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Abstract

In this paper we consider the entry and exit of firms in a Ramsey model
with capital and an endogenous labour supply. At the firm level, there is a fixed
cost combined with increasing marginal cost, which gives a standard U-shaped
cost curve with optimal firm size. The costs of entry (exit) are quadratic in the
flow of new firms. The number of firms becomes a second state variable and
the entry dynamics gives rise to a richer set of dynamics than in the standard
case: in particular, there is likely to be a hump shaped response of output to
a fiscal shock with maximum impact after impact and before steady-state is
reached. Output and capital per firm are also likely to be hump shaped.
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1 Introduction

Stephen Turnovsky developed the Ramsey (1928) continuous time representative
agent model to include an endogenous labour supply1 in order to explore the effects
of fiscal policy2 ( Brock and Turnovsky (1981), Turnovsky (1990), Turnovsky (1995),
Turnovsky and Sen (1991)). When applied to fiscal policy, this model is essentially
Ricardian in nature: for every government expenditure flow there is an equivalent tax
shadow in the form of current or future taxes. This is an income effect which serves
to reduce consumption (crowding out) and increase the labour supply (when leisure
is normal). If we look at the dynamics, we find that the impact on consumption is
greater in the short-run than the long-run: consumption falls a lot on impact and then
increases gradually to the new steady-state (this increasing pathway is determined by
the fact that the marginal product of capital exceeds the discount rate, but the gap is
diminishing as capital is accumulated). This ”overshooting” of consumption is also
present in the response of output: there is a big initial response, with output falling
to its new higher level. If we look at empirical studies of macroeconomic time-series
in the form of VARs, we find a different story3. The impulse-responses implied by
VARs indicate that output follows a hump shaped response: the maximum impact on
output is not on impact, but some time later (3-4 quarters) - see for example Mount-
ford and Uhlig (2009). This sort of response is ruled out in the standard Ramsey
model, which is clearly missing some vital ingredient. In this paper, we argue that if
we include a process of entry (and exit) then we can keep the basic structure of the
Ramsey model and move towards understanding the processes giving rise to the sorts
of behavior we find in the data as represented by empirical VARs. More specifically,
we find that output can have a hump-shaped response to a fiscal shock with the peak
effect being after some time. Furthermore, this is not a special case at all, but a
general (although not universal) feature. Whilst we do find that consumption can
have a non-monotonic path, this is more exceptional.

In this paper we analyze a continuous-time model of entry in which firms produce
output with capital and labour. The creation or destruction of firms (both flows)
is determined endogenously as in Das and Das (1996) and Datta and Dixon (2002):
the cost of entry (exit) is determined by the flow of firms into (out of) the market, so
that the equilibrium price of entry (exit) equals the net present value of incumbency.

1The model with an exogenous labour supply is often known as the Cass-Koopmans model after
Cass (1965) and Koopmans (1965) - see Takayama (1994) for a discussion and exposition.

2This mirrored what was also being done in the discrete time real business cycle approach,
although fiscal policy was not incorporated until Baxter and King (1993).

3Of course, the VAR methodology is inherently reduced form and in that sense it has proven very
problematic to uncover and differentiate between exogenous and endogenous fiscal shocks as well as
across shocks.
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The marginal cost of entry may vary with the flow due to a congestion effect involved
in setting up new firms. We use this to explore the response of the economy to fiscal
policy in terms of a permanent unanticipated change in government expenditure. We
find that the presence of an endogenous labour supply allows for a variety of local
dynamics. In particular, the stable eigenvalues can both be real or complex. With
real eigenvalues, the adjustment path of either or both capital and the number of
firms can be hump-shaped. With complex eigenvalues, the adjustment path of both
capital and the number of firms are oscillatory. However, when we analyze the effects
of fiscal policy, we find that only the number of firms can be non-monotonic. This
is because the ”initial position” also matters, and there is a linear relation between
the number of firms and the capital stock as Government expenditure varies which
restricts the dynamics to be monotonic for capital. However, whilst the dynamics of
consumption and capital are monotonic, we find that there can be a non-monotonic
”hump shaped” response of output and employment to fiscal policy, taking the form
an initial jump response, followed by a smooth hump shaped overshooting of the new
steady-state. Moreover, we find that in addition the impact effect of fiscal policy can
be greater then or less than the long-run effect. Hence the introduction of entry into
the Ramsey model enables a theoretical understanding of output and consumption
responses that are more in line with the empirical evidence than the classic Ramsey
model.

In the classic Ramsey model, all that matters for determining aggregate output
and productivity is the aggregate labour and capital: how it is organized at the
firm level does not matter. This approach is justified if there is constant returns
to scale at the firm level. However, in this paper we assume an explicit firm-level
technology which gives rise to the text-book U-shaped average cost with strictly
increasing marginal cost. In the long-run with zero-profits, the aggregate economy
will display constant returns in capital and labour4. However, in the short-run as
we move towards steady-state, output at the firm level will deviate from the efficient
minimum AC output. This is important, because it means that capacity5 utilization
and hence the marginal products of labour and capital will vary: for a given level of
capital, more firms means less capital per-firm which increases the marginal product
of capital. With entry, the dynamics of the number of firms can act to counteract
the effect of capital accumulation on reducing the marginal product of capital. It
is this crucial difference which enables the model in this paper to display behavior
which is more in line with the broad outline of the empirical data.

4Since zero-profits in the long-run means that the number of firms rises proportionately with
capital and labour, so firms remain at efficient scale with average and marginal cost equalized.

5Note that we use capacity utilisation in its standard sense to mean the level of actual output
relative to the reference level of efficient output. Some authors have used this to mean capital
utilisation, which has to do with the intensity of how capital is used.
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The model of entry we employ can be contrasted with the Melitz (2003) model
used in trade. In the Melitz model, the cost of entry is constant and does not depend
on the flow of entry. However, there is post-entry heterogeneity in the productivity
of firms, unlike in the Ramsey framework we adopt where all firms have access to the
same technology. Another important difference is that there are increasing returns
to scale at the firm level in the Melitz model, not the U-shaped average cost curves
in this paper. In our steady-state, all firms are efficient irrespective of the number of
firms: inefficiency occurs out of steady-state as (all) firms operate at an output above
or below efficient capacity. In the Melitz model, the steady state is not optimal in
efficiency terms: there is excess entry due to the monopolistic post-entry equilibrium,
and the model is incompatible with perfect competition. The entry model also differs
from Jaimovich and Floetotto (2008), where there are no sunk entry costs and there
is a zero profit condition that flow operating profits cover the flow overheads. As
in Yang and Heijdra (1993) and Linneman (2001), the elasticity of demand varies
due to the effect of market share on firm elasticity. Again, this is an essentially
monopolistic framework which is not generally efficient in equilibrium: in the absence
of love of variety, there will be excess entry and each firm has an increasing returns
to scale technology.

It should be stressed that we are providing a theoretical framework and not an
empirical model: we present numerical calibrations merely to illustrate the general
results. If we look at empirical DGSE models that are currently popular, they have
many ingredients that are absent in our theoretical model. In Smets and Wouters
(2003), Burnside et al. (2004), Christiano et al. (2005) there are a combination of
factors determining the dynamic response of policy: habit formation in consumption,
capital adjustment costs, capital utilization as well as new Keynesian price and wage
nominal rigidity. Indeed, as Woodford (2011) points out, the reaction to monetary
policy may be a crucial factor, something which is totally absent in our real model.
However, theory is still useful in providing a general understanding that calibrated
numerical models cannot (even when they appear to ”fit” the data). In particular,
we are able to show in our model that a hump shaped response of output is a general
(although not universal) feature that can be understood in terms of a phase diagram,
and is not just the outcome of particular sets of parameter values.

The outline of the paper is as follows. In section 2 we outline the basic model of
the consumer, firm and the entry process. In section 3 we determine the equilibrium
in the economy in terms of the social planner’s problem. In section 6.1 we analyze
the steady-state and present a graphical analysis of the long-run fiscal multiplier.
Section 5 provides a general analysis of the local dynamics. Section 6 then applies
the previous section to the dynamics of the economy in response to fiscal policy and
in particular non-monotonic trajectories in state and non-state variables. Section 6
concludes.
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2 The model

In this paper we model a perfectly competitive dynamic general equilibrium economy
with endogenous entry/exit of firms and accumulation of capital as a Social Planning
optimum. We will first lay out the model in terms of household preferences, firm
level and aggregate technology, and the costs of entry and exit. We will then derive
the optimality conditions for the first-best optimum.

In each instant, households consume and supply labour (C(t), L(t)), with the
intertemporal utility function defined by the flow utility and discount rate ρ > 0 :

Ū =

∫ ∞
0

U(C(t), L(t))e−ρtdt

Assumption 1. Representative Household Preferences. The instantaneous
utility function: is increasing in C, is decreasing in L, is additively separable and
concave in (C,L) (UC > 0, UL > 0, UCC < 0, ULL < 0, and UCL = 0); Inada
conditions on consumption and labour supply hold: lim

C→0+
UC = +∞, lim

C→+∞
UC = 0

lim
L→∞

UL = −∞, and lim
L→0+

UL = 0.

Output is produced by capital and labour which is distributed across a continuum
of firms i ∈ R+. At instant t, there is a measure n(t) such that i ∈ [0, n(t)] are
active (incumbent) and i > n(t) are inactive (potential entrants). An active firm
i ∈ [0, n(t)] incurs a fixed overhead cost and produces output y(i) according to the
following technology:

y(i, t) = AF (k(i, t), l(i, t))− φ

Assumption 2. Firm level technology. The active firm’s production function:
is increasing in k and l and is concave in (k, l) (Fk > 0, Fl > 0, Fkk < 0, Fll < 0,
Fkl ≥ 0, and FkkFll − F 2

lk > 0); it is homogeneous of degree ν, where ν ∈ (0, 1); and
standard Inada conditions hold. There is a (flow) overhead cost φ > 0.

Firms which are inactive produce no output, employ no labour and capital and
incur no overhead. Note that even if an active firm produces no output, it will still
incur the overhead6. Under assumption 2, the firm level technology corresponds to
the Marshallian U−shaped average cost curve with increasing marginal cost. As
outlined in Brito and Dixon (2009), the corresponding efficient level of production is:

ye =
φν

1− ν
(1)

6We do not impose the restriction that y(i, t) ≥ 0; for example, if the firm hires no labour or
capital, it will have to pay the overhead φ, which is a negative output corresponding to negative
profits. The only way it can avoid the overhead is by exiting the market.
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which is increasing in φ and ν, and independent of A.
Now, for a given measure of active firms n(t), production is maximized if aggregate

capital K(t) and labour L(t) are divided equally between the active firms, so that we
have

k(i, t) =
K(t)

n(t)
, l(i, t) =

L(t)

n(t)
.

Hence the aggregate output produced by active firms (dropping the time subscript):

Y =

∫ n

0

y(i)di = n

[
AF

(
K

n
,
L

n

)
− φ
]
, (2)

where Y = Y (K,L, n,A, φ) is the aggregate production function. Y is homogenous
of degree 1 in (K,L, n) and we have the following marginal products:

YK = YK(K
−
, L
+
, n
+

) = AFk

(
K

n
,
L

n

)
YL = YL(K

+
, L
−
, n
+

) = AFl

(
K

n
,
L

n

)
Yn = Yn(K

+
, L
+
, n
−
, A
+
, φ
−

) = (1− ν)AF

(
K

n
,
L

n

)
− φ

The derivatives are in appendix A. Because capital and labour are distributed
equally across firms, the marginal products of labour and capital at the aggregate
level are equal to the marginal products at the firm level.

The marginal product of n corresponds to the profit or surplus per firm, π = Yn:
total production less the cost of capital and labour when they are valued at their
marginal products, which can be positive or negative. An additional firm means that
capital and labour per firm are lower which raises the marginal products; however,
an additional overhead is also incurred. The marginal product of n is zero when
output per firm is equal to the efficient level (1). Hence zero profits corresponds
to an efficient scale of production at the firm level, ye. Profits are positive when
firms produce more than ye and negative when below. Using this we can define the
”efficient” production function:

Y e(K,L,A, φ) = max
n

Y (K,L, n,A, φ) (3)

Assumption 3. Entry: There is a quadratic adjustment cost in the flow of entry
(exit).

The total cost of entry Z(t) is the integral

Z(t) = γ

∫ e(t)

0

i di =
γ

2
e(t)2.
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The model of entry is represented in the decentralized form in Brito and Dixon
(2009) and is based on Das and Das (1996) and Datta and Dixon (2002). Here we
present it in the equivalent form for the Social Planner. There is a (marginal) cost
q(t) to setting up a new firm which is a linear function of the flow of entry e(t) = ṅ(t).
Likewise, there is a cost of −q(t) to dismantle an existing firm. The marginal cost
of entry depends on the flow of entry

q(t) = γe(t) (4)

This relationship (4) results from the existence of a congestion effect or a fixed factor
involved in the process of setting up or dismantling a firm.

The output of firms is used for consumption, government spending and the setting
up new firms or dismantling existing ones and investment. We assume for simplicity
that there is no depreciation of capital I(t) = K̇(t). Hence:

Y (t) = C(t) + I(t) + Z(t) +G(t)

Hence from (2) we get the capital accumulation equation:

K̇ = n

[
AF

(
K

n
,
L

n

)
− φ
]
− C − γ e

2

2
−G. (5)

We assume that the government demands output G which is financed by a Lump-
sum tax T . Since there is Ricardian equivalence in this model, we assume the budget
is balanced instant by instant:

T (t) = G(t).

3 The social planner’s problem

In Brito and Dixon (2009) we analyzed the market (decentralized) equilibrium and
showed that it is equivalent to the social planner’s problem. In this paper we adopt
the social planner’s problem of maximizing the utility of the representative household:

max
C,L,e

∫ +∞

0

U(C,L)e−ρtdt

subject to equation (5) and ṅ = e, given K(0) = K0 and n(0) = n0. There are two
state variables (K,n), there are three control (jump) variables (C,L, e) and the usual
boundedness properties for the state variables are assumed to hold. We treat A and
G as exogenous parameters: later on we will derive how the system responds in the
long and short run to variations in G.
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As both the utility function and the constraints of the problem are concave func-
tions of the controls, then (if the transversality conditions hold) the Pontriyagin max-
imum principle will give us necessary and sufficient conditions for optimality. The
current value Hamiltonian is,

H ≡ U(C,L) + pK

{
n

[
AF

(
K

n
,
L

n

)
− φ
]
− C − γ e

2

2
−G

}
+ pne

where pK and pn are the co-state variables associated to the aggregate capital stock
and the number of firms. The static arbitrage condition for labour supply is:

UL(L) + UC(C)AFL

(
K

n
,
L

n

)
= 0 (6)

From equation (6) the optimal choice of labour can be represented as a function
of (C,K, n,A) 7

L̂ = L(C
−
, K
+
, n
+
, A
+

). (7)

Note that G does not affect L independently of C: for a given wage w, there is an
Income Expansion path (IEP ) which is strictly monotonic and hence there is a 1− 1
relation of C to L. Changes in G simply move the household up and down the IEP
and hence given C there is a unique L.

