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1 Introduction
There seems to be a general consensus among macroeconomists and central bankers that
the global financial crisis of 2007-2009 to a large extent was driven by credit growth.
The same goes for earlier financial crises, e.g. as shown by Reinhart and Rogoff (2009).
In his opening address at the ECB Central Banking Conference in November 2010, the
president of the ECB, Trichet (2010) argued that a central lesson from the financial cri-
sis is that central bank policy makers need to pay more attention to financial instability
and the amount of credit in the economy. At this point, however, the opinion amount
macroeconomists seems more divided. Some macroeconomists argue that the recent
credit expansion and resulting global financial crisis primarily was caused by a too ex-
pansionary central bank policy.1 Others see it as a result of more structural problems in
the economy, the financial deregulation of the banking sector especially.

This paper contributes to this discussion by studying empirically the relations be-
tween monetary policy, credit growth and financial instability using US data. The paper
focuses on two separate but related questions. Firstly, does credit growth affect financial
stability, i.e., asset price bubbles? Secondly, is it even - by means of standard mone-
tary measures - possible for central banks to influence the long run credit cycles and
build-ups of financial instability or are they rather a consequence of structural economic
mechanisms?
∗I have received valuable comments and suggestions from Michael Bergman, Bent Nielsen and Kata-

rina Juselius.
1For example John B. Taylor, in the case of the US, argues that the Federal funds rate was too low for

too long, refereeing to the period 2003-2005.
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In the theoretical literature there are in principle two conflicting approaches; the
money view and the credit view.2 The first approach, i.e., the money view, is charac-
terized by the assumption of perfect and risk free financial markets giving rise to the
efficient market hypothesis (hereafter EMH) and the theorem of capital structure ir-
relevance (Modigliani and Miller, 1958). Hereby asset prices are only affecting the
real economy through the substitution and wealth effect, with credit growth purely as a
manifestation of risk less and "non-harming" shifts of purchasing power over time and
various states of the economy. From the view of a central banker, the only important fi-
nancial variables are money and bonds, as all other prices and interest rates are adjusted
perfectly by the means of no-arbitrage conditions.3

The second approach, i.e., the credit view, assumes imperfect financial markets mo-
tivated by the periods of financial deregulation before the Great Depression and after
the 1970s. The debt-deflation theory developed by Fisher (1933) argues that financial
markets can have an utmost important impact on the business cycle, in particular in
periods with over-indebtedness. More recent theories incorporate similar mechanisms
into a general equilibrium framework. Both the Financial Accelerator and the Asset
Boom-Bust theory assumes limited liability in credit contracts whereby credit growth
has a risk shifting effect from borrowers to lenders (Stiglitz and Weiss, 1981; Bernanke
and Gertler, 1989; Bernanke and Blinder, 1988; Allen and Gale, 2000b; Kiyotaki and
Moore, 1997). Hereby lenders tend to be overly risk seeking driving vicious circle of
asset price bubbles and uncovered credit growth accelerating both real economic booms
and busts. Compared to the money view, credit growth is not just an indication of shift-
ing but also of creation of purchasing power not resulting from any real increase in
voluntary saving in the economy.

According to the credit view, policy makers should therefore be focused on the evo-
lution in the credit amount. Where theories of imperfect markets differ somewhat, how-
ever, is on what primarily drives this evolution. On the one hand, the Financial Accel-
erator explains credit growth as a result of monetary policy affecting the net worth of
banks, households and firms and thereby banks’ willingness to supply credit. The Asset
Boom-Bust theory, on the other hand, relates credit growth to financial liberalization
and innovation. Both these channels appear to have been at work during the buildup to
the current financial crisis. Rapid credit growth in most OECD countries together with
both financial deregulation and long periods of expansionary monetary policy may have
contributed to the crisis.

The empirical results regarding the importance of credit growth and its driving forces
are quite inconsistent. One type of empirical analysis - typically done in a multiple
country setup - considers the interaction between real economic and financial cycle

2These terms are used in Kakes (2000) and I will continue using the same terminology in this paper.
3The money view is primarily focused on the monetary policy working though the liability side of

the banking sectors balance sheet. For example, in an IS-LM model there are only two financial assets,
money and bonds, where the bond market represents the entire financial market (Kakes, 2000).
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characteristics by the means of simple econometric analysis. Claessens et al. (2010)
finds that especially credit and house price cycles have a large impact on the amplitude
and depth of economic recessions as well as booms. Similar early warning systems
often find... [MORE HERE]

More in line with the method of this paper, analyses using VAR-models often con-
sider a single economy setup, either from a single country or a global aggregate of sev-
eral. A group of these analyses make use of so-called factor-augmented VAR-models
(hereafter FAVAR) (Bernanke and Kuttner, 2005). Helbling et al. (2010) estimate a
global FAVAR-model on data from the G-7 countries including the real credit growth
and different credit spreads. From an impulse response analysis, they find significant
effects of credit shocks on real global business cycles. Eickmeier and Hofmann (2010),
Gilchrist and Zakrajsek (2010), and Meeks (2009) also use FAVAR-models but are only
considering the effects of shocks to credit spreads.4 Still, they find significant real ef-
fects of credit shocks.

