Why didn't the Global Financial Crisis severely affect Latin America?

Tjeerd M. Boonman^{a,b,*}, Jan P.A.M. Jacobs^{a,c}, Gerard H. Kuper^a

^aFaculty of Economics and Business, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands ^bTEC de Monterrey, campus Guadalajara ^cCAMA, Australian National University and CIRANO

Abstract

Despite its rich history of financial crises, Latin America was relatively unharmed by the 2007–2009 Global Financial Crisis (GFC). Although currencies depreciated sharply in 2008, this did not result in a financial or economic crisis. This paper investigates the effect of the GFC on Latin American countries, focusing on the role of commodity prices and inspired by fourth generation financial crises models on institutional factors.

We develop Early Warning Systems (EWS) for Argentina, Brazil and Mexico, which consist of an ordered logit model for currency crises for the period 1990–2007. We apply dynamic factor models to deal with the large number of explanatory variables. Finally, we present out-of-sample forecasts for the period 2008–2009.

We find that currency crises in Brazil and Mexico are related to institutional variables, while commodities play an important role for Argentina and Brazil. Debt indicators are important for Argentina and Brazil. Banking variables are important for Argentina. Mexico's crises are related to domestic and international indicators.

We interpret the out-of-sample results as evidence that Brazil's fast recovery can be attributed to the improved institutional framework, while Argentina has not made sufficient improvement in institutions. We identify Mexico's strong fundamentals –including institutional indicators– as the main reason for not suffering a more severe crisis.

Keywords: Financial crises, Early Warning Systems, Latin America, Dynamic factor models, Ordered logit model

^{*}Corresponding author

Email addresses: t.m.boonman@rug.nl (Tjeerd M. Boonman), j.p.a.m.jacobs@rug.nl (Jan P.A.M. Jacobs), g.h.kuper@rug.nl (Gerard H. Kuper)

1. Introduction

The 2007–2009 Global Financial Crisis (GFC) has affected many countries including Latin America. In the fall of 2008 Latin American currencies depreciated sharply versus the US dollar. In Brazil and Mexico the local currencies depreciated by more than 40%, and the Argentine peso depreciated by 20% vis-à-vis the US dollar (see Figure 1). The stock markets plunged—in Argentina and Brazil by more than 50%— as is illustrated in Figure 2, and spreads on yields quadrupled in Argentina, and doubled in Mexico and Brazil (see Figure 3). These dramatic changes did not trigger a financial crisis. The real economy contracted in 2009 in Mexico due to the recession in the USA, the sudden-stop in international trade and the influenza A-H1N1, while Argentina and Brazil were hardly affected. The financial sector was not in danger at any time and no debt crises developed. The exchange rates returned relatively quickly to a level close to the pre-crisis situation, particularly in Brazil.

Figure 1: Nominal exchange rates indexed (2008M1 = 100) for the period 2008-2009 for Mexico, Argentina and Brazil

We address the question whether the countries have learned from their past experiences, which makes this study also relevant for other regions. In our analysis we include a particular group of variables which represent the state of the institutional framework.

Figure 2: Stock market index for the period 2008-2009 for Mexico, Argentina and Brazil; 2008M1 = 100

Figure 3: Sovereign bond interest rate spread for the period 2008-2009 for Mexico, Argentina and Brazil; basis points over US Treasuries

Over time, various countries have experienced strong institutional changes in the form of structural reforms, or changes in political power. For instance, in Mexico the conservative National Action Party (PAN) took over the presidency in 2000 after 70 years of Institutional Revolutionary Party (PRI) governments. We hypothesize that institutional change has made these countries less vulnerable to the current crisis. These new institutions are national institutions. These may not prevent a country being hit by a crisis emerging abroad, but these new national institutions may be geared at reducing the impact on the domestic economy. We refer to Moshirian (2011) for a discussion of cross border regulation and the emergence of new national and international institutions. Furthermore, we pay attention to commodity-related indicators. The region is a large commodity producer at the global level. The surge in demand and prices in the second half of the first decade of the 21st century may have contributed to the relative stability, healthy fiscal balances and low debt levels.

We confine attention in this paper to the three most important economies of Latin America: Argentina, Brazil and Mexico (LA-3).¹ We focus on the period 1990 to 2009 because this period has entirely different characteristics than the 1970s and 1980s (hyperinflation, 1980s debt crisis, political system) and because of data availability. In this paper, we model the probability of a currency crises in an ordered logit model.

We apply the ordered logit model using dynamic factor models to cope with the large number of crisis indicators. In that respect our paper is related to Cipollini and Kapetanios (2009), who also apply dynamic factors in their Early Warning System.²

As explanatory variables we will use monthly series from 1990 to 2007 for the three Latin American countries. Apart from the "usual suspects"—the common macroeconomic and

¹The fourth economy, Chile, is not included because it has not experienced financial crises in the 1990–2009 period.

 $^{^{2}}$ An alternative is Innoue and Rossi (2008), who apply a diffusion index method as Early Warning Systems to forecast currency crises.

financial variables—we include institutional variables and commodity-related indicators. Details on the explanatory variables are given in Appendix Appendix A. We estimate the ordered logit models up to and including 2007, and present forecasts for 2008-2009.

We find that Argentina's crises are correlated most with banking, debt and global indicators, and commodities, while Brazil's crises are related to debt and banking indicators and commodities. Mexico's crises are related to domestic and international indicators (external economy and global). In Brazil and Mexico institutional indicators play an important role which supports the fourth generation financial crisis models discussed in the next section. It also confirms previous work in which political indicators play a significant role in crisis forecasting (e.g. Bussière and Mulder 2000). We interpret the results as follows: Immediately following the fall of Lehman Brothers the fundamentals in all countries considered worsened but this is not fully reflected in our forecasts because the current crises differs from earlier crises. Brazil however was affected stronger than Argentina and Mexico due to falling commodity prices in mid-2008. In the period following the events in 2008 the institutional framework in Brazil prevented the crisis from deepening, since the inclusion of institutional variables decreases the probability of a currency crisis. In the case of Mexico our out-of-sample forecast does not indicate any increase in the probability of a crisis after 2008. The insignificance of the institutional variables and the delayed increase in probability of a crisis in Argentina leads us to conclude that the crisis was not handled adequately—which may be blamed on insufficient institutional reforms.

The remainder of the paper is structured as follows. After a review of financial crises and models, early warning systems and empirical studies for Latin America in Section 2, Section 3 discusses the method. The data are presented in Section 4, followed by the empirical results in Section 5 and the analysis of out of sample performance in Section 6. Section 7 concludes.

2. Review

2.1. Four generations of crises and models

Theoretical models for currency crises have been developed since the late 1970s, based on the seminal work of Krugman (1979). The characteristics of crises have changed over time and so have the models. The literature distinguishes four generations of financial crises (models). The *first generation models* explain the crises as the result of fundamental inconsistencies in domestic policies, which at that time (1960s and 1970s) characterize the crises. The crises are preceded by a deterioration in the fundamentals, such as recurring budget deficits which are monetary financed, or persistent current account deficits which exhaust the foreign reserves.

With the crisis of the European Monetary System in 1992-1993 a second generation crisis appears, because the weak economic fundamentals alone could not explain such a dramatic drop in the exchange rate. Fundamentals still play a role: if these are very strong then no currency attack will take place, and if these are very weak then the government will not defend the currency. But when the fundamentals are in a "grey zone", multiple equilibria are possible. Relative small changes can have a big impact, which is known under the term "sunspot view". When speculators suspect that the government is not committed to defend the exchange rate (e.g. for restoring international competitiveness), then a massive currency attack follows which can trigger a self-fulfilling devaluation (Obstfeld, 1996).

The Asian crisis of 1997–1998, a *third generation crisis*, gave a new boost to crisis research. Banks and financial institutions expand and ease their loan granting policies prior to the crisis, because they count on a government bailout in case of solvency problems. This moral hazard behavior leads to an excessive build-up of external private debt followed by a collapse (McKinnon and Pill, 1997). A currency devaluation can trigger a banking and debt crisis when banks and government have a mismatch in the balance sheet: domestic

assets financed by foreign liabilities (Chang and Velasco, 1998). Krugman (2003) adds that a combination of factors such as panics in the international investment community, policy mistakes in handling the crisis and poorly designed international rescue programs cause a financial panic which results in currency crises, runs on banks, massive bankruptcies and political turmoil.

The development of *fourth generation models* of financial crises is ongoing. Breuer (2004) refers to a model in which crises are determined by institutional factors. Poor institutional factors are the underlying cause for unsustainable policies, excessive borrowing and lending, hyperinflation, etc. Although economic factors also play a role in fourth generation models, the institutional factors set the conditions for economic outcomes. Many databases that quantify institutional factors have become available recently, enabling more research.

2.2. Early Warning Systems

Early Warning Systems (EWS) are models that send signals or warnings well ahead in time of a potential financial crisis. The dozens of EWS that have been developed differ widely in the definition of a financial crisis, the period of estimation, data frequency and the countries included in the database, the inclusion of indicators, the forecast horizon and the statistical or econometric method (Jacobs, Kuper and Lestano, 2008). For an overview see Kaminsky, Lizondo and Reinhart (1998) and Abiad (2003). Most studies use binary methods (logit or probit), the signals approach, Ordinary Least Squares, Markov Switching models, binary recursive trees, contingent claims analysis or a combination of these methods.

The typical EWS model is applied to a large number of emerging countries from all over the world—in order to obtain sufficient crisis observations. This approach has received criticism. To quote Abiad (2003): "The one-size-fits-all, panel data approach used in estimating most Early Warning Systems (EWS) might be one of the causes of their only moderate success". Kaminsky (2006) confirms this and Beckmann, Menkhoff and Sawischlewski (2006) also suggest that differences between geographical regions justify a regional approach. A growing number of studies focuses on a geographic region—particularly South East Asia, Central Europe and Latin America. Even within a region distinctions can be made. Van den Berg, Candelon and Urbain (2008) construct country clusters for six Latin American countries. In this study for the period 1985-2004, Argentina, Brazil and Peru are grouped in one cluster because of similar inflation patterns, while Mexico, Uruguay and Venezuela are grouped in the other cluster, due to important privatizations in the early 1990s.

