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Abstract

This paper presents a model of a rationally inattentive seller. Price rigidities are

driven by seller’s inability to process all available information about shocks to input

cost. The model generates a uniquely wide spectrum of observed price series prop-

erties. The single information constraint implies that prices move back and forth

between a few rigid values, sales are short-lasting, or that responses to aggregate

variables can be faster in volatile industries or in less stable aggregate conditions.
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The model is fully in the spirit of rational inattention with no simplifying assump-

tions on functional forms of processed signals.

Keywords: rational inattention, sticky prices, sales.

JEL: D83, D21, E31, E52

2



1 Introduction

This paper studies price movements. It proposes a mechanism leading to micro

flexibility of prices together with their macro rigidity. Moreover, the flexibility in

the form of frequent price changes is accompanied by rigidity of values that the prices

take. The distinctive feature of the model, which is introduced in Section 2, is the

limited information capacity of a seller, who sets prices. Small sellers or sellers with

large portfolios of heterogeneous products are likely to devote only a very limited

amount of attention to pricing of a single good. Large retailers often sell tens of

thousands of products. Responding to new available information about every one

of them would be too demanding. In fact, most agents do not pay attention to all

information that is available.

In the model, the seller cannot observe input cost exactly and needs to process

information about it, he does so by selecting pieces of information that are the most

relevant to him. Once he acquires a signal about the input cost, he then decides

what price to charge.

Results of the model agree with several findings in the data on both micro and macro

levels. 1)Prices change frequently. 2)Responses of prices to aggregate variables are

delayed. 3)Prices move back and forth between a few rigid values. 4)Sales are

short-lasting. 5) Responses to aggregate shocks are faster in industries with more

volatile idiosyncratic shocks. 6) Responses to aggregate shocks can be faster and

losses higher when the aggregate variables are more volatile.

However, I do not introduce any heterogeneous cost structure of adjustments or a

variety of other assumptions. All pricing behavior arises endogenously from pref-

erences and one information constraint. The agent chooses what to pay attention

to, how and when and thus responds differently to different shocks or under differ-

ent circumstances. This is possibly due to the inner consistency and generality of

rational inattention.
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Rational inattention is a framework that I apply to model the processing of relevant

information. It was introduced in (Christopher A. Sims 1998) and (Christopher A.

Sims 2003). Rational inattention is based on a rigorous application of information

theory. A few other authors, (Ricardo Reis 2006), (Bartosz Adam Mackowiak &

Mirko Wiederholt 2007), and (Michael Woodford 2008), have recently studied pric-

ing of inattentive agents. All three of these papers are very important contributions.

However, as far as I am aware, this is the first model of pricing fully in the spirit of

rational inattention, where agents are not ex ante constrained with a specific form

of signals they can receive, i.e. what pieces of information they can pay attention

to.

Agents in (Reis 2006) process information once in a while, but they receive perfect

signals when they do process it. Agents in (Woodford 2008) on the other hand

process information gradually, and in each period they make a decision whether to

change prices or not. However, once they do choose to incur the cost of changing

prices, they acquire perfect information and set prices optimally. The setup of

(Mackowiak & Wiederholt 2007) is closer the true rational inattention formulated

by Sims. They depart from the unrestricted choice of attention by assuming that

agents can not process information about more variables jointly, but only about

each one of them independently. The significant contribution is that they are able

to introduce this form of rational inattention into a DSGE model.

The model presented in this paper does not make any simplifying assumptions about

the information structure and is solved in its fully non-linear version, which has

several implications. Perhaps the most striking is that to economize on information,

the seller tends to choose signals that lead to a small number of distinct prices

only. These few values of price are rigid, although the unit input cost varies in a

continuous range. Whatever unit input cost is realized, the price takes one of the few

rigid values. This issued is in a similar setup studied analytically in (Filip Matějka

& Christopher A. Sims 2010).
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Discreteness occurs, although no apparent preference towards it is present in the

formulation of the model. It is optimal for the seller to pay attention to a source of

information that provides a small number of different forms of signals only. For a

decision maker in a large retail store, such a signal could be the first digit of cost of

a leading product in each category, direction of cost movements, etc. Depending on

the dynamics of input cost, prices can change frequently while attaining a few values

only. The most frequently quoted price is often, but not always, the highest price.

Furthermore, prices are likely to change when input cost changes. While markups

are not always at their optimal levels, they are concentrated around them.

Assessing nominal rigidities is crucial for understanding the effects of monetary

policy. Several studies found that aggregate price indices respond to monetary

shocks with a delay of more than a year (see, e.g., (Lawrence J. Christiano, Martin

Eichenbaum & Charles L. Evans 1999)). On the other hand, evidence on the micro

level suggests that individual prices do not stay fixed for long periods of time, (Mark

Bils & Peter J. Klenow 2002). Neither menu cost nor Calvo models, the most popular

new-Keynesian models, can simultaneously generate the observed micro flexibility

together with sufficient macro rigidity of prices.

(Martin Eichenbaum, Nir Jaimovich & Sergio Rebelo 2008) have recently carried out

a detailed study of price as well as cost movements based on a database of another

major US retailer, which sells close to 60 000 items in each of the stores.

A striking feature of most time series in these data sets is that prices change very

frequently, while they often switch back and forth between a few different values.

