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Abstract

This paper analyzes the relationship between smbfEtures prices for energy commodities
from a new perspective. Based on data from the Dowes UBS Commodity Index, we first
test for a long-run relationship between spot amdrés prices. As a second step, smooth
transition models are fitted to examine whetheratigistment of spot returns to the forward
premium follows a nonlinear path. Although the fitgs show that the informational content
of futures prices varies between different commesljta similar pattern arises for all of them:
The predictive power of futures prices can onlyobserved if previous volatility or basis has

been low while no relationship occurs if both haeen high previously.
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1. Introduction

Sharp movements and advancing volatility in engngges have triggered concerns due to the
consequent disturbing economic impacts. The questltether futures are a leading indicator
of future spot price movements is an importantdapithis context. If futures prices are not

able to perform such a function, policymakers araged of alternative forecasting devices or

public policy actions to mitigate the effects okegy price uncertainty (Chinn et al., 2005).

In general, futures markets perform four major fiows: First, they facilitate stockholding as
the forward premium acts as a mechanism guidevientory control and may be interpreted
as a return on a hedged stock. Second, futuresetsadnable investors to hedge risk, as
investors who are exposed to futures price movesnan¢ able to transfer that risk to
speculators. The third function stems from the faet futures prices act as centers for the
collection and conversion of information. Finalthey perform a price discovery function
which will be considered in greater detail whenlgriag the relationship between spot and
futures prices (Goss, 1981). Due to the engagewfespeculative capital which introduces
volatility and movements away from fundamentalscriical issue arises whether these

functions operate appropriately.

Since the turn of the millennium, the policy of lomterest rates of many central banks in
combination with a growing world economy resulted an excess global liquidity. An
increasing number of speculative funds and findnd&ivatives have entered the futures
markets for commodities, and a new type of marlkati@gpant called commodity index
investor appeared in futures markets for energynsodities. Such a commodity index allows
investors to trace the performance of a basketoainsodities while following a long-term
investment strategy of 'buy and hold.' These kinfdspeculative assets could yield an excess
demand for energy feedstocks which drives futuresp upwards and finally, pushes up spot
prices (Fan and Xu, 2011).

A potential impact of speculative trading in futsinmarkets for energy commodities on the
intense rise in prices of the latter was subje@roéxtensive debate in academic literature and
the media during recent years. Masters (2008) disawéasters and White (2008) argue that
considerable buy-side pressure from index fundent®g created a speculative bubble in
commodity prices with the consequence that pricetheir highest level heavily exceeded
their fundamental values. On the other hand, the ©&nmodity Futures Trading
Commission (CFTC) argues that the level of spemrain commodity futures markets has
1



remained relatively constant in percentage as pritave risen (CFTC, 2008). However,
Chilton (2008) states that the CFTC survey wasimpreary and requires further revisions
since the historical dataset on speculative tradsgd was potentially not sufficient due to a
lack of transparency as a consequence of inadegquptvision and the complexity of such
an over-the-counter market. Moreover, further sisdixist that trace back the heavy increase
especially in oil prices since 2000 to the ascemdipeculation in futures markets (Chevillon
and Rifflart, 2009; Cifarelli and Paladino, 2009au€mann and Uliman, 2009; Fan and Xu,
2011). On the other hand, Irwin and Sanders (2@B2not confirm this hypothesis of a
speculative price bubble in commodity prices ensplly and conclude that the price

discovery role in commodity futures markets is Inatmed by speculators.

When analyzing the relationship between spot arndrés prices for commodities, early
studies conducted Granger (1969) causality testsstandard cointegration techniques such
as the Engle and Granger (1987) methodology or ibbansen (1988) framework
(MacDonald and Taylor, 1988; Oellermann et al., 498oontz et al., 1990; Serletis and
Banack, 1990; Schroeder and Goodwin, 1991; QuaBf2;1€rowder and Hamid, 1993;
Schwartz and Szakmary, 1994; Foster, 1996; Gul&88;1Peroni and McNown, 1998;
McKenzie and Holt, 2002; McAleer and Sequeira, J0Bdbwever, emphasizing financial
market frictions such as high transaction cost® tble of noise traders, and the
microstructure effects of commodity markets, sput futures markets could be characterized
by a nonlinear price adjustment (Silvapulle and B&01999; Chen and Lin, 2004; Bekiros
and Diks, 2008; Huang et al., 2009; Lin and LiaR@10). This nonlinear structure of the
relationship between spot and futures prices cdelgend on the current value of the basis,
the spread, and the forward premium, respectivelyich should denote the difference
between the current period’s price of a futurestrean for delivery in the next period and the
current spot price in the following. Hence, if thgot price is above the futures price, what is
known as backwardation, the basis is negative,ifatitte magnitude of the basis exceeds a
certain level, investors would start selling comitied at the spot market and buying futures
contracts. Conversely, if the futures price is abthe spot price, what is called contango, the
basis is positive, and if again the magnitude eflibsis exceeds a certain threshold, investors
in this case would start selling futures contratd buying commodities at the spot market.
The threshold could be characterized by ‘carryiogt€ which makes an investor indifferent
of buying a spot commodity or a futures contractbétween these two scenarios, investors

may show just a slight reaction within a certainga (Huang et al., 2009). This argument is