Using (7), we can represent the marginal product of capital r and the profit
per firm π and gross output Y as ”reduced form” functions of (C,K, n,A, φ) by
substituting out the labour supply L = L̂:

r̂ = r(C
−
, K
−
, n
+
, A
+

) = AFk

(
K

n
,
L̂

n

)
(8)

π̂ = π(C
−
, K
+
, n
−
, A
+
, φ
−

) = (1− ν)AF

(
K

n
,
L̂

n

)
− φ (9)

Ŷ = Y (C
−
, K
+
, n
±
, A
+
, φ
−

) = n

[
AF

(
K

n
,
L̂

n

)
− φ

]
(10)

Note that the effect of n on output is in general ambiguous because Yn = π+wL̂n,
where π can be negative or positive whilst wLn is positive. However, around the

7By using the implicit function theorem we have: LC = −wUCC/HLL < 0, LK =
−wKUC/HLL > 0, Ln = −wnUC/HLL > 0 and LA = −wAUC/HLL > 0. where HLL =
ULL + UCwL.
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steady-state it is unambiguously (strictly positive) since π = 0: hence we only have
the indirect positive effect of entry on the real wage and labour supply8.

The optimality condition for entry is

γe = q (11)

where q = pn/pK is the relative cost associated with the number of firms. If we define
the inverse of the elasticity of intertemporal substitution σ(C) = −UCC(C)C/UC(C),
we get the Euler equation for consumption

Ċ =
C

σ(C)
(r(C,K, n,A)− ρ). (12)

The relative co-state variable associated to the number of firms, verifies the dif-
ferential equation in q :

q̇ + π̂ = r(C,K, n,A)q (13)

Integrating this gives us:

q(t) =

∫ ∞
t

π(s)e−
∫ s
t r(τ)dτds,

so that along the optimal path the marginal cost of entry (exit) is equated to the net
present value of profits. Furthermore, (13) can be written as:

r̂ =
π̂

q
− q̇

q
.

which is an arbitrage condition between expanding total capital stock, K = nk,
through increasing the capital stock per firm or through entry. Investing one unit of
the consumption good in capital per firm yields the marginal product of capital r.
Investing one unit in a new firm yields a share q−1 of the profit flow π of the new firm
and a capital gain/loss q̇. Along the optimal path, these two will be equated.

From equation (11), then ėγ = q̇, and we obtain

ė = r(C,K, n,A)e− π(C,K, n,A, φ)

γ
. (14)

Hence the dynamic general equilibrium is represented by the paths (C, e,K, n)
which solve the system (suppressing the parameters (A, φ)) (12) -(14) and

K̇ = Y (C,K, n,A, φ)− C − γ

2
e2 −G, (15)

ṅ = e (16)

8This indirect effect would not happen if F was homogenous to degree 1 (ν = 1), since then the
marginal product would depend only on the ratio of capital to labour at the firm level which would
not vary as n varies.
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together with the initial conditions K(0) = K0 and n(0) = n0, and the transversality
conditions

lim
t→∞

e−ρtUC(C(t))K(t) = lim
t→∞

e−ρtUC(C(t))e(t)n(t) = 0. (17)

We have the two equations (15) and (16) governing the state variables (K,n),and
the two optimality conditions for the controls (C, e) (12) and (14).

Perfect foresight equilibrium trajectories converge to the steady state of the system
composed by equations (12), (14), (15) and (16). Therefore, the stable manifold of
this system is the set of all equilibrium trajectories. In the next section we determine
the steady state and discuss how it changes in fiscal policy, and in section 5 we
characterize the stable manifold by presenting a method for dealing with short-run
dynamics in the present four-dimensional system. In particular, we establish the
conditions under which we will have non-monotonic equilibrium paths.

4 The Steady-State and long-run effects of fiscal

policy.

For a given level of Government expenditure, a unique steady state (C∗, e∗, K∗, n∗)
exists and satisfies 9:

r∗ ≡ r(C∗, K∗, n∗, A) = ρ, (18)

π∗ ≡ π(C∗, K∗, n∗, A, φ) = 0, (19)

e∗ = 0, (20)

C∗ +G = Y ∗ ≡ Ŷ (C∗, K∗, n∗, A, φ), (21)

with the following relation between the number of firms and total output

Y ∗ = n∗y∗ = n∗
(

φν

1− ν

)
. (22)

Therefore, in the steady state profits are zero, there is no net entry, the real rate
of return is equated to the rate of time preference and output is only used for (private
and government) consumption purposes. Since profits are zero, output per firm is at
the efficient level and hence from (1) the number of firms is proportional to output. In
order to see how the steady-state operates, it is useful to provide a simple illustration
(which we will use in later sections):

9A simple proof of the uniqueness of the steady state results from the fact that the partial
derivatives of the functions r and π as regards C, K, n are globally non-zero and the application of
the inverse function theorem. Equations (18) and (19) can be solved for K and n to get K∗ and n∗
as a function of C. Then substituting in equation (21) we get C∗.
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Example: benchmark case We consider a Cobb-Douglas technology and a sep-
arable isoelastic instantaneous utility function:

F (K,L) = KαLβ, 0 < α, β < 1, (23)

U(C,L) =
C1−σ − 1

1− σ
− ξ L

1+η

1 + η
, (24)

where σ > 0, ξ > 0, η ≥ 0 and ν = α + β ∈ (0, 1).
The unique steady state for the benchmark case is given by K∗ = k∗n∗, L∗ = l∗n∗

where the firm level stock of capital k∗ and labour input l∗ are dependent on the
technological parameters 10

k∗ =
αφ

ρ(1− ν)
, l∗ =

(
1

A

( ρ
α

)α( φ

1− ν

)1−α
)1/β

, y∗ =
νφ

1− ν
.

We determine consumption as a function of n,

C(n) =

(
β

ξ
y∗(l∗)−(1+η)(n)−η

)1/σ

.

Then steady state consumption is C∗ = C(n∗) where n∗ cannot be determined in
closed form, but is implicitly given by:

n∗ = {n : ny∗ = C(n) +G} ,

If G = 0 then we can determine C∗ and n∗ explicitly:

C∗ =

(
ξν

βl∗
(y∗)1+η

)1/(η+σ)

and n∗ = C∗/y∗.
�

The purpose of this paper is to focus on the dynamic effects of fiscal policy in
terms of the effects over the aggregate variables, in particular (C,K, n). However, as
a useful preliminary, we will first develop a simple graphical analysis of the long-run
(steady-state) effects of changes in G on these variables. The dynamic system has
four dimensions with two state variables (K,n) and two controls (e, C). We can
look at this graphically by projecting the system onto two-dimensional subspaces. In
our analysis of the dynamics we will focus on (K,n). However, for the purposes of

10See appendix B for its derivation.
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focussing on the steady-state, we also look at consumption-labour space (C,L) . The
formal derivation of the long-run multipliers is given in Proposition 4 below.

Turning first to (K,n) space, we can take the two equations (18)-(19) and define
the two locii:

r(K,L∗(n,K,G), n, A) = ρ

π(K,L∗(K,n,G), n, A, φ) = 0

The first locus r = ρ defines the combinations of (K,n) which equate the marginal
product of capital with ρ given steady-state labor supply L∗(G) and technology pa-
rameter A. This is upward sloping, since by diminishing marginal productivity at
the firm level, an increase in K (given n) reduces r, whilst an increase in n increases
it. The second locus π = 0 is the combinations of (K,n) which yield zero-profits
given (L∗(G), A, φ). As we will see later, this locus may be positively or negatively
sloped in the (K,n)-space when the labour supply is allowed to vary. However, in
any case the locus π = 0 (equivalent to ė = 0) is always less steep than locus r = ρ
(equivalent to Ċ = 0): 11

dn

dK

∣∣∣∣
r∗=ρ

>
dn

dK

∣∣∣∣
π∗=0

.

Steady-state occurs where the two locii intersect. See Figure 1 for the benchmark
case and for the case featuring a positively slopped π = 0 locus 12.

Secondly, we look at the steady-state in consumption-labour space to see how
labour supply L(G) and consumption C(G) are determined given G. First, note that
the steady-state equilibrium conditions (18), (19) define the steady-state real wage
w∗ (marginal product of labour). This is because output per firm is at the efficient
level (19), and the marginal product of capital is equal to ρ. Since the function F
is homogeneous of degree ν in (K/n,L/n), (18) determines the capital-labour ratio
and hence the marginal product of labour in steady-state. In (C,L) space, we can
trace out the steady-state Income Expansion Path (IEP ) for consumption and labour
given w∗ at different levels of non-labour income13. The IEP is downward sloping
(since consumption and the absence of work are normal goods). The convex slope
of the IEP results from diminishing marginal utility of consumption and increasing
disutility of labour with additive separability. The Inada conditions (Assumption
1(b)) ensure that C goes to infinity as L reaches 0 and vice versa.

11The inequality is demonstrated in the proof of Lemma 6 in the Appendix A
12The derivation of the curves is in Appendix B.
13Note that in standard microeconomics, the IEP is defined in terms of leisure and consumption.

The format is slightly different here, because we have labour supply as a bad in the utility function
without any explicit reference to leisure, and is defined from (6) by UL + UCw = 0.
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Furthermore, given the steady-state capital labour ratio, we also know output-
per-unit labour in steady-state Y ∗/L∗. Hence, we can depict the aggregate trade-off
between consumption and leisure in steady-state, or the Euler Frontier14 (EF)15: (21)
become C+G = L. (Y ∗/L∗). The EF is an upward sloping line, with C = −G when
L = 0. The economy is in steady-state where the IEP and EF intersect, as depicted
in Figure 1.

[ Figure 1 here]

We can now trace the effects of a permanent increase in G : the initial equilibrium
is A, and the equilibrium after the increase is B. Turning first to consumption-
leisure space, the EF shifts down by a vertical distance equal to the increase in
government expenditure. As in the new Keynesian analysis of fiscal policy ( Dixon
(1987), Mankiw (1988), Startz (1989)), this income effect leads to a move down the
IEP with consumption falling and labour supply (and output) increasing. Hence
the fiscal multiplier is strictly positive but less than 1 due to the crowding out of
consumption. The function C∗(G) traces out the steady-state relation between C
and G, and is strictly decreasing with a derivative above −1. Turning next to (K,n)
space, since we know that the increase in G has decreased C∗, and for a given (K,n)
the steady-state labour supply L∗(G) has increased. This results in a rightward shift
in the r∗ = ρ locus and an upward shift in the π∗ = 0 locus. The new equilibrium is
at point B, to the north-west A. Indeed, since the steady-state equations define the
capital-labour ratio, the steady-state ratio (n/K)∗ is also determined. As we vary
G , in (K,n) the steady-state moves along a ray through the origin n = K/k∗, the
dotted line passing thought A and B. We denote this linear steady-state locus ”the
dG line”.

With an exogenous labour supply, fiscal policy is very simple to analyze. In
effect, the labour supply function (7) becomes fixed at some level L̂ = L̄, and all of
the derivatives of L̂ = 0. In terms of consumption-labour space, the IEP becomes
vertical at L̄. There is 100% crowding out: so the function C∗(G) takes the simple
linear form C∗(G) = C∗(0)−G where C∗(0) is the level of consumption when there is
no government expenditure. In terms of (K,n) space, the two loci r = ρ and π = 0
become fixed since it was the change in L∗(G) which shifted them in the endogenous
labour case depicted in Figure 2.

14We use the term ”Euler Frontier” because it means that for a given labour supply L, with zero-
profits (efficient production), capital has accumulated to equate the marginal product of capital with
ρ. The resultant output can be divided between C and G. Note that the real wage in steady state
is less than the slope of the EF, since wages form only part of total income (the rest being capital’s
share). Hence the EF is not tangential to the indifference curve at equilibrium.

15See Costa and Dixon (2011)
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5 Local Dynamics

We now analyze the behavior of the perfect foresight equilibrium paths away from
the steady state, by characterizing the local stable manifold of system (12), (14), (15)
and (16) around the steady-state (corresponding to a particular value of G) given by
equations (18), (19), (20) and (21). Besides having a high dimensionality, the system
does not have a closed form solution (even in the case in which have specific utility
and production functions). Next, we will go as far as possible in characterizing the
dynamics arbitrarily close to the steady state.

The introduction of the number of firms as an additional state variable while
keeping the saddle-path dynamics increases its dimension to two. The stable mani-
fold is two-dimensional. We proved, for the exogenous labour supply case, in Brito
and Dixon (2009), that this could be a source of non-monotonic transitional dynam-
ics. In that paper we found that the Jacobian had two negative real eigenvalues,
and if the initial values of the state variables, K(0) and n(0), verify certain con-
ditions then a particular hump-shaped transition path can occur, although just for
one state variable. The extension to endogenous labour supply allows not only for
a hump-shaped transition for a single variable, but also for other different types of
non-monotonic transitional dynamics: non-monotonic hump-shaped transitions or os-
cillatory behavior for both state variables. The first case occurs when both eigenvalues
of the Jacobian are real and the second occurs when they are complex conjugate. In
order to systematically determine the conditions under which all the previous types
of non-monotonicity may occur we use and extend the geometrical method for dealing
with the mechanics of non-monotonicity within our four-dimensional dynamic system
which was introduced in Brito and Dixon (2009). Essentially, the method consists in
projecting the transition paths in the space of the state variables (K,n), and parti-
tioning that space according to the initial points that generate several different types
of the transition paths. In section 6 we show that this method simplifies a lot the
characterization time-response of the model to fiscal policy shocks.