2.3. Empirical studies for Latin America

With its rich history of financial crises (Reinhart and Rogoff 2009), Latin American countries—particularly Argentina, Brazil and Mexico—have been included in EWS models applied to emerging economies from all over the world. There are also studies with an exclusive focus on the region. Kamin and Babson (1999) use a binomial probit model with Vector AutoRegressions to distinguish between external and internal factors, to predict financial crises. They use panel data for six Latin American countries, for the period 1981–1998. Herrera and Garcia (1999) group the indicators into a composite index, to analyze the indicators jointly. As in the signals approach, they set thresholds which indicate financial crises. They apply their model to eight Latin American countries. Argentina's long history of currency and other financial crises is analyzed in studies such as Alvarez Plata and Schrooten (2004), Kaminsky, Mati and Choueiri (2009) and Cerro and Iajya (2009). Another crisis that has been researched widely is the Mexico 1994/1995 "tequila" crisis. Sachs, Tornell and Velasco (1996) focus on contagion, whereas Beziz and Petit (1997) study the use of real time data on predicting the crisis.

3. Method

We first apply dynamic factor models to extract the factors from the indicators, and then use the estimated factors as regressors in the ordered logit model, with a crisis dating dummy as dependent variable.

3.1. Dynamic factor models

Dynamic factor models exploit the idea that movements in a large number of variables are driven by a limited number of common factors, which may enter with leads and lags

$$\boldsymbol{X}_{t} = \boldsymbol{A}_{0}\boldsymbol{f}_{t} + \boldsymbol{A}_{1}\boldsymbol{f}_{t-1} + \ldots + \boldsymbol{A}_{p}\boldsymbol{f}_{t-p} + \boldsymbol{\epsilon}_{t}, \tag{1}$$

where X_t is the $N \times 1$ vector of observations of explanatory variables in period t, f_t is the $r \times 1$ vector of common components or factors, and ϵ is a vector of idiosyncratic components, $\epsilon_t \sim \mathcal{N}_N(0, \boldsymbol{\Phi})$. The variables are typically stationary, demeaned and standardized. For a review of dynamic factor models we refer to Stock and Watson (2011).

Dynamic factors can take several forms. Stock and Watson (1998) allow for time varying loadings, but do not allow for autoregressive dynamics. Forni, Hallin, Lippi and Reichlin (2005) adopt a different definition, which is christened a *static factor representation of the* DFM by Stock and Watson (2005) or a *pseudo* DFM by Kapetanios and Marcellino (2009)

$$\boldsymbol{X}_t = \boldsymbol{A}\boldsymbol{F}_t + \boldsymbol{\epsilon}_t, \tag{2}$$

where $\mathbf{A} \equiv [\mathbf{A}_0 \ \mathbf{A}_1 \ \dots \mathbf{A}_p]$ and $\mathbf{F}_t \equiv [\mathbf{f}'_t \dots \mathbf{f}'_{t-p}]'$. Hence, a dynamic factor model with r common factors can be written as a static factor model with (p+1)r static factors.

The dynamics of the r common factors is represented by a vector autoregressive VAR(m)

process of order m

$$\boldsymbol{F}_t = \boldsymbol{\Gamma}(L)\boldsymbol{F}_t + \boldsymbol{\nu}_t, \tag{3}$$

where $\boldsymbol{\Gamma}(L)\boldsymbol{F}_t = \boldsymbol{\Gamma}_1\boldsymbol{F}_{t-1} + \ldots + \boldsymbol{\Gamma}_m\boldsymbol{F}_{t-m}$ and $\boldsymbol{\nu}_t \sim N(\boldsymbol{0}, \boldsymbol{\Sigma}_{\nu})$.

The factors can be estimated in the frequency domain (Forni et al., 2000, 2002), by principal components (Bai and Ng, 2002; Stock and Watson, 2002a, 2002b), or by principal components in combination with the Kalman filter (Forni et al. 2009; Doz, Giannone and Reichlin, 2011, henceforth DGR). In this paper we employ the two-step approach of DGR. In the first step preliminary estimates of the factors and estimates of the parameters of the dynamic factor models are computed by principal components. In the second step the factors are updated via the Kalman filter.³

Note that DGR use a slightly different version of the static factor representation of the dynamic factor model, without dynamics, in the measurement equation of their state space form, in combination with a VAR(p) for the common factors in companion form as state

 $^{^{3}}$ The Kalman filter is a forward recursion procedure. We are not using the Kalman smoother (backward recursions) because if we extend the database in our out-of-sample forecast exercise these backward recursions would change the historical values for the dynamic factors.

equation

$$\mathbf{X}_{t} = \begin{pmatrix} \mathbf{A}_{0} & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} \mathbf{f}_{t} \\ \mathbf{f}_{t-1} \\ \vdots \\ \mathbf{f}_{t-p+1} \end{pmatrix} + \boldsymbol{\epsilon}_{t}$$

$$\begin{pmatrix} \mathbf{f}_{t} \\ \mathbf{f}_{t-1} \\ \vdots \\ \mathbf{f}_{t-p+1} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{1} & \mathbf{A}_{2} & \dots & \mathbf{A}_{p-1} & \mathbf{A}_{p} \\ \mathbf{I}_{r} & 0 & \dots & 0 & 0 \\ 0 & \mathbf{I}_{r} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mathbf{I}_{r} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{f}_{t-1} \\ \mathbf{f}_{t-2} \\ \vdots \\ \mathbf{f}_{t-p} \end{pmatrix} + \begin{pmatrix} \mathbf{I}_{r} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \boldsymbol{\nu}_{t}.$$

Determination of the number of factors

One of the issues in factor analysis is the determination of the optimal number of factors. Various procedures have been proposed, e.g. the Bayesian Information Criterium, the Kaiser Criterium and Cattell's scree test. The number of factors is better overestimated than underestimated, because the factors are still estimated consistently if the number of factors is overestimated (Breitung and Eickmeier, 2006).

With the large dimensional factor models of recent years many studies have proposed solutions and consistent estimators for the number of factors using different factor model and distributional assumptions. See e.g. Bai and Ng (2002, 2007), Amengual and Watson (2007), Kapetanios (2010), Hallin and Liška (2007), Harding (2009), Jacobs and Otter (2008), and Onatski (2009). Here we employ the criterion of Otter, Jacobs and den Reijer (2011; henceforth OJdR), which is associated with Onatski's (2009) test statistic, and related to the scree test.

Interpreting the factors

Using factor models comes at a cost. Determining the economic relevance of factors and interpreting the factors in a meaningful way is problematic. The factor loadings can be used to assign a label to each of the common factors. This is a good strategy for static factors, but for dynamic factors it is cumbersome. Here we look at correlations between dynamic factors and the indicators (following e.g. Breitung and Eickmeier, 2006).⁴

3.2. Crisis dating

Identifying and dating currency crises has been debated since the mid 1990s. Two approaches can be distinguished: the successful attack approach and the speculative pressure approach. In this study, we opt for the speculative pressure approach, which was initialized by Girton and Roper (1977) and later used by Eichengreen, Rose and Wyplosz (1995) for currency crisis purposes. In this approach we distinguish events from crises to identify and date currency crises. Events consist of significant changes in exchange rate arrangements, such as official decisions to float or fix the exchange rate, to widen the fluctuation band, etc. Crises consist of periods in which the exchange rate comes under speculative attack. The set of crises periods is not a subset of the set of events. For example, when the exchange rate arrangement is not preceded by a significant exchange market pressure, then this is not considered a crisis. Also the set of events does not include all crises. For example, when a speculative attack is unsuccessful so that there is no realignment of exchange rates, then it is not an event, but it is considered a crisis. In other words, also unsuccessful attacks should be considered a crisis. A currency attack can be unsuccessful when it is successfully defended by the monetary authorities through the use of international reserves, by increasing the interest rates or by restricting transactions in foreign currency.

⁴An alternative is to place the set of variables in well-defined groups, and apply factor analysis to each of the groups. Obviously, the factors derived in this way are no longer orthogonal.

The speculative pressure index, or the Exchange Market Pressure Index (EMPI), is defined as a weighted average of exchange rate changes, changes in the international reserve and changes in the interest rates. A crisis is identified if the index exceeds an upper bound. We follow the modified definition of Kaminsky and Reinhart (1999) and Kaminsky (2006): the weighted average of exchange rate changes and reserve changes, with weights such that the two components of the index have equal conditional volatilities. To determine the crises we deviate from Kaminsky and Reinhart (1999), who identify a crisis when the observation exceeds the mean by more than three standard deviations. We use this definition to identify "very deep" crises. Similar to Cerro and Iajya (2009) we extend the definition of crises by introducing "deep" crises (which we define as two adjacent months with exceedance between 2 and 3 times the standard deviation) and "mild" crises (which we define as two adjacent months with exceedance between 1 and 2 times the standard deviation). The ordinal variable that indicates crises periods is constructed as follows: the value 0 indicates no crisis periods, the value 1 is assigned to mild crises, 2 to deep crises and 3 to very deep crises. As is common in early warning systems of currency crisis, we will use the same dummy variable for the crisis entry month and the run-up to the crisis. In this paper we choose a period of six months preceding the crisis start. In case a crisis follows within six months after a previous crisis, then the second crisis is considered a continuation of the earlier one and eliminated. If types of crises overlap we assign the highest ordinal number to that crisis.

3.3. Ordered logit model

As our dependent variable can only take four values (0=no crisis; 1=mild crisis; 2=deep crisis, and 3=very deep crisis), we employ an ordered choice model, which extends the binary choice model, allowing for a natural ordering in the outcomes y. Assume that there

are K + 1 possible outcomes, then

$$y = \begin{cases} 0 & \text{if } y^* \le \mu_1, \\ 1 & \text{if } \mu_1 < y^* \le \mu_2, \\ 2 & \text{if } \mu_2 < y^* \le \mu_3 \\ \vdots \\ K & \text{if } \mu_K < y^*, \end{cases}$$
(4)

where y is the observed ordinal variable, and y^* is the continuous latent variable that is equal to

$$y^* = Z = \alpha + \beta X. \tag{5}$$

The limits μ_i separate the various outcomes, and are estimated simultaneously with the parameters α and β .