2



related to the existence of limits to speculatiomicl states that investors only follow an

investment strategy if the expected yield is higthem the one implied by other strategies
(Sarno et al., 2006). In the recent literature kimsl of nonlinearity has been accounted for by
using methods such as the threshold autoregre€EMe) model developed by Tong (1983),

the momentum TAR (M-TAR) model suggested by Enderd Granger (1998) as well as

Enders and Siklos (2001), the multivariate TAR (MAR) model proposed by Tsay (1998)

and the threshold vector error correction (TVECMydal developed by Hansen and Seo
(2002) (Ewing et al., 2006; Huang et al., 2009; land Liang, 2010; Mamatzakis and

Remoundos, 2011).

However, all those studies allow for a discretetawing from one scenario to the other. Such
a pattern seems inadequate in cases where investibrsdifferent expectations and risk
assessments are involved. Market participants maglhact promptly and uniformly as they
are confronted with heterogeneous information gogbdunity costs which implies different
bands of inaction. In addition, their reaction swninformation might also exhibit different
delays (Terasvirta, 1998). A more appropriate madektrategy which corresponds to a
smooth switching between two extreme regimes has bespired by the work of Terasvirta
(1994).

In this vein, the present paper contributes to liteeature by applying the corresponding
smooth transition regressive (STR) models for thet &nd forward relationships of energy
commodities. Such models bear the main advantag#fasting for different dynamics which
are determined by the choice of the transition tionc The latter is either of exponential form
to account for a symmetric but size increasing stdjent in both extreme regimes or logistic
form to allow for a more flexible asymmetric adjusint above and below a certain threshold
value. Hence, such a framework enables us to tabklequestion whether futures markets
exhibit speculation or incorporate new informatinrprices from a new perspective. Previous
findings suggest that the informational contentfutiires prices varies between different
energy commodities (Chinn et al., 2005). For tleason, we survey the overall Dow Jones

UBS energy index as well as the corresponding ifwdividual commodities.

! Furthermore, Cunado and Perez de Garcia (2008ksis Maslyuk and Smyth (2009) used the Gregary a
Hansen (1996) framework to account for the presefictructural breaks in the relationship betwepot @ind
futures prices. Recently, Lee and Zeng (2011) wgehtile cointegration regression to describe th@nection
between oil spot and futures.
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The remainder of the paper is organized as folloMe next section describes the general
relationship between prices for spot and futurése &mpirical part of the study is presented
in section 3. After examining the time series prtipe and testing for cointegration between
spot and futures prices we proceed by applyingaméwork which allows for a nonlinear

adjustment of the spot return with respect to trevérd premium. Section 4 concludes.
2. The model

As stated above, under the joint assumption of nektrality and rationality the current

period’s price of a futures contract for delivenythe next period is an unbiased estimator of
the expected next period’s spot price (Gulen, 18@flard, 2002; Huang et al., 2009; Switzer
and El-Khoury, 2007; Lin and Liang, 2010). Thuse thnbiasedness hypothesis is given

below

Ei(St4k) = [t 1)

wheres,,, denotes the logarithm of the spot price at timek, f; , represents the logarithm
of the price of a futures contract observed at tirfar delivery at timet + k, andE,(.) gives
the expectations operator conditional on infornraagailable at time. Equation (1) could be

transformed as follows

St+k = fex T Uttk (2)

where u;,; indicates an uncorrelated random error term wighozmean and constant
variance. Moreover, subtracting, the logarithm of the spot price at timeon both sides of

equation (2) yields the Fama (1984) regression

Asgyp =a + ﬁ(ft,k - St) T Utk (3)

whereAs; ., = sty — S denominates the spot return and the unbiasediypsghiesis given
above presumes = 0 andB = 1.2 As outlined in the introduction, equation (3) remgb the
possibility of nonlinearity in the relationship keten the spot return and the forward
premium represented by the difference of the ctuiftgnres and spot price. To allow for this

kind of dynamics, we augment equation (3) as follow

2 The Fama (1984) approach which is based on theythe uncovered interest rate parity (UIP) hasrbesed
by Sarno et al. (2006), Baillie and Kilic (2006)p¢hradl and Wagner (2010), Olmo and Pilbeam (2@slyell

