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Abstract 

This paper analyzes the relationship between spot and futures prices for energy commodities 

from a new perspective. Based on data from the Dow Jones UBS Commodity Index, we first 

test for a long-run relationship between spot and futures prices. As a second step, smooth 

transition models are fitted to examine whether the adjustment of spot returns to the forward 

premium follows a nonlinear path. Although the findings show that the informational content 

of futures prices varies between different commodities, a similar pattern arises for all of them: 

The predictive power of futures prices can only be observed if previous volatility or basis has 

been low while no relationship occurs if both have been high previously.  
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1. Introduction 

Sharp movements and advancing volatility in energy prices have triggered concerns due to the 

consequent disturbing economic impacts. The question whether futures are a leading indicator 

of future spot price movements is an important topic in this context. If futures prices are not 

able to perform such a function, policymakers are in need of alternative forecasting devices or 

public policy actions to mitigate the effects of energy price uncertainty (Chinn et al., 2005). 

In general, futures markets perform four major functions: First, they facilitate stockholding as 

the forward premium acts as a mechanism guide to inventory control and may be interpreted 

as a return on a hedged stock. Second, futures markets enable investors to hedge risk, as 

investors who are exposed to futures price movements are able to transfer that risk to 

speculators. The third function stems from the fact that futures prices act as centers for the 

collection and conversion of information. Finally, they perform a price discovery function 

which will be considered in greater detail when analyzing the relationship between spot and 

futures prices (Goss, 1981). Due to the engagement of speculative capital which introduces 

volatility and movements away from fundamentals, a critical issue arises whether these 

functions operate appropriately. 

Since the turn of the millennium, the policy of low interest rates of many central banks in 

combination with a growing world economy resulted in an excess global liquidity. An 

increasing number of speculative funds and financial derivatives have entered the futures 

markets for commodities, and a new type of market participant called commodity index 

investor appeared in futures markets for energy commodities. Such a commodity index allows 

investors to trace the performance of a basket of commodities while following a long-term 

investment strategy of 'buy and hold.' These kinds of speculative assets could yield an excess 

demand for energy feedstocks which drives futures prices upwards and finally, pushes up spot 

prices (Fan and Xu, 2011). 

A potential impact of speculative trading in futures markets for energy commodities on the 

intense rise in prices of the latter was subject of an extensive debate in academic literature and 

the media during recent years. Masters (2008) as well as Masters and White (2008) argue that 

considerable buy-side pressure from index funds recently created a speculative bubble in 

commodity prices with the consequence that prices at their highest level heavily exceeded 

their fundamental values. On the other hand, the US Commodity Futures Trading 

Commission (CFTC) argues that the level of speculation in commodity futures markets has 
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remained relatively constant in percentage as prices have risen (CFTC, 2008). However, 

Chilton (2008) states that the CFTC survey was preliminary and requires further revisions 

since the historical dataset on speculative trading used was potentially not sufficient due to a 

lack of transparency as a consequence of inadequate supervision and the complexity of such 

an over-the-counter market. Moreover, further studies exist that trace back the heavy increase 

especially in oil prices since 2000 to the ascending speculation in futures markets (Chevillon 

and Rifflart, 2009; Cifarelli and Paladino, 2009; Kaufmann and Ullman, 2009; Fan and Xu, 

2011). On the other hand, Irwin and Sanders (2012) cannot confirm this hypothesis of a 

speculative price bubble in commodity prices empirically and conclude that the price 

discovery role in commodity futures markets is not harmed by speculators. 

When analyzing the relationship between spot and futures prices for commodities, early 

studies conducted Granger (1969) causality tests and standard cointegration techniques such 

as the Engle and Granger (1987) methodology or the Johansen (1988) framework 

(MacDonald and Taylor, 1988; Oellermann et al., 1989; Koontz et al., 1990; Serletis and 

Banack, 1990; Schroeder and Goodwin, 1991; Quan, 1992; Crowder and Hamid, 1993; 

Schwartz and Szakmary, 1994; Foster, 1996; Gülen, 1998; Peroni and McNown, 1998; 

McKenzie and Holt, 2002; McAleer and Sequeira, 2004). However, emphasizing financial 

market frictions such as high transaction costs, the role of noise traders, and the 

microstructure effects of commodity markets, spot and futures markets could be characterized 

by a nonlinear price adjustment (Silvapulle and Moosa, 1999; Chen and Lin, 2004; Bekiros 

and Diks, 2008; Huang et al., 2009; Lin and Liang, 2010). This nonlinear structure of the 

relationship between spot and futures prices could depend on the current value of the basis, 

the spread, and the forward premium, respectively, which should denote the difference 

between the current period’s price of a futures contract for delivery in the next period and the 

current spot price in the following. Hence, if the spot price is above the futures price, what is 

known as backwardation, the basis is negative, and if the magnitude of the basis exceeds a 

certain level, investors would start selling commodities at the spot market and buying futures 

contracts. Conversely, if the futures price is above the spot price, what is called contango, the 

basis is positive, and if again the magnitude of the basis exceeds a certain threshold, investors 

in this case would start selling futures contracts and buying commodities at the spot market. 