We use the ordered logit model, because the logistic distribution (logit model) has wider tails than the normal distribution (probit model). This is preferable if an event has a very low frequency, as is the case in financial crises (Manasse, Roubini and Schimmelpfennig 2003). The probabilities for each of the outcomes are:

$$P(y = 0) = \frac{1}{1 + e^{-(Z - \mu_1)}},$$

$$P(y = 1) = \frac{1}{1 + e^{-(Z - \mu_2)}} - \frac{1}{1 + e^{-(Z - \mu_1)}},$$

$$\vdots \qquad (6)$$

$$P(y = K) = 1 - \frac{1}{1 + e^{-(Z - \mu_K)}}.$$

Interpreting estimation results using factors as dependent variables needs to be done with great care. Most indicators feature in more than one factor, so focusing on a single factor only partially explains the full impact of an indicator on the probability of a crisis, and may even lead to counterintuitive results. So, interpretation of the parameters in an ordered choice model is not trivial (Kennedy, 2008, pp.258–259 and the references therein).

For each country we will estimate two versions of the ordered logit model. The first uses dynamics factors calculated from the data set, excluding institutional variables for reasons discussed below. The second model adds (a subset of) institutional variables to the dynamic factors as separate regressors. These models are estimated using data until and including 2007.

4. Data

Our sample starts in the early 1990s, when the effects of spillovers of the 1980s Latin American debt crisis were gone. The analysis for Argentina starts after the introduction of the Convertibility Plan (April 1991) and for Brazil after the introduction of the Real Plan (July 1994), which both can be regarded as a structural break with the hyperinflation periods. Mexico did not experience any period of hyperinflation in the 1990s.

As explained above, we distinguish mild, deep and very deep crises. Very deep crises are rare; each of the countries under investigation experienced only one very deep crisis in the in-sample period: Mexico (December 1994), Brazil (January 1999) and Argentina (January 2002). We estimated the EMPI based on the period up to 2007M12, and extended this to 2009M12 using the same weights (standard deviations) as in the in-sample period. These periods coincide with Figures 4, 5 and 6 show the crisis observations.

For the explanatory variables we select series based on two criteria: (i) series have to be complete, i.e. no missing observations; and (ii) series have to be used in the literature. There are however some data limitations. Not all time series are sufficiently long which limits the selection of explanatory variables.

Figure 4: Actual crisis dates for Argentina for the period 1991-2009

Figure 5: Actual crisis dates for Brazil for the period 1994-2009

The selected series can be classified into separate categories:⁵

- 13 external economic indicators, among which the real exchange rate, exchange rate volatility, growth of exports, imports and foreign reserves, import cover, ratio of M2 to foreign reserves.
- 19 domestic economic indicators, among which domestic real interest rate, inflation, M2 multiplier, industrial production, share market index return, country spread.
- 14 institutional indicators, among which election dates, Herfindahl indices, political stability, corruption, investment profile, internal conflict.
- 10 debt indicators, among which total debt, short term debt, debt service, arrears.
- 25 banking sector indicators for Argentina (14 for Brazil and Mexico), among which credit to public sector, to private sector, ROE, deposits.
- 5 global and regional indicators, among which economic growth in world, US yield,

 $^{^5{\}rm For}$ a complete overview, including definitions, transformations, and sources we refer to Appendix Appendix A.

contagion dummy.

• 12 commodity related indicators, among which prices of oil, metals, agricultural products, exports and imports of fuel, agricultural products, food and metals.

The series have been tested for non-stationarity (using Augmented Dickey-Fuller tests) and visually inspected for seasonal effects. Where necessary a transformation was made to render them stationary. To deal with mixed frequencies in series, we apply simple quadratic interpolations. All series are normalized, i.e. demeaned and divided by its sample standard deviation.

5. Empirical results

We estimate the ordered logit model for Argentina, Brazil and Mexico for the period up to and including 2007, and we forecast for the 2008–2009 period. In this section we discuss both the dynamic factor model outcomes, and the estimation results for the ordered logit models. We do not include institutional variables in the model, because these cause quasi complete separation due to their low variation. We introduce a second model in which a subset of the institutional variables are added to the dynamic factors in the ordered logit model. The extended model allows us to test whether the institutional variables contain additional information that is significant for currency crisis periods.⁶

5.1. Argentina

The OJdR criterion (Otter et al. (2011)) suggests 10 factors for Argentina. When focusing on the variables with the largest correlation (either positive or negative) we can label each factor. Factors 1 and 5 are dominated by bank indicators, while factors 2, 4, 7,

⁶For all three countries we also employed static factors as regressors in the ordered logit models. These results are not reported here, but the differences are marginal.

9, and 10 are labeled as debt factors. We label factor 3 as a global factor, and factor 6 as an external economic factor. Finally, factor 8 is driven by commodities.⁷

Estimation results

The dynamic factor combination which yields the best fit in the ordered logit model has 4 dynamic factors and 2 lags. Table Appendix C.1 in Appendix Appendix C shows that all factors, except 9 and 10, are significant at a 5% significant level. Factors 2, 3, 6 and 8 increase the probability of a crisis. The pseudo R^2 is 0.530 and the fit is illustrated for the period 1991-M5 to 2007-M12 in Figure 7.

Including institutional variables

To identify the importance of the institutional indicators we add a selection of the institutional variables to the factors. The results are reported in Table Appendix C.2 in

⁷If we consider the five biggest correlations (see Appendix Appendix B) instead of the highest correlation, then factors 2, 7, and 8 are not dominated by a single category, and commodities also play a role in factors 1 and 10.

Appendix Appendix C. The institutional variables that add most information while not causing quasi complete separation are changes in law and order, investment profile and whether there is an election year or not. An additional dummy variable is also included: contagion is 1 if there is a crisis in Brazil or Mexico. The pseudo R² is 0.535 and the fit is illustrated for the period 1991-M5 to 2007-M12 in Figure 8.

Figure 8: Actual and fitted data, and the residuals from the ordered logit model for Argentina for the period 1991-2007; including institutional variables

The Wald test (F-value is 0.439, and the p-value equals 0.780) shows that the institutional variables do not contribute to explaining the currency crises in Argentina. So, we conclude that institutional indicators do not play an important role in the model for Argentina.

5.2. Brazil

The criterion of Otter et al. (2011) suggests 8 factors for Brazil. When focusing on the variables with the largest correlation (either positive or negative) we label factors 1, 2, 3 and 6 as debt-related factors. Factors 4 and 8 are interpreted as bank factors, and factors

5 and 7 are driven by commodities.⁸

Estimation results

The combination of 4 dynamic factors and 2 lags yields the best fit in the ordered logit model for Brazil. The pseudo R^2 for the DFM is 0.200 and the fit is shown graphically for the period 1994-M8 to 2007-M12 in Figure 9. Table ?? in Appendix Appendix C shows that all factors, except 4 and 7, are significant at a 5% significant level. Except for factor 2 all factors increase the probability of a crisis.

Including institutional variables

To identify the importance of the institutional indicators we add a selection of the institutional variables to the factors. The results are reported in Table Appendix C.3 in Appendix Appendix C. The institutional variables that add most information while not causing quasi complete separation are changes in government stability and corruption and

⁸When we consider the five indicators with the highest correlations (Appendix Appendix B) then factors 2, 3 and 6 are combined factors consisting of debt and to a lesser extent external economy variables.

whether there is an election year or not. The pseudo R^2 improves to 0.251 and the fit is illustrated for the period 1991-M5 to 2007-M12 in Figure 10.

We conclude that institutional indicators do play an important role in the model. Not only does the fit improve, the Wald test (F-value is 4.108, and the p-value equals 0.008) shows that the included institutional variables contribute to explaining the currency crisis in Brazil.

5.3. Mexico

According to the OJdR criterion (Otter et al. (2011)) the number of factors for Mexico is 6. Based on the variables with the largest correlation (either positive or negative) we label factor 1 as an external economic factor. Factors 2 and 3 and related to domestic economic indicators. Factors 4 and 5 are interpreted as global factors, and factor 6 is dominated by debt indicators.⁹

⁹Based on the five biggest correlations (see Appendix Appendix B) factors 2 and 3 are related to both domestic economic and debt indicators, and factors 4 and 5 are mixed factors, with a strong correlation with global indicators.

Estimation results

The combination of 3 dynamic factors and 3 lags yields the best fit in the ordered logit model for Mexico. Table Appendix C.4 in Appendix Appendix C presents the estimation results for the period 1990-M1 to 2007-M12. The pseudo R² for the DFM is 0.484 and the fit is illustrated in Figure 11. Table Appendix C.4 in Appendix Appendix C shows that factors 2, 3 and 5 are significant at a 5% significant level. Factor 1 is significant at a 10% significance level. All factors increase the probability of a crisis.

Including institutional variables

Including institutional indicators improves the \mathbb{R}^2 to 0.604 and the fit is illustrated for the period 1990-M1 to 2007-M12 in Figure 12. The institutional variables that add most information while not causing quasi complete separation are changes in bureaucratic quality, democratic accountability and investment profile.

Again, the institutional indicators do play an important role in the model; the Wald test (F-value is 5.291, and the p-value is smaller than 0.001) shows that the included

institutional variables contribute to explaining the currency crisis in Mexico.

6. Out of sample performance

In this section we test the performance of the estimated model out-of-sample for the period 2008M1–2009M12. We use realized monthly data for the indicators for the years 2008 and 2009, and extrapolate the dynamic factors using the Kalman filter without reestimating the parameters for the dynamic factor model. Next, we forecast the probabilities of a mild, deep and very deep crisis in the period 2008–2009. In the last subsection we will comment on some of the puzzling results.

Argentina

The institutional factors do not contribute to prediction a currency crisis in Argentina. So, we show only one graph (Figure 13) that gives a graphic representation of the forecast. We predict an increase in the probability of a very deep currency crisis towards the end of the sample.

Figure 13: Forecasts for Argentina for the period 1991-2009; excluding institutional variables

Brazil

Figures 14 and 15 show crises forecasts for Brazil, for the model with only dynamic factors and the model including institutional variables. We observe that the model without institutional variables shows an increase in the probability of a deep currency crisis starting already at the end of the year 2008. The model including institutional variables does not predict any crisis at all.

Figure 15: Forecasts for Brazil for the period 1994-2009; including selected institutional variables

Mexico

Figures 16 and 17 show crises forecasts for Mexico. The first graph is based on the model with dynamic factors only, while the second graph is based on the model including institutional variables. The graphs are almost identical. Mexico experienced a deep currency crisis in October 2008. This is not foreseen by neither version of the ordered logit model.