as Pilbeam and Olmo (2011) to analyze the relatipnsetween the spot return and the forward prenfiom
different exchange rates. The theory of UIP alspliesa = 0 andf = 1.
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Aserr = [ay + Br(fere — se)| + [az + Bo(Fer — St)|F (26,7, €) + Upsre (4)

whereF(z,,y,c) is a transition function which ascertains the gpekadjustment and could
either be a logistic or an exponential function.rbtaver, equation (4) can be interpreted as a
nonlinear error correction framework for the speturn with respect to a proportional long-
run relationship betweef}, ands;. The termsx; andp; correspond to the lower regime,
while (a; + @,) and (B, + ;) belong to the upper regime of the adjustment m®cean
Dijk et al.,, 2002). ThuspB; and (f; + B,) can be interpreted as the error correction
coefficients implying that values between 0 andhdidate that the spot return adjusts to the
premium spread. While the strategy to select the adequate tramsifunction and the
technical details will be discussed and applietheanext section, it seems reasonable to point
out the main differences between both formulatiahshis stage of the analysis. Although
both configurations are close substitutes, thegrrif different patterns of nonlinearities. In a
nutshell, a logistic transition function allows fdifferent adjustment above and below a
threshold while the exponential transition funct@ccounts for a distinction between small
and large deviations from a threshold.

3. Data, methodology and empirical results
3.1 Data

Our analysis is based on data from the Dow JoneS O8mmodity Index (DJ-UBSCI) which
is composed of commodities traded on U.S. exchaagdsprovided by Dow Jones Indexes

(http://www.djindexes.com/commodi}y/The DJ-UBSCI is weighted by the relative amount

of trading activity of a particular commodity andshbeen known as the Dow Jones AIG
Commodity Index until 2009. Beside the S&P Goldnsaths Commodity Index (GSCI) the
DJ-UBSCI is one of the two largest indices by masteare! More precisely, we apply the
subindex of prices for spot as well as for the éhreonth futures contracts for energy
products. We are also interested in the correspgnididividual commodities, namely crude
oil, heating oil, natural gas, and unleaded gasatin a daily basis. Our sample period covers

each working day from January 2, 1991 to October2Dd1 and thus, exhibits the largest

% Values above unity would indicate an overshootifithe error correction and values below zero reat the
dynamic pattern is explosive.

* See Tang and Xiong (2010) and Gilbert (2010) fetails regarding the DJ-UBSCI and its subindices.
Following Tang and Xiong (2010) the correlationviee¢n the GS and the DJ-UBS commodity indices is ove
0.9. As a result, using GSCI would not significgnthange our findings. Among others, Irwin and Saad
(2012) applied the DJ-UBSCI data set for a sinplampose.
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available sample size which contains the low vidtatperiod until the early 2000’s as well as
the high volatility period thereafter. Fan and X011) divided the price fluctuations in the
oil market after 2000 into three stages in thaidgt the 'relatively calm market' period (from
January 7, 2000, to March 12, 2004), the 'bubbteimalation’ period (from March 19, 2004,
to June 6, 2008), and the 'global economic cnmsiod (from June 13, 2008, to September
11, 2009).

As it is common practice, we take each series garithm in the following. To estimate
equation (4) for each spot and futures market enabntext of cointegration we first have to
assure that each of the current spot and futuresspis integrated of order one, €.01), and
both are cointegrated as well as each spot resuii®). Thus, we use the augmented Dickey-
Fuller (ADF) test to check the null of a unit raoteach series (Dickey and Fuller, 1979). We
apply an auxiliary regression with an intercept, Wwithout a trend regressor since a graphical
inspection shows that neither series exhibits & timpendent mean. Thus, we test the null of
a random walk process without drift against theraktive of a stationary process with non-
zero mean for the level of each series. The resnéidisplayed in Table 1 and indicate that
the null cannot be rejected for each series. Teash spot and futures price can be regarded
as (1) since the same null can clearly be rejected fer fttst difference of each series
denoted byA. The spot return is constructed dy; ., = s, — S With k = 66 since we use
three month futures to estimate equation (4) anddils the number of working days during

three months. As can be seen in Table 1, eachrspon is stationary, e.g(0).
Table 1 about here
3.2 Methodology and empirical results

As a next step, we analyze whether a long-runiogiship between spot and futures can be
detected. After checking for cointegration we tist null of a linear specification given by
eqguation (3) against a nonlinear specificationheffiorm shown in equation (4) and we apply

an empirical selection procedure to choose theogpjatte transition function.