The threshold could be characterized by ‘carrying costs’ which makes an investor indifferent 

of buying a spot commodity or a futures contract. In between these two scenarios, investors 

may show just a slight reaction within a certain range (Huang et al., 2009). This argument is 
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related to the existence of limits to speculation which states that investors only follow an 

investment strategy if the expected yield is higher than the one implied by other strategies 

(Sarno et al., 2006). In the recent literature this kind of nonlinearity has been accounted for by 

using methods such as the threshold autoregressive (TAR) model developed by Tong (1983), 

the momentum TAR (M-TAR) model suggested by Enders and Granger (1998) as well as 

Enders and Siklos (2001), the multivariate TAR (MVTAR) model proposed by Tsay (1998) 

and the threshold vector error correction (TVECM) model developed by Hansen and Seo 

(2002) (Ewing et al., 2006; Huang et al., 2009; Lin and Liang, 2010; Mamatzakis and 

Remoundos, 2011).1  

However, all those studies allow for a discrete switching from one scenario to the other. Such 

a pattern seems inadequate in cases where investors with different expectations and risk 

assessments are involved. Market participants may not all act promptly and uniformly as they 

are confronted with heterogeneous information and opportunity costs which implies different 

bands of inaction. In addition, their reaction to new information might also exhibit different 

delays (Teräsvirta, 1998). A more appropriate modeling strategy which corresponds to a 

smooth switching between two extreme regimes has been inspired by the work of Teräsvirta 

(1994).  

In this vein, the present paper contributes to the literature by applying the corresponding 

smooth transition regressive (STR) models for the spot and forward relationships of energy 

commodities. Such models bear the main advantage of allowing for different dynamics which 

are determined by the choice of the transition function. The latter is either of exponential form 

to account for a symmetric but size increasing adjustment in both extreme regimes or logistic 

form to allow for a more flexible asymmetric adjustment above and below a certain threshold 

value. Hence, such a framework enables us to tackle the question whether futures markets 

exhibit speculation or incorporate new information in prices from a new perspective. Previous 

findings suggest that the informational content of futures prices varies between different 

energy commodities (Chinn et al., 2005). For this reason, we survey the overall Dow Jones 

UBS energy index as well as the corresponding four individual commodities. 

                                                 

1 Furthermore, Cunado and Perez de Garcia (2003) as well as Maslyuk and Smyth (2009) used the Gregory and 
Hansen (1996) framework to account for the presence of structural breaks in the relationship between spot and 
futures prices. Recently, Lee and Zeng (2011) used quantile cointegration regression to describe the connection 
between oil spot and futures. 
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The remainder of the paper is organized as follows. The next section describes the general 

relationship between prices for spot and futures. The empirical part of the study is presented 

in section 3. After examining the time series properties and testing for cointegration between 

spot and futures prices we proceed by applying a framework which allows for a nonlinear 

adjustment of the spot return with respect to the forward premium. Section 4 concludes.  

2. The model 

As stated above, under the joint assumption of risk neutrality and rationality the current 

period’s price of a futures contract for delivery in the next period is an unbiased estimator of 

the expected next period’s spot price (Gülen, 1998; Kellard, 2002; Huang et al., 2009; Switzer 

and El-Khoury, 2007; Lin and Liang, 2010). Thus, the unbiasedness hypothesis is given 

below 

 �������� = 	�,�,          (1) 

where ���� denotes the logarithm of the spot price at time � + 
, 	�,� represents the logarithm 

of the price of a futures contract observed at time � for delivery at time � + 
, and ���. � gives 

the expectations operator conditional on information available at time �. Equation (1) could be 

transformed as follows 

 ���� = 	�,� +	����,          (2) 

where ���� indicates an uncorrelated random error term with zero mean and constant 

variance. Moreover, subtracting ��, the logarithm of the spot price at time �, on both sides of 

equation (2) yields the Fama (1984) regression 

 ∆���� = � + ��	�,� − ��� +	����,        (3) 

where ∆���� ≡ ���� − �� denominates the spot return and the unbiasedness hypothesis given 

above presumes � = 0 and � = 1.2 As outlined in the introduction, equation (3) neglects the 

possibility of nonlinearity in the relationship between the spot return and the forward 

premium represented by the difference of the current futures and spot price. To allow for this 

kind of dynamics, we augment equation (3) as follows 

                                                 

2 The Fama (1984) approach which is based on the theory of uncovered interest rate parity (UIP) has been used 
by Sarno et al. (2006), Baillie and Kilic (2006), Hochradl and Wagner (2010), Olmo and Pilbeam (2011) as well 
as Pilbeam and Olmo (2011) to analyze the relationship between the spot return and the forward premium for 
different exchange rates. The theory of UIP also implies � = 0 and � = 1. 
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 ∆���� = ��� + ���	�,� − ���� + ��� + ���	�,� − ��������,  , !� +	����,   (4) 

where ����,  , !� is a transition function which ascertains the speed of adjustment and could 

either be a logistic or an exponential function. Moreover, equation (4) can be interpreted as a 

nonlinear error correction framework for the spot return with respect to a proportional long-

run relationship between 	�,� and ��. The terms �� and �� correspond to the lower regime, 

while ��� + ��� and ��� + ��� belong to the upper regime of the adjustment process (van 