On point of concern regarding these models, however, is the assumption of linear-
ity. According to the Asset Boom-Bust theory, business cycles can be separated into
different parts with different mechanisms at work, especially when considering the im-
portance of financial deregulation and credit cycles. Kaufmann and Valderrama (2007)
estimate a Markov switching VAR-model (hereafter MSVAR) on Euro-area and US data
including credit growth. They find evidence of a two-stage regime both in the Euro area
and in the US, where the importance of credit shocks varies considerably. Atanasova
(2003) considers a non-linear threshold VAR-model (hereafter TVAR) including credit
spreads. [MORE HERE]

Another critical point is the exclusion of cointegration relations. The models thereby
miss information on the long run relations between level variables, the long run error-
correction mechanisms, and possibly suffer from excluded variable bias. However, lim-
ited research uses cointegrated VAR-models (hereafter CVAR) in relation to credit. As
a robustness check Greiber and Setzer (2007) include a credit measure in a monetary
CVAR-model analyzing the effect of money on the house prices in the US and Euroarea.
Here they find that credit has limited effects.

This paper analyzes the relation between credit, monetary policy and financial in-
stability while trying to deal with several of the problems mentioned above. First of
all, unlike many earlier studies, I estimate a CVAR-model on levels variables from the
US including, among others, a real money measure, the real amount of credit, and real
house prices. By including a cointegration term, I am able to test the theoretical impor-
tant long run relations in the data and hereby driving forces. Secondly, I explicitly test
and model large persistent credit cycles seen over the last decades, consistently with the-
oretical literature of financial instability and historical regimes of financial regulation.

4Here they identify credit shocks as shocks to the credit spreads having a non-positive effect on the
risk of default of the underlying obligation. They use the restriction formulation from Uhlig (2005).
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Hereby I solve clear I(2)-problems while to some extend maintaining the interpretation
and explanatory power of the changes in the financial regime. In the end, I analyze
the fundamental driving mechanisms by the use of generalized and structural impulse
response functions.

First of all, I find clear evidence of persistent and related I(2)-trends in real house
prices and the real amount of credit. These persistent evolutions seem related to histor-
ical regimes of financial regulation [MORE HERE]

The rest of this paper is organized...[MORE HERE]

2 Data
In this section the data is presented together with a short historical description. I con-
sider US monthly data through the period 1984:04-2010:06. The period is chosen in
order to have a relatively constant parameter regime but still to be able to analyze the
effect of changes in financial liberalization. The starting point marks the beginning of
”The Great Moderation” and the inflation targeting monetary policy regime with the
Federal funds rate as policy instrument.5 Another important characteristic of the data
period is the process of financial deregulation and innovation. This also started in the
early 1980s and gained momentum through the Reagan period, 1981-1989, and further
moved in several regimes up until the global financial crisis.

Similar to the work of Helbling et al. (2010) I include two types of credit variables;
the real credit amount (here in levels) and a corporate bond credit spread. For the quan-
tity of money the real M2M6 is included as done by Greiber and Setzer (2007) among
others and the real GDP is included to measure the real economic activity. To analyze
the effects on asset prices I include the real house prices. Along the lines of standard
monetary VAR-models I include both the nominal own rate on money as well as a three
month government interest rate. In summary the model consist of the following seven
variables, also shown in figure 1:7

5In the period before the early 1980s, "The Great Inflation", monetary policy used the quantity of
money as the primary policy instrument.

6The M2M measure is used in order to avoid the problems of ”the missing money of the 1990s”.
Especially in the beginning of the 1990s, because of the financial innovation it seems that small time
deposits have been substituted by different types of mutual fund products out side the standard money
measure (Carlson and Keen, 1996).

7Data sources are shown in appendix ??.
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Table 1: The variables of the model
H pt Real house prices (log)
kt The amount of credit outstanding (log)
mt The real quantity of money (M2M = M2 less small time deposits) (log)
yt Real GDP (log)
iown,t The nominal own rate on money
i3m,t The nominal 3 month Tbill rate
SCBGB,t Corporate bond credit spread (Moodys BBB - 10 year government bond)

Figure 1: The variables of the model in levels
House prices (real, log) (H p) Amount of credit (real, log) (k) MZM (real, log) (m)
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Returning to the discussion of having a constant parameter regime, several notable
historical disturbing events is seen in the data. On the one hand, the global financial
crisis is by many thought to be the end of ”The Great Moderation”, seen in the data as
a jump in the credit risk spread and the real quantity of money while the interest rates,
real house prices and credit falls rapidly. The Dot-com crisis of 2001, on the other hand,
is only seen as a moderately higher credit spread and subsequently low interest rates.
The house prices and credit growth were more or less unaffected.

Other things worth noticing is the trend breaks especially seen in the credit evolution
over the sample period. The financial deregulation of the Reagan period seems associ-
ated with a high credit growth in the first part of the sample. From here on follows a
period of almost zero growth in credit, which again changes to a positive trend from
the middle of the 1990s until the global financial crisis. A possible explanation for this
change is the sub-prime mortgages. According to Chomsisengphet and Pennington-
Cross (2006) these started spreading in the first part of the 1990s, made possible by
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previous financial deregulations.8 More so, an implicit government guarantee of the
two mortgage credit institutions Fannie Mae and Freddie Mac affected the competition
situation in the prime-mortgage market why other financial institutions had to seek al-
ternative market segments (Berg and Bech, 2009, p. 90-91). These historical events will
be considered in the following.