Figure 16: Forecasts for Mexico for the period 1990-2009; excluding institutional variables

Figure 17: Forecasts for Mexico for the period 1990-2009; including selected institutional variables

Discussion

In the late Fall of 2008 all three countries experienced a currency crisis. The crisis in Argentina and Brazil was mild, but in Mexico the crisis was very deep. Based on information up to and including 2007, our ordered logit model does pick up the crisis in Argentina, but this is one year after the September 2008 event. Our model does not pick up the crisis in Mexico. The crisis in Brazil is predicted only if we not include institutional variables. With institutional variables included in the model, the probability of a crisis occurring in Brazil is greatly reduced.

For Argentina and Mexico the crisis in the second half of 2008 is not predicted by our model, possibly because the causes are very distinct when compared to earlier crises: while the GFC is an external crisis, previous crises are of a domestic nature. However, one year after the September 2008 event the probability of a crisis in Argentina increases sharply. Combining this delayed negative effect with the result that the institutional variables do not contribute in a significant way, we conclude that the handling of the crisis in Argentina has not been adequate. The elections of October 2009 were held already in June 2009 in order to deal with the GFC. However, the results of the elections made things worse for the ruling presidents party. Contrary to Argentina we observe no increase in the probability of a crisis for Mexico in the year after the September 2008 event. Our results indicate that Mexico has improved the internal economic situation. Due to its low debt level, a healthy financial sector and an improved institutional framework Mexico had stronger fundamentals. As a result the GFC did not trigger a severe financial crisis, and had the exchange rate bouncing back to almost the pre-crisis level. For Brazil our model predicts an increased probability of a crisis in 2008. When we include institutional variables the probability of a crisis decreases. The structural reforms that Brazil has adopted since the 1999 crisis seem to be picked up in our model. Our results provide support for the fourth generation crisis models.

It should be emphasized that the forecasts presented here include all available information, including the global shock caused by the fall of Lehman Brothers in the USA in September 2008. What we did not do is to re-estimate the factor models. In that respect our exercise is a true out-as-sample forecasting exercise.

7. Conclusion

The fall of Lehman Brothers in September 2008 sent a shock all over the world; emerging markets were affected severely. Exchange rates depreciated by more than 40% (Mexico, Brazil) and share prices decreased by more than 50% (Argentina, Brazil). Despite relative solid fundamentals the currencies showed a sharp depreciation, particularly countries with high trade and financial flows with the USA and countries with fiscal or trade balance deficits. International trade was also severely affected.

Given the rich history of financial crises of the three Latin American countries that we studied, it is remarkable that in none of these countries the effect spread to the banking sector or affected debt servicing. In 2009 the exchange rates, stock prices and interest spreads reversed and returned to somewhere between the pre-crisis and crisis levels.

This paper investigates why Latin America was relatively unharmed by the GFC. To that purpose we set up ordered logit models for Argentina, Brazil and Mexico, using dynamic factor models to reduce the dimension of the information set. We find that currency crises are driven by a limited number of categories: Argentina's crises are correlated most with banking, debt and global indicators, and commodities, while Brazil's crises are related to debt and banking indicators, and commodities. Mexico's crises are related to domestic and international indicators (external economy and global). In Brazil and Mexico institutional indicators play an important role. For Brazil we interpret the results as in improvement of the institutional framework. This may explain why Brazil recovered fast from the events in the fall of 2008. It is also in line with previous work in which political indicators play a significant role in crisis forecasting. Our model does not indicate any increase in probability of a crisis in Mexico: the GFC is substantially different from earlier crises in the 1990s and the economic fundamentals (debt, financial sector) are stronger, which explains why the events have not triggered a severe financial crisis. For Argentina we conclude that the handling of the crisis was not adequate. However, this does not mean that the countries "graduated from financial crises" to borrow a term from Qian, Reinhart and Rogoff (2010). The LA-3 passed a serious test with the GFC, but its characteristics were very distinct from previous crises.

Appendix A. Data

	Indicator	Code	Definition and source	Transformation	Data freq	Countries
Есс 1	onomic indicators: ex Real Exchange Rate	ternal sector RER_DEV	RER = $e(P_f/P)$, with:	deviation from 5	Monthly	A, B, M
	(RER): deviation from trend		e = nominal exchange rate Local Currency Unit per US dollar (IFS: AE.ZF) P = domestic price level: Consumer Price Index (IFS: 64ZF) P _f = foreign price level: Consumer Price Inflation in USA (IFS 111 64.7E)	year moving average		
2	Exchange rate volatility	ERVOL	Monthly volatility of the nominal exchange rate (IFS: AEZF) in the current month and the 47 months	Standard deviation	Monthly	A, B, M
3	Export growth	D_EXP	Exports F.O.B.; in USD (IFS: 70.DZF)	12 months percentage	Monthly	A, B, M
4	Import growth	D_IMP	Imports F.O.B.; in USD (IFS: 71.VDZF)	12 months percentage	Monthly	A, B, M
5	Terms of Trade	тот	ToT = exports prices / imports prices Two ways to define this: (i) Export price index (= IFS-76) / import price index (= IFS-76X) -Mex; (ii) Unit value of exports: IFS-74D; Unit value of import: IFS-7ED_Arg & Pro-	None (ratio)	Arg & Bra (series 74, 75): quarterly, Mex (series 76): monthly	А, В, М
6	Ratio of Current Account to GDP	CA_GDP	Current account, in USD: IFS-78AL (78ALDZF) = balance on goods, services and income plus current transfers. GDP, in nominal USD: IFS 99, converted in USD by average nominal exchange rate (IFS:RF.ZF for Arg & Bra. WE ZF. for Maxico)	None (ratio)	Quarterly	A, B, M
7	Net Portfolio Investment / GDP	NETPI_GDP	Portfolio assets (IFS: 78BFDZF) - portfolio liabilities (IFS: 78BGDZF). Both in USD. GDP in USD: eae CA. GDP	None (ratio)	Quarterly	A, B, M
8	Ratio FDI to GDP	NETFDI_GDP	FDI outflow = IFS series 78BDDZF and FDI inflow = IFS series 78BEDZF (both in USD). Arg and Bra: net FDI; Mex: FDI inflow GDP in USD: see CA GDP	None (ratio)	Quarterly	А, В, М
9	Ratio of Financial Account to GDP	FA_GDP	Financial account = balance of all accounts: from trade to FDI and portfolio investments. Financial Account = IFS: 78BJDZF GDP in USD: see CA GDP.	None (ratio)	Quarterly	В, М
10	Trade openness	D_TRD_OPEN	Trade openness = sum of absolute value of exports and imports, divided by nominal GDP in USD. IFS: 78AADZF + 78ADDZF (= exports of goods and services) and 78ABDZF + 78AEDZF (= imports of goods and services) GDP in USD: see CA_GDP	12 months percentage change	Quarterly	А, В, М
11	Growth of forex reserves	D_RES	Foreign exchange reserves, excluding gold; in USD (IFS: 1.LDDZF)	12 months percentage change	Monthly	A, B, M
12	Ratio of M2 to forex reserves	M2RES	M2: IFS series 59MB.ZF (Arg > 2000; Bra & Mex), Central Bank Rep.Argentina (< 2000, Arg). Converted into USD with end-of-period nominal exchange rate: IFS seriesAE.ZF; Foreign Exchange Reserves: IFS series .1L.DZF	None (ratio)	Monthly	A, B, M
13	Import cover	D_IMPCOV	Forex Reserves excl.gold from IFS, in USD (.1L.DZF) and imports F.O.B. from IFS, in USD (IFS: 71.VDZF)	12 months percentage change	Monthly	А, В, М

Ecor	nomic indicators: do	mestic real and pu	blic sector			
1	real GDP growth	D_RGDP	GDP in nominal LCU. IFS: 99BZF (Arg > 1995; Bra & Mex), INDEC (Arg < 1995). Consumer Price index (IFS: 64ZF);	12 months percentage change	Quarterly	A, B, M
2	GDP per capita	D_RGDPCAP	GDP divided by total population; GDP: see D_RGDP; Total population: IFS-99Z.	12 months percentage change	Annual	A, B, M
3	Unemployment	D_UNEMPL	Unemployment as % of (# unemployed + # employed). IFS: 67RZF	12 months percentage change	Annual < 2001, quarterly > 2001	В
4	Government consumption expenditure to	GOVCONS_GDP	Gov.Cons. (in LCU): IFS 91FZF GDP (in LCU): IFS 99B	None (ratio)	Quarterly	В, М
5	Household consumption expenditure (incl. NPISHS) to GDP	HHCONS_GDP	Household cons: IFS series 96FZF GDP (in LCU): IFS 99B	None (ratio)	Arg < 1993: annual, > 1993 quarterly; Bra & Mex: quarterly	A, B, M
6	Ratio of government revenues to GDP	D_GOVREV	Gov't revenues: integrate two incomplete series (IFS: c1BA and a1CG). GDP (in LCU): IFS 99B	12 months percentage change	Quarterly	В, М
7	Ratio of government expenses to GDP	D_GOVEXP	Gov't expenses: integrate two incomplete series (IFS: c2BA and a2CG). GDP (in LCU): IFS 99B	12 months percentage change	Quarterly	В, М
8	fiscal balance to GDP	GOVBAL_GDP	Budget = difference between revenues (IFS: c1BA and a1CG) and expenses (IFS: c2BA and a2CG) GDP (in LCL1): IES 99B	None (ratio)	Quarterly	В, М
9	Change in inventories to GDP	INVCHG_GDP	Change in inventories (in LCU) IFS 93I.CZF GDP (in LCU): 99B.RWF	None (ratio)	Quarterly	М
10	Inflation (CPI)	INFLAT	Consumer Price Inflation (IFS: 64ZF)	12 months percentage change	Monthly	A, B, M
11	Growth of industrial production	D_INDPROD	Industrial production index: Bra & Mex: IFS-66. Arg: Datastream (code AGIPTOT.G)	12 months percentage change	Monthly	A, B, M
12	Domestic Savings	GDSAV_GDP	Ratio of savings to GDP: WDI-code: NY.GDS.TOTL.ZS	None (ratio)	Annual	A, B, M
13	Gross capital formation	GFCAP_GDP	Arg & Mex: 93E.CZF and 99B.RWF (quarterly) Bra: WDI code: NE.GDI.TOTL.KD.ZG (annual)	12 months percentage change	Arg & Mex: quarterly, Bra: annual	A, B, M
14	Domestic real interest rate	REALINT	6 month time deposit rate deflated by CPI: (1+R _{nominal}) / (1+Inflation) - 1 , with: 6 months time deposit rate (IFS: 60LZF) CPI (IFS: 64ZF)	See formula	Monthly	A, B, M
15	M2 growth (real LCU)	D_M2	M2: see M2RES	12 months percentage change	Monthly	A, B, M
16	M2 money multiplier	M2MULT	Ratio of M2 to monetary base. M2: see M2RES Base money: IFS: 19MA.ZF	ratio	Monthly	A, B, M