> We have also applied the more powerful Ng anddPef2001) MZa test to ascertain the robustnessuof o
findings. These statistics are report in Table vell. To account for the possibility of structutaileaks in our
series which in general reduce the power of conweal unit root tests to reject the null, we havaducted the
Perron (1989) test in the fashion as describeddryoR and Vogelsang (1992). The findings are nesgmted to
save space, however these support our results givesble 1.
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3.2.1 Testing for cointegration

We start our analysis by applying the multivariaténtegration test by Johansen (1988,
1991), which draws upon the following vector augpession representation (VAR):

AYt = HYt—l + F(L)Ayt_l + (I)Dt + €, t = 1, e ,T, (5)

whereY; = [ft,k:st],- The non-stationary behavior of both series i®anted for by a reduced
rank (r < p) restriction of the long-run level matriX, which can be fragmented into two
r X p matricese andp’ (IT = af’). B’ gives the coefficients of the variables for thing-run
relation, whilea contains the adjustment coefficients describirggrraction of each variable
to disequilibria from ther long-run relations given by the x 1 vector p'Y;_,. The
deterministic components are given by the x 1) vector ®D,, whilee, describes an
independent and identically distributed error tefime terml’(L)AY;_; describes the short-run
dynamics of the model using equations between current variables, L-laggedabées and

equilibrium errors (Juselius, 2006).

To identify the rank, that is, the number of cogreding relations:, we rely on the trace test
developed by Johansen (1988). The idea of theidest separate the eigenvalugs i =

1, ...,r, which correspond to stationary relations, froroséh eigenvalues;, i =r+1,...,p
which belong to non-stationary eigenvectors. Tis¢ g&atistic of the corresponding likelihood
test, the so-called trace test, is givertiyee(r) = =T Y7_ . log(1 — 4;). Starting with the
hypothesis of full rank, the rankis determined by using a top-bottom procedurel winé
null cannot be rejected (Juselius, 2006). For pexigication of all models, the choice of the
lag length is based on tests for autocorrelatidme fesults of the trace tests are shown in
Table 2.

Table 2 about here

According to the test statistic, the hypothesisaafink of zero can be rejected for each spot
and futures market relation at the 5% and 10% Jevespectively. Moreover, the null of a

rank of at most one cannot be rejected in each case

After the determination of the rank, we followede thohansen (1988, 1991) approach and
computed the maximum likelihood estimates of theesimicted cointegrating relatiofsY;_

for the each configuration. The corresponding tssate given in column 4 of Table 2 and
show that each pair of coefficients is theory-cstgsit in terms of sign and magnitude with
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spot and futures prices always being positivelyatesl® The failure to find a strictly
proportional long-run relationship between them imilge attributed to nonlinear adjustment
which may bias downward the speed of adjustmeatlihear specification is used (Taylor,
2006). Thus, in the following we assume that egut and futures price pair is cointegrated
with a coefficient of unity and use these proparéiblong-run relations as transition variables
for our STR models when allowing for nonlinearitiasthe adjustment of spot returns to the
spread between both.

3.2.2 Framework and tests for nonlinearity in the elationship between spot and futures

prices

As outlined in section 2, two different forms of nlioearity are considered, namely the
exponential as well as the logistic case. To erpla¢ underlying dynamics presume first that
F(z;,v,c) is modeled by a bounded continuous exponentiaisitian function which lies

between 0 and 1 and thus, has the following funefiform:

F(zyv.¢) =1 —exp(—y(z, — ¢)*/0,) withy > 0, (6)

wherez; indicates the transition variable,; represents its standard deviatipngdenotes a
slope parameter and is a location parameter. In order to create aestak smoothness
parameter,y is normalized by the standard deviation of thendi@onal variablez,, as
suggested by Terasvirta (1998). The transitiontiongiven by equation (6) is symmetrically
U-shaped asF(z;y,c)—» 1 for z; - +o and F(z,y,c) = 0for z, =c, so that an
adjustment for deviations of the transition vargahl above and below the location parameter
¢, which can be interpreted as a threshold valuesyrmametric as opposed to the under
mentioned logistic case. The slope parametégetermines the speed of the transition between

the extreme regimes, with lower absolute valuedyimg slower transition.

Considering the second case whE(e;, y, ¢) in equation (4) is a bounded continuous logistic
transition function which lies between 0 and 1. fBh@re, it has the following form:

F(zyv.¢) = [1 +exp(—=y(z; — c)/o,)]™"  withy > 0. (7)

®Among others Crowder and Hamid (1993), Peroni amtNdvn (1998), McKenzie and Holt (2002) as well as
Switzer and El-Khoury (2007) support our findingeofointegration relationship between spot andréstprices
for commodities.