3 Econometrical method
I order to analyze financial instability, the CVAR-model appears suitable for several
reasons. First of all, the model enables separate analysis of the short and long run
mechanisms. Hereby it is possible to isolate hypothetical long run relations - in this case
financial instability growing relations - generally very important and characteristic in
macroeconomic theory. I relation to these long run relation, the model is able to identify
equilibrium and disequilibrium causing variables - so-called pushing and pulling forces
(Juselius, 2007, p. 88). Secondly, the CVAR-model uses vector formulation which
enables estimation of multiple relation, general equilibrium and feedback effects. A
third often argued strength of the CVAR-model is that it is identified by gradual steps
of tests and restrictions, in concordant with the general-to-specific idea (hereafter GTS)
(Juselius, 2007, p. 347).

3.1 The VECM-form
The CVAR-model can be written on several forms. When cointegration relations is not
accounted for the model can be written as a VAR(k)-model with k autocorrelation lags:

xt =
k

∑
i=1

Πixt−i +ΦDt + εt (1)

where xt is a vector of realized observations for the p variables of the model at time
t = 1, 2 , ...,T , the Πi’s are p× p matrices for the i = 1, . . . ,k lags of the model, and
Dt is a vector of deterministic components such as dummies, constants and trends with
coefficients vector φ . ε is a p×1 vector of error terms of each variables equation. The
error terms are assumed multivariate normal distributed; ε ∼ Np(0,Ω)9 with a variance-
covariance matrix Ω (Juselius, 2007, p. 59).

8Chomsisengphet and Pennington-Cross (2006) present data on sub-prime mortgages from 1995 but
do stress that they might have been issued even earlier. The sub-prime mortgages was legally made possi-
ble by three financial liberalizing reforms in the Reagan period: The Depository Institutions Deregulation
and Monetary Control Act, 1980; The Alternative Mortgage Transaction Parity Act, 1982; and The Tax
Reform Act, 1986.

9The ∼ indicates ”distributed as” and Np indicates a multivariate normal distribution of dimension p.
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To account for cointegration between the level variables the VAR-model in (1) can
further be written on VECM-form;

∆xt =
k−1

∑
i=1

Γi∆xt−i +Πxt−1 +ΦDt + εt (2)

where Π =−(I−∑
k
i=1 Πi) and Γi =−∑

k
j=i+1 Π j. The cointegration hypothesis can be

verified as a test of whether the Π-matrix has reduced rank. If the Π-matrix has the
rank r it means that the model contains r cointegration relations and p− r common
stochastic trends. Hereby the p variables in the model can be seen as a system of r long
run relations with p− r exogenous driven trends. To analyze the long run relations in
the data, the Π-matrix can appropriately be written as the matrix product; Π = αβ ′,
where the β -matrix describes the structure of the long run relations while the α-matrix
determines the possible error correction or overshooting tendencies of each variable to
these long run relations. This gives some indication of which variables are driving the
long run relations.

After the number of long run relations have been determined, these have to be iden-
tified on the basis of tests for theoretical consistent restrictions on the β -matrix. These
tests should result from predefined hypothetical long run relations given by the econom-
ical theory of consideration. More on this in section 4.

3.2 The structural MA-form and impulse responses
In contrast to considering the error correction mechanisms, the CVAR-model on MA-
form focuses on which of the variables are driving the model in the long run and which
only have transitory effect. From (2) the model can be written on reduced MA-form;10

xt =C
t

∑
s=1

εs +C∗(L)εt +Cµt + X̃0 (3)

where X̃0 is a vector of initial values, C∗(L) = Σt
j=0C∗j L

j determines transitory effects
from the stationary part of the the process while the C-matrix determines the permanent
long run impact of shocks to the residuals.11 The C-matrix can - as a parallel to the
partition of the long run structure in the Π-matrix - be written as C = β̃⊥α ′⊥ where β̃⊥ =
β⊥(α

′
⊥Γβ⊥)

−1. Here the α ′⊥-matrix determines the construction of the p− r common
stochastic trends while the β̃⊥ determines the weights on each residual in the common
stochastic trends (Juselius, 2007, p. 255).

Until now the model has been on reduced form. This form of the model is char-
acterized by only conditioning on predetermined variables and deterministic compo-
nents. Hereby the model could systematically omit important simultaneous effects in

10Here I consider the type of MA-form used in Juselius (2007, s. 85, 101-102).
11In the equation C∗(L) = Σt

j=0C∗j L
j, L determines the lag operator.
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the data. When these are not modeled, they show up as large non-diagonal elements in
the variance-covariance matrix, Ω. Correlated error terms are in contrary to theoretical
structural shocks hitting the economy exogenous and independently. In practice, in the
structural form, the p residuals in the reduced form model are related to p underlying
linear independent structural shocks (Juselius, 2007, p. 278):

ut =

(
ul,t
us,t

)
= Bεt (4)

where ut is a vector consisting of p− r permanent and r transitory structural shocks,
ul,t and us,t respectively. B is a p× p restriction matrix. Inserting (4) in the reduced
MA-form (3) the model can be rewritten on structural form;12

xt = β̃⊥α
′
⊥B−1︸ ︷︷ ︸
C̃

(
∑

t
i=1 ul,i

∑
t
i=1 us,i

)
+C∗(L)B−1

(
ul,t
us,t

)
+Cµt + X̃0 (5)

where the matrix product C̃ = β̃⊥α ′⊥B−1 determines the permanent effects and C∗(L)B−1

determines the transitory effects.
By multiplying by the B−1-matrix and thereby including current effects in the model

we also include p · p new coefficients. To achieve just-identification the model should
therefore be subject to an additional p · p restrictions on the B and/or C̃-matrix. In
the literature there are several ways to do this (Lütkepohl and Krätzig, 2004, p. 163-
171). One way is to imposed restrictions so that the structural shocks satisfy the two
conditions; i) all the structural shocks are linearly independent (ut ∼ N(0, Ip)) and ii)
the structural shocks are separated in p− r permanent and r transitory shocks. By (p+
1)p/2 restrictions on the B-matrix the first condition (ut ∼ N(0, Ip)) is insured13 while
another (p− r)r zero-restrictions on the last r columns of C̃-matrix ensures the second
condition. The remaining restrictions ensure an identified ordering of the permanent
and transitory shocks and should be made such that each shock can be given a clear
interpretation (Juselius, 2007, p. 279).