5.1 The local stable manifold

The local stable manifold, W s, is defined as the set of (C, e,K, n) such that, if
the economy starts from there, there is asymptotic convergence to the steady state
(C∗, e∗, K∗, n∗). It can be approximated locally by the stable eigenspace, Es, which is
the linear space that is tangent to, W s, at the steady state. In spite of the dimension
of the system we conclude next that the stable manifold is always two-dimensional,
which means that the dynamics can be projected in the two-dimensional space of
the pre-determined variables (K,n), and we can prove general results concerning the
slopes of the equilibrium trajectories in its neighborhood.
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The linearized system has the Jacobian

J :=


C∗r∗C/σ 0 C∗r∗K/σ C∗r∗n/σ
−π∗C/γ ρ −π∗K/γ −π∗n/γ
Y ∗C − 1 0 Y ∗K Y ∗n

0 1 0 0

 . (25)

where the partial derivatives refer to the capital return, profit and aggregate output
optimal functions, i.e, which consider the optimal response of labour supply, evaluated
at the steady state16

The eigenvalues of Jacobian J are (see Lemma 1 in Appendix A)

λs,u1 =
ρ

2
∓
[(ρ

2

)2
− T

2
−∆

1
2

] 1
2

, λs,u2 =
ρ

2
∓
[(ρ

2

)2
− T

2
+ ∆

1
2

] 1
2

(26)

where ∆ = (T /2)2 −D is the ”inner” discriminant and T is the sum of the principal
minors of J minus ρ2 and D = det (J). Defining

O ≡ C∗

σ
(r∗nπ

∗
K + Y ∗n (r∗Cπ

∗
K − r∗Kπ∗C)) , (27)

Q ≡ C∗

σ
(r∗CY

∗
K − r∗K(Y ∗C − 1)) (28)

we get

T = Q+
π∗n
γ
, D =

π∗n
γ
Q− O

γ

and the ”inner” discriminant becomes

∆ =

[
1

2

(
Q− π∗n

γ

)]2
+
O
γ
. (29)

Because π∗n < 0, and Q < 0 17 we have T < 0, then , (ρ/2)2 − T /2 > (ρ/2)2. As
the sign of O is ambiguous then the sign of the ”inner” discriminant is ambiguous as
well. However, as we show in the proof of Proposition 1, the determinant is always
positive, D > 0, which implies that the stable manifold is of dimension two and
the discriminant ∆ < (T /2)2. This was not the case in the exogenous labour case
(see Brito and Dixon (2009)) where O > 0 and the ”inner” discriminant was always
positive. This ambiguity is related to the endogeneity of labour supply and introduces
a richer set of dynamics as compared with that model.

Next we prove that the stable manifold is always two dimensional:

16For example for the derivatives for the interest rate function we set r∗j = ∂r̂j(C,K, n, .)/∂j for
j = K,n,C, evaluated at the steady state values K = K∗, n = n∗ and C = C∗.

17This is because r∗CY
∗
K − r∗KY ∗C = LC(YLKYK − YKKYL) < 0.
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Proposition 1 (Characterization of the eigenvalues). Let assumptions 1, 2 and
3 hold. Then the Jacobian J has always two eigenvalues with negative real parts.
In particular: (a) if O < 0 and ∆ < 0, then it has one pair of complex conjugate
eigenvalues with negative real part, Re(λs2) = Re(λs1) < 0; (b) if O ≤ 0 and ∆ = 0,

then it has two negative multiple real eigenvalues, λs2 = λs1 = ρ/2−((ρ/2)2 − T /2)
1/2

<
0; (c) if O > 0, or if O < 0 and ∆ > 0, then it has two real and distinct negative
eigenvalues, λs2 < λs1 < 0.

See Appendix A for the proofs.

This means that in a properly chosen projection space the model behaves like a
sink (if the eigenvalues are real) or a stable node (if they are complex conjugate).

The result on the dimension of the stable manifold is explained by the presence of
stabilizing forces acting independently over the two state variables, the stock of capital
and the number of firms. We may identify, in the expression for T the three main
channels: (1) the negative effect of the number of firms on profits, (2) the negative
effect of capital accumulation on the real interest rate, and (3) the interaction between
the indirect effects of consumption on labour supply and both the direct and indirect
effects of the capital stock over the real interest rate and aggregate output. The first
effect acts over the number of firms and the other effects will dampen shocks exerted
on the stock of capital. In a model with exogenous labour only the direct components
of the first two will be present.

From Proposition 1 we can note that a necessary condition for the existence of
complex eigenvalues is O < 0, and a sufficient condition for the existence of real
distinct real eigenvalues is O > 0. If we look inside (27) we see there are two
parts. The first effect is r∗nπ

∗
K captures the stabilizing effects of capital on entry and

entry on capital as discussed before: both terms are positive. The second terms
Y ∗n (r∗Cπ

∗
K − r∗Kπ∗C) explicitly capture the effects of consumption on the labour supply,

and hence on profits and the return on capital: from (7) more consumption means
less labour which reduces π and r). Hence the sign of the second terms in brackets is
ambiguous: it can be negative and so can result in complex eigenvalues. A sufficient
condition for the non-existence of complex roots is that O is positive, when the first
effect dominates the second. In an exogenous labour model the second effect is
switched off r∗C = π∗C = 0: hence O > 0, ∆ > 0 and there can be no complex roots.

We can now understand how an endogenous labour supply can lead to complex
dynamics (non-monotonicity in both variables along the equilibrium path). Con-
sumption influences the labour supply, which has an effect of the same sign on both
the entry and the return on capital. This can push both (K,n) in the same direction
which can overcome (for some time) the natural tendency towards the steady-state.
However, as consumption itself converges to the steady-state, its effect will diminish
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leading the two state-variables to reverse direction and fall back to steady-state. In
the case of fiscal policy, which we examine below in section 6, the impact effect of
an increase in government expenditure is to decrease consumption which boosts the
labour supply and hence boosts the marginal product of capital and the profitability
of entry. This can be sufficient to make total output overshoot the new steady-state
and converge back down to it as consumption converges.

The possibility of complex eigenvalues with an endogenous labour supply arises
from this effect which is absent with an exogenous labour supply (where eigenvalues
are only real Brito and Dixon (2009)).

As there are no eigenvalues with zero real part, the equilibrium dynamics be-
longing to the stable manifold associated to the unique stationary equilibrium point
(C∗, e∗;K∗, n∗), W s, can be qualitatively approximated by the eigenspace Es which
is tangent to stable manifold.

The trajectories of the variables in the model belonging to space Es are given by
the following equation:

C(t)− C∗
e(t)− 0
K(t)−K∗
n(t)− n∗

 = zs1


vs1,1
λs1
vs3,1
1

 eλ
s
1t + zs2


vs1,2
λs2
vs3,2
1

 eλ
s
2t, t ≥ 0 (30)

where (see Lemma 3 in Appendix A)

vs1,1 ≡
C∗

σ
(r∗KY

∗
n − r∗nY ∗K + r∗nλ

s
1)

l2 − π∗n
γ

, vs3,1 ≡
C∗

σ
((Y ∗C − 1)r∗n − Y ∗n r∗C) + Y ∗n λ

s
1

l2 − π∗n
γ

(31)

vs1,2 ≡
C∗

σ
(r∗KY

∗
n − r∗nY ∗K + r∗nλ

s
2)

l1 − π∗n
γ

, vs3,2 ≡
C∗

σ
((Y ∗C − 1)r∗n − Y ∗n r∗C) + Y ∗n λ

s
2

l1 − π∗n
γ

, (32)

and

zs1 ≡
(K(0)−K∗)− vs3,2(n(0)− n∗)

vs3,1 − vs3,2
, zs2 ≡ −

(K(0)−K∗)− vs3,1(n(0)− n∗)
vs3,1 − vs3,2

.

We denote l1 = λs1λ
u
1 and l2 = λs2λ

u
2 . Equation (30) is formally valid for any type

of eigenvalue with negative real part, real or complex. However, If the eigenvalues
are complex then l1 = T /2 + |∆|1/2i and l2 = T /2 − |∆|1/2i are complex, and the
exponential is a complex function with coefficients dependent on time, because eλ

s
1t =

e(θs+ϑi)t = eθst (cos(ϑt) + sin(ϑt)i) and eλ
s
2t = e(θs−ϑi)t = eθst (cos(ϑt)− sin(ϑt)i).

Every variable in equation (30) is a weighted sum of the two time-dependent
exponential factors, eλ

s
1t and eλ

s
2t. The weighting factors are given by the eigenspaces

Es
1 and Es

2 and by two components which ensure that the transversality conditions
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zs1 and zs2 hold. The first component governs the co-movement of the variables and
the second can be used to describe the dynamics by projecting it into the state space
(K,n).

The eigenspaces (which can be obtained from the solutions of (30) for zs2 = 0 and
zs1 = 0),

Es
1 := {(C, e,K, n) : C−C∗ = vs1,1(n−n∗), e = λs1(n−n∗), (K−K∗) = vs3,1(n−n∗)}

and

Es
2 := {(C, e,K, n) : C−C∗ = vs1,2(n−n∗), e = λs2(n−n∗), (K−K∗) = vs3,2(n−n∗)}

span the stable eigenspace Es, which is tangent to the stable sub-manifold. As in
(Brito and Dixon, 2009, p. 345) equilibrium trajectories starting at an initial posi-
tion far away from the steady state, will initially be parallel to Es

2 and will converge
asymptotically to Es

1. Therefore, the slope of the two eigenspaces will give a quali-
tative characterization of the correlation between the variables far away and close to
the steady state.

Proposition 2 (Eigenvalues). Let the eigenvalues, λs1 and λs2, be real numbers.
Then K and n are asymptotically positively correlated if O > 0 or if O < 0 and
π∗n > γQ, and they are asymptotically negatively correlated if O < 0 and π∗n < γQ.
Far away from the steady state, K and n are negatively correlated if O > 0 or if
O < 0 and π∗n < γQ and are positively correlated if O < 0 and π∗n > γQ.

5.2 A taxonomy for transitional dynamics

From Propositions 1 and 2 we derive a taxonomy for the main types of transition
dynamics. First, we distinguish case C, when ∆ < 0 and the eigenvalues are complex,
from cases R, when ∆ ≥ 0 and the eigenvalues are real. Second, we can split R into
three different cases: case R1, if O > 0, in which the the state variables K and n
are negatively correlated far away from the steady state and positively correlated
asymptotically; case R2, if O < 0, ∆ > 0 and π∗n > γQ, in which the state variables
are positively correlated both far away and close to the steady state; and R3, if O < 0,
∆ > 0 and π∗n < γQ, in which they are negatively correlated both away and close to
the steady state. In the exogenous labour case in Brito and Dixon (2009) only case
R1 exists.

The sign of the discriminant is an important element in characterizing the differ-
ent types of transition, by separating complex-eigenvalue generated, non-monotonic,
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dynamics from real-eigenvalue, potentially non-monotonic, dynamics. Furthermore,
as ∆ < 0 only if O < 0 then, in some sense, case C separates R2 from R3.

The discriminant can be written as a polynomial over 1/γ,

∆ =
1

(2γ)2
{
Q2γ2 + 2(2O − π∗nQ)γ + (π∗n)2

}
We find the following roots of the polynomial equation ∆(γ) = 0: if there is only one
root

γ̃ ≡
( σ
C∗

)( π∗n
r∗K(1− Y ∗C) + r∗CY

∗
K

)
> 0 (33)

and, if there are two roots

γ1,2 = (π∗n)2
{
π∗nQ− 2O ± 2 [O(O − π∗nQ)]

1
2

}−1
. (34)

Then from (29),(27) and (28): ∆ < 0 if and only if γ ∈ (γ1, γ2), ∆ = 0 if and only if
γ = γ̃ and ∆ > 0 if and only if γ /∈ (γ1, γ2).

As O independent from γ, in order to conduct a complete bifurcation analysis we
need to choose another parameter or a combination of parameters. A natural choice
is σ (the inverse of the elasticity of intertemporal substitution).

Example: benchmark model Let us consider how the parameters (γ, σ) deter-
mine the dynamics in the case of the benchmark model of the previous section. In
the benchmark model, the explicit formula for O is:

O =
ρ2(1− ν)φ

(1− β + η)2n∗

(
ν(1 + η)2

σ

C∗(G)

C∗(G) +G
− φβ2

α

)
.

In order to derive critical conditions for the existence of fluctuations, let us take
σ as a first critical parameter and call σ̃ to the value of σ such that O(σ) = 0, that is

σ̃ ≡

{
σ : σ

(
C∗(G, σ) +G

C∗(G, σ)

)
≤ ν

α

(
1 + η

β

)2
}

If G = 0 then we can determine explicitly

σ̃ = αν

(
1 + η

β

)2

Then O ≤ 0 is equivalent to σ ≥ σ̃, which is a necessary condition for the existence
of complex eigenvalues.
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The following expressions,

Q = − ρ2

(1− β + η)α

(
C∗(1− ν)(1− ν + η(1− α))

n∗σφ
+ β

)
< 0

π∗n =
φ

n∗

(
β − ν(1 + η)

1− β + η

)
< 0

and

2O − π∗nQ = −
(

ρ2

αn∗(1− β + η)2

)
{βφ[2β(1− ν) + α + νη]+

+
(1− ν)[α(1 + η)2(ν − 1) + βη(1− β + η)C∗]

σn∗

}
.

enter the definition of the critical values for γ such that ∆ = 0 in equation (34) .
Figure 2 depicts the partitions in the domain of (γ, σ), corresponding to the four

cases R1, R2, R3 and C, which are separated by schedules O = 0 and ∆ = 0, for
the case in which G = 0. We have O > 0 below the first curve and ∆ < 0 inside
the parabola defined by the second curve. The figure also presents the loci where
Q − π∗/γ = 0 and the combinations of parameter values such that it is negative
(above) and positive (below).

[ Figure 2 here]

In Table 1 we pick parameter values that lead to the dynamics being in each of
the four regions, by fixing the technology and preference parameters (α, β, ρ) and by
varying all the other parameters (σ, ρ, ξ, η, φ).

Table 1: Cobb-Douglas - isoelastic utility case
γ φ σ ξ η σ/η O ∆ Q− π∗/γ

R1 3 0.3 1 0.01 0.5 2 + +
R2 50 0.4 2.2 0.02 0.01 220 - + -
R3 1 0.1 4 0.01 0.3 13.33 - + +
C 15 0.2 3 2 0.02 150 - -

Common parameters: α = 0.3, β = 0.5 and ρ = 0.025

Case R1 occurs for relatively high elasticity of intertemporal substitution, for any
value of γ, given the value of the other parameters. For lower levels of the elasticity
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of intertemporal substitution we will tend to have all the other cases. Negative
asymptotic correlations between the aggregate stock of capital and the number of
firms tend to occur for low levels of the adjustment costs and of the elasticity of
intertemporal substitution.γ. If ξ → 0 there is convergence to the exogenous labour
case, which corresponds to case R1. If the disutility of labour ξ increases the complex-
eigenvalue case C becomes likelier.

The dynamics results from a general equilibrium interaction which depends on
many factors: technology, preferences, entry costs and so on. However, it is the
relationship between consumption and labour supply that creates the possibility of
R2, R3 and C. The sensitivity of labour supply to consumption depends on the ratio
: for a given wage, this is the elasticity of the labour supply to consumption. Hence
if this ratio is large, it implies that the labour supply responds a lot to changes in
consumption. If we look at Table 1, we can see that this ratio is much higher in cases
R2, R3 and C than in case R1 which is what we would expect. On an empirical level,
we would expect a low value of η around 0.2 and a value of σ in the range 2−4 which
gives an elasticity of 10 − 20 which is high and consistent with cases other than R1
18.