" We have also applied the particular estimatedtegiated relationships instead of the proportigakdtions,
however our findings stayed qualitatively unchandéeince, we only report the results for the latiece these
are more feasible in terms of interpretability.
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Thus, this implies that the lower (upper) regimeassociated with negative (positive) values
of the transition variablez, relative to the location parameter The logistic function
increases monotonically from 0 to 1 as the tramsitiariable increases, so th&iz;, y, c) -

0 asz; - — andF(z;,y,c) = 1 asz; — +oo while it takes the value 0.5 # = c. Hence,
again the location parameter can be interpretedthseshold value dividing equation (4) into
three different extreme regimes correspondindintg, ,_., F(z.,y,c), lim, o F(z,¥,¢)
and z; = c. In case ok; = ¢ equation (4) reduces to the linear model givereduyation (3)
with ¢ = a; + 0.5a, and g = ; + 0.53,. Moreover, the smoothness parameteagain

gives the speed of transition between extreme regifBaillie and Kilic, 2006).

A natural choice for the transition variable is thasisf, , — s, with several lags j up to one

week. Following Franses and van Dijk (2000), arenesting alternative is the average
absolute difference between spot and futures duitieglast week. This measure has the
advantage of approximating the overall volatilihstead of focusing on a particular kind of

previous prices.

In the following the use of equation (4) in comkioa with equation (6) and (7) is referred to
as the exponential STR or ESTR and the logistic STRSTR, respectively. In terms of
interpretation, it is worthwhile mentioning thatetihresholdc is unrestricted in the present
study. If a strictly proportional long-run relatsimp between spot and futures exists, the latter
might also be restricted to zero in the fashiora@mooth transition error correction model
suggested by Van Dijk et al. (2002). However, altffothis would facilitate the interpretation
of the results, an unrestricted threshold seemse rappropriate as a proportional long-run
relationship cannot be verified for each commodywing to the fact that we also consider a

volatility measure, this does not alter the intetability of our outcomes.

The modeling cycle for smooth transition modelsgased by Terasvirta (1994) starts with a
test for nonlinearity. The null hypothesis of linéa can be expressed as eithiéy: y =

0,or Hy: B = B,. However, bothy and (3, are unidentified under the null hypothesis.
Consequently, standard asymptotics cannot be appliee to the existence of nuisance
parameters (Van Dijk et al., 2002). To overcoms taveat, Terasvirta (1994) suggests an

approximation of the transition function by a thiodder Taylor approximation. Thus, the



corresponding lagrange multiplier (LM) test fordarity introduced by Luukkonen et al.

(1988) can be expressed’as

ASiy = @o + (P1(ft,k - St) + @2 (ft,k - St)Zt + 903(ft,k - St)th (8)

+ (P4(ft,k - St)Zt3+€t+k-

The null hypothesis which refers to the linear mdeokng adequate is tested Hg: ¢; = 0

with i = 2,3,4 against the alternativé, that at least one; # 0, implying that the higher
order terms are significant (Terasvirta, 1998). Tdw statistic has @ distribution with three
degrees of freedorh.This proceeding also enables the choice of an wdegtransition
variable. In the case of the linearity hypothegmb rejected, a method for choosing the latter
lies in computing the test statistic for severahsition functions, i.e. different values of the
lag order j, and selecting the configuration foriehhits value is maximized (Taylor et al.,
2001; van Dijk et al., 2002). Terasvirta (1994, 8pPBas shown that this approach works well
in most cases. In the present study, delays froentoriive days are consider€dThe results

of the LM tests presented in Table 3 show thathyyeothesis of linearity is rejected for all

commodities and lag orders j.
Table 3 about here

Hence, the overall conclusion is that a nonlineamework is adequate. An inspection of the
tests statistics shows that the optimal transitiargable differs with the measure of volatility
as well as different lag orders for the forwardesygk considered to be the most adequate
choice in some cases. In order to achieve compaeatd robust results, two different models
will be estimated in the following: One configuaii based on the volatility measure and
another one on the lagged spread associated vathighest test statistic. This proceeding
always includes the optimal transition variable éach commodity and enables us to draw

8 In the case of small samples in combination witarge number of explanatory variables, F versifrthe LM
test statistics are preferable, as they have bgiterproperties (Granger and Terasvirta, 1993awrta, 1998;
van Dijk et al., 2002).

® The number of degrees of freeddp refers to the number of regressqgrswhich in our case is one.
Furthermore, the test assumes that all regressore/edl as the transition variable. are stationary and
uncorrelated with the error in equation {4), (Terasvirta, 1998). As shown in section 3.2.1 anly regressor

and transition variabléftlk - St) is a stationary linear combination of non-statignig1) variables.

19 onger delays have turned out to be less suiialpleevious estimations carried out by the authdhe results

are available upon request.

10



clear conclusions as the thresholds for the laggesdard premium and the volatility hold

different implications.

3.2.3 Testing for the appropriate specification

Following Granger and Terasvirta (1993), Terasvita94, 1998) as well as van Dijk et al.