From this formulation it is possible to do impulse response function analyses (Lütke-
pohl and Krätzig, 2004, s. 167). [MORE HERE]. The vector process of impulse re-
sponses is defined as:

GIx(n,δ ,Ωt1) = E(xt+n|εt = δ ,Ωt1)−E(xt+n|Ωt1) (6)

where ...
12Likewise the VECM-form can be written on structural form: (2) multiplied through by the matrix B;

B∆xt = BΓ∆xt−1 +Bαβ ′xt−1 +BΦDt +ut , where ut = Bεt , ut ∼ N(0,Σ), Σ = BΩB′.
13The condition ut ∼ N(0, Ip) requires that the structural shocks are independent; imposing (p−

1)p/2 restrictions on the non-diagonal elements of the B-matrix. A standardized distribution re-
quires additional p restrictions on the diagonal of the B-matrix. In sum these restriction are;
B′=[α ′Ω−1α−1/2α ′Ω−1,(α ′⊥Ωα⊥)

1/2α ′⊥] (Juselius, 2007, s. 278-279).
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3.3 Generalized impulse responses
It is important to note that the additional restrictions, ordering and interpretations of
the structural form cannot be tested, which is a critical an0d controversial point of the
model (Juselius 2007, p. 232, 287; Lütkepohl and Krätzig 2004, p. 195). Another way
to do impulse response function analysis is to consider so-called generalized impulse
responses. Here no exogenous ordering of the shock is required..

This type of impulse response analysis describes the dynamics of a given variable
when the model i hit by a one standard deviation shock to the residuals in the equation of
another variable, given all current effect described by the historical variance-covariance
matrix, Ω, is taken into account. Hence, it is important to note that this is not an un-
derlaying exogenous theoretical consistent shock, which makes it difficult to interpret
[MORE HERE]

3.4 Analyzing different economical regimes
Considering the economical evolution of the US economy especially regarding the fi-
nancial system calls for measures of different economical regimes. By the theory of
non-linear VAR model... An alternative is explicit to model deterministic terms into the
model or simply to split the sample [MORE HERE].

4 Theoretical considerations
Before start analyzing the data it is preferable to have a theory consistent hypothetical
framework of how to test and restrict the model. Here I present an overview of the
different relation and driving trends I expect to find i the data given the theoretical
literature.

As this paper considers how the quantity of money affect the amount of credit in
the economy, I should expect to find a long run money demand relation. By monetarist
theory, e.g. from the Beaumol-Tobin model or a money in the utility function CCAPM
model, such a relation can be expressed as (Greiber and Lemke, 2005):

mt−β11yt +β12(r3m,t− rown,t)−β12SCB,t + c11 ∼ I(0) (7)

where all β1i’s are expected positive: from standard monetary theory, the money de-
mand should increase when the alternative cost of holding money (r3m,t − rown,t) falls
or when the economic activity (yt) increases. From the money in the utility function
CCAPM model or others, higher uncertainty in the financial markets introduces a flight
to equality effect where investors seek to hold more money, i.e. money demand in-
creases when the credit risk spread (SCB,t) increases Cook and Choi (2007); Greiber and
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Lemke (2005). In the literature there exists many variants of the money demand rela-
tion; different extensions nonetheless in relation to the recent financial deregulation and
innovation and different measures of both money, the alternative cost of holding money
and the transaction motive Carstensen (2003). To account for the latter, house prices are
sometimes included, argued by the wealth effect (Greiber and Setzer, 2007; Boone and
Noord, 2008). Often theories consider the money velocity, assuming that the money
elasticity wrt. output, β11, equals unity, but in empirical analyses it often is fount to be
somewhat smaller.

Excess liquidity is represented by money supply exceeding the level of money de-
mand given by (7). The relevant hypothetical question of the monetary boom-bust the-
ory is whether excess liquidity affect real house prices positively and credit spread neg-
atively. More so, it is interesting to test whether real credit and GDP also are positively
affected.

Another important theoretical relation I will consider is that of the credit view. The
Asset Boom-Bust model gives rise to the following long run relation (Allen and Gale,
2000a):14

H pt−β21(kt− yt)+β22SCB,t +β23i3m + c21 ∼ I(0) (8)

where again all β2i’s are expected positive: increases in the amount of credit relative to
GDP is associated with limited liabilities and thereby risk shifting between house own-
ers and their banks. Falling credit spreads are... Falling interest rates... This ultimately
results in increasing house prices and real GDP. According to the Asset Boom-Bust the-
ory, this is the process financial instability why the relevant question is whether house
prices and GDP are affected positively by excess credit to GDP in (10).