Dijk et al., 2002). Thus, �� and ��� + ��� can be interpreted as the error correction 

coefficients implying that values between 0 and 1 indicate that the spot return adjusts to the 

premium spread.3 While the strategy to select the adequate transition function and the 

technical details will be discussed and applied in the next section, it seems reasonable to point 

out the main differences between both formulations at this stage of the analysis. Although 

both configurations are close substitutes, they refer to different patterns of nonlinearities. In a 

nutshell, a logistic transition function allows for different adjustment above and below a 

threshold while the exponential transition function accounts for a distinction between small 

and large deviations from a threshold.  

3. Data, methodology and empirical results 

3.1 Data 

Our analysis is based on data from the Dow Jones UBS Commodity Index (DJ-UBSCI) which 

is composed of commodities traded on U.S. exchanges and provided by Dow Jones Indexes 

(http://www.djindexes.com/commodity/). The DJ-UBSCI is weighted by the relative amount 

of trading activity of a particular commodity and has been known as the Dow Jones AIG 

Commodity Index until 2009. Beside the S&P Goldman Sachs Commodity Index (GSCI) the 

DJ-UBSCI is one of the two largest indices by market share.4 More precisely, we apply the 

subindex of prices for spot as well as for the three month futures contracts for energy 

products. We are also interested in the corresponding individual commodities, namely crude 

oil, heating oil, natural gas, and unleaded gasoline on a daily basis. Our sample period covers 

each working day from January 2, 1991 to October 19, 2011 and thus, exhibits the largest 

                                                 

3 Values above unity would indicate an overshooting of the error correction and values below zero report that the 
dynamic pattern is explosive. 
4 See Tang and Xiong (2010) and Gilbert (2010) for details regarding the DJ-UBSCI and its subindices. 
Following Tang and Xiong (2010) the correlation between the GS and the DJ-UBS commodity indices is over 
0.9. As a result, using GSCI would not significantly change our findings. Among others, Irwin and Sanders 
(2012) applied the DJ-UBSCI data set for a similar purpose. 
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available sample size which contains the low volatility period until the early 2000’s as well as 

the high volatility period thereafter. Fan and Xu (2011) divided the price fluctuations in the 

oil market after 2000 into three stages in their study: the 'relatively calm market' period (from 

January 7, 2000, to March 12, 2004), the 'bubble accumulation' period (from March 19, 2004, 

to June 6, 2008), and the 'global economic crisis' period (from June 13, 2008, to September 

11, 2009). 

As it is common practice, we take each series as logarithm in the following. To estimate 

equation (4) for each spot and futures market in the context of cointegration we first have to 

assure that each of the current spot and futures prices is integrated of order one, e.g. "�1�, and 

both are cointegrated as well as each spot return is "�0�. Thus, we use the augmented Dickey-

Fuller (ADF) test to check the null of a unit root in each series (Dickey and Fuller, 1979). We 

apply an auxiliary regression with an intercept, but without a trend regressor since a graphical 

inspection shows that neither series exhibits a time dependent mean. Thus, we test the null of 

a random walk process without drift against the alternative of a stationary process with non-

zero mean for the level of each series. The results are displayed in Table 1 and indicate that 

the null cannot be rejected for each series. Thus, each spot and futures price can be regarded 

as "�1� since the same null can clearly be rejected for the first difference of each series 

denoted by ∆. The spot return is constructed by ∆���� ≡ ���� − �� with 
 = 66 since we use 

three month futures to estimate equation (4) and 66 equals the number of working days during 

three months. As can be seen in Table 1, each spot return is stationary, e.g. "�0�.5 

Table 1 about here 

3.2 Methodology and empirical results 

As a next step, we analyze whether a long-run relationship between spot and futures can be 

detected. After checking for cointegration we test the null of a linear specification given by 

equation (3) against a nonlinear specification of the form shown in equation (4) and we apply 

an empirical selection procedure to choose the appropriate transition function. 

 

                                                 

5 We have also applied the more powerful Ng and Perron (2001) MZa test to ascertain the robustness of our 
findings. These statistics are report in Table 1 as well. To account for the possibility of structural breaks in our 
series which in general reduce the power of conventional unit root tests to reject the null, we have conducted the 
Perron (1989) test in the fashion as described by Perron and Vogelsang (1992). The findings are not presented to 
save space, however these support our results given in Table 1. 
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3.2.1 Testing for cointegration 

We start our analysis by applying the multivariate cointegration test by Johansen (1988, 

1991), which draws upon the following vector autoregression representation (VAR): 

∆$� = 	Π$�%� + Γ�L�∆$�%' + Φ(� + )�	,						� = 1, …	, +, (5) 

where $� = �	�,�, ���′. The non-stationary behavior of both series is accounted for by a reduced 

rank �- < /) restriction of the long-run level matrix Π, which can be fragmented into two 

- × / matrices � and β′ (Π = αβ′). β′ gives the coefficients of the variables for the - long-run 

relation, while � contains the adjustment coefficients describing the reaction of each variable 

to disequilibria from the - long-run relations given by the - × 1 vector 	β′	$�%�. The 

deterministic components are given by the �	/ × 1� vector Φ(�, while	)�	describes an 

independent and identically distributed error term. The term Γ�L�∆$�%' describes the short-run 

dynamics of the model using / equations between current variables, L-lagged variables and 

equilibrium errors (Juselius, 2006). 