17	Sovereign Bond INTSPREAD GEM: difference between local government intere Interest Rate rate on bonds in USD and US government on bond Spreads, basis in USD. points over US Treasuries		None (spread)	Monthly	В	
18	J.P. Morgan Emerging Markets Bond Index (EMBI+): monthly	EMBI_RET	GEM: index that measures the value of the bonds.	Monthly return	Monthly	В
19	Return on the major stock index	STOCKRET	Major stock index from each country (IPC for Mexico, Merval for Argentina and BOVESPA for Brazil). In own currency. Source: Economatica.	Monthly return	Monthly	A, B, M
Deh	t indicators					
1	Ratio total debt to GDP	DEBT_GDP	WDI code for total -external- debt (in USD): DT.DOD.DECT.CD	None (ratio)	Annual	A, B , M
2	ST debt / total debt	STD_DEBT	GDP (in USD): see CA_GDP Short term debt: (WDI code) DT.DOD.DSTC.CD Total debt: (WDI code) DT.DOD.DECT.CD	None (ratio)	Annual	A, B , M
3	Use of IMF credit to GDP	IMF_GDP	IMF credit: (WDI code) DT.DOD.DIMF.CD GDP (in USD): see CA_GDP	None (ratio)	Annual	A, B , M
4	Arrears to total debt	ARR_TDEBT	WDI code for interest arrears (USD): DT.IXA.DPPG.CD WDI code for principal arrears (USD): DT.AXA.DPPG.CD WDI code for total external debt (USD):	None (ratio)	Annual	A, B , M
5	Debt reduction / total debt	REDU_TDEBT	D1.D0D.DEC1.CD Debt reduction: (WDI code) DT.DFR.DPPG.CD Total debt: (WDI code) DT.DOD.DECT.CD	None (ratio)	Annual	A, B , M
6	LT PNG debt / total debt	LTDPNG_TDEBT	LT PNG debt: (WDI code) DT.DOD.PRVS.CD Total debt: (WDI code) DT.DOD.DECT.CD	12 months percentage	Annual	A, B , M
7	LT PPG debt / total debt	LTDPPG_TDEBT	LT PPG debt: (WDI code) DT.DOD.PUBS.CD Total debt: (WDI code) DT.DOD.DECT.CD	12 months percentage	Annual	A, B , M
8	International reserves to total external debt	D_RES_DEBT	Total debt: (WDI code) DT.DOD.DECT.CD Reserves (IFS code): .1L.DZF	change. 12 months percentage change	Annual	A, B , M
9	Ratio of debt service to exports	DSERV_EXP	WDI code for debt service (current USD): DT.TDS.DECT.CD IFS code for exports (<u>millions</u> of	None (ratio)	Annual	A, B , M
10	Ratio of debt service to reserves	DSERV_RES	Current USD): 70DZF Debt service (WDI code): DT.TDS.DECT.CD Reserves (IFS code): .1L.DZF	None (ratio)	Annual	A, B , M
_						
Ban 1	k sector indicators Ratio of domestic credit to the public sector to GDP	DCREDPUB	Domestic credit provided by banking sector (% of GDP) (WDI code = FS.AST.DOMS.GD.ZS) minus Domestic credit to private sector (% of GDP)	None (ratio)	Annual	A, M
2	Ratio of commercial bank lending to GDP	DCREDBANK	(WDI code = FS.AST.PRVT.GD.ZS) Domestic credit provided by banking sector (% of GDP). WDI code = FS.AST.DOMS.GD.ZS	None (ratio)	Annual	A, B, M

3	Liquid liabilities (% of GDP)	D_LIQLIAB	Code: Il_usd. Source: Financial Stru World Bank (FS/WB) and Beck et a	ucture, from I. 2000, 2009	12 months percentage	Annual	A, B, M
4	Central bank assets (% of GDP)	CBASSET	Claims on domestic real nonfinancial sector by the Central Bank as a share of GDP. FS/WB code: cbagdp		12 months percentage	Annual	В
5	Deposit money bank assets (% of GDP)	D_DMBANKAS	Claims on domestic real nonfinancial sector by deposit money banks as a share of GDP. FS/WB		12 months percentage	Annual	A, B, M
6	Private credit by all financial institutions (% of GDP)	D_PCRED_GDP	Private credit by deposit money ba financial institutions to GDP. FS/WB code: pcrdbofgdp	anks and other	12 months percentage change	Annual	A
7	Private credit by deposit money banks (% of GDP)	D_PCRED_DMB	Private credit by deposit money ba FS/WB code: pcrdbgdp	anks to GDP.	12 months percentage change	Annual	A, B, M
8	Private credit by other financial institutions (% of GDP)	D_PCRED_OTH	Private credit by other financial ins Difference between private credit fin.institutions and private credit b banks.	stitutions to GDP. by all by deposit money	12 months percentage change	Annual	В, М
9	Financial system deposits (% of GDP)	D_FSDEPOS	FS/WB code: pcrdborgdp - pcrdbg Demand, time and saving deposits banks and other financial institutio GDP. FS/WB code: fdrdn	in deposit money ons as a share of	12 months percentage change	Annual	A, B, M
10	Ratio Bank credit to bank deposits	D_BCRED_BDEP	Private credit by deposit money ba demand, time and saving deposits banks. ES/WB code: hchd	anks as a share of in deposit money	12 months percentage change	Annual	A, B, M
11	Net interest margin	NETINTMG	Accounting value of bank's net intershare of its interest-bearing (total FS/WB code: netintmargin	erest revenue as a earning) assets.	None	Annual	A, B, M
12	Bank concentration	BANKCONC	Assets of three largest banks as a sall commercial banks.	hare of assets of	None	Annual	A, B, M
13	Bank ROE	BANKROE	Average Return on Equity (Net Inc.	ome/Total	None	Annual	A, B, M
14	Bank Z-Score	BANKZ	2 = 1.2A + 1.4B + 3.3C + 0.6D + 1.0 A = Working Capital/Total Assets B = Retained Earnings/Total Assets C = EBIT/Total Assets D = Market Value of Equity/Total L E = Solar (Total Assets	E with: ; iab	None	Annual	В
15	Deposit money banks and other banking instit: assets	D_BANKASSET	Sum of: Deposit money banks Assets (IFS: Other banking institutions Assets (7A.DZF) IFS: 7E.DZF)	12 months percentage change	Monthly	A
16	Deposit money banks and other banking institutions:	D_BANKLIAB	Sum of: Deposit money banks Liabilities (IFS: 7B.DZF) Other banking institutions Liabilitie	25	12 months percentage change	Monthly	A
17	CB: foreign assets - foreign liabilities	D_CB_FA_FL	(IF3. /F.DZF) Difference between: Foreign assets (IFS: 11ZF) Foreign liabilities (16CZF)		12 months percentage change	Monthly	A
18	CB: claims - deposits from central government	D_CB_CGVT	Difference between: Claims on central government 12AZF) government deposits	(IFS: Central (IFS 16DZF)	12 months percentage change	Monthly	A

19	CB: claims on deposit money banks and other banking inst.	D_CB_BANKS	Sum of: Claims on Deposit Money Banks (IFS: 12EZF) Claims on Other banking institutions (IFS: 105 - 15 - 1)	12 months percentage change	Monthly	А
20	Bank sector: reserves	D_BANKRES	Sum of: Reserves from DMB (IFS: 20ZF) Reserves from other banking institutions (IFS: 40 ZF)	12 months percentage change	Monthly	A
21	Bank sector: Foreign assets - foreign liabilities	D_BANK_FA_FL	Torign assets from banks (IFS: 21ZF + 41ZF) Foreign liabilities from banks (IFS: 26CZF + 46CZF)	12 months percentage change	Monthly	A
22	Bank sector: claims on PPG	D_BANK_PPG	Claims on PPG: Claims on central govt (IFS: 22AZF + 42AZF) Claims on state and local government (IFS: 22BZF + 42BZF) Claims on official entities (IFS:	12 months percentage change	Monthly	A
23	Banks: claims on private sector	D_BANK_PRIV	22BX.ZF + 42BX.ZF) Claims from DMB and other banking instit. on private sector (IFS: 22DZF and 42DZF)	12 months percentage change	Monthly	A
24	Banks: demand deposits	D_BANK_ DEM_DEPOS	Demand deposits in DMB (IFS: 24ZF)	12 months percentage	Monthly	А
25	Banks: time, savings and foreign currency deposits	D_BANK_TSFC_DE POS	Time, savings and foreign currency deposits (IFS: 25ZF + 45ZF)	12 months percentage change	Monthly	A
Inst	tutional indicators:	indices				
1	Herfindahl Index Government	HERFGOV	DPI (World Bank / Beck et al. 2001): HERFGOV represents a measure of government coalition concentration, by squaring the percentage of parties in the government coalition. The presence of a majority party in the government coalition increases the index. Having many (small) parties in the government reduces it.	None.	Annual	A, B, M
2	Herfindahl Index Opposition	HERFOPP	DPI: herfopp. Idem herfgov, but now for government opposition.	None.	Annual	В, М
3	Political stability	D_GOVSTAB	On a scale from 0 to 12, with 12 the highest level of stability and 0 the highest level of instability. Source: ICRG	12 months percentage change.	Annual	A, B, M
4	Socioeconomic Conditions	D_SOCIOECO	On a scale from 0 to 12, with 12 the highest level of socioeconomic conditions and 0 the lowest level. Source: ICRG	12 months percentage change	Annual	A, B, M
5	Investment Profile	D_INVPROF	On a scale from 0 to 12, with 12 the best investment profile (= low risk) and 0 the worst profile. Source:	12 months percentage	Annual	A, B, M
6			ICRG	cnange		
	Internal Conflict	D_INTCONFL	ICRG On a scale from 0 to 12, with 12 the lowest level of internal conflict (low risk) and 0 the highest level (high risk). Source: ICRG	change 12 months percentage change	Annual	A, B, M