Typically an aggregate demand (AD) relation is also found:

yD
t − yP

t −β31i+ c31 ∼ I(0) (9)

where yD
t −yP

t is the output gap, i.e. output demand minus potential output, which often
is approximated by GDP minus a deterministic trend15. Again β31 is expected positive.
I some cases the AD relation is extended by asset prices argued by the wealth effect
?. More so, according to the Financial Accelerator effect it could be argued that med
relation should be extended with credit; during economic downturns many firms and
households are credit restricted.

According to the expectations hypothesis a long run term structure relation should
also be found. Here interests rates should cointegrate when corrected for their differ-
ences in duration and liquidity and default risk. This would result in the following long

14This concrete long run relation is my own interpretation of their theory.
15The approximation of the output gab as GDP minus a deterministic trend is not ... from a theoretical

perspective.
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run relation:

rown,t−β41r3m,t??β42SCB,t + c31 ∼ I(0) (10)

Here again all β4i’s are expected positive: the own rate on money should follow the T-
bill rate though especially corrected for the higher liquidity and therefore lower liquidity
risk on currency and checkable deposits.

Other long run relations could be found as well: a relation between the credit risk
spread and real GDP as argued by theory of irrational procyclical expectations, often
considered in VAR-models focusing and the real effect of credit risk shocks .16 Further
possibly a policy rule of the central bank or a Tobins Q housing demand relation could
be found.

Regarding the structural shocks in the model, I expect to find at lest three; a real
economic shock, a nominal or monetary policy shock and a financial/credit shock. Es-
pecially a positive monetary policy shock and financial/credit shock should influence
house prices positively, in favor for the monetary boom-bust theory and the Asset Boom-
Bust theory respectively.

5 Empirical findings
In this section I set up and analyze the model; both the long run structure of the VECM-
form and later the generalized and structural impulse response functions of the MA-
form.

First step is to find a well-specified model. Here both a statistical and economical
argument have to be considered. Statistical specification means checking that the model
approximately follows the underlying statistical conditions assumed in the estimation
process, and economical specification means that it includes the theoretical relevant
variables, deterministic terms etc. Here several aspects has to be considered and tested
for: lag length, inclusion of deterministic terms, error term distribution problems and
cointegration rank including I(2)-specification.

16As business cycle theory states that economic booms are followed by times of low economic growth,
economic booms should rationally result in low expectations of future economic growth - counter cyclical
expectations. Theories of irrational procyclical expectations argues for the opposite, leading to financial
instability. Here low credit risk spreads often is taken as a proxy for high risk appetite in the financial
markets, which to some extend means that the market expects high economic growth in the near future.
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5.1 I(1)-specification
Here I check for lag length (k)17 and whether the error terms of the model is approxi-
mately normal distributed.18 Table 2 shows the information criteria and the LM test for
lag length determination (Juselius, 2007, p. 71).

Table 2: Test for lag length
Model k Log-like SC H-Q LM(1) LM(k)
VAR(4) 4 10023.240 -54.581 -57.372 0.125 0.049
VAR(3) 3 9983.461 -55.208 -57.657 0.005 0.243
VAR(2) 2 9924.841 -55.719 -57.825 0.000 0.030
VAR(1) 1 9666.814 -55.003 -56.766 0.000 0.000

Note: SC: Schwarz Criterion, H-Q: Hannan-Quinn Criterion, LM(k): LM-Test for autocorrelation of
order k

According to the information criteria and the LM(k)-test, the model seems well
specified with two lags. Further I check for extraordinary large residuals inconsistent
with the normality assumption. The following error terms especially violates the nor-
mality assumption; 1984:11, 2005:09, 2005:11, 2006:09, 2008:02, 2008:05, 2008:08,
2008:10, 2008:11. These dates can all be related to historical events, most of them to
the global financial crisis. Only for 2008:08 I also include a shift dummy restricted
to the cointegration space as it marks one of the biggest shocks to the US economy in
recent times; the beginning of the second face of the financial crisis with the crash of
American investment bank Lehman Brothers.19

Table 3: Misspecification test
Normality Autocorrelation Heteroscedasticity (ARCH)
DH:χ2(14) LB(82):χ2(3920) LM(1):χ2(49) LM(4):χ2(49) LM(1): χ2(784) LM(4): χ2(3136)

203.149
[0.000]

4673.646
[0.000]

83.654
[0.001]

57.598
[0.187]

1093.277
[0.000]

3740.223
[0.000]

Univariate tests ∆H p ∆k ∆m ∆y ∆i3m ∆iown SCB
Normality (p-value) 0.189 0.061 0.000 0.010 0.000 0.000 0.000
Skewness 0.167 0.212 0.126 0.270 -0.303 -0.060 0.313
Kurtosis 3.355 3.532 4.351 3.773 5.029 4.246 5.782
ARCH(2) (p-value) 0.095 0.047 0.005 0.948 0.011 0.025 0.000

Note: i) Tests: DH is a Doornik-Hansen test, LB is the Ljung-Box, LM(k) is a LM test for
autocorrelation and ARCH of order k. ii) In the univariate tests clear signs of non-normality is marked
bold.

17In the MA-form the lag length is equivalent to the number of autocorrelation terms in the stochastic
error term (k) and in the VECM-form the number of short run difference terms (k−1).

18As these test often has a circular structure - meaning that each test assumes that the rest of the models
well specified - I test on the model with all final deterministic terms included.