To identify the rank, that is, the number of cointegrating relations -, we rely on the trace test 

developed by Johansen (1988). The idea of the test is to separate the eigenvalues		12, 3 =

1, … , -, which correspond to stationary relations, from those eigenvalues 	12, 3 = - + 1,… , / 

which belong to non-stationary eigenvectors. The test statistic of the corresponding likelihood 

test, the so-called trace test, is given by	�-4!5�-� = −+∑ log	�1 − 1:2�
;
2<=�� . Starting with the 

hypothesis of full rank, the rank - is determined by using a top-bottom procedure until the 

null cannot be rejected (Juselius, 2006). For the specification of all models, the choice of the 

lag length is based on tests for autocorrelation. The results of the trace tests are shown in 

Table 2. 

     Table 2 about here 

According to the test statistic, the hypothesis of a rank of zero can be rejected for each spot 

and futures market relation at the 5% and 10% level, respectively. Moreover, the null of a 

rank of at most one cannot be rejected in each case. 

After the determination of the rank, we followed the Johansen (1988, 1991) approach and 

computed the maximum likelihood estimates of the unrestricted cointegrating relations	β′	$�%� 

for the each configuration. The corresponding results are given in column 4 of Table 2 and 

show that each pair of coefficients is theory-consistent in terms of sign and magnitude with 
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spot and futures prices always being positively related.6 The failure to find a strictly 

proportional long-run relationship between them might be attributed to nonlinear adjustment 

which may bias downward the speed of adjustment if a linear specification is used (Taylor, 

2006). Thus, in the following we assume that each spot and futures price pair is cointegrated 

with a coefficient of unity and use these proportional long-run relations as transition variables 

for our STR models when allowing for nonlinearities in the adjustment of spot returns to the 

spread between both.7 

3.2.2 Framework and tests for nonlinearity in the relationship between spot and futures 

prices  

As outlined in section 2, two different forms of nonlinearity are considered, namely the 

exponential as well as the logistic case. To explain the underlying dynamics presume first that 

����,  , !� is modeled by a bounded continuous exponential transition function which lies 

between 0 and 1 and thus, has the following functional form: 

 ����,  , !� = 1 − exp	�− ��� − !��/BC�� with  > 0, (6) 

where �� indicates the transition variable, BC� represents its standard deviation,   denotes a 

slope parameter and ! is a location parameter. In order to create a scale-free smoothness 

parameter,   is normalized by the standard deviation of the transitional variable �	�	,	as 

suggested by Teräsvirta (1998). The transition function given by equation (6) is symmetrically 

U-shaped as ����,  , !� → 1 for �� → ±∞ and ����,  , !� → 0	for �� = !, so that an 

adjustment for deviations of the transition variable �� above and below the location parameter 

!, which can be interpreted as a threshold value, is symmetric as opposed to the under 

mentioned logistic case. The slope parameter   determines the speed of the transition between 

the extreme regimes, with lower absolute values implying slower transition. 

Considering the second case where ����,  , !� in equation (4) is a bounded continuous logistic 

transition function which lies between 0 and 1. Therefore, it has the following form: 

 ����,  , !� = H1 + exp	�− ��� − !�/BC��I%�    with  > 0.    (7) 
                                                 

6Among others Crowder and Hamid (1993), Peroni and McNown (1998), McKenzie and Holt (2002) as well as 
Switzer and El-Khoury (2007) support our finding of a cointegration relationship between spot and futures prices 
for commodities. 
7 We have also applied the particular estimated cointegrated relationships instead of the proportional relations, 
however our findings stayed qualitatively unchanged. Hence, we only report the results for the latter since these 
are more feasible in terms of interpretability.  
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Thus, this implies that the lower (upper) regime is associated with negative (positive) values 

of the transition variable �	� relative to the location parameter !. The logistic function 

increases monotonically from 0 to 1 as the transition variable increases, so that ����,  , !� →

0 as �� → −∞ and ����,  , !� → 1 as �� → +∞ while it takes the value 0.5 if �� = !. Hence, 

again the location parameter can be interpreted as a threshold value dividing equation (4) into 

three different extreme regimes corresponding to limCL→%M 	����,  , !�, limCL→�M 	����,  , !� 

and 	�� = !. In case of �� = ! equation (4) reduces to the linear model given by equation (3) 

with � = �� + 0.5�� and � = �� + 0.5��. Moreover, the smoothness parameter   again 

gives the speed of transition between extreme regimes (Baillie and Kilic, 2006). 