(2002) the above shown LM testing procedure cao ldsapplied to distinguish between an
exponential and a logistic transition function dhds, to choose the appropriate specification.
If the linearity null has been rejected, equati8hié used to test the following hypotheses

successively
Hos: 94 =0,
Hoz: o3 =0]¢, =0, 9)
Hoz: 92 =0] @3 =9, =0,
The decision rule to select the most adequate ittamdunction introduced by Terasvirta
(1994) is as follows. If the rejection &fy; is the strongest one in terms of lowest p-value or
largest test statistic, respectively, the ESTR rhatieuld be chosen, otherwise the LSTR

model should be preferréd Table 4 displays the empirical realizations of test statistics

and corresponding p-values for the two configuraiof each commaodity.

Table 4 about here

As can been seen, the ESTR specification turngoobe most adequate for crude oil while
the LSTR specification is selected for heating wdtural gas, and unleaded gasoline. In case
of the whole energy index the LSTR model is preferif using the lagged forward premium
as transition variable and the ESTR seems to beoppate if the latter is approximated by
last weeks’ volatility. Thus, for the energy indese estimate both specifications for both

transition variables.
3.2.4 Estimation results

The results of our estimations carried out by nudr least squares (NLS) are presented in
Table 5.

Table 5 and Figure 1 about here

1 See Granger and Teréasvirta (1993) or Terasviga4)for details.
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It may be worthwhile mentioning first of all thdtet observed insignificance of the transition
parametery can in some cases not be interpreted as evideymiesh a smooth transition
model, since the t-statistics need to be interdretiéh caution (Taylor et al., 2001; van Dijk
et al., 2002). The cause for an observed insigmfie ofy is occasionally the circumstance
that there are only few observations in the regibtransition between two regimes as shown
in Figure 1. Nevertheless, it becomes evidentttitetonducted smooth switching approach is
more appropriate than a discrete switching fram&vamplied in previous studies since for
each spot and futures relation we have enough wdusanms in each regime and even in the
region of transition between the extreme regimepistify our approach. Hence, a discrete

function is not able to specify the dynamics adégjya

The first main result is that the adjustment of spet return frequently differs between the
two regimes, regardless if an exponential or aslogifunction is chosen. This strongly
supports our presumption of a nonlinear adjustnpentess in spot and futures markets for
commodities. Starting with exponential transitioanieworks, the findings for the energy
index and crude oil display a positive coefficigptwhile the sum oB, andg, turns out to be
negative and close to zero for both transitionaldgs. Hence, spot returns only adjust in case
of a small forward premium or low volatility. Howex if previous forward spreads and
volatility, respectively, has been large, futuretsgeturns are increasingly detached from the
current spread. In that extreme regime, a poshia&s may even result in a drop of future
spot prices and vice versa. The other extreme eapbserved if the forward premium is
chosen as the transition variable for crude oivalatility serves as a transition variable for
energy. In both caseg; turns out to be greater than unity, which evennigoito an
overshooting pattern of spot returns in the fiexgime. Such a scenario seems plausible in

times of speculation whil€3; + 3,) < 0 may reflect expected market turnovers.

A similar pattern arises for heating oil based dagastic framework: The positive sign of the
coefficient §; is in line with theory while the sum ¢; andpf, turns out to be negative.
Estimations for the whole energy index based omgstic transition function display a
similar pattern. Overall, these findings imply thature spot changes tend to be negatively
related to the forward premium if the latter is @abds threshold in the previous period while
a positive coefficient can be observed if the labgeurn turns out to be below the threshold.
Considering that the threshold is positive for eaommodity,S; corresponds to a falling
spread which might become negative while the sunf,oénd g, refers to an increasing
positive spread. In terms of volatility, a valueoabe the threshold corresponds to large
12



absolute spreads during the previous week whilalaevbelow the threshold corresponds to
low volatility. Hence, a similar pattern as arguedaase of the exponential transition function
arises as an adjustment of spot returns only oafure spread between futures and spot

prices and volatility, respectively, is low.

In case of unleaded gasoline the slope coeffickeag a positive sign in both regimes.
However, the predictive power of the spread is mgauch higher in the first regime since
B, < 0. NLS estimations performed for natural gas did cmtverge, therefore these are not

reported in Table 5.