�

5.3 Geometrical characterisation of the solution paths

Next we apply a geometrical method introduced in Brito and Dixon (2009) which al-
lows us to characterise the time paths of the solutions. Although the dynamical system
is four-dimensional we use the fact that it has a two-dimensional stable manifold to
study qualitatively its dynamics in the two-dimensional space for the pre-determined
variables. As in the geometrical theory of differential equations we can characterise,
analytically and qualitatively, the local dynamics by stratifying the two-dimensional
projected space by the (projected) isoclines and the stable eigenspaces. The main
results are gathered in Proposition 3 where we show there are four main types of
dynamics, depending upon the values of the parameters and the initial values, for the
stock of capital and the number of firms. Transitional dynamics can be: oscillatory,
hump-shaped for one variable, hump-shaped for two variables, or monotonous.

The solution space to the planner’s problem is the stable manifold which is a
two-dimensional surface in the four-dimensional domain of (C, e,K, n). If we can find
a mapping (K,n) 7→ (C, e) we can project it into the space (K,n) and the optimal

18For instance, if we consider the values for the other parameters for case R1 in Table 1, with the
exception of η = 0.2 and σ = 3 and φ > 0.4608, we would have O < 0, which is the value for cases
other than R1.
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solutions are obtained from

K̇ = K̇(K,n) = K̇(C(K,n), K, n)

ṅ = ṅ(K,n) = e(K,n).

and we can get recursively the optimal trajectories for C and e.
That mapping cannot be determined explicitly. However, we can approximate it

locally in the neighborhood of the steady state by the linear system(
C − C∗
e− e∗

)
= S

(
K −K∗
n− n∗

)
, S ≡

(
SCK SCn
SeK Sen

)
. (35)

Matrix S is a real matrix and its coefficients satisfy: SCK > 0, Sen < 0, for any value
of the parameters, and SCn < 0 and SeK > 0 if O > 0, or SCn > 0 and SeK < 0 if
O < 0. (see Lemma 4 in the Appendix A). Then in case R1 the coefficients verify
SCK > 0, Sen < 0, SCn < 0, and SeK > 0 and in cases R2, R3 and C we have
SCK > 0, Sen < 0, SCn > 0, and SeK < 0. For all cases det (S) < 0.

The projection of the phase diagrams in space (K,n) have generic properties and
correspond to sinks for cases R1, R2 and R3, and to a stable node for case C. This is
proved in Lemmas 5 and 6 in Appendix A and is illustrated in Figure 3. This Figure
displays the projections of the stable eigenspaces and of the isoclines. The projections
of the stable eigenspaces Es

1 and Es
2 have slopes given by

dn

dK

∣∣∣∣
Es

1

=
1

vs3,1
,
dn

dK

∣∣∣∣
Es

2

=
1

vs3,2
.

The transitional dynamics trajectories tend to behave as regards those projections
as they do in the phase diagram for two-dimensional ordinary differential equations
when the steady state is a sink: trajectories are parallel to Es

2 when they are far away
from the steady state and are tangent asymptotically to Es

1 (see Proposition 2).
Figure 3 also displays the two-dimensional projections of the isoclines, which are

the geometrical loci where one variable changes the direction of movement. In our
case we have: the projections of the tangent to the isoclines K̇ = 0 and ṅ = 0,
evaluated close to the steady state, have slopes given by

dn

dK

∣∣∣∣
K̇=0

= −Y
∗
K + (Y ∗C − 1)SCK
Y ∗n + (Y ∗C − 1)SCn

=
λs2v

s
3,2 − λs1vs3,1

(λs2 − λs1)vs3,1vs3,2

and
dn

dK

∣∣∣∣
ṅ=0

= −SeK
Sen

=
λs2 − λs1

λs2v
s
3,1 − λs1vs3,2

;
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and the projections of the isoclines Ċ = 0 (or r(K,n) = ρ) and ė = 0 (or π(K,n) = 0),
have slopes given by

dn

dK

∣∣∣∣
Ċ=0

= −r
∗
K + r∗CSCK
r∗n + r∗CSCn

=
λs2v

s
1,2 − λs1vs1,1

λs2v
s
3,1v

s
1,2 − λs1vs1,1vs3,2

dn

dK

∣∣∣∣
ė=0

= −π
∗
K + π∗CSCK − ργSeK
π∗n + π∗CSCn − ργSen

=
(λs2)

2 − (λs1)
2

(λs2)
2vs3,1 − (λs1)

2vs3,2
.

We can also determine and depict the projection for the locus corresponding to a
change in the direction of movement of the aggregate product, Ẏ = 0, which has
slope

dn

dK

∣∣∣∣
Ẏ=0

= −(Y ∗K + Y ∗CSCK)(Y ∗K + (Y ∗C − 1)SCK) + (Y ∗n + Y ∗CSCn)SeK
(Y ∗K + Y ∗CSCK)(Y ∗n + (Y ∗C − 1)SCn) + (Y ∗n + Y ∗CSCn)Sen

=
(1− ν)Y ∗n (λs2 − λs1) + γn∗(λs1(l1 −Q)− λs2(l2 −Q))

(1− ν)γY ∗n (n∗(λu2 − λu1)− (1− ν)(C∗/σ)(l2 − l1)− (1− ν)Y ∗n (λu1(l2 −Q)− λu2(l1 −Q)))
.

The slopes of the isoclines for K are always positive and the slope for n is positive
for case R1 and is negative for the others. The isocline Ẏ = 0 has a negative slope for
case R1 and is ambiguous for the others19. Given any initial value for the two state
variables (K(0), n(0)), the transition path is initially parallel to Es

2 and converges
asymptotically to line Es

1. If the projection of a trajectory ”hits” one of the isoclines,
the corresponding variable varies non-monotonically. In case C, depending on how
far the initial point is from the steady state, there are several ”hits” along the way, for
every isocline. and therefore the trajectory is oscillatory for all variables. However, as
shown in Brito and Dixon (2009) non-monotonic trajectories may also occur for cases
R associated to sinks. However, in the last cases there can only be one ”hit” at one
or more isoclines, which produces a hump-shaped trajectory, but only under certain
conditions. There are four main types of trajectories when the eigenvalues are real:
first, the initial value is lower than the steady state level and the variable increases
monotonically over time, second, U hump-shaped non-monotonic trajectories initially
decreasing and later increasing over time; third, the initial value is above the steady
state level and the variable decreases monotonically over time; and, fourth, an IU
hump-shaped non-monotonic trajectories initially increasing and later decreasing over
time towards the steady state.

In order to characterize non-monotonicity, we use the same method as in Brito
and Dixon (2009). First, we define the following subsets of the domain of (K,n):

19We can only sign the denominator for case R2, which is positive, and the numerator for case
R3, which is negative. For the specific forms and parameters in Figure 3 the slopes are positive for
cases in which O < 0.
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MK = NK ∪ SK and Mn = En ∪Wn such that

NK ≡
{

(K,n) : n− n∗ > max

{
1

vs32
,
λs2v

s
32 − λs1vs31

(λs2 − λs1)vs31vs32

}
· (K −K∗)

}
SK ≡

{
(K,n) : n− n∗ < min

{
1

vs32
,
λs2v

s
32 − λs1vs31

(λs2 − λs1)vs31vs32

}
· (K −K∗)

}
En ≡

{
(K,n) : K −K∗ > max

{
vs32 ,

λs2v
s
31 − λs1vs32
λs2 − λs1

}
· (n− n∗)

}
Wn ≡

{
(K,n) : K −K∗ < min

{
vs32 ,

λs2v
s
31 − λs1vs32
λs2 − λs1

}
· (n− n∗)

}
.

Geometrically set MK lies between the projected isocline K̇ = 0 and the eigenspace
Es

2 and set Mn lies between the projected isocline ṅ = 0 and the eigenspace Es
2.

Then the fundamental result on non-monotonic dynamics follows:

Proposition 3 (Non-monotonic dynamics). Non-monotonic dynamics over space
(K,n). Let (K(0), n(0)) 6= (K∗, n∗).

1. If the eigenvalues are complex then the trajectories are always oscillatory and
rotate clockwise for any (K(0), n(0)).

2. If the eigenvalues are real then: (1) if sets MK and Mn are disjoint then three
cases can occur: (a) if (K(0), n(0)) does not belong to MK∪Mn then trajectories
for both K and n are monotonic; (b) if (K(0), n(0)) belongs to MK then the
trajectory for K is hump-shaped; (c) if (K(0), n(0)) belongs to Mn then the
trajectory for n is hump-shaped; (2) if sets MK ∩Mn is not empty then, in
addition to the previous three cases, (a), (b) and (c), if (K(0), n(0)) belongs to
MK ∩Mn then trajectories for both K and n are hump-shaped.

Hence there are sixteen combinations of transition dynamics for variables K and
n. Next we highlight the most important cases referring to non-monotonic types of
adjustment. We start with the cases involving real eigenvalues. As MK ∪Mn ⊂ R2

+

then the complementary set (MK ∪Mn) is non-empty, which means that there are
always solution paths in which both variables K and n converge monotonically. In
addition, from Lemma 6 we can see that: if O > 0 (case R1) then the sets MK and
Mn are disjoint but there can be non-empty intersections if O < 0: if O < 0 and
Q−π∗n/γ < 0 (case R2) then En ⊂ NK and Wn ⊂ SK ; and if O < 0 andQ−π∗n/γ > 0
(case R3) then NK ⊂ En and SK ⊂Wn.

If O > 0 then, in the transition to the steady state, just one variable may have
a humped-shaped trajectory and will change direction only once. This can be seen
in the phase diagram for case R1 depicted in panel NW of Figure 3, which displays
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the non-empty and disjoint sets NK and SK , between curves Es
2 and K̇ = 0, and

En and Wn, between curves Es
2 and ṅ = 0, and the rest of the domain in which no

monotonic trajectories are associated. If the initial point is in area NK K will follow
an IU -hump shape and n will decrease monotonically, if it is in area SK K will follow
a U -hump shape and n will increase monotonically, if it is in area Wn K will increase
monotonically and n will follow an IU - hump shape adjustment, and if it is in area
En K will decrease monotonically and n will follow a U - hump shape adjustment.

Phase diagrams associated to O < 0, also shown in the NE and SW panels of
Figure 3 for cases R2 and R3, also have the same subsets, with the similar types
of dynamics. However, there are two main differences as regards case R1. First,
set Wn (En) is associated with an IU -hump shaped (U -hump shape) adjustment
for n. Second, there are non-empty intersections between the previous sets: in the
phase diagram for R2 there are U - or IU -hump-shaped (IU -hump) adjustments for
n only if there are U - or IU -hump-shaped adjustments for K (because En ⊂ NK

and Wn ⊂ SK ), and in the phase diagram for R3 there are U - or IU -hump-shaped
adjustments for K only if there are IU - or U -hump-shaped adjustments for n (because
NK ⊂ En and SK ⊂Wn).

Some representative trajectories are shown in the phase diagrams in Figure 3.

[ Figure 3 here ]

Phase diagram R3 is in the of SW panel Figure 3. We can see that all trajectories
originating in NK and SK have both a hump-shaped response first for K and later
on for n as well. Along the way they also cross Ẏ = 0. Take the first case. As both
curves Es

1 and Es
2 are negatively sloped, K grows initially while n diminishes, then the

capital stock and output will eventually diminish, and finally close to the steady state
there will be net entry and the number of firms will increase. Note that as the Ẏ = 0
curve is less steep than the K̇ = 0 isocline the hump in capital peaks before the hump
in output, or there is no hump for capital if the dynamics originates in En or Wn.
In any of this cases the trajectories cross the ṅ = 0 isocline, indicating an increase in
entry close to the steady state. Phase diagram C, associated with the existence of
complex eigenvalues, is depicted in Figure 3, SE panel and is qualitatively similar to
R3, however the number of crossings depends upon the distance of the initial point
from the steady state. Phase diagram R1 is depicted in Figure 3, NW panel. Its
main features are the following. First, asymptotically the aggregate capital stock and
the number of firms are positively related in the neighborhood of the steady state,
and will be tangent asymptotically to Es

1. However, since Es
2 is negatively slopped the

initial co-movement is negative. If we take trajectories originating in NK a sequence
of crossings first of Ẏ = 0 and then of K̇ = 0 is possible, meaning that initially output
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and the capital stock increase and the number of firms decrease, then output crossed
the hump down followed by the capital stock. Asymptotically, the trajectories of
n,K, and Y all move together down (this is the same as the exogenous labour case
Brito and Dixon (2009)). The number of firms do not have a hump, differently from
case R3. Phase diagram R2 is depicted in Figure 3, NE panel. It shares some similar
properties with the phase diagram R1, in particular, the positive co-movement of the
two state variables and Y in the neighborhood of the steady state. However, the
timing of the crossings of K̇ = 0 and Ẏ = 0 are the opposite. Far away from the
steady state an initial positive correlation is also possible, when the origin is in Wn,
as Es

2 has a positive slope.

6 Fiscal policy.

Now we consider unanticipated and permanent variations if public expenditures G
which perturbs an economy which is at a steady state.

We consider the locally projected space (K,n) and its perturbation by G

K̇ = K̇(SC(K,n), K, n,G) (36)

ṅ = Se(K,n) (37)

Then we can determine if there are hump-shaped or general non-monotonic responses
to a permanent unanticipated shock, dG, if (K,n) happens to be initially placed in the
subsets MK or Mn, relative to the new steady state. We can trace out the location
of the initial and by considering the steady state projection

dn =
dn

dK

∣∣∣∣
dG

dK =
∂n/∂G

∂K/∂G
dK

determined from the long run multipliers of the projected system (36)-(37). First we
need to determine the long run and impact multipliers.

6.1 Long run and impact responses.

Proposition 4 (Fiscal policy multipliers). Long run multipliers: they are negative
for consumption, positive for the stock of capital and the number of firms. Impact
multipliers: they are always positive for entry. For consumption they are negative if
O < 0 and undershoot the long run variation, and they are ambiguous for O > 0.

Long run multipliers for G (a permanent shock) were described in section : their
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explicit expression is given by:

dC∗

dG
= −(r∗Kπ

∗
n − r∗nπ∗K)C∗

σγD
< 0 (38)

de∗

dG
= 0 (39)

dK∗

dG
=

(r∗Cπ
∗
n − r∗nπ∗C)C∗

σγD
> 0 (40)

dn∗

dG
= −(r∗Cπ

∗
K − r∗Kπ∗C)C∗

σγD
> 0 (41)

This implies the long-run employment and output multipliers:

dL∗

dG
= LC

dC∗

dG
+ LK

dK∗

dG
+ Ln

dn∗

dG
> 0,

dY ∗

dG
= Y ∗K

dK∗

dG
+ Y ∗n

dn∗

dG
> 0

which means that dC∗ + dG > 0 20.
The Impact multipliers for consumption and entry are

dC(0)

dG
=

dC∗

dG
−
(
SCK

dK∗

dG
+ SCn

dn∗

dG

)
(42)

de(0)

dG
= −

(
SeK

dK∗

dG
+ Sen

dn∗

dG

)
> 0 (43)

If O < 0, including the case when we have complex eigenvalues, then from Lemma 4
both coefficients SCK and SCn associated for the consumption multiplier are positive,
whilst SeK and Sen associated with entry are negative: therefore we have dC(0)

dG
<

dC∗

dG
< 0 and de(0)

dG
> 0.