A natural choice for the transition variable is the basis 	�,� − �� with several lags j up to one 

week. Following Franses and van Dijk (2000), an interesting alternative is the average 

absolute difference between spot and futures during the last week. This measure has the 

advantage of approximating the overall volatility instead of focusing on a particular kind of 

previous prices. 

In the following the use of equation (4) in combination with equation (6) and (7) is referred to 

as the exponential STR or ESTR and the logistic STR or LSTR, respectively. In terms of 

interpretation, it is worthwhile mentioning that the threshold !	is unrestricted in the present 

study. If a strictly proportional long-run relationship between spot and futures exists, the latter 

might also be restricted to zero in the fashion of a smooth transition error correction model 

suggested by Van Dijk et al. (2002). However, although this would facilitate the interpretation 

of the results, an unrestricted threshold seems more appropriate as a proportional long-run 

relationship cannot be verified for each commodity. Owing to the fact that we also consider a 

volatility measure, this does not alter the interpretability of our outcomes.  

The modeling cycle for smooth transition models suggested by Teräsvirta (1994) starts with a 

test for nonlinearity. The null hypothesis of linearity can be expressed as either OP:  =

0, Q-	OP:	�� = ��. However, both  	and ��	are unidentified under the null hypothesis. 

Consequently, standard asymptotics cannot be applied due to the existence of nuisance 

parameters (Van Dijk et al., 2002). To overcome this caveat, Teräsvirta (1994) suggests an 

approximation of the transition function by a third order Taylor approximation. Thus, the 
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corresponding lagrange multiplier (LM) test for linearity introduced by Luukkonen et al. 

(1988) can be expressed as 8 

∆���� =	RP + R��	�,� − ��� + R��	�,� − ����� + RS�	�,� − ������

+ 		RT�	�,� − �����S+)���	. 

(8) 

The null hypothesis which refers to the linear model being adequate is tested as OP:	R2 = 0	 

with 3 = 2,3,4	 against the alternative	O� that at least one R2 ≠ 0, implying that the higher 

order terms are significant (Teräsvirta, 1998). The test statistic has a Z� distribution with three 

degrees of freedom.9 This proceeding also enables the choice of an adequate transition 

variable. In the case of the linearity hypothesis being rejected, a method for choosing the latter 

lies in computing the test statistic for several transition functions, i.e. different values of the 

lag order j, and selecting the configuration for which its value is maximized (Taylor et al., 

2001; van Dijk et al., 2002). Teräsvirta (1994, 1998) has shown that this approach works well 

in most cases. In the present study, delays from one to five days are considered.10 The results 

of the LM tests presented in Table 3 show that the hypothesis of linearity is rejected for all 

commodities and lag orders j. 

Table 3 about here 

Hence, the overall conclusion is that a nonlinear framework is adequate. An inspection of the 

tests statistics shows that the optimal transitions variable differs with the measure of volatility 

as well as different lag orders for the forward spread considered to be the most adequate 

choice in some cases. In order to achieve comparable and robust results, two different models 

will be estimated in the following: One configuration based on the volatility measure and 

another one on the lagged spread associated with the highest test statistic. This proceeding 

always includes the optimal transition variable for each commodity and enables us to draw 

                                                 

8 In the case of small samples in combination with a large number of explanatory variables, F versions of the LM 
test statistics are preferable, as they have better size properties (Granger and Teräsvirta, 1993; Teräsvirta, 1998; 
van Dijk et al., 2002). 
9 The number of degrees of freedom 3/ refers to the number of regressors / which in our case is one. 
Furthermore, the test assumes that all regressors as well as the transition variable �� are stationary and 
uncorrelated with the error in equation (4) ����	 (Teräsvirta, 1998). As shown in section 3.2.1 our only regressor 
and transition variable �	�,� − ��� is a stationary linear combination of non-stationary "�1� variables. 
10 Longer delays have turned out to be less suitable in previous estimations carried out by the authors. The results 
are available upon request. 
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clear conclusions as the thresholds for the lagged forward premium and the volatility hold 

different implications.  

3.2.3 Testing for the appropriate specification 

Following Granger and Teräsvirta (1993), Teräsvirta (1994, 1998) as well as van Dijk et al. 

(2002) the above shown LM testing procedure can also be applied to distinguish between an 

exponential and a logistic transition function and thus, to choose the appropriate specification. 

If the linearity null has been rejected, equation (8) is used to test the following hypotheses 

successively 

	OPT:		RT = 0, 

																																																										OPS:		RS = 0	|	RT = 0,                                               (9) 

	OP�:		R� = 0	|	RS = RT = 0, 

The decision rule to select the most adequate transition function introduced by Teräsvirta 

(1994) is as follows. If the rejection of OPS is the strongest one in terms of lowest p-value or 

largest test statistic, respectively, the ESTR model should be chosen, otherwise the LSTR 

model should be preferred.11 Table 4 displays the empirical realizations of the test statistics 

and corresponding p-values for the two configurations of each commodity. 