Several modified estimations have been carriedt@uést for the robustness of the overall
results. In particular, we have modified our estior@s with respect to the choice of the
transition variable by introducing different lags the lagged spread. For instance, the results
remain qualitatively unchanged if the lag orderciosen to be one for each commodity.
Estimating all models with exponential or logisti@nsition functions suggests that the
established results continue to hold. Overall,ahiomes suggest that our findings are robust
with respect to different configurations. To sayace, the corresponding results are not

presented here, but are available upon request.
4. Conclusion

Examining energy commodities, this study has allbbvi@ different nonlinear adjustment
patterns when analyzing the relationship betweednrdéuspot changes and the forward
premium. From a general point of view, our findingsggest that a smooth switching
approach should be adopted as such a frameworkpabte of capturing more complex
dynamics of commodity spot and futures relationshgompared to a discrete threshold
model. Our empirical outcomes confirm the previ@indings of Chinn et al. (2005) that the
informational content of prices for energy futuremsries between different commodities.
Nevertheless, a similar pattern arises: A pricealisry function of futures prices can only be
observed if previous volatility or spreads haverblsv while no or little explanatory power
is detected in the opposite case. A reasonableaeapbn for this pattern is that periods of
high volatility or high spreads reflect market tuldnces which for their turn, beside other
factors, might be explained by price pressuresltiagufrom speculation. In this case, the
missing link between spot and futures stems froenetihigagement of investors which consider

energy products as an asset class and cause mrieemants away from fundamental values.

13



The fact that futures prices lose their leadingaatbr function in times of turbulence implies
that economic policy faces a tough task when tryingeduce energy price uncertainty.
However, to clarify the role of speculation in tlmientext, further research seems necessary.
As an extension of our study, a multivariate naggincointegration analysis which includes
further variables such as a global liquidity measoir energy demand factors is a promising

line of research.
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Tables

Table 1: Unit root tests

Commaodity Series Level A Level A
t-stat.[Lags] t-stat. [Lags] MZa-stat. [Lag MZtat. [Lags]
Energy f -0.95 [1] -72.90% [0] 0.28 1] -35.59% [7]
t
s -1.13 [0] -72.19%** [0] -2.01[1] -35.09%* [7]
t
-5.35** [0 -41.77** [0
Asiie6 [0] [0]
Crude oil f -0.56 [0] -72.11%* [0] 0.7 [1] -32.02%** [7]
t
s -1.16 [0] -70.31*** [0] -1.05 [1] -28.67* [7]
t
-5.49** 0 -37.13** [0
Asiie6 [l [0
Heating oil £ -0.48 [1] -73.95* [0] 0.79[1] -35.61%** [7]
t
S -1.12 [0] -72.26* [0] -2.11[0] 23.15% [7]
t
A -5.81*[0] -55.73** [1]
St+66
Natural gas f -0.42 [0] -71.30*[0] -1.04 [0] -2391.84** [0]
t
s 1.21 0] -72.08"[0] 2.93[0] -1901.96*** [2]
t
A -5.657*[0] -50.89** [0]
St+66
Unleaded e ] .
gasoline fi -0.30 [1] -73.17** [0] 1.12 [1] 26.4%* [7]
S -0.97 [1] -70.77** [0] -0.11 [1] -42 .87 [7]
t
-5.17** [0 -58.71** [0
Asiie6 [0] [0]

Note: * Statistical significance at the 10% level, **the 5% level, *** at the 1% level. The ADF testuagjon is estimated
including an intercept (c) for the levels and withdeterministic regressors (n) for the first difleces. For the ADF test
critical values are taken from MacKinnon (1996):16% -2.57, 5% -2.86, 1% -3.43 and (n) 10% -1552,-1.94, 1% -2,57,
respectively. For the MZa test critical valuestaten from Ng and Perron (2001): 10% -5.7, 5% -8%,-13.8. The lag
length is chosen by minimizing the Schwarz infolioracriterion. Maximum lag length has been set2o 3
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Table 2: Bi-variate Johansen cointegration rank tes

Spot and futures relation Lags Trace stat. Long-run relationship
Energy s¢ — 0.254f, — 3.185
Hy:r=0vs.Hyi:r > 1 3 40.096*

Hyr<1lwvs.H;:r =2 2.108

Crude oil sy —0.361f, —2.802
Hyr=0vs.Hi:r =1 3 28.467**

Hyr<1lvs.Hy:r = 2 1.630

Heating oll sy —0.556f, — 1.765
Hyr=0vs.H:r =1 1 18.980*

Hyr<1lvs.Hy:r =2 4.440

Natural gas s; — 3.983f;
Hyr=0vs.Hyi:r > 1 2 26.870**

Hy:r <1lvs.Hy:r = 2 5.640

Unleaded gasoline s; —0.615f, — 1.678
Hy:r=0vs.Hyi:r > 1 3 31.381*

Hyr<1lwvs.H;:r =2 2.738

Note: * Statistical significance at the 10% level, **the 5% level. In case of significance the consiangstricted to the
cointegrating space, allowing for no linear tremitimer in the data nor in the cointegrating equmatritical values for
testing (i)Hy: v = 0 and (ii)Hy: v < 1 are taken from MacKinnon et al. (1999): 10% (i)9B0 and (ii) 7.557, 5% (i) 20.164
and (ii) 9.142, respectively. The lag length iss#robased on tests for autocorrelation. The cosfiis of each long-run
relationship are highly significant.
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Table 3: Terdsvirta test for nonlinearity and choi@ of the delay parameter