If O > 0 and we have real eigenvalues, the coefficients do not have the same sign,
and therefore the impact multipliers are potentially ambiguous and the impact effect
can be lower or higher than the long-run effect. This possibility is novel and results
from the fact that both state variables K and n effect both of the control variables
(C, e). Turning first to consumption, the term SCK captures the effect of capital on
consumption with the traditional ”negative” relationship: as capital moves closer to
equilibrium, the gap between the marginal product and the discount rate gets smaller,

20If we take the benchmark model, the long run multipliers are: dC∗

dG = − ηC∗

σY ∗+ηC∗ < 0, dK∗

dG =
σK∗

σY ∗+ηC∗ > 0, dn∗

dG = σn∗

σY ∗+ηC∗ > 0, dL∗

dG = σL∗

σY ∗+ηC∗ > 0, dY ∗

dG = σY ∗

σY ∗+ηC∗ > 0, and dy∗

dG = dk∗

dG =
dl∗

dG = 0.
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hence consumption continues to grow but at a slower rate, implying the monotonic
trajectory of consumption rising alongside capital accumulation. However, the term
SCn captures the effect of entry on the Euler equation for consumption. More firms
can counteract the increase in capital leading to a non-monotonic trajectory in the
marginal product of capital (which depends on capital per firm k, not aggregate
capital) and hence also non-monotonicity in consumption. This leads to an ambigu-
ous relation between initial consumption and its long-run value if the entry flow is
large initially so that capital per firm decreases and the marginal product of capi-
tal increases. This sort of consumption undershooting response is impossible in the
classic Ramsey model where the marginal product depends only on the aggregate
capital stock and the impact response of consumption always overshoots the long-run
response21.

6.2 Hump-shaped responses.

The short run dynamics is similar to the one generated by equation (30). The exis-
tence of non-monotonic adjustment trajectories depend both on the parameters and
on the type magnitude of the shock. If we take the after-shock levels of capital and
number of firms as K∗ and n∗ and the pre-shock values as initial values, we can
compare the variation with the expressions for the expressions in Proposition 4.

[ Figure 4 here]

Proposition 5. Assume there is a permanent fiscal policy shock. If ∆ > 0 then the
adjustment for K is always monotonic and the adjustment for n is hump-shaped for
case R3 and monotonic for cases R1 and R2. If ∆ < 0 the adjustment is oscillatory
for both variables.

In Figure 3 we have already shown the four possible cases of short-run dynamics.
We see that there is a monotonic adjustment of both (K,n) for cases R1 and R2, and
a non-monotonic adjustment for cases C and R3. Since we are looking at the response
of changes to fiscal policy the initial position will lie on the dG line: hence. Figure 4
superposes the dG line. We can see that if we started from an initial steady-state and
it is peturbed by dG, the initial steady-state will belong to to sets Wn and En of the
new steady-state. and only the number of firms can adjust non-monotonously. This
is an ”initial condition effect”, and would not hold if we were to consider technology
shocks. Whilst for all cases R1,R2, R3 and C capital will adjust monotonically in
response to fiscal policy, capital stock per firm may be non-monotonic in all cases. If

21In the classic Ramsey model in (C,K), the saddlepath is upwards sloping so (C,K) move
together with an endogenous labour supply.
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we turn to output, in case R1 the Ẏ = 0 isocline is downward sloping, which implies
that output always responds monotonically to fiscal policy. However, the Ẏ = 0
isocline is upward sloping and flatter than the dG line in the other cases: output will
always be non-monotonic in cases R3 and C and may be in case R2.

Phase diagram R3 is depicted in Figure 3, SW panel. In this case both curves Es
1

and Es
2 are negatively sloped. Since Es

1 < 0 there is a negative co-movement between
the two state variables (K,n) as we approach the steady-state. Furthermore, since
dG lies in between the K̇ = 0 and ṅ = 0 isoclines, the initial co-movement is positive.
The trajectories also cross the ṅ = 0 isocline, indicating an overshooting hump shape
for n. The other point to note is that the Ẏ = 0 line is positively sloped. This means
that any trajectory originating from the dG line must pass through Ẏ = 0: hence
output must have a hump shape response. Phase diagram C, associated with the
existence of complex eigenvalues, is depicted in Figure 4, SE panel and is qualitatively
similar to R3: the reason for this is that all trajectories starting on dG must start off
with positive co-movement (in order to get negative co-movement initially, we would
need to start from a point the ”other side” of the K̇ = 0 isocline which is off the dG
line).

Phase diagram R1 is depicted in Figure 4, NW panel. Its main features are the
following. First, asymptotically the aggregate capital stock and the number of firms
are positively related in the neighborhood of the steady state, and will be tangent
asymptotically to Es

1. Since the initial position lies on dG, the initial co-movement
will also be positive. Since the trajectory cannot cross any of the ṅ,= K̇ = Ȳ = 0
lines, along the trajectory of n,K, and Y all move together (this is the same as the
exogenous labour case Brito and Dixon (2009)). Phase diagram R2 is depicted in
Figure 4, NE panel. It shares some similar properties with the phase diagram R1, in
particular, the positive co-movement of the two state variables in the neighborhood
of the steady state. However, it differs in that trajectories originating from dG may
cross the Ẏ = 0 line. Hence there may be a hump shaped response of output to fiscal
policy.

Another way of looking at the dynamics is through the impulse-response functions
for the main variables to a fiscal shock in this model, (C, Y,K,L, n, e, k, I) where
k = K/n is capital per firm and I is investment in new firms and capital (see Figures
5 to 8). The impulse-response functions for all cases show that capital-per firm k
is non-monotonic. However, we also observe that whilst consumption and capital
in all cases follow monotonic trajectories (in this benchmark case), this is not so for
output Y and employment L. In the case of phase diagram C, where there are two
complex eigenvalues and n adjusts non-monotonically, we can see that both output
and employment have a hump-shaped response function: output and employment
”jump” up, but continue upwards for a time overshooting the long-run effect, peaking
and then converging to the new steady-state.
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[ Figures 5 to 8 here]

Whilst we have not found an example of a non-monotonic trajectory for con-
sumption in the benchmark model, we can determine what it would look like if it
were to happen. Since the marginal product of capital will fall as we approach close
to the steady-state, we know that consumption and capital will then have a positive
co-movement. In the classical Ramsey model, with overshooting, the positive co-
movement occurs all along the path. However, if there is undershooting on impact,
then consumption will at first fall to below (in the case of a fiscal expansion) the new
steady-state, so that it can then increase with capital. There will thus be an initial
phase of negative co-movement resulting in a hump shape.

7 Conclusion

In this paper we have analyzed Ricardian fiscal policy in the context of the classic
Ramsey model extended to include an endogenous labour supply and a real time
entry and exit process. Both of these extensions have been done on their own:
entry was developed in Brito and Dixon (2009) and an endogenous labour supply in
(Turnovsky, 1995, ch.9). We find that with both extensions together we are able to
obtain a much richer set of possible dynamic responses to fiscal policy. Whilst the
long-run dynamics are similar to standard models, the short-run can be very different.
The dynamics allows for complex eigenvalues so that both state variables (capital and
the number of firms) can be non-monotonic.

However, in the analysis of fiscal policy there is an ”initial condition” effect that
implies that only the number of firms will be non-monotonic as we move from the
initial steady-state to the new one. Whilst the response of capital to fiscal policy
will be monotonic, we find that there can be a hump shaped response of output in a
wide range of cases. This is analyzed in terms of a phase diagram in the state-space
of capital and the number of firms, where we are able to define the isocline for output
(the combinations of capital and the number of firms at which the time derivative of
output is zero). We are able to show that in certain well defined cases the trajectory
of the economy in response to a fiscal shock will pass through this isocline and thus
exhibit a hump shaped response.

Much of macroeconomics today is thought of in terms of calibrated or estimated
numerical models. Whilst theory has its limitations in being limited to shedding
light on relatively simple models, theoretical models allow us to understand the gen-
eral mechanisms underlying macroeconomic relationships in a way that numerical
simulation cannot. We have extended the standard Ramsey model by introducing
a real time model of entry. Whilst the analysis is complex and four dimensional,
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we are able to interpret the results in terms of two dimensional phase diagrams with
relatively clear economic interpretation.

The profile of the trajectories generated by a dynamic model is determined by
the number of independent dynamic mechanisms, which can be measured by the
dimension of the stable manifold. Sometimes calibrated DSGE models are large
in terms of the dimension but they are not large in terms of the dimension of the
stable manifold. An analytical approach has the advantage of rendering the dynamic
mechanisms transparent. In this paper we have learned that in order to have hump-
shaped trajectories the dimension of the stable manifold should be two and that the
two dynamic driving forces are the decreasing marginal productivity of capital in
production and the decreasing marginal profit on entry.
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A Appendix: proofs and auxiliary results

Partial derivatives of function (2) The first partial derivetione of function (2)
are

YK = AFk

(
K

n
,
L

n

)
, YL = AFl

(
K

n
,
L

n

)
, Yn = (1− ν)AF

(
K

n
,
L

n

)
− φ

where YK = ∂Y/∂K, etc. The last equation results from the application of Euler’s
Lemma. The second partial derivatives are:

YKK =
AFkk
n

< 0, YKL = YLK =
AFkl
n

> 0, YLL =
AFll
n

< 0

and

YnK = YKn = (1−ν)
AFk
n

> 0, YnL = YLn = (1−ν)
AFl
n

> 0, Ynn = −ν(1− ν)AF

n
< 0.

Partial derivatives of function (7) Assuming that UCL 6= 0 the optimal labour
supply function has partial derivatives:

LC = − YLUCC
UCYLL + ULL

< 0

LK = − YLKUC
UCYLL + ULL

> 0

Ln = − YLnUC
UCYLL + ULL

> 0.

Partial derivations of functions (8), (9) and (10) The partial derivatives for
the optimal rate of return are

rC = YKLLC < 0

rK = YKK + YKLLK =
(YKKYLL − YKLYLK)UC + YKKULL

UCYLL + ULL
< 0

rn = YKn + YKLLn > 0

we use the following facts (resulting from the concavity of the production function)

YKKYLL − YKLYLK =

(
A

n

)2

(FkkFll − F 2
kl) > 0
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The partial derivatives for the optimal profits are

πC = YnLLC < 0

πK = YnK + YnLLK > 0

πn = Ynn + YnLLn =
(YnnYLL − YnLYLn)UC + YnnULL

UCYLL + ULL
< 0

we use the following facts (resulting from the concavity and rhe homogeneity of degree
ν of the production function)

YnnYLL−YnLYLn =

(
A

n

)2
K

n
((ν−1)FkFll−(ν−1)FlFlk) =

(
AK

n2

)2

(FkkFll−F 2
kl) > 0

The partial derivatives for the optimal output are

YC = YLLC = ŵLC < 0

YK = YK + YLLK = r̂ + ŵLK > 0

Yn = Yn + YLLn = π̂ + ŵLn

which is ambiguous, but Ŷn > 0 at the steady state because π∗ = 0.

Propositions 1 and 2: auxiliary results and proofs

Lemma 1. Let D = det (J), T = M2 − ρ2, where M2 is the sum of the principal
minors of order 2 of J Then, the eigenvalues of Jacobian J , are

λs,u1 =
ρ

2
∓
[(ρ

2

)2
− T

2
−∆

1
2

] 1
2

, λs,u2 =
ρ

2
∓
[(ρ

2

)2
− T

2
+ ∆

1
2

] 1
2

(44)

where the discriminant is ∆ ≡
(T
2

)2 −D.

Proof. The characteristic polynomial for a four dimensional system of ODEs is:

c(λ) = λ4 −M1λ
3 +M2λ

2 −M3λ+M4

where Mj is the sum of the principal minors of order j = 1, . . . , 4. In infinite horizon
optimal control problems with two state variables the following constraints on the
value of the sums of the principal minors hold: M2 = 2ρ, which is the trace, and
M3 = ρ(M2 − ρ2). Therefore, there are only two independent coefficients involving
the sums of the principal minors of even order: T ≡M2 − ρ2 and D ≡M4 = det(J).
Then the characteristic polynomial can be written as

c(λ) =
(ρ

2

)4 [
ω2 +

((ρ
2

)−2
T − 2

)
ω +

((ρ
2

)−4
M4 −

(ρ
2

)−2
T + 1

)]
,
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where ω ≡
(
λ− ρ

2

)2 (ρ
2

)−2
. Then we get the eigenvalues as

(
λ− ρ

2

)s,u
1,2

= ∓
[(

ρ
2

)
ω1,2

] 1
2 .

Then, by solving the polynomial equation c(λ) = 0, we get the eigenvalues in equation
(44).

Lemma 2. If the discriminant is non-negative, ∆ ≥ 0, then the four eigenvalues are
real and verify

λs2 ≤ λs1 < 0 < λu1 ≤ λu2 .

If the discriminant is negative, ∆ < 0, then there are two pairs of complex conjugate
eigenvalues

λs1 = θs + ϑi, λs2 = θs − ϑi, λu1 = θu − ϑi, λu2 = θu + ϑi

where i2 = −1, and θs < 0 < θu:

θs,u =
ρ

2
∓
(

1

2

)1/2
{[(ρ

2

)4
−
(ρ

2

)2
T +D

]1/2
+
(ρ

2

)2
− T

2

}1/2

and

ϑ =

(
1

2

)1/2
{[(ρ

2

)4
−
(ρ

2

)2
T +D

]1/2
−
(ρ

2

)2
+
T
2

}1/2

> 0.

Furthermore, the following relationships hold:

1. λsi + λui = ρ > 0 (if they are complex we have αs + αu = ρ);

2. λs1λ
u
1 = l1 and λs2λ

u
2 = l2,

l1 =

{
T
2

+ ∆
1
2 , if ∆ ≥ 0

T
2

+ (|∆|) 1
2 i, if ∆ < 0

, l2 =

{
T
2
−∆

1
2 , if ∆ ≥ 0

T
2
− (|∆|) 1

2 i, if ∆ < 0

verify l2 ≤ l1 < 0 are real if ∆ ≥ 0 and are complex conjugate with a negative
real part, if ∆ < 0

3. l1 + l2 = T < 0 and l1l2 = D > 0 are real for any type of eigenvalue, real or
complex.