8	Corruption	D_CORRUPT	ICRG. Scale 6 (low corruption) to 0 (high corruption).	12 months percentage change	Annual	A, B, M
9	Law and Order	D_LAWORD	ICRG. Scale 6 (high law and order) to 0 (low law and order).	12 months percentage change	Annual	A, B, M
10	Bureaucracy Quality	D_BURQUAL	ICRG. Scale 4 (high bureaucratic quality) to 0 (low bureaucratic quality).	12 months percentage change	Annual	A, B, M
11	Party orien-tation with resp. to econ. policy	GOVT_RLC	Dummy indicates orientation of the executive power. Right (1); Left (3); Center (2); No information (0). DPI code: execrlc	None	Annual	A, B, M
12	Absolute majority in the houses	GOVT_MAJ	Dummy indicates if executive has absolute majority in the houses. 1 = yes, 0 = no. DPI code: allhouse	None	Annual	A, B, M
13	Degree of polarization	POLARIZ	Polarization is the maximum difference between the chief executive's party's value (EXECRLC) and the values of the three largest government parties and the largest opposition party. 0 = no polarization. DPI code: polariz	None	Annual	A, B, M
14	date of elections for executive power	ELECEXE	Dummy variable with value 1 in the month of elections for executive power and 0 otherwise (DPI: dateexec, exelec)	The calender year of the elections is assigned 1.	Monthly	A, B, M
Glo	oal economy indicate	ors				
1	US long term interest rate	D_USYIELD	Yield on the 10 year US government bond (IFS: 111.61.ZF)	12 months percentage change	Monthly	USA
2	US short term interest rate	TBILL	IFS: 11160CZF	None	Monthly	USA
3	US real GDP growth	D_GDPUSA	IFS series: 11199B.CZF and 11164ZF	12 months percentage change	Quarterly	USA
4	GDP volume % change	D_GDPWORLD	Change (year-on-year) of the volume of the GDP growth. IFS series 00199BPXZF	None	Annual	world
5	Contagion of crises in the region	CONTAG	Based on EMPI calculations: dummy = 1 if there is a financial crisis in one of the other LA3 countries	None	Monthly	A, B, M
Com	modity indicators					
1	Agriculture, value added (% of GDP)	D_VA_AGRI	WDI code: NV.AGR.TOTL.ZS	12 months percentage change	Annual	A, B, M
2	Oil prices	D_PR_PETROL	World oil price (IFS: 00176AADZF)	12 months percentage change	Monthly	world
3	Agricultural commodities price index	D_PR_AGRI	Global agricultural raw materials price index (IFS: 00176BXDZF)	12 months percentage change	Monthly	world
4	Metals	D_PR_METAL	Global metals price index (IFS: 00176AYDZF)	12 months	Monthly	world

5 Agricultural raw materials exports:		D_AGRI_EXP	Agricultural raw material exports, expressed as % of GDP.	12 months percentage	Annual	A, B, M
			Elaborated from the following series:	change		
			Agricultural raw material exports, as % of	-		
			merchandise exports. Source: WDI, code:			
			TX.VAL.AGRI.ZS.UN			
			Goods exports (BoP, current US\$; Source: WDI,			
			code: BX.GSR.MRCH.CD)			
			GDP (current US\$; Source: WDI, code:			
			NY.GDP.MKTP.CD)			
6	Food materials	D_FOOD_EXP	Idem, but food materials exports. Source: WDI,	Idem	Annual	A, B, M
	exports:		code: TX.VAL.FOOD.ZS.UN			
7	Fuel exports:	D_FUEL_EXP	Idem, but fuel exports. Source: WDI, code:	Idem	Annual	A, B, M
			TX.VAL.FUEL.ZS.UN			
8	Ores and metals	D_METAL_EXP	Idem but ores and metals exports. Source: WDI,	Idem	Annual	A, B, M
	exports:		code: TX.VAL.MMTL.ZS.UN			
9	Agricultural raw	D_AGRI_IMP	Agricultural raw material imports, expressed as % of	Idem	Annual	A, B, M
	materials imports:		GDP.			
			Elaborated from the following series:			
			Agricultural raw material imports, as % of			
			merchandise imports. Source: WDI, code:			
			TM.VAL.AGRI.ZS.UN			
			Goods imports (BoP, current US\$; Source: WDI,			
			code: BM.GSR.MRCH.CD)			
			GDP (current US\$; Source: WDI, code:			
			NY.GDP.MKTP.CD)			
10	Food materials	D_FOOD_IMP	Idem, but food materials imports. Source: WDI,	ldem	Annual	А, В, М
	imports:		code: TM.VAL.FOOD.ZS.UN			
11	Fuel imports:	D_FUEL_IMP	Idem, but fuel imports. Source: WDI, code:	ldem	Annual	А, В, М
12	One of the state		IWI.VAL.FUEL.2S.UN	tala an	A	
12	Ures and metals	D_IVIETAL_IMP	idem, but ores and metals imports. Source: WDI,	laem	Annual	А, В, М
	imports:		code: INI.VAL.MIMIL.ZS.UN			

Appendix B. Correlations of factors with indicators

Argentina: correlations between dynamic factors and (five) strongest correlated variables

DF1			DF2				
D_BANK_PRIV	bank	0.88894	M2MULT	dom.econ.	-0.75669		
D_DMBANKAS	bank	-0.83652	GDSAV_GDP	dom.econ.	0.74507		
DCREDBANK	bank	-0.85174	ERVOL	ext.econ.	0.80703		
D_VA_AGRI	commod.	-0.84334	DCREDPUB	bank	0.70899		
D_FOOD_EXP	commod.	-0.86295	ARR_TDEBT	debt	0.87440		
DF3	1.	0.64004	DF4	1	0 50000		
GFCAP_GDP	dom.econ.	0.61801	D_FSDEPOS	bank	-0.58222		
D_TBILL	global	0.72830	D_LIQLIAB	bank	-0.58677		
D_GDPWORLD	global	0.71135	D_LTPNG_DEBT	debt	-0.54055		
D_BCRED_BDEP	bank	0.66312	DSERV_EXP	debt	0.53925		
D_PR_METAL	commod.	0.70303	DSERV_RES	debt	0.81442		
	dom ocon	0.45406		dom ocon	0 41000		
	dom.econ.	0.45406		dom.econ.	0.41889		
D_BANKASSET	bank	0.52320	IVIZKES	ext.econ.	0.55499		
	bank	0.44911		ext.econ.	-0.55403		
D_BANK_PPG	bank	0.44002	D_GDPUSA	giobai	-0.43826		
BANKRUE	bank	-0.50929	D_LIPPG_DEBI	debt	-0.44617		
DF7			DF8				
D_USYIELD	global	-0.41145	NETFDI_GDP	ext.econ.	-0.36758		
D_BANKRES	bank	-0.32761	тот	ext.econ.	0.37811		
D_BCRED_BDEP	bank	0.39371	D_CB_CGVT	bank	0.47227		
D_LTPNG_DEBT	debt	-0.38980	D_BANKRES	bank	0.46042		
STD_DEBT	debt	0.55017	D_PR_PETROL	commod.	-0.53141		
DE0			DE10				
	ovt ocon	0 22040		dom ocon	0 22200		
	ext.econ.	0.35949		commod	0.32300		
	dobt	0.35229		commad	-0.35006		
DEDIT TOPOT	debt	-0.46442			-0.30/68		
KEDU_IDEBT	debt	0.46365	D_LIPPG_DEBT	aebt	-0.5/849		
SID_DEBT	debt	-0.37425	DSERV_EXP	debt	-0.33381		

Brazil: correlations between dynamic factors and (five) strongest correlated variables

DF1			DF2					
D_GCAP	dom.econ.	-0.77403	GDSAV_GDP	dom.econ.	0.71148			
RER_DEV	ext.econ.	0.78696	ERVOL	ext.econ.	0.69355			
DEBT_GDP	debt	0.73201	CA_GDP	ext.econ.	0.69548			
DSERV_EXP	debt	0.85323	DCREDGDP	bank	0.69575			
DSERV_RES	debt	0.82453	LTDPNG_TDEBT	debt	-0.77354			
DF3			DF4					
INTSPREAD	dom.econ.	0.68510	D_GDPUSA	global	-0.51988			
INFLAT	dom.econ.	0.58338	D_DMBANKAS	bank	-0.73317			
D_RES	ext.econ.	-0.56310	D_FSDEPOS	bank	-0.62666			
D_IMPCOV	ext.econ.	-0.52194	D_LIQLIAB	bank	-0.66243			
REDU_TDEBT	debt	-0.75455	D_FUEL_IMP	commod.	-0.57370			
DF5			DF6					
D_RGDPCAP	dom.econ.	-0.44365	M2RES	ext.econ.	0.63281			
D_LIQLIAB	bank	0.42425	D_IMPCOV	ext.econ.	-0.52847			
		0 11102	TODOC TOCOT	d a b t	0 0 0 0 0 0 0 0			
	commod.	0.44482	LIDPPG_IDEBI	debt	0.63852			
D_FOOD_EXP D_VA_AGRI	commod. commod.	0.44482 0.71633	D_AGRI_IMP	commod.	-0.58794			
D_FOOD_EXP D_VA_AGRI D_PR_PETROL	commod. commod. commod.	0.44482 0.71633 -0.49498	D_AGRI_IMP D_FOOD_IMP	commod. commod.	-0.58794 -0.55180			
D_FOOD_EXP D_VA_AGRI D_PR_PETROL	commod. commod. commod.	0.44482 0.71633 -0.49498	D_AGRI_IMP D_FOOD_IMP	commod. commod.	-0.58794 -0.55180			
D_FOOD_EAP D_VA_AGRI D_PR_PETROL	commod. commod. commod.	0.44482 0.71633 -0.49498	D_AGRI_IMP D_FOOD_IMP	commod.	-0.58794 -0.55180			
D_FOOD_EAP D_VA_AGRI D_PR_PETROL DF7 TOT	commod. commod. commod. ext.econ.	0.44482 0.71633 -0.49498 -0.36781	D_AGRI_IMP D_FOOD_IMP DF8 D_INDPROD	dom.econ.	-0.39227			
D_FOOD_EAP D_VA_AGRI D_PR_PETROL DF7 TOT D_GDPUSA	commod. commod. commod. ext.econ. global	-0.36781 -0.49659	D_AGRI_IMP D_FOOD_IMP DF8 D_INDPROD D_GDPUSA	dom.econ.	-0.39227 -0.39227 0.43705			
D_FOOD_EAP D_VA_AGRI D_PR_PETROL DF7 TOT D_GDPUSA IMF_GDP	commod. commod. commod. ext.econ. global debt	-0.36781 -0.49498 -0.49659 -0.41437	D_AGRI_IMP D_FOOD_IMP DF8 D_INDPROD D_GDPUSA CBASSET	dom.econ. global bank	-0.58794 -0.55180 -0.39227 0.43705 0.66203			
D_FOOD_EAP D_VA_AGRI D_PR_PETROL DF7 TOT D_GDPUSA IMF_GDP D_AGRI_IMP	commod. commod. commod. ext.econ. global debt commod.	-0.36781 -0.49498 -0.49659 -0.41437 -0.51435	LIDPPG_IDEBI D_AGRI_IMP D_FOOD_IMP DF8 D_INDPROD D_GDPUSA CBASSET NETINTMG	dom.econ. global bank bank	-0.39227 0.43705 0.37558			
D_FOOD_EXP D_VA_AGRI D_PR_PETROL DF7 TOT D_GDPUSA IMF_GDP D_AGRI_IMP D_FUEL_EXP	commod. commod. commod. ext.econ. global debt commod. commod.	-0.36781 -0.49498 -0.49659 -0.41437 -0.51435 0.48415	LIDPPG_IDEBI D_AGRI_IMP D_FOOD_IMP DF8 D_INDPROD D_GDPUSA CBASSET NETINTMG D_FUEL_EXP	dom.econ. global bank commod.	-0.58794 -0.55180 -0.39227 0.43705 0.66203 0.37558 -0.36863			