19The American investment bank Lehman Brothers filed for bankruptcy protection September 15,
2008. The filing marked the largest bankruptcy in U.S. history.
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Hereafter I test for misspecification of the model. As seen from table 3 the Doornik-
Hansen test reject general normality of the model. When further considering the general
LM-tests this non-normality seems related to some degree of general heteroscedasticity.
Considering the univariate tests, especially the interest rate variables seems to have some
over kurtosis (>3) and ARCH. As this should not make a problem for the estimation
process the model seems fairly good specified (Juselius, 2007, p. 75, 110).

5.2 Cointegration rank and I(2)-specification
As indicated in section 2, long persistent cycles in both the real amount of credit and
house prices gives an indication of possible I(2)-trends in the data.20 I(2)-trends become
critical for the estimation process in finite samples and correct interpretation of the
model. Therefore these should be checked for and possibly specified (Juselius, 2007, s.
291).

From the unrestricted root calculation shown in table 7 I find that in a I(1)-model
even with six I(1)-trends there is still an unrestricted root close to the unit circle (0.946),
indicating at least one double unit root.21 Table ?? in appendix ?? shows the I(2)-trace
test, which also gives an indication of two I(2)-trends in the data.

Table 4: Largest unrestricted root of the Π-matrix model without broken trends
r 0 1 2 3 4 5 6 7
p-r 7 6 5 4 3 2 1 0
ρmax 0.990 0.988 0.984 0.960 0.958 0.963 0.946 0.852

Table 5: The I(2)-trace test in the model with broken trends
p-values s2 = p-r-s1
p-r r 7 6 5 4 3 2 1 0

7 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 2 0.000 0.000 0.000 0.000 0.000 0.000
4 3 0.000 0.000 0.000 0.000 0.000
3 4 0.000 0.000 0.015 0.002
2 5 0.024 0.019 0.038
1 6 0.151 0.145

20Problems of I(2)-trends in a I(1) cointegrated VAR-model is often found in models including house
prices (). Not many cointegrated VAR-models includes credit and non (that I know of) consider possible
I(2)-trend in the data.

21In general, it is not easy to say when the root is to large, but a root well above 0.9 is normally
considered to close to the unit circle (Juselius, 2007, s. 297).
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There are generally two ways of dealing with I(2)-trends in the data; stochastically
by running an I(2) cointegrated VAR-model or deterministically, removing the I(2)-
trends by including deterministic broken trends restricted to the cointegration space. As
considered in the data section, the changes in the underlying trends seems attributed
to different historical economic regimes. In in this paper, I will therefore model them
deterministically on the basis of both the statistical and economical argument, allowing
me to give an economical interpretation.

Here I focus on the I(2)-trends in the real credit. To statistically determine the dates
of possible chances in the underlying I(2)-trends in the credit level I run a simple uni-
variate two stage Markov switching model including credit in the first difference as the
regressant and a constant as regressor. In the appendix ?? I show the actual and fitted
values of this regression. In general, I find three big regime shifts: 1990:01, 1993:07
and 2008:01 plus a temporary regime during the financial crises 2008:08-2008:12.

Regime classification based on smoothed probabilities
Regime 0 months avg.prob.

1990(1) - 1993(6) 42 0.964
2008(1) - 2008(7) 7 0.906
2009(1) - 2010(6) 18 0.989

Total: 67 months (20.06%) with average duration of 22.33 months.
Regime 1 months avg.prob.

1984(4) - 1989(12) 88 0.992
1993(7) - 2007(12) 174 0.984
2008(8) - 2008(12) 5 0.862

Total: 267 months (79.94%) with average duration of 89.00 months.

Figure 2: The univariate two stage Markov switching model
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Considering the economical arguments as discussed in the data section, there is a
economical reason for all three regime shifts (almost hitting the same dates); the first
one being the end of the Reagan period of financial deregulation, the next being the start
of the sub-prime mortgage lending period and the last one being the global financial
crisis. I will include the three broken trend in 1990:01, 1993:07, 2008:01. To account
for the temporary regime during the financial crises 2008:08-2008:12 I include a shift
dummy 2008:08, as mentioned earlier.

Hereafter, I do the same check for I(2)-trends as done in the model without broken
trends. Table 6 shows the unrestricted root calculation of the model with all three broken
trends included. In a model with four I(1)-trend I find the largest unrestricted root to
be 0.922. By the I(2)-trace test i find indication of five I(1)-trends and possibly still
one I(2)-trends (with p-value = 0.055). Even so, there might still remain some I(2)-
trends in the data but compared to the model without broken trends these seem as minor
problems.

The largest unrestricted roots indicates a rank of four weil the trace test indicated
a rank of five. Hereby the model would have three or two common stochastic trends
respectively. As a model with two common stochastic trends would be in conflict with
the economical argument presented in section 4, I estimate the model with a rank of
four.