Proof. Proof of Lemma 2 The first part of the Lemma is obvious from Lemma 1.
When ∆ < 0 we use the fact that given the complex number y = a + bi it is known
that

√
y =
√
a+ bi = 1/2

{√
r + a+ sign(b)

√
r − ai

}
where r ≡

√
a2 + b2. The rest

of the proof is obvious.
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Proof. Proof of Proposition 1 We start by proving that the conditions of Lemma
1 on the sums of the principal minors hold.

First, as C∗

σ
YKLLC + YLLK = 0 then

C∗r∗C
σ

+ Y ∗K = ρ which implies that the trace

is M1 = ρ +
C∗r∗C
σ

+ Y ∗K = 2ρ. Second, the sum of the principal minors of order two
and three are

M2 = ρ

(
C∗r∗C
σ

+ Y ∗K

)
+
C∗

σ
(r∗CY

∗
K − r∗K(Y ∗C − 1)) +

π∗n
γ

and

M3 = ρ(M2 − ρ2)−
1

γ

(
C∗

σ
r∗nπ

∗
C + π∗KY

∗
n

)
But as C∗

σ
r∗nπ

∗
C + π∗KY

∗
n = 0 then M3 = ρ(M2 − ρ2). Then, we can use Lemma 1 to

determine the eigenvalues, noting that

T ≡M2 − ρ2 =
C∗

σ
(r∗CY

∗
K − r∗KY ∗C) +

C∗r∗K
σ

+
π∗n
γ

(45)

and

D ≡M4 =
C∗

σγ
[(1− Y ∗C)(π∗nr

∗
K − π∗Kr∗n) + Y ∗K(π∗nr

∗
C − π∗Cr∗n)− Y ∗n (π∗Kr

∗
C − π∗Cr∗K)]

(46)
In order to obtain the dimension of the stable manifold, we have to determine the

signs of T and D. From the signs of the partial derivatives, r∗K < 0, π∗n < 0 and as
r∗CY

∗
K − r∗KY ∗C = LC(YLKYK − YKKYL) < 0 then T < 0. As

D =
C∗

σγ

(
L∗

n∗

)(
1

UCYLL + ULL

)(
AFYLUCC + ULL

L∗

n∗

)
(YKKYLL − YKLYLK) > 0

(47)
From the fundamental theorem of algebra (i.e., on the relationship between the eigen-
values and the coefficients of the characteristic polynomial) it is easy to see that there
are two eigenvalues with negative real parts (and always two eigenvalues with positive
real parts): D > 0 implies that there are no zero eigenvalues and that the number of
eigenvalues with negative real part is even; but as M1 > 0 they should be reduced to
zero or two; and, finally as M3 = ρT < 0 then we should have one pair of negative
eigenvalues (M2 is ambiguous, in general).

Next, we apply the results in Lemma 2. For finding the conditions under which
those three cases can occur let z ≡ 1/γ. The ”inner” discriminant can be written as
a quadratic function of z:

∆(z) =

(
π∗n
2

)2
[
z2 + 2

(
2O − π∗nQ

(π∗n)2

)
z +

(
Q
π∗n

)2
]
. (48)
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Then ∆(z) = 0 if and only if δ(z) = z2 + a1z + a0 = 0, such that z > 0, where

a1 ≡ 2
(

2O−π∗nQ
(π∗n)

2

)
and a0 ≡

(
Q
π∗n

)2
. The sign of a1 is ambiguous but a0 > 0.

Function δ(z) has a minimum for z̃ > 0 such that δ
′
(z̃) = 0. If δ(z̃) = 0 then

if z = z̃ then there will be multiple real eigenvalues and if z 6= z̃ there will be real
distinct eigenvalues. If δ(z̃) < 0 this means that the polynomial has two roots, z1 and
z2 such that z1 > z2 > 0. Then there are related values for γ, γ1 < γ2. This implies
that ∆(z) < 0 for z1 > z > z2 and the eigenvalues, λji for j = s, u and i = 1, 2 will be
complex conjugate.

Therefore, we have only to investigate if there are any positive real roots for the
polynomial equation δ(z) = 0. Its roots are

z1 = (π∗n)−2
{
π∗nQ− 2O + 2 [O(O − π∗nQ)]

1
2

}
,

z2 = (π∗n)2
{
π∗nQ− 2O − 2 [O(O − π∗nQ)]

1
2

}
.

Observe that as a0 > 0 then the two roots, z1, z2, have the same sign, but may be
real or complex.

Let ∆z ≡ O(O − π∗nQ). Three cases may occur:
(a) ∆z = 0 if O = 0 or O = π∗nQ > 0. In each of those cases there is only one

multiple solution for δ(z) = 0. In the first case, we get z = z̃ = Q/π∗n > 0, given in
equation (33). In the second case we get z = −Q/π∗n < 0 which does not belong to
the domain of z.

(b) ∆z < 0 if O−π∗nQ < 0 < O (another formally possible case where O−π∗nQ >
0 > O is not admissible because π∗nQ > 0). In this case z1 and z2 are complex
conjugate and therefore do not belong to the domain of z.

(c) ∆z > 0 if O < 0, implying that O − π∗nQ < 0, or if O > O − π∗nQ > 0. In the
first case, as a1 is positive because πnQ− 2O > 0, and as a0 is positive, then the two
roots for δ(z) = 0 are real and positive. In the second case, as π∗nQ−O < −O < 0
then a1 < 0 and the two roots are real but negative, and, therefore do not belong to
the domain of z.

Summing up, O < 0 is a necessary condition for ∆(z) < 0 because z > 0. This
case occurs if and only if z1 < z < z2. In all the other cases the eigenvalues are real.

The rest of the proof follows from Lemma 2.

Lemma 3. If there is no multiplicity then is the eigenvector associated to eigenvalue
λsj, j = 1, 2 of matrix J is

V s
j = (vs1,j, λ

s
j , v

s
3,j, 1)>, j = 1, 2 (49)
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where

vs1,1 ≡
C∗

σ
(r∗KY

∗
n − r∗nY ∗K + r∗nλ

s
1)

l2 − π∗n
γ

, vs3,1 ≡
C∗

σ
((Y ∗C − 1)r∗n − Y ∗n r∗C) + Y ∗n λ

s
1

l2 − π∗n
γ

(50)

vs1,2 ≡
C∗

σ
(r∗KY

∗
n − r∗nY ∗K + r∗nλ

s
2)

l1 − π∗n
γ

, vs3,2 ≡
C∗

σ
((Y ∗C − 1)r∗n − Y ∗n r∗C) + Y ∗n λ

s
2

l1 − π∗n
γ

(51)

Proof. Eigenvector V i
j is obtained as the non-zero solution of the homogeneous system

(J − λijI4)V i
j = 0,

V i
j =

[
C∗

σ

(
r∗KY

∗
n − r∗n(Y ∗K − λij)

)
(C
∗

σ
− λij)(r∗K − λij)− C∗

σ
r∗K(Y ∗C − 1)

, λij,
C∗

σ
r∗n(Y ∗C − 1)− Y ∗n

(
C∗

σ
r∗C − λij

)
(C
∗

σ
r∗C − λij)(r∗K − λij)− C∗

σ
r∗K(Y ∗C − 1)

, 1

]
,

for i = s, u and j = 1, 2. But (C
∗

σ
−λij)(r∗K −λij)− C∗

σ
r∗K(Y ∗C − 1) = (λij)

2−λij(C
∗

σ
r∗C +

Y ∗K) + C∗

σ
r∗CY

∗
K − C∗

σ
r∗K(Y ∗C − 1) = λij(λ

i
j − ρ) + T − π∗n

γ
= −li + l1 + l2 − π∗n

γ
, because

T = l1+l2 and λsi+λ
u
i = ρ. Then, for V s

1 and V u
1 the denominator becomes l2− π∗n

γ
and

for V s
2 and V u

2 the denominator becomes l1 − π∗n
γ

. Then equation (49) results. If the

eigenvalues are complex, then l1 = λs1λ
u
1 = (θs+ϑi)(θu−ϑi) = θsθu+ϑ2−ϑ(θu−θs)i =

T /2 + |∆|1/2i and l2 is its complex conjugate l2 = T /2− |∆|1/2i.

Proof. Proof of Proposition 2
We start with the determination of the slopes of the (K,n) projections of the

eigenspaces in space (K,n), for the ∆ > 0 case: dn
dK

∣∣
Es

1
= 1/vs3,1 and dn

dK

∣∣
Es

2
=

1/vs3,2. The numerators of the vs1,i and vs3,i, for i = 1, 2, in equations (50)-(51),
are negative. In order to determine the sign of the denominators observe that l1 −
π∗n
γ

= 1
2

(
Q− π∗n

γ
+ ∆

1
2

)
and l2 − π∗n

γ
= 1

2

(
Q− π∗n

γ
−∆

1
2

)
where Q < 0, π∗n < 0, and

∆ =
(
Q− π∗n

γ

)2
+ 4O

γ
. As the sign of O is ambiguous then the signs of ∆, l1 − π∗n

γ

and l2 − π∗n
γ

are also ambiguous. However, if we want to guarantee that ∆ > 0 we

readily conclude that, three cases may occur: (1) if O > 0 then the second member
is larger in absolute value and therefore l1 − π∗n

γ
> 0 > l2 − π∗n

γ
. To see this note that

we have

[(
Q− π∗n

γ

)2
+ 4O

γ

] 1
2

>
∣∣∣Q− π∗n

γ

∣∣∣ ≥ Q− π∗n
γ

. Then vs1,1 > 0 and vs3,1 > 0, and

vs1,2 < 0 and vs3,2 < 0. If O < 0 and ∆ > 0, the first member is larger in absolute
value and therefore the sign of the denominators are equal and are the same as the
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sign of Q − π∗n
γ

. Therefore, we have two cases: (2) if O < 0, and Q − π∗n
γ
< 0, then

vs1,1 > 0, vs3,1 > 0, vs1,2 > 0 and vs3,2 > 0; or (3) if O < 0, and Q− π∗n
γ
> 0 then vs1,1 < 0,

vs3,1 < 0, vs1,2 < 0 and vs3,2 < 0.

Then, the signs of dn
dK

∣∣
Es

1
and dn

dK

∣∣
Es

2
are clear. In addition, we have a relationship

between those slopes

dn

dK

∣∣∣∣
Es

1

− dn

dK

∣∣∣∣
Es

2

=
C∗

σ
r∗n(l1 − l2) + Y ∗n (λs2 − λs1)(Q− λu1λu2)

(C
∗

σ
r∗n + Y ∗n λ

u
1)(C

∗

σ
r∗n + Y ∗n λ

u
2)

> 0

for any case of the three previous cases. Then: 1. If O > 0 then dn
dK

∣∣
Es

1
> 0 and

dn
dK

∣∣
Es

2
< 0; 2. If O < 0 and π∗n > γQ then dn

dK

∣∣
Es

1
> dn

dK

∣∣
Es

2
> 0; 3. If O < 0 and

π∗n < γQ then 0 > dn
dK

∣∣
Es

1
> dn

dK

∣∣
Es

2
.

Proposition 3: auxiliary results and proof

Lemma 4. (Local projection of (C, e) on the stable eigenspace). The linear space
which is tangent to the stable manifold is given by

Es ≡
{

(C, e,K, n) : (C − C∗, e)> = S(K −K∗, n− n∗)>
}

where

SCK =
C∗

σ
(r∗KY

∗
n − r∗nY ∗K)(l1 − l2) + C∗

σ
r∗n(λs1 − λs2)(Q− λs1λs2)

C∗

σ
r∗n(l2 − l1) + Y ∗n (λu2 − λu1)(Q− λu1λu2)

> 0 (52)

SCn =
C∗

σ
r∗n(λs1 − λs2)O/γ

π∗K
γ

[
C∗

σ
r∗n(l2 − l1) + Y ∗n (λu2 − λu1)(Q− λu1λu2)

] (53)

SeK =
(λs2 − λs1)O/γ

C∗

σ
r∗n(l2 − l1) + Y ∗n (λu2 − λu1)(Q− λu1λu2)

(54)

Sen =

C∗

σ
((Y ∗C − 1)r∗n − Y ∗n r∗C) (λs2 − λs1)(λs1λs2 −

π∗n
γ

) + Y ∗n λ
s
1λ

s
2(l1 − l2)

C∗

σ
r∗n(l2 − l1) + Y ∗n (λu2 − λu1)(Q− λu1λu2)

< 0(55)

If O > 0 then SCn < 0, SeK > 0 and SCK/SCn < SeK/Sen < 0. If O < 0 then
SCn > 0, SeK < 0 and SCK/SCn > SeK/Sen > 0.

Proof. Following the same method as in Brito and Dixon (2009) we prove this by
solving the last two equations of (30) for the two constants, zs1 and zs2 as

zs1 =

(
K(t)−K∗ − vs3,2(n(t)− n∗)

vs3,1 − vs3,2

)
e−λ

s
1t

zs2 =

(−(K(t)−K∗) + vs3,1(n(t)− n∗)
vs3,1 − vs3,2

)
e−λ

s
2t
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and substitute in the solutions for C and e in equation (30) to get (C(t)−C∗, e(t)−
e∗)> = S(K(t)−K∗, n(t)− n∗)> where

S ≡ 1

vs3,1 − vs3,2

(
vs1,1 − vs1,2 vs1,2v

s
3,1 − vs3,2vs1,1

λs1 − λs2 λs2v
s
3,1 − λs1vs3,2

)
.

After some algebra we get equations (52) to (55). We already know, from the concav-
ity properties of the production and utility functions, that r∗n > 0, Y ∗n > 0, π∗K > 0
and π∗n < 0. Also r∗KY

∗
n − r∗nY ∗K < 0 and (Y ∗C − 1)r∗n − Y ∗n r∗C < 0 because

Y ∗Cr
∗
n − Y ∗n r∗C = LC (YL(YKn + YKLLn)− YKLYLLn) = LCYLYKn < 0.

If the eigenvalues are real then all the denominators are negative because l2− l1 < 0,
Q < 0, and because of the relationships between the eigenvalues, λs2 < λs1 < 0 < λu1 <
λu2 . The numerator of SCK is negative and the numerator of Sen is positive. At last,
we see that the signs of the numerators of SCn and SeK are symmetric. Note that, if
O > 0 then l2−Q < 0 < l1−Q and if O < 0 then the signs of l2−Q and l1−Q are
the same. On the other hand (l1 −Q)(l2 −Q) = −O/γ. Then the sign of SeK is the
same as O and is the symmetric of SCn.