	Mexico:	correlations	between	dynamic	factors	and	(five)) strongest	correlated	variables
--	---------	--------------	---------	---------	---------	-----	--------	-------------	------------	-----------

DF1			I	DF2		
RER_DEV	ext.econ.	-0.84413	Γ	NFLAT	dom.econ.	0.96288
CA_GDP	ext.econ.	-0.79731	C	GFCAP_GDP	dom.econ.	-0.72317
BANKCONC	bank	0.75290	[DEBT_GDP	debt	0.90527
D_METAL_EXP	commod.	-0.74426	1	MF_GDP	debt	0.91989
D_METAL_IMP	commod.	-0.79689	(D_AGRI_EXP	commod.	0.73437
DF3			1	DF4		
REALINT	dom.econ.	0.79496	C	GOVCONS_GDP	dom.econ.	0.51277
D_CETES	dom.econ.	0.62781	ſ	M2RES	ext.econ.	-0.51859
D_RES	ext.econ.	-0.68945	/	ARR_TDEBT	debt	-0.54437
D_RES_DEBT	debt	-0.66358	F	REDU_TDEBT	debt	0.56130
DCREDPUB	debt	-0.66206	٦	FBILL	global	-0.63038
DF5			I	DF6		
INDPROD	dom.econ.	0.55323	1	D_IMP	ext.econ.	-0.46380
ERVOL	ext.econ.	0.53868	/	ARR_TDEBT	debt	0.48538
D_PCRED_DMB	bank	-0.46821	1	D_LTPNG_DEBT	debt	0.63214
D_PCRED_OTH	bank	-0.47173	[D_LTPPG_DEBT	debt	-0.54043
D_GDPUSA	global	0.61625	(D_FOOD_IMP	commod.	0.47060

Appendix C. Ordered Logit estimation results

Appendix C.1. Argentina - dynamic factors only

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
Q4P2 DF1	-0.736565	0.26603	-2.768731	0.0056		
Q4P2_DF2	-0.466328	0.155741	-2.99425	0.0028		
Q4P2_DF3	0.972162	0.365215	2.661889	0.0078		
Q4P2_DF4	0.696551	0.205421	3.390849	0.0007		
Q4P2_DF5	-1.386896	0.342668	-4.047345	0.0001		
Q4P2_DF6	1.438906	0.391755	3.672971	0.0002		
Q4P2_DF7	-1.41217	0.400708	-3.524186	0.0004		
Q4P2_DF8	1.044013	0.448537	2.327596	0.0199		
Q4P2_DF9	0.092885	0.268329	0.34616	0.7292		
Q4P2_DF10	-0.172742	0.346464	-0.498585	0.6181		
	Limit Points					
LIMIT_1:C(11)	4.026614	0.83361	4.830333	0		
LIMIT_2:C(12)	5.632409	0.938146	6.003766	0		
LIMIT_3:C(13)	8.022832	1.181607	6.789766	0		
Pseudo R-squa	0.529866	Akaike info	criterion	0.83747		
Schwarz criter	1.051861	Log likeliho	bc	-70.74702		
Hannan-Quinr	0.924231	Restr. log lil	Restr. log likelihood			
LR statistic	159.471	Avg. log like	Avg. log likelihood			

Appendix	C.2.	Argentina	-	dynamic	factors	and	selected	institutional	indicator	s
----------	------	-----------	---	---------	---------	-----	----------	---------------	-----------	---

Variable	Coefficient	Std. Error	z-Statistic	Prob.
	0.055325	0 270270	2 570074	0 0000
Q4P2_DF1	-0.955235	0.370379	-2.579074	0.0099
Q4P2_DF2	-0.572125	0.21/262	-2.633347	0.0085
Q4P2_DF3	1.111024	0.404537	2.746411	0.006
Q4P2_DF4	0.703573	0.210835	3.337073	0.0008
Q4P2_DF5	-0.974901	0.451138	-2.160982	0.0307
Q4P2_DF6	1.458088	0.405791	3.593198	0.0003
Q4P2_DF7	-1.13265	0.411141	-2.754898	0.0059
Q4P2_DF8	1.057472	0.607734	1.740025	0.0819
Q4P2_DF9	0.446707	0.350732	1.273641	0.2028
Q4P2_DF10	-0.852142	0.751953	-1.13324	0.2571
D_LAWORD	0.266244	0.739133	0.360211	0.7187
D_INVPROF	1.466117	1.137053	1.2894	0.1973
ELECLEGYR	0.055161	0.330817	0.166742	0.8676
CONTAG	-0.012675	0.18946	-0.066901	0.9467
	Limit Points			
LIMIT_1:C(15)	3.630428	0.792575	4.580546	0
LIMIT_2:C(16)	5.287249	0.894552	5.910496	0
LIMIT_3:C(17)	7.822938	1.129809	6.924128	0
Pseudo R-squa	0.535189	Akaike info	criterion	0.869459
Schwarz criter	1.149816	Log likeliho	bc	-69.94595
Hannan-Quinr	0.982916	Restr. log lik	kelihood	-150.4825
LR statistic	161.0732	Avg. log like	lihood	-0.34973

Appendix C.3. Brazil - dynamic factors and selected institutional indicators

Coefficient	Std. Error	z-Statistic	Prob.	
0 225666	0 113364	1 990638	0 0465	
-0.239119	0.081635	-2.929109	0.0034	
0.436567	0.152632	2.860269	0.0042	
-0.116798	0.116167	-1.005435	0.3147	
0.33176	0.157061	2.112301	0.0347	
0.0884	0.212394	0.416209	0.6773	
-0.306015	0.213902	-1.430634	0.1525	
0.098179	0.157194	0.624569	0.5323	
-0.105386	0.46224	-0.227989	0.8197	
-0.98591	0.523766	-1.882348	0.0598	
1.088477	0.328408	3.314405	0.0009	
Limit Points				
1.523356	0.347448	4.38441	0	
2.317928	0.379998	6.09984	0	
5.028458	0.652147	7.710618	0	
0.25141	Akaike info	criterion	1.571402	
1.839351	Log likeliho	od	-112.4979	
1.6802	Restr. log lik	Restr. log likelihood		
75.56355	Avg. log like	lihood	-0.698745	
	Coefficient 0.225666 -0.239119 0.436567 -0.116798 0.33176 0.0884 -0.306015 0.098179 -0.105386 -0.98591 1.088477 Limit Points 1.523356 2.317928 5.028458 0.25141 1.839351 1.6802 75.56355	Coefficient Std. Error 0.225666 0.113364 -0.239119 0.081635 0.436567 0.152632 -0.116798 0.116167 0.33176 0.157061 0.0884 0.212394 -0.306015 0.213902 0.098179 0.157194 -0.105386 0.46224 -0.98591 0.523766 1.088477 0.328408 Limit Points 1.523356 1.523356 0.347448 2.317928 0.379998 5.028458 0.652147 4 0.25141 Akaike info 1.839351 Log likelihoo 1.6802 Restr. log lik 75.56355 Avg. log like	Coefficient Std. Error z-Statistic 0.225666 0.113364 1.990638 -0.239119 0.081635 -2.929109 0.436567 0.152632 2.860269 -0.116798 0.116167 -1.005435 0.33176 0.157061 2.112301 0.0884 0.212394 0.416209 -0.306015 0.213902 -1.430634 0.098179 0.157194 0.624569 -0.105386 0.46224 -0.227989 -0.98591 0.523766 -1.882348 1.088477 0.328408 3.314405 Limit Points 1.523356 0.347448 4.38441 2.317928 0.379998 6.09984 5.028458 0.652147 7.710618 4 0.25141 Akaike info criterion 1.839351 Log likelihood 1.6802 7.56355 Avg. log likelihood 75.56355	

