frictions could deal with many issues, such as the e¤ect of
�nancial shocks on real variables, how optimal monetary policy is a¤ected by the presence of �nancial
frictions and how macroprudential policies impact capital requirements. Moreover, new macroeconomic
research is drawn to the application of Bayesian statistics because DSGE models are often seen as
abstractions of actual economies. In this study we developed a DSGE model by augmenting the small-
scale model with �nancial frictions, following Christiano et al. (2009) and Del Negro and Schorfheide
(2012). In this way we investigated the response of the monetary policy to increases in interest rate
spreads. We included a comparative evaluation of the out-of-sample predictive performance of many
di¤erent speci�cations of estimated DSGE models and various classes of VAR models, using datasets
from the US economy. Simple and hybrid DSGE models were implemented, such as DSGE-VARs
and Factor Augmented DGSEs (DSGE-FAVAR), and tested against standard VARs, Bayesian VARs
and Factor Augmented VARs (FAVAR). The results were evaluated with the use of Bayesian method
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Table 7: Pairwise forecast comparison for the FF rate with the Modi�ed Diebold-Mariano test

FFR PERIODS
1 2 3 4

VAR vs BVAR 6.541 3.564 2.916 2.176
VAR vs FAVAR 6.485 3.464 2.863 2.022
VAR vs DSGE 4.972 4.216 3.558 2.663
VAR vs DSGE-VAR 6.407 3.641 2.924 2.324
VAR vs DSGE-FAVAR 6.427 4.059 3.147 2.029
BVAR vs FAVAR 6.802 4.116 3.229 2.842
BVAR vs DSGE 7.658 4.847 3.952 3.098
BVAR vs DSGE-VAR 4.450 2.651 2.045 0.387
BVAR vs DSGE-FAVAR 6.527 3.389 2.815 2.103
FAVAR vs DSGE 7.752 4.871 3.971 3.066
FAVAR vs DSGE-VAR 4.489 0.758 2.063 3.508
FAVAR vs DSGE-FAVAR 6.424 3.215 2.721 1.886
DSGE vs DSGE-VAR 7.419 4.910 3.948 3.136
DSGE vs DSGE-FAVAR 7.305 4.754 3.866 2.730
DSGE-VAR vs DSGE-FAVAR 6.374 3.475 2.832 2.280

Notes: As in Table 5

Table 8: Pairwise forecast comparison for the SP with the Modi�ed Diebold-Mariano test

SP PERIODS
1 2 3 4

VAR vs BVAR 6.645 4.102 3.177 2.875
VAR vs FAVAR 6.289 3.884 2.991 2.596
VAR vs DSGE 3.029 0.474 0.143 1.125
VAR vs DSGE-VAR 6.990 4.204 3.310 2.872
VAR vs DSGE-FAVAR 7.070 4.571 3.722 1.845
BVAR vs FAVAR 4.546 3.107 2.580 2.443
BVAR vs DSGE 4.131 2.683 2.053 0.323
BVAR vs DSGE-VAR 3.522 3.148 2.004 1.187
BVAR vs DSGE-FAVAR 6.496 3.963 3.052 2.731
FAVAR vs DSGE 3.981 2.624 1.991 0.562
FAVAR vs DSGE-VAR 0.357 1.816 0.398 1.508
FAVAR vs DSGE-FAVAR 6.007 3.658 2.801 2.333
DSGE vs DSGE-VAR 3.450 1.761 1.705 0.372
DSGE vs DSGE-FAVAR 1.351 0.065 0.293 1.034
DSGE-VAR vs DSGE-FAVAR 6.887 4.080 3.196 2.684

Notes: As in Table 5
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of the marginal data density as well as the root mean squared forecast error. The modi�ed Diebold
and Mariano test (MDM) proposed by Harvey, Leybourne and Newbold (1997) was also employed to
measure comparatively the di¤erential forecastability taking into account the serious over-sizedness
of the simple DM test when the prediction horizon increases. The best forecasting performance for
the CPI and FF rate series was consistently produced by the DSGE model with �nancial frictions for
all forecast horizons. For the GDP, the BVAR model provided with the most accurate forecasts up
to three-quarters-ahead, whilst the FAVAR showed better predictability only for the longest horizon.
Moreover, the BVAR model also outperformed all models in case of the SP �nancial variable with the
exception of the four-quarter forecast where again the DSGE with �nancial frictions provided with
the lowest RMSE. In general, FAVAR and DSGE-FAVAR were also good performers, whilst the other
speci�cations provided with less satisfying forecasting results.
This work is open to several extensions. From the modelling point of view it should be relevant