If the eigenvalues are complex we can prove that all the coefficients are of type
(ai)/(bi) = a/b and they are also real. The denominator is a complex number with
zero real part and a negative coefficient to the complex part l2 − l1 = −2|∆|1/2i and
(λu2 − λu1)(Q − λu1λ

u
2) = (Q − (θu)

2 − ϑ2)2ϑi have both negative coefficients. The
numerator of SCK is also complex number with negative coefficient to the complex
part as (λs1 − λs2)(Q − λs1λs2) = (Q − (θs)

2 − ϑ2)2ϑi. If we apply the same method
to the other coefficients we observe that the numerator of all the other coefficients
are complex numbers with zero real part and SCn has a negative coefficient to the
complex part and SeK and Sen have positive coefficients to the complex part.

At last, as

det (S) =
λs2v

s
1,1 − λs1vs1,2
vs3,1 − vs3,2

=

=

C∗

σ
(r∗KY

∗
n − r∗nY ∗K)((λs1 − λs2)

π∗n
γ

+ λs2λ
s
1(λ

u
1 − λu2)) + r∗nλ

s
2λ

s
1(l1 − l2)

C∗

σ
r∗n(l2 − l1) + Y ∗n (λu2 − λu1)(Q− λu1λu2

,

which is negative because

r∗KY
∗
n − r∗nY ∗K = Ln(YKKYL − YKLYK)− YKn(YK + YLLK) < 0,

then det (S) = SCKSen − SCnSeK < 0.
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Lemma 5. (Slopes of the isoclines in the projected space) The isoclines and their
relative slopes in the projected space (K,n) verify:

1. if O > 0 then dn
dK

∣∣
K̇=0

> dn
dK

∣∣
Ċ=0

> dn
dK

∣∣
ė=0

> dn
dK

∣∣
ṅ=0

> 0;

2. if O < 0 then dn
dK

∣∣
Ċ=0

> dn
dK

∣∣
K̇=0

> 0 > dn
dK

∣∣
ṅ=0

> dn
dK

∣∣
ė=0

.

Proof. The projection of the intersection of the isoclines with the stable eigenspace
over the space (K,n) have the following slopes:

dn

dK

∣∣∣∣
K̇=0

= −Y
∗
K + (Y ∗C − 1)SCK
Y ∗n + (Y ∗C − 1)SCn

=
λs2v

s
3,2 − λs1vs3,1

vs3,1v
s
3,2(λ

s
2 − λs1)

=

=
C∗

σ
r∗n(λs1 − λs2)(Q− λs1λs2) + Y ∗nQ(l1 − l2)

(λs2 − λs1)(C
∗

σ
r∗n + Y ∗n λ

u
2)(C

∗

σ
r∗n + Y ∗n λ

u
1)

> 0

dn

dK

∣∣∣∣
Ċ=0

= −r
∗
K + r∗CSCK
r∗n + r∗CSCn

=
λs2v

s
1,2 − λs1vs1,1

λs2v
s
3,1v

s
1,2 − λs1vs1,1vs3,2

=

=
(r∗KY

∗
n − r∗nY ∗K)(λs2 − λs1)(Q− λs1λs2) + r∗n((λs1)

2(l2 −Q)− (λs2)
2(l1 −Q))

(r∗KY
∗
n − r∗nY ∗K)(λs1 − λs2)(C

∗

σ
r∗n) + r∗n(C

∗

σ
((λs1)

2 − (λs2)
2) + Y ∗n (λu2(λs1)

2 − λu1(λs2)
2))

> 0

dn

dK

∣∣∣∣
ṅ=0

= −SCK
SCn

=
λs2 − λs1

λs2v
s
3,1 − vs3,2λs1

=

=
(λs2 − λs1)(l1 −Q)(l2 −Q)

C?

σ
((Y ?

C − 1)r?n − Y ?
n r

?
C)(λs2 − λs1)(λs1λs2 −

π?
n

γ
+ Y ?

n λ
s
1λ

s
2(l1 − l2)

and

dn

dK

∣∣∣∣
ė=0

= −π
∗
K + π∗CSCK − ργSeK
π∗n + π∗CSCn − ργSeK

=
(λs2)

2 − (λs1)
2

vs3,1(λ
s
2)

2 − vs3,2(λs1)2
=

=
((λs1)

2 − (λs2)
2)(l1 −Q)(l2 −Q)

C∗

σ
r?n((λs2)

2(l2 −Q)− (λs1)
2(l1 −Q)) + Y ?

n (λu1(λs2)
2(l2 −Q)− λu2(λs1)

2(l1 −Q))

have both the same sign as −(l1 −Q)(l2 −Q), then they have both the same sign of
O (see the proof of Lemma 4).

We can also determine the relationships between the projected isoclines. In some
cases we can sign unambiguously:

dn

dK

∣∣∣∣
K̇=0

− dn

dK

∣∣∣∣
ṅ=0

= −
λs1λ

s
2(v

s
3,1 − vs3,2)2

(λs2 − λs1)vs3,1vs3,2(λs2vs3,1 − λs1vs3,2)
> 0
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because both the numerator and the denominator are negative because the sign of
vs3,1v

s
3,2(λ

s
2v
s
3,1 − λs1vs3,2) is the same as the sign of (l1 −Q)2(l2 −Q)2 > 0

dn

dK

∣∣∣∣
Ċ=0

− dn

dK

∣∣∣∣
ė=0

=
λs1λ

s
2(v

s
3,1 − vs3,2)(λs1vs1,2 − λs2vs1,1)

(λs2v
s
1,2v

s
3,1 − λs1vs1,1vs3,2)((λs2)2vs3,1 − (λs1)

2vs3,2)
> 0

because both the numerator and the denominator are fractions with positive numer-
ators and denominators equal to (l1 −Q)2(l2 −Q)2 > 0,

dn

dK

∣∣∣∣
Ċ=0

− dn

dK

∣∣∣∣
ṅ=0

=
λs1λ

s
2(v

s
3,1 − vs3,2)(vs1,2 − vs1,1)

(λs2v
s
1,2v

s
3,1 − λs1vs1,1vs3,2)(λs2vs3,1 − λs1vs3,2)

> 0

because both the numerator and the denominator are fractions with negative numer-
ators and denominators equal to (l1 −Q)2(l2 −Q)2 > 0, and

dn

dK

∣∣∣∣
K̇=0

− dn

dK

∣∣∣∣
ė=0

=
λs1λ

s
2(v

s
3,1 − vs3,2)(λs2vs3,1 − λs1vs3,2)

vs3,1v
s
3,2(λ

s
1 − λs2)((λs2)2vs3,1 − (λs1)

2vs3,2)
> 0

because both the numerator and the denominator are fractions with negative numer-
ators and denominators equal to (l1 −Q)2(l2 −Q)2 > 0.

Other relationships depend on the sign of O:

dn

dK

∣∣∣∣
Ċ=0

− dn

dK

∣∣∣∣
K̇=0

=
λs1λ

s
2(v

s
3,1 − vs3,2)(vs1,2vs3,1 − vs1,1vs3,2)

vs3,1v
s
3,2(λ

s
2 − λs1)(λs2vs1,2vs3,1 − λs1vs1,1vs3,2)

and
dn

dK

∣∣∣∣
ė=0

− dn

dK

∣∣∣∣
ṅ=0

=
λs1λ

s
2(λ

s
2 − λs1)(vs3,1 − vs3,2)

(λs2v
s
3,1 − λs1vs3,2)((λs2)2vs3,1 − (λs1)

2vs3,2)

have both the sign of vs3,1 − vs3,2 which has the symmetric sign of (l1 −Q)(l2 −Q) =
−O/γ then the difference in the slopes has the sign of O.

Lemma 6. (Phase diagrams over the projected space) If the eigenvalues are real,
then the projections of the isoclines and of the eigenspaces over space (K,n) verify
the following relationships:

R1 if O > 0 then dn
dK

∣∣
K̇=0

> dn
dK

∣∣
Ċ=0

> dn
dK

∣∣
Es

1
> dn

dK

∣∣
ė=0

> dn
dK

∣∣
ṅ=0

> 0 >
dn
dK

∣∣
Es

2
,
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R2 If O < 0, ∆ > 0 and π∗n > γQ then dn
dK

∣∣
Ċ=0

> dn
dK

∣∣
K̇=0

> dn
dK

∣∣
Es

1
> dn

dK

∣∣
Es

2
>

0 > dn
dK

∣∣
ṅ=0

> dn
dK

∣∣
ė=0

;

R3 If O < 0, ∆ > 0 and π∗n < γQ then dn
dK

∣∣
Ċ=0

> dn
dK

∣∣
K̇=0

> 0 > dn
dK

∣∣
ṅ=0

>
dn
dK

∣∣
ė=0

> dn
dK

∣∣
Es

1
> dn

dK

∣∣
Es

2
.

Proof. The slopes of the eigenspaces in space (K,n) and the slopes of the projections
in (K,n) of the intersections of the isoclines with the stable manifold projections were
already determined in Proposition 2, and 5. We use the same method as in the proof
of the last result to get their relative position. This can only be done for the case
in which the eigenvalues are real, because the eigenvectors associated to the complex
eigenvalues are also complex: the slopes of the eigenvectors as regards the projections
of the isoclines K̇ = 0 and Ċ = 0 can be unambiguously signed,

dn

dK

∣∣∣∣
K̇=0

− dn

dK

∣∣∣∣
Es

j

= λsj
vs3,2 − vs3,1

vs3,1v
s
3,2(λ

s
2 − λs1)

> 0, j = 1, 2

and

dn

dK

∣∣∣∣
Ċ=0

− dn

dK

∣∣∣∣
Es

j

=
λsjv

s
1,j

vs3,j

(
vs3,2 − vs3,1

λs2v
s
3,1v

s
1,2 − λs1vs3,2vs1,1

)
> 0, j = 1, 2;

however, they are ambiguous as regards the projections of the isoclines ė = 0 and
ṅ = 0

dn

dK

∣∣∣∣
ė=0

− dn

dK

∣∣∣∣
Es

j

=,
(λsj)

2

vs3,j

(
vs3,2 − vs3,1

(λs2)
2vs3,1 − (λs1)

2vs3,2

)
j = 1, 2

and
dn

dK

∣∣∣∣
ṅ=0

− dn

dK

∣∣∣∣
Es

j

=,
λsj
vs3,j

(
vs3,2 − vs3,1

λs2v
s
3,1 − λs1vs3,2

)
j = 1, 2

however, they have both the sign of lj − π∗/γ. Then: the differences as regards Es
1

are negative for O > 0 or O < 0 and π∗ > γQ (i.e., cases R1 and R2) and are positive
for O < 0 and π∗ < γQ (i.e., case R3 ); and he differences as regards Es

2 are positive
for O > 0 or O < 0 and π∗ < γQ (i.e., cases R1 and R3) and are negative for O < 0
and π∗ > γQ (i.e., case R2 ).

Proof. Proof of Proposition 3 Consider equation (30) and the that the initial point
is not the steady state (K(0), n(0)) 6= (K∗, n∗). First, if the eigenvalues are complex
then the transition dynamics is oscillatory and convergent. As the the coefficient of
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the complex part is positive ϑ > 0 then the trajectories rotate clockwise (see proof of
Lemma 2). Next we deal with the case in which the eigenvalues are real.

First, consider the equation for K: K(t)−K∗ = zs1v
s
3,1e

λs1t + zs2v
s
3,2e

λs2t. As eλ
s
1t >

eλ
s
2t ≥ 0 if 0 ≤ t ≤ ∞ then the trajectories for K(t) are monotonic if sign(zs1v

s
3,1) =

sign(zs2v
s
3,2) and they are non-monotonic if sign(zs1v

s
3,1) 6= sign(zs2v

s
3,2). There are four

types of trajectories: trajectory type I if K(0)−K∗ > 0 and K(t)−K∗ is decreasing
towards zero (K(∞) = K∗); trajectory type II if K(0)−K∗ is decreasing (it can be
positive, zero or negative) initially, reaches a level at time tK , K(tK) −K∗ < 0 and
then increases towards zero; trajectory type III if K(0) − K∗ < 0 and K(t) − K∗
is increasing towards zero; and trajectory type IV if K(0)−K∗ is increasing (it can
be positive, zero or negative) initially, reaches a level at time tK , K(tK) − K∗ > 0
and then decreases towards zero. Type II trajectory is a U hump-shaped trajectory
and type IV a IU hump-shaped trajectory. Hump-shaped trajectories only if tK ≡
{t : d(K(t)−K∗)/dt = 0} > 0, while type II trajectories are convex at K(tK) and
type IV trajectories are concave at time K(tK). As

tK =
1

λs1 − λs2
ln

(
−
λs2z

s
2v
s
3,2

λs1z
s
1v
s
3,1

)
and

d2(K(t)−K∗)
dt2

∣∣∣∣
t=tK

= (λs1 − λs2)λs1zs1vs3,1eλ
s
1tK

then, we have the following conditions for the four types of trajectories:

• trajectory I if λs1z
s
1v
s
3,1 + λs2z

s
2v
s
3,2 < 0 and zs1v

s
3,1 > 0;

• trajectory II if λs1z
s
1v
s
3,1 + λs2z

s
2v
s
3,2 < 0 and zs1v

s
3,1 < 0;

• trajectory III if λs1z
s
1v
s
3,1 + λs2z

s
2v
s
3,2 > 0 and zs1v

s
3,1 < 0;

• trajectory IV if λs1z
s
1v
s
3,1 + λs2z

s
2v
s
3,2 > 0 and zs1v

s
3,1 > 0.

In order to translate those conditions over a partition of the domain for variables
(K,n), two facts are useful: first

λs1z
s
1v
s
3,1 + λs2z

s
2v
s
3,2 =

(λs1v
s
3,1 − λs2vs3,2)(K(0)−K∗) + (λs2 − λs1)vs3,1vs3,2(n(0)− n∗)

vs3,1 − vs3,2
= 0

if and only if (see proof of Lemma 5)

n(0)− n∗ =
λs2v

s
3,2 − λs1vs3,1

(λs2 − λs1)vs3,1vs3,2
(K(0)−K∗) =

dn

dK

∣∣∣∣
K̇=0

(K(0)−K∗)
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that it (K(0), n(0)) are located along the projected isocline for K over space (K,n);
second

zs1v
s
3,1 =

vs3,1
(
(K(0)−K∗)− vs3,2(n(0)− n∗)

)
vs3,1 − vs3,2

if and only if (see proof of Proposition 2)

n(0)− n∗ =
1

vs3,2
(K(0)−K∗) =

dn

dK

∣∣∣∣
Es

2

(K(0)−K∗)

that is (K(0), n(0)) is located along the projected eigenspace Es
2 over space (K,n).