Appendix C.4. Mexico - dynamic factors only

Variable Coefficient		z-Statistic	Prob.
0.220944	0.121552	1.817688	0.0691
0.555655	0.164166	3.384702	0.0007
0.863321	0.124651	6.925917	0
-0.079747	0.144834	-0.55061	0.5819
0.613642	0.17202	3.567278	0.0004
0.35009	0.217415	1.610237	0.1073
Limit Points			
4.171097	0.86327	4.831743	0
5.843001	0.967348	6.040225	0
8.597815	1.274766	6.744623	0
. 0.483194	Akaike info	criterion	0.72197
r 0.862606	Log likeliho	bc	-68.97275
r 0.778787	Restr. log lik	kelihood	-133.4597
128.9739	Avg. log like	lihood	-0.319318
	Coefficient 0.220944 0.555655 0.863321 -0.079747 0.613642 0.35009 Limit Points 4.171097 5.843001 8.597815 4.0.483194 0.862606 0.778787 128.9739	Coefficient Std. Error 0.220944 0.121552 0.555655 0.164166 0.863321 0.124651 -0.079747 0.144834 0.613642 0.17202 0.35009 0.217415 Limit Points 4.171097 0.86327 5.843001 0.967348 8.597815 1.274766 0.483194 Akaike info 0.862606 Log likelihoo 0.778787 Restr. log lik 128.9739 Avg. log like	Coefficient Std. Error z-Statistic 0.220944 0.121552 1.817688 0.555655 0.164166 3.384702 0.863321 0.124651 6.925917 -0.079747 0.144834 -0.55061 0.613642 0.17202 3.567278 0.35009 0.217415 1.610237 Limit Points 4.171097 0.86327 4.831743 5.843001 0.967348 6.040225 8.597815 1.274766 6.744623 4.0483194 Akaike info criterion 0.862606 1.03862606 Log likelihood 0.778787 Restr. log likelihood 128.9739 Avg. log likelihood

A	ppendix	C.5.	Mexico	- dynamic	factors	and s	selected	institutional	indicators
	11			,/	./				

Variable	Coefficient	Std. Error	z-Statistic	Prob.
Q3P3_DF1	0.265619	0.289372	0.917915	0.3587
Q3P3_DF2	0.815719	0.396354	2.058056	0.0396
Q3P3_DF3	1.170627	0.315713	3.707883	0.0002
Q3P3_DF4	-0.047602	0.30493	-0.156109	0.8759
Q3P3_DF5	0.091483	0.376352	0.243077	0.8079
Q3P3_DF6	0.198642	0.278823	0.71243	0.4762
CONTAG	0.681134	0.31103	2.189934	0.0285
D_BURQUAL	1.171887	0.306974	3.817542	0.0001
D_DEMACC	0.824841	0.591296	1.394971	0.163
D_INVPROF	1.26665	0.663984	1.907652	0.0564
	Limit Points			
LIMIT_1:C(11)	5.10627	2.066697	2.47074	0.0135
LIMIT_2:C(12)	7.332222	2.136163	3.432426	0.0006
LIMIT_3:C(13)	10.46589	2.323954	4.503483	0
Pseudo R-sau	0 604377	Akaike info	criterion	0 609257
Schwarz criter	0.812399	Log likeliho	nd	-52,79978
Hannan-Quin	0.691327	Restr. log lik	kelihood	-133.4597
LR statistic	161.3199	Avg. log like	lihood	-0.244443
				0.2

Acknowledgements

We thank Ningchuan Yang for excellent research assistance, Domenico Giannone for making the Matlab code of Doz, Giannone and Reichlin (2011) available, and seminar participants at The economics and econometrics of recurring financial market crises, Waterloo, Ontario, CIRANO Montréal, and the University of Groningen.

References

- Abiad, A., 2003. Early warning systems: A survey and a regime-switching approach. IMF Working Paper 32, International Monetary Fund, Washington, DC.
- Alvarez Plata, P., Schrooten, M., 2004. Misleading indicators? The Argentinean currency crisis. Journal of Policy Modeling 26, 587–603.
- Amengual, D., Watson, M., 2007. Consistent estimation of the number of factors in a large N and T panel. Journal of Business & Economic Statistics 25, 91–96.
- Bai, J., Ng, S., 2002. Determining the number of factors in approximate factor models. Econometrica 70, 191–221.
- Bai, J., Ng, S., 2007. Determining the number of primitive shocks in factor models. Journal of Business and Economic Statistics 25, 52–60.
- Beckmann, D., L. M., Sawischlewski, K., 2006. Robust lessons about practical early warning systems. Journal of Policy Modeling 28, 163–193.
- Berg, J. van den, B. C., Urbain, J., 2008. A cautious note on the use of panel models to predict financial crises. Economics Letters 101, 80–83.
- Beziz, P., Petit, G., 1997. The Mexican crisis: Were signals inadequate? Cambridge Review of International Affairs 11, 141–159.
- Breitung, J., Eickmeier, S., 2006. Dynamic factor models. Algemeines Statistisches Archiv 90, 27–42.
- Breuer, J., 2004. An exegesis on currency and banking crises. Journal of Economic Surveys 18, 293–320.

- Bussière, M., Mulder, C., 2000. Political instability and economic vulnerability. International Journal of Finance and Economics 5, 309–330.
- Cattell, R., 1966. The scree test for the number of factors. Multivariate Behavioral Research 1 (2), 245–276.
- Cerro, A., Iajya, V., 2009. Currency crises and institutions: The case of Argentina 1862-2004. Anales de la XLIII Reunin Anual de la Asociacin Argentina de Economa Poltica, Mendoza.
- Chang, R., Velasco, A., 1998. Financial crises in emerging markets: A canonical model. NBER Working Paper 6606, National Bureau of Economic Research, Cambridge, MA.
- Cipollini, A., Kapetanios, G., 2009. Forecasting financial crises and contagion in Asia using dynamic factor analysis. Journal of Empirical Finance 16, 188–200.
- Eichengreen, B., Rose, A., Wyplosz, C., 1995. Exchange rate mayhem: The antecedents and aftermath of speculative attacks. Economic Policy 21, 251–312.
- Forni, M., Giannone, D., Lippi, M., Reichlin, L., 2009. Opening the black box: Structural factor models with large cross sections. Econometric Theory 25, 1319–1347.
- Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2005. The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American Statistical Association 100, 830–840.
- Girton, L., Roper, D., 1977. A monetary model of exchange market pressure applied to the postwar canadian experience. The American Economic Review 4, 537–548.
- Hallin, M., Liška, R., 2007. Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association 102, 603–617.

- Harding, M. C., 2009. Structural estimation of high-dimensional factor models. mimeo, Stanford University.
- Herrera, S., Garcia, C., 1999. A user's guide to an early warning system of macroeconomic vulnerability for LAC countries. *Policy Research Working Paper* 2233, World Bank, Washington, DC.
- Innoue, A., Rossi, B., 2008. Monitoring and forecasting currency crises. Journal of Money, Credit and B 40, 523–534.
- Jacobs, J., Kuper, G., Lestano, 2008. Currency crises in Asia: A multivariate logit approach. In: Kim, S.-J., McKenzie, M. (Eds.), Asia Pacific Financial Markets: Integration, Innovation and Challenges. Vol. 8 of International Finance Review. Elsevier, Amsterdam, pp. 157–173.
- Jacobs, J., Otter, P., 2008. Determining the number of factors and lag order in dynamic factor models: A minimum entropy approach. Econometric Reviews 27, 385–397.
- Kamin, S., Babson, O., 1999. The contribution of domestic and external factors to Latin American devaluation crises: An early warning systems approach. *International Finance Discussion Papers* 645, Board of Governors of the Federal Reserve System, Washington, DC.
- Kaminsky, G.L, A. M., Choueiri, N., 2009. Thirty years of currency crises in Argentina: External shocks or domestic fragility? *NBER Working Papers* 15478, National Bureau of Economic Research, Cambridge, MA.
- Kaminsky, G., 2006. Currency crises: Are they all the same? Journal of International Money and Finance 25, 503–527.

- Kaminsky, G., Lizondo, S., Reinhart, C., 1998. Leading indicators of currency crisis. IMF Staff Papers 45/1, International Monetary Fund, Washington, DC.
- Kaminsky, G. L., Reinhart, C. M., 1999. The twin crises: The causes of banking and balance-of-payments problems. American Economic Review 89, 473–500.
- Kapetanios, G., 2010. A testing procedure for determining the number of factors in approximate factor models with large datasets. Journal of Business & Economic Statistics 28, 397–409.
- Kapetanios, G., Marcellino, M., 2009. A parametric estimation method for dynamic factor models of large dimensions. Journal of Time Series Analysis 30, 208–238.
- Kennedy, P., 2008. A Guide to Econometrics. Blackwell Publishing, Malden, MA.
- Krugman, P., 1979. A model of balance-of-payment crises. Journal of Money, Credit and Banking 11, 311–325.
- Krugman, P., 2003. Crisis: The next generation? In: Helpman, E., Sadka, E. (Eds.), Economic Policy in the International Economy: Essays in Honor of Assaf Razin. Cambridge University Press, Cambridge, MA, pp. 15–32.
- Manasse, P., N. R., Schimmelpfennig, A., 2003. Predicting sovereign debt crises. IMF Working Papers 221, IMF, Washington.
- McKinnon, R., Pill, H., 1997. Credible economic liberalizations and overborrowing. American Economic Review 87, 189–193.
- Moshirian, F., 2011. The global financial crisis and the evolution of markets, institutions and regulation. Journal of Banking and Finance 35, 502–511.

- Obstfeld, M., 1996. Models of currency crises with self-fulfilling features. European Economic Review 3-5, 1037–1047.
- Onatski, A., 2009. Testing hypotheses about the number of factors in large factor models. Econometrica 77, 1447–1479.
- Otter, P. W., Jacobs, J. P., den Reijer, A. H., 2011. A criterion for the number of factors in a data-rich environment. Presented at the EEA-ESEM conference, Oslo, Norway, August.
- Reinhart, C., Rogoff, K., 2009. This Time is Different: Eight Centuries of Financial Folly. Princeton University Press, Princeton and Oxford.
- Rong Qian, Carmen M. Reinhart, K. S. R., 2010. On graduation from default, inflation and banking crises: elusive or illusion? *NBER Working Paper* 16168, National Bureau of Economic Research, Cambridge, MA.
- Sachs, J., Tornell, A., Velasco, A., 1996. Financial crises in emerging markets: The lessons from 1995 (with comments and discussion). Brookings Papers on Economic Activity 1, 147–198.
- Stock, J. H., Watson, M. W., 1998. Diffusion indexes. Working paper 6702, National Bureau of Economic Research.
- Stock, J. H., Watson, M. W., 2005. Implications of dynamic factor models for VAR analysis. Working paper 11467, National Bureau of Economic Research.
- Stock, J. H., Watson, M. W., 2011. Dynamic factor models. In: Clements, M. P., Hendry, D. F. (Eds.), Oxford Handbook of Economic Forecasting. Oxford University Press, Oxford, UK, Ch. 2.