Table 6: Largest unrestricted root of the Π-matrix in the model with broken trends
r 0 1 2 3 4 5 6 7
p-r 7 6 5 4 3 2 1 0
ρmax 0.968 0.966 0.955 0.922 0.921 0.852 0.792 0.778

Table 7: The I(2)-trace test in the model with broken trends
p-values s2 = p-r-s1
p-r r 7 6 5 4 3 2 1 0

7 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 2 0.000 0.000 0.000 0.000 0.000 0.000
4 3 0.000 0.000 0.000 0.000 0.000
3 4 0.002 0.009 0.015 0.002
2 5 0.047 0.055 0.177
1 6 0.447 0.518

5.3 The VECM-form
In this section I test, identify and analyze med model on VECM-form. To identify and
test the model in accordance with the economical questions of this paper, I test the
theoretical consistent long run relations considered in section 4.
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First of all, I test for a money demand relation (7) in the model, which is accepted
with p-value = 0.189:

m− y+ 0.04
(5.64)

(i3M− iown)− 0.36
(−8.94)

H p− 0.07
(−5.88)

SCB−GB− 0.25
(−5.41)

S08:08 ∼ I(0)(11)

To this relation both the real quantity of money, real GDP and real house prices are
significantly error correcting.22 Hence, excess money supply results in rising house
prices and real GDP, supporting the monetary boom-bust theory. Real credit is negative
related to excess money supply.

Assuming I(2)-trend in the real house prices, it seem puzzling that they should be
included in this relation. When including broken trends to the relation to correct for it,
only the broken trend in 2008:08 is slightly significant and the coefficient estimates in
(11) are quite robust, meaning that these possible regime shifts - if they are present in
the house prices - also are present in the money supply.

Secondly, I test for an Asset Boom-Bust model relation (10). Here I find β21 so close
to unity that I choose to restrict it accordantly. The relation is accepted with p-value =
0.110:

H p− (k− y)+ 0.02
(2.95)

i3M− 0.01
(−0.45)

SCB−GB− 0.22
(−3.96)

S08:08− 0.001
(−3.68)

T ∼ I(0) (12)

Both real house prices and GDP is significantly error correcting to this relation while
credit is unrelated.23 The relation therefore seems driven by credit, and higher credit
relative to GDP is associated with higher real house prises and GDP in favor of the
Asset Boom-Bust model.

The model with 7 variables and four long run relations, with SCB−GB (Moodys BBB
- 10 y government bond):

22The error correcting coefficients are: α
′
1(H p,k,m,y, iown, i3m,SCB−GB) =[

0.02
(3.03)

,−0.03
(−3.09)

,−0.05
(−3.53)

, 0.06
(5.93)

, 0.30
(2.56)

,−0.84
(−1.49)

,−0.29
(−0.39)

]
.

23The error correcting coefficients are: α̂
′
1(H p,k,m,y, iown, i3m,SCB−GB) =[

−0.03
(−5.52)

, 0.01
(0.65)

, 0.01
(1.03)

,−0.05
(−5.77)

,−0.21
(−2.43)

, 1.12
(2.71)

,−1.65
(−3.05)

]
.
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Table 8: The credit CVAR-model on ECM-form (US, monthly, period: 1983:04 -
2010:09, p-value: 0.57)

H p k m y iown i3M SCB−GB S08:08 BT90:01 BT93:07 BT08:01 T
β̂1 −0.35

(−11.85)
- 1.00

−
−1.00
−

−0.04
(−7.34)

0.04
(7.34)

−0.07
(−7.05)

−0.20
(−5.09)

- - - -

β̂2 1.00
−

−1.00
−

- 1.00
−

- 0.01
(3.01)

0.08
(7.69)

0.08
(1.82)

0.00
(−13.09)

- - 0.00
(9.07)

β̂3 −0.85
(−15.49)

1.00
−

- −2.22
(−14.22)

- −0.01
(−1.77)

- - - - - 0.00
(7.3)

β̂4 - - −7.13
(−15.1)

- 1.00
−

−0.67
(−26.67)

0.33
(6.83)

0.71
(3.35)

- - - 0.02
(14.41)

∆H p ∆k ∆m ∆y ∆iown ∆i3M ∆SCB−GB
α̂1 −0.01

(−0.67)
−0.03
(−2.29)

−0.03
(−1.93)

0.04
(3.09)

−0.76
(−5.35)

1.20
(1.77)

−0.57
(−0.64)

α̂2 −0.02
(−3.74)

−0.04
(−4.8)

−0.05
(−4.63)

0.01
(0.94)

−0.24
(−2.54)

0.91
(2.04)

−2.49
(−4.24)

α̂3 0.01
(1.39)

−0.03
(−4.32)

−0.03
(−2.63)

0.03
(3.26)

0.33
(3.6)

−0.78
(−1.75)

−1.35
(−2.3)

α̂4 0.00
(0.58)

0.00
(−0.46)

0.01
(2.63)

0.00
(0.85)

−0.13
(−7.35)

0.15
(1.77)

0.00
(0.02)

Note: i) P-values are shown in the parenthesis. ii) Significant coefficients are marked bold. iii)
Significant error correcting coefficients are marked red ind the α-matrix.

The long run relations:

Money Demand: m− y = −0.04 (i3M− iown)+0.35 H p+0.07 SCB−GB +0.2 S08:08

Asset Boom-Bust: H p = (k− y)−0.01 i3M−0.08 SCB−GB−0.08 S08:08 +0 BT90:01−0 T

AD/credit relation: k = 0.85 H p+2.22 y+0.01 i3M−0 T

Interest rate relation: iown = 7.13 m+0.67 i3M−0.33 SCB−GB−0.71 S08:08−0.02 T
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5.4 Generalized impulse response functions

Figure 3: Generalized impulse response functions
Response in real house prices
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Figure 4: Generalized impulse response functions
Response in real GDP
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Figure 5: Generalized impulse response functions
Response in the credit spread
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terms of the reduced-form model (ε) ii) The gray bands are 95 % confidence bounds calculated by
bootstrap-simulation with 500 replications.