Therefore, the projections of isocline K̇ = 0 and of the eigenspace Es
2 perform a

partition over the domain (K,n) which are associated to the four types of trajectories
that were mentioned. Using the previous results, and, in particular, the fact that if
O > 0 then vs3,1 − vs3,2 > 0 and vs3,1 > 0 and vs3,2 < 0 and if O < 0 then vs3,1 − vs3,2 < 0
and sign(vs3,1) = sign(vs3,2), then we have:

• trajectory I if K(0) > K∗ and dn
dK

∣∣
Es

2
(K(0)−K∗) < n(0)−n∗ < dn

dK

∣∣
K̇=0

(K(0)−
K∗) ;

• trajectory II if n(0)− n∗ < min
{

dn
dK

∣∣
K̇=0

, dn
dK

∣∣
Es

2

}
(K(0)−K∗) ;

• trajectory III ifK(0) < K∗ and dn
dK

∣∣
Es

2
(K(0)−K∗) > n(0)−n∗ > dn

dK

∣∣
K̇=0

(K(0)−
K∗) ;

• trajectory IV if n(0)− n∗ > max
{

dn
dK

∣∣
K̇=0

, dn
dK

∣∣
Es

2

}
(K(0)−K∗).

Now, we consider the equation for n: n(t)−n∗ = zs1e
λs1t+zs2e

λs2t. As eλ
s
1t > eλ

s
2t ≥ 0

if 0 ≤ t ≤ ∞ then the trajectories for n(t) are monotonic if sign(zs1) = sign(zs2) and
they are non-monotonic if sign(zs1) 6= sign(zs2). There are four types of trajectories:
trajectory type I if n(0)−n∗ > 0 and n(t)−n∗ is decreasing towards zero (n(∞) = n∗);
U hump-shaped trajectory of type II if n(0) − n∗ is decreasing (it can be positive,
zero or negative) initially, reaches a level at time tn, n(tn)−n∗ < 0 and then increases
towards zero; trajectory type III if n(0)−n∗ < 0 and n(t)−n∗ is increasing towards
zero; and IU hump-shaped of type IV if n(0) − n∗ is increasing (it can be positive,
zero or negative) initially, reaches a level at time tn, n(tn)−n∗ > 0 and then decreases
towards zero. Hump-shaped trajectories only if tn ≡ {t : d(n(t)− n∗)/dt = 0} > 0,
while type II trajectories are convex at n(tn) and type IV trajectories are concave
at time n(tn). As

tn =
1

λs1 − λs2
ln

(
−λ

s
2z
s
2

λs1z
s
1

)
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and
d2(n(t)− n∗)

dt2

∣∣∣∣
t=tK

= (λs1 − λs2)λs1zs1eλ
s
1tK

then, we have the following conditions for the four types of trajectories:

• trajectory I if λs1z
s
1 + λs2z

s
2 < 0 and zs1 > 0;

• trajectory II if λs1z
s
1 + λs2z

s
2 < 0 and zs1 < 0;

• trajectory III if λs1z
s
1 + λs2z

s
2 > 0 and zs1 < 0;

• trajectory IV if λs1z
s
1 + λs2z

s
2 > 0 and zs1 > 0.

In order to translate those conditions over a partition of the domain for variables
(K,n), two facts are useful: first

λs1z
s
1 + λs2z

s
2 =

(λs1 − λs2)(K(0)−K∗) + (λs2v
s
3,1 − λs1vs3,2)(n(0)− n∗)

vs3,1 − vs3,2
= 0

if and only if (see proof of Lemma 5)

n(0)− n∗ =
λs2 − λs1

λs2v
s
3,1 − λs1vs3,2

(K(0)−K∗) =
dn

dK

∣∣∣∣
ṅ=0

(K(0)−K∗)

that it (K(0), n(0)) are located along the projected isocline for n over space (K,n);
second

zs1 =
(K(0)−K∗)− vs3,2(n(0)− n∗)

vs3,1 − vs3,2
if and only if (see proof of Proposition 2)

n(0)− n∗ =
dn

dK

∣∣∣∣
Es

2

(K(0)−K∗)

that is (K(0), n(0)) is located along the projected eigenspace Es
2 over space (K,n).

Therefore, the projections of isocline ṅ = 0 and of the eigenspace Es
2 perform a

partition over the domain (K,n) which are associated to the four types of trajectories
that were mentioned. Using the previous results, and, in particular, the fact that if
O > 0 then vs3,1 − vs3,2 > 0 and vs3,1 > 0 and vs3,2 < 0 and if O < 0 then vs3,1 − vs3,2 < 0
and sign(vs3,1) = sign(vs3,2) (they are positive in case R2 and negative in case R3) ,
then we have trajectory:
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• trajectory I if n(0) > n∗ and, if we have case R1 and dK
dn

∣∣
Es

2
(n(0)−n∗) < K(0)−

K∗ < dK
dn

∣∣
ṅ=0

(n(0)−n∗) or if we have cases R2 and R3 and dK
dn

∣∣
ṅ=0

(n(0)−n∗) <
K(0)−K∗ < dK

dn

∣∣
Es

2
(n(0)− n∗);

• trajectory II if we have case R1 and K(0)−K∗ < min
{

dK
dn

∣∣
Es

2
, dK
dn

∣∣∣
ṅ=0

}
(n(0)−

n∗) or if we have cases R2 and R3 andK(0)−K∗ > max
{

dK
dn

∣∣
Es

2
, dK
dn

∣∣∣
ṅ=0

}
(n(0)−

n∗);

• trajectory III if n(0) < n∗ and, if we have case R1 and dK
dn

∣∣
Es

2
(n(0) − n∗) >

K(0)−K∗ > dK
dn

∣∣
ṅ=0

(n(0)−n∗) or if we have cases R2 and R3 and dK
dn

∣∣
ṅ=0

(n(0)−
n∗) > K(0)−K∗ > dK

dn

∣∣
Es

2
(n(0)− n∗);

• trajectory IV if we have case R1 andK(0)−K∗ > max
{

dK
dn

∣∣
Es

2
, dK
dn

∣∣∣
ṅ=0

}
(n(0)−

n∗) or if we have cases R2 and R3 andK(0)−K∗ < min
{

dK
dn

∣∣
Es

2
, dK
dn

∣∣∣
ṅ=0

}
(n(0)−

n∗).

If we consider the definitions of sets NK , SK , Wn and En, then set NK is associated
to trajectories of type IV , set SK is associated to trajectories of type II, both for
variable K, and set Wn is associated to trajectories of type II for case R1 and of
type IV for cases R2 and R3 , and set En is associated to trajectories of type IV
for case R1 and of type II for cases R2 and R3, for variable n. Using the previous
results we also see that: (1) if we have case R1 the sets NK , SK , Wn and En are all
disjoint; (2) if we have case R2 then En ⊂ SK and Wn ⊂ NK ; and (3) if we have
case R3 then NK ⊂ En and SK ⊂Wn.

Propositions 4 and 5: proofs

Proof. Proof of Proposition 4 First, we linearise the system (12), (14), (15) and
(16) around an initial steady state and introduce a variation in G, dG, to get the
variational system

Ẋ(t) = JdX(t) + JGdG

where X = (x1, x2, x3, x4)
> ≡ (C, e,K, n)>, J is the Jacobian in equation (25) and

JG = (0, 0,−1, 0)>. Second, given the fact the steady state is hyperbolic, we get the
long run multipliers as dX∗/dG = −J−1JG. If we perform the matrix operation and
observe that det (J) = D > 0 then we get the expressions and the signs in equations
(38)-(41). Third, to calculate the short-run multipliers we solve the linearised system,
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along the stable manifold. We get, for the case in which the eigenvalues are real

dxi(t)

dG
=
dx∗i
dG
−

vsi,1
vs3,1 − vs3,2

(
dK∗

dG
− vs3,2

dn∗

dG

)
eλ

s
1t−

vsi,2
vs3,1 − vs3,2

(
−dK

∗

dG
+ vs3,1

dn∗

dG

)
eλ

s
2t, i = 1, . . . , 4, (56)

and for the case in which the eigenvalues are complex conjugate

dxi(t)

dG
=
dx∗i
dG
− 1

vs3,1 − vs3,2
eθst
{(

(vs1,1 − vsi,2)
dK∗

dG
− (vsi,1v

s
3,2 − vsi,2vs3,1)

dn∗

dG

)
cos (ϑt)+

+

(
(vsi,1 + vsi,2)

dK∗

dG
− (vsi,1v

s
3,2 + vsi,2v

s
3,1)

dn∗

dG

)
sin (ϑt)

}
, i = 1, . . . , 4 (57)

If we evaluate the previous expressions at time t = 0, we get the same expressions for
both real and complex eigenvalues: dK(0)/dG = dn(0)/dG = 0 and equations (42)
and (43) for dC(0)/dG and de(0)/dG. From Lemma 4, on the signs of the components
of matrix S and the signs for the long run multipliers, we readily conclude that: if
O < 0 then SCK > 0 and SCn > 0 and SeK < 0 and Sen < 0 then dC(0)/dG <
dC∗/dG < 0 and de(0)/dG > 0 and if O > 0 then SCK > 0 and SCn < 0 and SeK > 0
and Sen < 0 and then the relationship both the values of the impact multipliers and
their relationship with the long run multipliers are ambiguous.

Proof. Proof of Proposition 5 Observe that, in the (K,n)-graphs, the pre- and
post-shock levels of those variables will be located on the linear schedule n = K. (n/K)∗

with a positive slope:
dn

dK

∣∣∣∣
dG

= −r
∗
Cπ
∗
K − r∗Kπ∗C

r∗Cπ
∗
n − r∗nπ∗C

> 0,

passing through the initial and ex-post steady-states. The pre-shock initial point
following a positive (negative) variation of G will be located below (above) the post-
shock steady state along the dG line. This means that using the results in Proposition
4 we can have a geometric determination of the existence of non-monotonic effects of
fiscal policy by comparing the dG line with the projections of the isoclines for K and
n and with curve Es

2. Interestingly we have:

sign

(
dn

dK

∣∣∣∣
K̇=0

− dn

dK

∣∣∣∣
dG

)
= sign

(
1− (Y ∗C − 1)

dC(0)

dG

)

sign

(
dn

dK

∣∣∣∣
ṅ=0

− dn

dK

∣∣∣∣
dG

)
= −sign

(
de(0)

dG

)
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We find that

dn

dK

∣∣∣∣
dG

>
dn

dK

∣∣∣∣
ṅ=0

,
dn

dK

∣∣∣∣
dG

<
dn

dK

∣∣∣∣
K̇=0

,
dn

dK

∣∣∣∣
dG

>
dn

dK

∣∣∣∣
Es

2

That is: the long-run relation represented by the dG line is less steep than the
projection of the isocline K̇ = 0 but is steeper than the projection of the isocline
ṅ = 0 and the eigenspace Es

2. This means that we that schedule dn/dK|dG can only
belong to sets Wn and En, for case R3 that is we will only find the case in which
the number of firms can evolves non-monotonically. Capital will always respond in
a monotonic manner to fiscal policy, except for the case in which there are complex
eigenvalues, case C.

B A benchmark model

In this section we assume the benchmark case where production function is Cobb-
Douglas and the benchmark utility function as in equations (23)-(24).

B.1 Steady state

The steady state (C∗, K∗, L∗, n∗, e∗) is determined from equations (6), (12)- (16) ,
when the time derivatives are set to zero. Then e∗ = 0 and the other variables solve
the system

βAKαLβ−1−ηn1−α−β = ξCσ (58)

αAKα−1Lβn1−α−β = ρ (59)

(1− α− β)AKαLβn−(α+β) = φ (60)

n
(
AKαLβn−(α+β) − φ

)
= C +G (61)

From equation (59) and (60) we obtain k∗ = K∗/n∗ and l∗ = L∗/n∗, as

k∗ =

(
φ

1− ν

)
α

ρ

l∗ =

(
1

A

(
φ

1− ν

)1−α(
α

ρ

)α)1/β

.

Then

y∗ = Ak∗l∗ − φ =
νφ

1− ν
.
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If we substitute k∗ and l∗ in equation (58) we get the steady state consumption level
as a function of n,

C∗ = C(n) =

(
βνφ

ξ(1− ν)
(l∗)−(1+η)

)1/σ

n−η/σ.

The steady state number of firms can be determined from the good market equilibrium
condition, equation (61),

n∗ = {n : νφn = (1− ν) (C(n) +G)} .

B.2 Derivation of the income expansion path and of the Eu-
ler frontier

In Figure 1 we trace out two curves. In this section we derive them. The long run
income expansion path

IEP ≡ {(L,C) : UL(L) = UC(C)w(K,L, n), r(K,n, L) = ρ, π(K,n, L) = 0}

is given by the schedule
C = µCL

−η/σ

where

µC =

{
βA

ξ
µαK µ1−α−β

n

}1/σ

and

µK =

[
φ

A(1− α− β)
µα+βn

]1/α
and

µn =

[ (
φ

A(1− α− β)

)1/α ( ρ

αA

)1/(1−α)]α(α−1)/β
The short run income expansion path is defined for a given pair (C,L) as

IEP (K,n) ≡ {(L,C) : UL(L) = UC(C)w(K,L, n)}

is parameterized by (K,n) and is

C =

(
βA

ξ
Kαn1−ν

)1/σ

L−(1+η−β)/σ
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The Euler frontier is

EF (G) = { (L,C) : UL(L) = UC(C)w(K,L, n), r(K,n, L) = ρ, Y (L,K, n) = C +G}

becomes

C = A

(
αA

ρ

)1/(1−α)

L−G

Figure 1: Steady state in (K,n) and (L,C) before ( A) and after ( B) a permanent
increase in G for the case in which the isocline π = 0 has a positive slope at the
steady state.
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Figure 2: Bifurcation diagram on the (γ, σ)-space for α = 0.3, β = 0.5, ρ = 0.025,
φ = 0.1, ξ = 0.01, η = 0.4 and G = 0, displaying the values for the parameters
associated with the four main types of phase diagrams: phase diagram R1, for O > 0,
phase diagram R2 for O < 0, ∆ > 0 and π∗n > γQ, phase diagram R3 for O < 0,
∆ > 0 and π∗n < γQ and C for ∆ < 0.
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Figure 3: Two-dimensional projections of the phase diagrams in (K,n)-space, for
cases R1, R2 in the upper panels, R3 and C, in the lower panel. Each panel displays
the isoclines K̇ = 0, ṅ = 0 for the state variables and the isoclines Ċ = 0 (r = ρ) and
ė = 0 (π = 0), the projections of the two eigenspaces Es

1 and Es
2 and the four areas

Nk and Sk, between isocline for K and Es
2 and Wn and En, between isocline for n

and Es
2.
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Figure 4: Two-dimensional projections of the phase diagrams in (K,n)-space and the
effects of a fiscal shock: monotonous adjustment for cases R1 and R2 in the upper
panels, hump-shaped adjustment for n in case R3 and hump-shaped adjustment for
K and n in case C.
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Figure 5: Impulse response for fiscal policy, case R1
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Figure 6: Impulse response for fiscal policy, case R2
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Figure 7: Impulse response for fiscal policy, case R3

58



Figure 8: Impulse response for fiscal policy, case C
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