Table 4 about here 

As can been seen, the ESTR specification turns out to be most adequate for crude oil while 

the LSTR specification is selected for heating oil, natural gas, and unleaded gasoline. In case 

of the whole energy index the LSTR model is preferred if using the lagged forward premium 

as transition variable and the ESTR seems to be appropriate if the latter is approximated by 

last weeks’ volatility. Thus, for the energy index we estimate both specifications for both 

transition variables. 

3.2.4 Estimation results 

The results of our estimations carried out by nonlinear least squares (NLS) are presented in 

Table 5. 

Table 5 and Figure 1 about here 

                                                 

11 See Granger and Teräsvirta (1993) or Teräsvirta (1994) for details. 
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It may be worthwhile mentioning first of all that the observed insignificance of the transition 

parameter   can in some cases not be interpreted as evidence against a smooth transition 

model, since the t-statistics need to be interpreted with caution (Taylor et al., 2001; van Dijk 

et al., 2002). The cause for an observed insignificance of   is occasionally the circumstance 

that there are only few observations in the region of transition between two regimes as shown 

in Figure 1. Nevertheless, it becomes evident that the conducted smooth switching approach is 

more appropriate than a discrete switching framework applied in previous studies since for 

each spot and futures relation we have enough observations in each regime and even in the 

region of transition between the extreme regimes to justify our approach. Hence, a discrete 

function is not able to specify the dynamics adequately. 

The first main result is that the adjustment of the spot return frequently differs between the 

two regimes, regardless if an exponential or a logistic function is chosen. This strongly 

supports our presumption of a nonlinear adjustment process in spot and futures markets for 

commodities. Starting with exponential transition frameworks, the findings for the energy 

index and crude oil display a positive coefficient �� while the sum of �� and �� turns out to be 

negative and close to zero for both transition variables. Hence, spot returns only adjust in case 

of a small forward premium or low volatility. However, if previous forward spreads and 

volatility, respectively, has been large, future spot returns are increasingly detached from the 

current spread. In that extreme regime, a positive basis may even result in a drop of future 

spot prices and vice versa. The other extreme can be observed if the forward premium is 

chosen as the transition variable for crude oil or volatility serves as a transition variable for 

energy. In both cases, �� turns out to be greater than unity, which even points to an 

overshooting pattern of spot returns in the first regime. Such a scenario seems plausible in 

times of speculation while ��� + ��� < 0 may reflect expected market turnovers.  

A similar pattern arises for heating oil based on a logistic framework: The positive sign of the 

coefficient �� is in line with theory while the sum of �� and �� turns out to be negative. 

Estimations for the whole energy index based on a logistic transition function display a 

similar pattern. Overall, these findings imply that future spot changes tend to be negatively 

related to the forward premium if the latter is above its threshold in the previous period while 

a positive coefficient can be observed if the lagged return turns out to be below the threshold. 

Considering that the threshold is positive for each commodity,	�� corresponds to a falling 

spread which might become negative while the sum of �� and �� refers to an increasing 

positive spread. In terms of volatility, a value above the threshold corresponds to large 
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absolute spreads during the previous week while a value below the threshold corresponds to 

low volatility. Hence, a similar pattern as argued in case of the exponential transition function 

arises as an adjustment of spot returns only occurs if the spread between futures and spot 

prices and volatility, respectively, is low.  

In case of unleaded gasoline the slope coefficient has a positive sign in both regimes. 

However, the predictive power of the spread is again much higher in the first regime since 

�� < 0. NLS estimations performed for natural gas did not converge, therefore these are not 

reported in Table 5.  

Several modified estimations have been carried out to test for the robustness of the overall 

results. In particular, we have modified our estimations with respect to the choice of the 

transition variable by introducing different lags for the lagged spread. For instance, the results 

remain qualitatively unchanged if the lag order is chosen to be one for each commodity. 

Estimating all models with exponential or logistic transition functions suggests that the 

established results continue to hold. Overall, the outcomes suggest that our findings are robust 

with respect to different configurations. To save space, the corresponding results are not 

presented here, but are available upon request.  

4. Conclusion 

Examining energy commodities, this study has allowed for different nonlinear adjustment 

patterns when analyzing the relationship between future spot changes and the forward 

premium. From a general point of view, our findings suggest that a smooth switching 

approach should be adopted as such a framework is capable of capturing more complex 

dynamics of commodity spot and futures relationships compared to a discrete threshold 

model. Our empirical outcomes confirm the previous findings of Chinn et al. (2005) that the 

informational content of prices for energy futures varies between different commodities. 

Nevertheless, a similar pattern arises: A price discovery function of futures prices can only be 

observed if previous volatility or spreads have been low while no or little explanatory power 

is detected in the opposite case. A reasonable explanation for this pattern is that periods of 

high volatility or high spreads reflect market turbulences which for their turn, beside other 

factors, might be explained by price pressures resulting from speculation. In this case, the 

missing link between spot and futures stems from the engagement of investors which consider 

energy products as an asset class and cause price movements away from fundamental values.  
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The fact that futures prices lose their leading indicator function in times of turbulence implies 

that economic policy faces a tough task when trying to reduce energy price uncertainty. 