to focus on the interaction of frictions both at �rms level and in the banking sector, in order to
examine the transmission mechanism of the shocks and the accelerator/attenuator e¤ects in line with
the recent contribution by Rannenberg (2012). Moreover, the recent episodes of �nancial turmoil have
reinforced the idea that the business cycle might be, to some extent, the result of changes in agents�
expectations. Empirical evidence reported in Mankiw and Reis (2002), Orphanides and Williams
(2008) and Lansing (2009) is in favour of the fact that expectations concerning in�ation and other
economic variables display systematic mistakes that increase the stochastic volatility in the economy.
Further research is needed to �nd macro-�nancial models which are able to re�ect reality better. For
instance, featuring a more explicit modeling of �nancial intermediation or introducing occasionally
binding constraints seem interesting avenues.
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6 Appendix

The source of the data is the Federal Reserve Economic Data - Federal Reserve Bank of Saint Louis
(http://research.stlouisfed.org/fred2/). In order to construct the FAVAR we extract factors from
a balanced panel of 109 monthly and quarterly macroeconomic and �nancial time series, following
the dataset built by Stock and Watson (2002). The dataset involves several measures of industrial
production, interest rates, various price indices, employment and other important macroeconomic and
also �nancial variables. In the following Table, the �rst column has the series number, the second
the series acronym, the third the series description, the fourth the transformation codes and the �fth
column denotes a slow-moving variable with 1 and a fast-moving one with 0. The transformed series are
tested using the Box-Jenkins procedure and the Dickey-Fuller test. Following Bernanke et al. (2005),
the transformation codes are as follows: 1 - no transformation; 2 - �rst di¤erence; 4 - logarithm; 5 -
�rst di¤erence of logarithm; 6 - second di¤erence; 7 - second di¤erence of logarithm.