j t—1 t—2 t—3 t—4 t—5 Volatility
Energy 247 .405*** 244 .6471*** 244.508*** 244 675*** 242 .798*** 187.750%*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000
Crude ol 91.542%% 88.162°* | 87.075"* | 85003 | ®.142°* | 125809+
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Heating ol | 366.236** | 364418 | 370.487** | 374.860~* | 372.462" | 327.674"*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Natural gas | 119.236%* | 115.999* | 114.880"* | 113.770"* | 111.096™ | 106.280"*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Unleaded 182.219%* | 181.048"* | 182.456"* | 182.660** | 187.677* | 137.922%%
gasoline (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: The table displays the test statistic of the LIt tlor nonlinearity as described in Section 3.2 f
different lag orderg and the volatility measure, with p-values in p#neses. The test is distributed)dswith
three degrees of freedom. For details, see Tetagi®98). */**/*** implies rejection of the null pothesis at
the 10/5/1% significance level.

Table 4: Terdsvirta test for LSTR vs. ESTR

Commodity Optimal lag {) Volatility
H04 H03 HOZ H04 H03 HOZ
Energy 113.842*** | 99.164*** | 80.647*** | 43.079** | 127.869*** | 49.851***
(0.000) (0.000)
(0.000) (0.000) (0.000) (0.000)
Crude oll 39.399*** | 42.206** | 5.668** 31.864** | 74.042** | 0.104
(0.000) (0.000)
(0.017) (0.000) (0.000) (0.747)
Heating oil 232.368*** | 18.395*** | 107.761** | 235.200*** | 2.126 87.035*+*
(0.000) (0.000)
(0.000) (0.000) (0.145) (0.000)
Natural gas 40.395*** | 29.688*** | 78.070*** | 36.331*** | 34,731** | 59,101***
(0.000) (0.000)
(0.000) (0.000) (0.000) (0.000)
Unleaded 139.318*** | 49.184** | 38.597*** | 72.696** | 53.317** | 29.605***
gasoline (0.000) (0.000)
(0.000) (0.000) (0.000) (0.000)

Note: The table displays the test statistic of the Lidt tior the selection of the appropriate specifaatas
described in Section 3.2.3 for the optimal lag esgeand the volatility measure, with p-values in p#neses.
The test is distributed g€ with one degree of freedom. For details, see Watas(1998). */**/*** implies

rejection of the null hypothesis at the 10/5/1%n#igance level.
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Table 5: Estimation results

Com.

Trans.func.

Trans.var.

a By a; B 14 c
-0.107* 0.732%** 0.112** -0.779%* | 7.641%* 0.245%**
Basis (t-1)
exponential (0.050) (0.224) (0.056) (0.226) (2.963) (0.026)
-3.972%** 7.751%* 4.000*** -7.803*** 142.23*** 0.513***
Volatility
(0.844) (1.606) (0.845) (1.604) (40.720) (0.006)
Energy
-0.002 0.242%** -0.021 -0.263** | 147.036 0.444%**
Basis (t-1)
logistic (0.007) (0.035) (0.037) (0.048) (224.965) | (0.008)
-0.001 0.231*** -0.042 -0.236*** 189.226 0.443***
Volatility
(0.007) (0.038) (0.039) (0.051) (339.253) (0.005)
-0.484%+ | 1.623** 0.504*** -1.662%* | 611.172*** | 0.419***
Basis (t-1)
exponential (0.241) (0.288) (0.125) (0.285) (124.401) | (0.000)
Crude oil
0.027 0.517*= -0.014 -0.566*** | 55.230 0.214%*=*
Volatility
(0.028) (0.135) (0.031) (0.138) (34.105) (0.011)
-0.013 0.101* 0.225%** -0.356*** 53.363 0.388***
Basis (t-4)
Heating logistic (0.008) (0.053) (0.033) (0.070) (46.770) (0.007)
ol -0.010 0.076 0.216%** -0.328** | 46.808 0.385***
Volatility
(0.009) (0.059) (0.036) (0.076) (41.940) (0.008)
-0.002 0.357*** -0.033 -0.308*** 96.023 0.288
Basis (t-5)
Unleaded logistic (0.006) (0.048) (0.040) (0.076) (147.133) (0.005)
gasoline -0.001 0.344%* | -0.042 -0.292"* | 82.275 0.289*
Volatility
(0.007) (0.043) (0.043) (0.081) (177.490) | (0.005)

Note: * Statistical significance at the 10% level, **the 5% level, *** at the 1% level. The coefficisrdre estimated by
nonlinear least squares. Newey-West standard earergivenin parentheses.
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