However, to clarify the role of speculation in this context, further research seems necessary. 

As an extension of our study, a multivariate nonlinear cointegration analysis which includes 

further variables such as a global liquidity measure or energy demand factors is a promising 

line of research.    
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Tables 

Table 1: Unit root tests 

Commodity Series Level ∆ Level ∆ 

  t-stat.[Lags] t-stat. [Lags] MZa-stat. [Lags] MZa-stat. [Lags] 

Energy 	� 
-0.95 [1] -72.90*** [0] 0.28 [1] -35.59*** [7] 

 �� 
-1.13 [0] -72.19*** [0] -2.01 [1] -35.09*** [7] 

 ∆��+66 
-5.35*** [0] 

 

-41.77*** [0] 
 

Crude oil 	� 
-0.56 [0] -72.11*** [0] 0.7 [1] -32.02*** [7] 

 �� 
-1.16 [0] -70.31*** [0] -1.05 [1] -28.67*** [7] 

 ∆��+66 
-5.49*** [0]  -37.13*** [0]  

Heating oil 	� 
-0.48 [1] -73.95*** [0] 0.79 [1] -35.61*** [7] 

 �� 
-1.12 [0] -72.26*** [0] -2.11 [0] -23.15*** [7] 

 ∆��+66 
-5.81*** [0]  -55.73*** [1]  

Natural gas 	� 
-0.42 [0] -71.30***[0] -1.04 [0] -2391.84*** [0] 

 �� 
1.21 [0] -72.08*** [0] 2.93 [0] -1901.96*** [2] 

 ∆��+66 
-5.65*** [0]  -50.89*** [0]  

Unleaded 
gasoline 	� 

-0.30 [1] -73.17*** [0] 1.12 [1] -26.4*** [7] 

 �� 
-0.97 [1] -70.77*** [0] -0.11 [1] -42.87*** [7] 

 ∆��+66 
-5.17*** [0]  -58.71*** [0]  

Note: * Statistical significance at the 10% level, ** at the 5% level, *** at the 1% level. The ADF test equation is estimated 
including an intercept (c) for the levels and without deterministic regressors (n) for the first differences. For the ADF test 
critical values are taken from MacKinnon (1996): (c) 10% -2.57, 5% -2.86, 1% -3.43 and (n) 10% -1.62, 5% -1.94, 1% -2,57, 
respectively. For the MZa test critical values are taken from Ng and Perron (2001): 10% -5.7, 5% -8.1, 1% -13.8. The lag 
length is chosen by minimizing the Schwarz information criterion. Maximum lag length has been set to 32. 
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Table 2: Bi-variate Johansen cointegration rank test 

Spot and futures relation Lags Trace stat. Long-run relationship 

Energy 

O0: - = 0	\�. O1: - ≥ 1 

O0: - ≤ 1	\�. O1: - ≥ 2 

 

3 

 

 

40.096** 

2.108 

��	 − 0.254	� − 3.185 

                    

Crude oil 

O0: - = 0	\�. O1: - ≥ 1 

O0: - ≤ 1	\�. O1: - ≥ 2 

 

3 

 

 

28.467** 

1.630 

	�� 	− 0.361	� − 2.802 

 

Heating oil 

O0: - = 0	\�. O1: - ≥ 1 

O0: - ≤ 1	\�. O1: - ≥ 2 

 

1 

 

 

18.980* 

4.440 

	�� 	− 0.556	� − 1.765 

 

 

Natural gas 

O0: - = 0	\�. O1: - ≥ 1 

O0: - ≤ 1	\�. O1: - ≥ 2 

 

2 

 

 

26.870** 

5.640 

	�� 	− 3.983	� 

 

 

Unleaded gasoline 

O0: - = 0	\�. O1: - ≥ 1 

O0: - ≤ 1	\�. O1: - ≥ 2 

 

3 

 

 

31.381** 

2.738 

	�� 	− 0.615	� − 1.678 

 

 

Note: * Statistical significance at the 10% level, ** at the 5% level. In case of significance the constant is restricted to the 
cointegrating space, allowing for no linear trend neither in the data nor in the cointegrating equation. Critical values for 
testing (i) OP: - = 0 and (ii) OP: - ≤ 1 are taken from MacKinnon et al. (1999): 10% (i) 17.980 and (ii) 7.557, 5% (i) 20.164 
and (ii) 9.142, respectively. The lag length is chosen based on tests for autocorrelation. The coefficients of each long-run 
relationship are highly significant. 
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Table 3: Teräsvirta test for nonlinearity and choice of the delay parameter 

b � − 1 � − 2 � − 3 � − 4 � − 5 Volatility 
Energy 

 
247.405*** 

( 
244.641*** 

(( 
244.508*** 

( 
244.675*** 

( 
242.798*** 187.750*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000 

Crude oil 91.542*** 88.162*** 87.975*** 85.903*** 88.142*** 125.809*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Heating oil 366.236*** 364.418*** 
( 

370.487*** 374.860*** 372.462*** 327.674*** 
 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Natural gas 119.236*** 115.999*** 114.880*** 113.770*** 111.096*** 106.280*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Unleaded 182.219*** 181.048*** 182.456*** 182.660*** 187.677*** 137.922*** 

gasoline (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Note: The table displays the test statistic of the LM test for nonlinearity as described in Section 3.2.2 for 

different lag orders b and the volatility measure, with p-values in parentheses. The test is distributed as Z2 with 

three degrees of freedom. For details, see Teräsvirta (1998). */**/*** implies rejection of the null hypothesis at 

the 10/5/1% significance level. 