Generalized impulse response functions for the cointegration relations:

20



Figure 6: Generalized impulse response functions for the cointegration relations
Response in the money demand cointegration relation (β1)
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Note: i) Impulse-response for each cointegration relation to a positive one-std. shock to one of the error
terms of the reduced-form model (ε) ii) The gray bands are 95 % confidence bounds calculated by
bootstrap-simulation with 500 replications.
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5.5 The structural MA-form
Further, I estimate the model on structural MA-form. First I try to estimate a fairly
standard model where the long run shocks are ordered as follows: i) a real economic
shock, ii) a monetary policy shock and iii) a credit/risk appetite shock.

Here I assume that the Central Bank does not respond to the amount of credit out-
standing, but only real economic shocks. Regarding the third shock, credit/risk appetite
shocks, it could be discussed how to make sure that this is not related to output and
thereby especially credit default risk. The variables will be ordered as follows:

Table 9: Order of the permanent and transitory shocks
Ticker Permanent shock Transitory shock
H pt 3
kt 3
mt 2
yt 1
iown,t 4
i3m,t (2) 2
SCB,t (3) 1

In total, to get a just identified model I have to place p · p = 49 restrictions on the
B- and/or C̃-matrix. By (p+ 1)p/2 = 56 restrictions on the B-matrix I make sure that
the assumption ut ∼ N(0, Ip) is satisfied. By (p− r)r = 12 zero-restrictions on the last
r columns of the C̃-matrix I make sure that the p long run and r short run shocks are
separated. The last 12 restrictions order the shocks in accordance with table 9. The
impulse response functions of the long run structural shocks are seen below.
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Figure 7: Impulse response functions to the permanent structural shocks
Response in H p to up1[ys] Response in H p to up2[MP] Response in H p to up3[k]

 Responses in HOUSEP_{FP_{LOG} from a unit shock to s_{1} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−3

−2

−1

0

1

2

3

x 10
−3

Response  
Confidence

 Responses in HOUSEP_{FP_{LOG} from a unit shock to s_{2} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−5

−4

−3

−2

−1

0

1

2

x 10
−3

Response  
Confidence

 Responses in HOUSEP_{FP_{LOG} from a unit shock to s_{3} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−4

−2

0

2

4

6

x 10
−3

Response  
Confidence

Response in k to up1[ys] Response in k to up2[MP] Response in k to up3[k]
 Responses in KREDIT_{FP_{LOG} from a unit shock to s_{1} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−4

−2

0

2

4

6

x 10
−3

Response  
Confidence

 Responses in KREDIT_{FP_{LOG} from a unit shock to s_{2} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

Response  
Confidence

 Responses in KREDIT_{FP_{LOG} from a unit shock to s_{3} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−1

0

1

2

3

4

5

x 10
−3

Response  
Confidence

Response in m to up1[ys] Response in m to up2[MP] Response in m to up3[k]
 Responses in M2M_{FP_{LOG} from a unit shock to s_{1} with95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025 Response  
Confidence

 Responses in M2M_{FP_{LOG} from a unit shock to s_{2} with95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−14

−12

−10

−8

−6

−4

−2

0

2

x 10
−3

Response  
Confidence

 Responses in M2M_{FP_{LOG} from a unit shock to s_{3} with95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−4

−3

−2

−1

0

1

2

x 10
−3

Response  
Confidence

Response in y to up1[ys] Response in y to up2[MP] Response in y to up3[k]
 Responses in GDP_{FP_{LOG} from a unit shock to s_{1} with95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Response  
Confidence

 Responses in GDP_{FP_{LOG} from a unit shock to s_{2} with95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
−3

Response  
Confidence

 Responses in GDP_{FP_{LOG} from a unit shock to s_{3} with95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.5

0

0.5

1

1.5

2

2.5

x 10
−3

Response  
Confidence

Response in iown to up1[ys] Response in iown to up2[MP] Response in iown to up3[k]
 Responses in OWN

M2M
 from a unit shock to s

1
 with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.2

−0.15

−0.1

−0.05

0

0.05 Response  
Confidence

 Responses in OWN
M2M

 from a unit shock to s
2
 with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25 Response  
Confidence

 Responses in OWN
M2M

 from a unit shock to s
3
 with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Response  
Confidence

Response in i3m to up1[ys] Response in i3m to up2[MP] Response in i3m to up3[k]
 Responses in TBILL_{3M_{CURP} from a unit shock to s_{1} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2 Response  
Confidence

 Responses in TBILL_{3M_{CURP} from a unit shock to s_{2} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

0.5 Response  
Confidence

 Responses in TBILL_{3M_{CURP} from a unit shock to s_{3} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Response  
Confidence

Response in SCB to up1[ys] Response in SCB to up2[MP] Response in SCB to up3[k]
 Responses in SPREAD_{CB_{GB} from a unit shock to s_{1} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15 Response  
Confidence

 Responses in SPREAD_{CB_{GB} from a unit shock to s_{2} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02 Response  
Confidence

 Responses in SPREAD_{CB_{GB} from a unit shock to s_{3} with 95 % confidence region

Month
0 5 10 15 20 25 30 35 40

−0.2

−0.15

−0.1

−0.05

0

0.05 Response  
Confidence

Note: i) Impulse-response for each individual variable to a positive structural shock of one std. ii) The
gray bands are 95 % confidence bounds calculated by bootstrap-simulation with 500 replications.
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