Date Long Description Tcode SlowCode
PAYEMS Total Nonfarm Payrolls: All Employees 5 1
DSPIC96 Real Disposable Personal Income 5 1
NAPM ISM Manufacturing: PMI Composite Index 1 1
UNRATE Civilian Unemployment Rate 1 1
INDPRO Industrial Production Index (Index 2007=100) 5 1
PCEPI Personal Consumption Expenditures: Chaintype Price Index (Index 2005=100) 5 1
PPIACO Producer Price Index: All Commodities (Index 1982=100) 5 1
FEDFUNDS Effective Federal Funds Rate 1 0
IPDCONGD Industrial Production: Durable Consumer Goods (Index 2007=100) 5 1
IPBUSEQ Industrial Production: Business Equipment (Index 2007=100) 5 1
IPMAT Industrial Production: Materials (Index 2007=100) 5 1
IPCONGD Industrial Production: Consumer Goods (Index 2007=100) 5 1
IPNCONGD Industrial Production: Nondurable Consumer Goods (Index 2007=100) 5 1
IPFINAL Industrial Production: Final Products (Market Group) (Index 2007=100) 5 1
UNEMPLOY Unemployed 5 1
EMRATIO Civilian EmploymentPopulation Ratio (%) 1 1
CE16OV Civilian Employment 5 1
CLF16OV Civilian Labor Force 5 1
CIVPART Civilian Participation Rate (%) 1 1
UEMP27OV Civilians Unemployed for 27 Weeks and Over 5 1
UEMPLT5 Civilians Unemployed  Less Than 5 Weeks 5 1
UEMP15OV Civilians Unemployed  15 Weeks & Over 5 1
UEMP15T26 Civilians Unemployed for 1526 Weeks 5 1
UEMP5TO14 Civilians Unemployed for 514 Weeks 5 1
MANEMP Employees on Nonfarm Payrolls: Manufacturing 5 1
USPRIV All Employees: Total Private Industries 5 1
USCONS All Employees: Construction 5 1
USFIRE All Employees: Financial Activities 5 1
USTRADE All Employees: Retail Trade 5 1
DMANEMP All Employees: Durable Goods Manufacturing 5 1
USGOOD All Employees: GoodsProducing Industries 5 1
USEHS All Employees: Education & Health Services 5 1
USLAH All Employees: Leisure & Hospitality 5 1
SRVPRD All Employees: ServiceProviding Industries 5 1
USINFO All Employees: Information Services 5 1
USPBS All Employees: Professional & Business Services 5 1
USTPU All Employees: Trade, Transportation & Utilities 5 1
NDMANEMP All Employees: Nondurable Goods Manufacturing 5 1
USMINE All Employees: Natural Resources & Mining 5 1
USWTRADE All Employees: Wholesale Trade 5 1
USSERV All Employees: Other Services 5 1
AHEMAN Average Hourly Earnings: Manufacturing 5 1
AHECONS Average Hourly Earnings: Construction (NSA) 5 1
PPIIDC Producer Price Index: Industrial Commodities (NSA) 5 1
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PPIFGS Producer Price Index: Finished Goods (Index 1982=100) 5 1
PPICPE Producer Price Index: Finished Goods: Capital Equipment (Index 1982=100) 5 1
PPICRM Producer Price Index: Crude Materials for Further Processing (Index 1982=100) 5 1
PPIITM Producer Price Index: Intermediate Materials: Supplies & Components (Index 1982=100) 5 1
PPIENG Producer Price Index: Fuels & Related Products & Power (Index 1982=100) 5 1
PPIFCG Producer Price Index: Finished Consumer Goods (Index 1982=100) 5 1
PFCGEF Producer Price Index: Finished Consumer Goods Excluding Foods (Index 1982=100) 5 1
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items (Index 1982=100) 5 1
CPIAUCNS Consumer Price Index for All Urban Consumers: All Items (Index 198284=100) 5 1
CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (Index 198284=100) 5 1
CPILFENS Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (NSA Index 1982=100) 5 1
CPIUFDNS Consumer Price Index for All Urban Consumers: Food (NSA Index 1982=100) 5 1
CPIENGNS Consumer Price Index for All Urban Consumers: Energy (NSA Index 1982=100) 5 1
CPIENGSL Consumer Price Index for All Urban Consumers: Energy  ( Index 19821984=100) 5 1
CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy (Index 19821984=100) 5 1
CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care (Index 19821984=100) 5 1
PPIFCF Producer Price Index: Finished Consumer Foods (Index 1982=100) 5 1
AAA Moody's Seasoned Aaa Corporate Bond Yield 1 0
BAA Moody's Seasoned Baa Corporate Bond Yield 1 0
M2SL M2 Money Stock 6 0
M2NS M2 Money Stock (NSA) 6 0
M1NS M1 Money Stock (NSA) 6 0
M3SL M3 Money Stock (DISCONTINUED SERIES) 6 0
GS5 5Year Treasury Constant Maturity Rate 1 0
GS10 10Year Treasury Constant Maturity Rate 1 0
GS1 1Year Treasury Constant Maturity Rate 1 0
GS3 3Year Treasury Constant Maturity Rate 1 0
TB3MS 3Month Treasury Bill: Secondary Market Rate 1 0
TB6MS 6Month Treasury Bill: Secondary Market Rate 1 0
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 5 0
PERMIT New Private Housing Units Authorized by Building Permits 5 0
HOUSTMW Housing Starts in Midwest Census Region 5 0
HOUSTW Housing Starts in West Census Region 5 0
HOUSTNE Housing Starts in Northeast Census Region 5 0
HOUSTS Housing Starts in South Census Region 5 0
PERMITS New Private Housing Units Authorized by Building Permits  South 5 0
PERMITMW New Private Housing Units Authorized by Building Permits  Midwest 5 0
PERMITW New Private Housing Units Authorized by Building Permits  West 5 0
PERMITNE New Private Housing Units Authorized by Building Permits  Northeast 5 0
PDI Personal Dividend Income 5 0
SPREAD1 3moFYFF 1 0
SPREAD2 6moFYFF 1 0
SPREAD3 1yrFYFF 1 0
SPREAD4 2yrFYFF 1 0
SPREAD5 3yrFYFF 1 0
SPREAD6 5yrFYFF 1 0
SPREAD7 7yrFYFF 1 0
SPREAD8 10yrFYFF 1 0
PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2005 Dollars) 5 1
UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments (Index 2005=100) 5 1
IPDNBS Nonfarm Business Sector: Implicit Price Deflator (Index 2005=100) 5 1
OUTNFB Nonfarm Business Sector: Output (Index 2005=100) 5 1
HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2005=100) 5 1
COMPNFB Nonfarm Business Sector: Compensation Per Hour (Index 2005=100) 5 1
ULCNFB Nonfarm Business Sector: Unit Labor Cost (Index 2005=100) 5 1
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour (Index 2005=100) 5 1
OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons (Index 2005=100) 5 1
OPHPBS Business Sector: Output Per Hour of All Persons (Index 2005=100) 5 1
ULCBS Business Sector: Unit Labor Cost (Index 2005=100) 5 1
RCPHBS Business Sector: Real Compensation Per Hour (Index 2005=100) 5 1
HCOMPBS Business Sector: Compensation Per Hour (Index 2005=100) 5 1
OUTBS Business Sector: Output (Ineex 2005=100) 5 1
HOABS Business Sector: Hours of All Persons (Index 2005=100) 5 1
IPDBS Business Sector: Implicit Price Deflator (Index 2005=100) 5 1
CP Corporate Profits After Tax 5 0
SP500 S&P 500 Index 5 0
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