 

Table 4: Teräsvirta test for LSTR vs. ESTR 

Commodity Optimal lag (b) Volatility 

 b O04  O03  O02  O04 O03 O02 

Energy 1 113.842*** 
(0.000) 

99.164*** 
(0.000) 

80.647*** 

(0.000) 

43.079*** 

(0.000) 

127.869*** 

(0.000) 

49.851*** 

(0.000) 

Crude oil 1 39.399*** 
(0.000) 

42.206*** 
(0.000) 

5.668** 

(0.017) 

31.864*** 

(0.000) 

74.042*** 

(0.000) 

0.104 

(0.747) 

Heating oil 4 232.368*** 
(0.000) 

18.395*** 
(0.000) 

107.761*** 

(0.000) 

235.200*** 

(0.000) 

2.126 

(0.145) 

87.035*** 

(0.000) 

Natural gas 1 40.395*** 
(0.000) 

29.688*** 
(0.000) 

78.070*** 

(0.000) 

36.331*** 

(0.000) 

34.731*** 

(0.000) 

59.101*** 

(0.000) 

Unleaded 
gasoline 

5 139.318*** 
(0.000) 

49.184*** 
(0.000) 

38.597*** 

(0.000) 

72.696*** 

(0.000) 

53.317*** 

(0.000) 

29.605*** 

(0.000) 

Note: The table displays the test statistic of the LM test for the selection of the appropriate specification as 

described in Section 3.2.3 for the optimal lag orders b and the volatility measure, with p-values in parentheses. 

The test is distributed as Z2 with one degree of freedom. For details, see Teräsvirta (1998). */**/*** implies 

rejection of the null hypothesis at the 10/5/1% significance level. 
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Table 5: Estimation results 

Com. Trans.func. Trans.var. �� �� �� ��   c 

Energy 

 

exponential 
Basis (t-1) 

-0.107** 

(0.050)        

0.732*** 

(0.224)        

0.112** 

(0.056)         

-0.779*** 

(0.226)        

7.641*** 

(2.963)         

0.245*** 

(0.026)        

Volatility 
-3.972*** 

(0.844)         

7.751*** 

(1.606)        

4.000*** 

(0.845)     

-7.803*** 

(1.604)          

142.23*** 

(40.720)         

0.513*** 

(0.006)        

 

logistic 
Basis (t-1) 

-0.002 

(0.007) 

0.242*** 

(0.035) 

-0.021 

(0.037) 

-0.263*** 

(0.048) 

147.036 

(224.965) 

0.444*** 

(0.008) 

Volatility 
-0.001 

(0.007) 

0.231*** 

(0.038) 

-0.042 

(0.039) 

-0.236*** 

(0.051) 

189.226 

(339.253) 

0.443*** 

(0.005) 

Crude oil 

 

exponential 
Basis (t-1) 

-0.484*** 

(0.241)         

1.623*** 

(0.288)       

0.504*** 

(0.125)        

-1.662*** 

(0.285)         

611.172*** 

(124.401)        

0.419*** 

(0.000)        

Volatility 
0.027 

(0.028)          

0.517*** 

(0.135)          

-0.014 

(0.031)         

-0.566*** 

(0.138)         

55.230 

(34.105)        

0.214*** 

(0.011)        

Heating 
oil 

 

logistic 
Basis (t-4) 

-0.013 

(0.008) 

0.101* 

(0.053) 

0.225*** 

(0.033) 

-0.356*** 

(0.070) 

53.363 

(46.770) 

0.388*** 

(0.007) 

Volatility 
-0.010 

(0.009) 

0.076 

(0.059) 

0.216*** 

(0.036) 

-0.328*** 

(0.076) 

46.808 

(41.940) 

0.385*** 

(0.008) 

Unleaded 
gasoline 

 

logistic 
Basis (t-5) 

-0.002 

(0.006) 

0.357*** 

(0.048) 

-0.033 

(0.040) 

-0.308*** 

(0.076) 

96.023 

(147.133) 

0.288 

(0.005) 

Volatility 
-0.001 

(0.007) 

0.344*** 

(0.043) 

-0.042 

(0.043) 

-0.292*** 

(0.081) 

82.275 

(177.490) 

0.289*** 

(0.005) 

Note: * Statistical significance at the 10% level, ** at the 5% level, *** at the 1% level. The coefficients are estimated by 

nonlinear least squares. Newey-West standard errors are given in parentheses. 
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Figures 

Figure 1: Estimated transition functions 
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