(Patrick J. Kehoe & Virgiliu Midrigan 2007) report that 33% of prices change every

week.

Prices tend to spend a considerable amount of time at one level and most movements

are reductions from this price, followed by a quick return to the original level. These

movements are referred to as sales. Moreover, even the sales prices tend to be

repeated, realizing the same sales prices over and and over again. Rigidity of the
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Figure 1: Time series of prices,(Eichenbaum, Jaimovich & Rebelo 2008)

values together with frequent switches between them were hard to reconcile with

any of the existing pricing models.

(Kehoe & Midrigan 2007) propose a model leading to a rigid regular price and

frequent price reductions. The model assumes that there is an adjustment cost of

changing the regular price and a relatively smaller cost of renting a sales price for

one period. While the results of the model agree well with several findings in the

data, micro-foundations of the adjustment cost structure are not easy to motivate.

Furthermore, this model also fails to generate any rigidity of price values below the

regular price.

(Eichenbaum, Jaimovich & Rebelo 2008) emphasize a new form of nominal rigidity.

They call the most quoted price during each quarter a reference price. While prices

change very often, the reference price is quite rigid, with a duration of about 1 year.

The price is at the reference price 60% of the time. The authors propose a hypothesis

that duration of the reference price is set such that a variation in markups is kept
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in a certain narrow range.

Results of the model presented in this paper correspond with the evidence quite

well. However, the most quoted price does not have any special significance here,

unlike the reference price in (Eichenbaum, Jaimovich & Rebelo 2008), or the regular

price in (Kehoe & Midrigan 2007). It is merely a feature of the overall distribution

of prices. When a distribution of input cost changes, then the distribution of prices

changes too and its most quoted price with it.

This paper also studies implications of idiosyncratic and aggregate volatility levels

for dynamics of price adjustments. Results, however, differ based on whether agents

face a strict limit on their information capacity or, perhaps more naturally, they

incur a cost from processing information and decide on the capacity. If they can

choose how much information to process, then prices in more volatile industries

respond to aggregate shocks faster. This result rests on the generality of rational

inattention, which does not assume any specific form of received signals and simply

allows agents to process those pieces of information they find the most useful.

Moreover, the model provides rationale for a steeper Philips curve and sub-optimal

economic activity in less stable aggregate conditions. Overall, the presented model

of a rationally inattentive seller can reconcile with several features of price dynamics

at the micro as well as macro level.

2 The Model

A monopolistic seller processes information about a stochastic unit input cost µ and

decides what price p to charge. A consumer can observe prices exactly.

I assume the unit input cost to be i.i.d., so the model can be solved on a period by

period basis. In each period, a unit input cost is drawn from a fixed distribution

g(µ). Due to limitations of the seller’s abilities to process information, he can not
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learn the input cost exactly. The seller selects what pieces of information about the

input cost to process and chooses what price to charge.

A consumer is assumed to have unlimited information capacity and can thus observe

the price set by the seller. Once the seller chooses a price, the consumer selects an

amount to consume, which is given by the demand function d(p). This demand

function is known by the seller.

The seller maximizes expectation of profit Π.

Π(µ, p) = d(p)(p− µ). (1)

Let popt(µ) denote the optimal price the seller would charge if he observed unit input

cost µ perfectly.

In a framework of rational inattention, agents realize the limitations of their infor-

mation processing capabilities. They are free to choose their information processing

mechanisms as long as their information capacity is not exceeded. Agents in fact

choose a form of noise in their observations, or pieces of information that are im-

portant to them. However, they are constrained with how much information they

can process.

Knowledge about a random variable is expressed by its perceived probability distri-

bution. The less dispersed the distribution is, the more precise the knowledge. In

this model, the random variable of interest is the unit input cost µ. Prior knowl-

edge about it is represented by a distribution g(µ). The seller is rational, therefore

his prior knowledge coincides with the true distribution of costs. The degree of

knowledge is then related to how concentrated the distribution is.

Posterior knowledge, represented by another distribution, is formed from the prior

knowledge through an acquisition of signals. Posterior knowledge should be more

informative and its entropy thus lower. Entropy is a measure of dispersion of dis-

tribution. A fundamental result in information theory states that if signals are

acquired via a channel of a capacity κ, then the entropy of knowledge can not on
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average decrease by more than κ. In other words, the seller can not learn too much

about the input cost. He can however choose a form of noise in the signals, i.e. what

parts of the knowledge distribution to narrow down.

The seller chooses what pieces of information about cost µ to process based on:

i)what he knew in advance, g(µ), and ii) the relative importance of various pieces

of information given by the shape of his profit function Π(µ, p).

Following a savings problem studied in (Christopher A. Sims 2006), the whole de-

cision process can be modeled by an optimization problem (2)-(6). Its solution is a

joint distribution f(µ, p) of cost and price, which is a compact way of representing

the prior, the distribution of signals together with responses to those signals.

If the seller observed µ, he would simply choose an optimal price p. However, ratio-

nally inattentive sellers need to choose how to process information. The information

processing mechanism is defined by what signals, s, can be received given a unit in-

put cost, µ - this is specified by a conditional distribution, f(s|µ). A prior, g(µ),

and the conditional distribution f(s|µ) define a joint distribution f(µ, s).

An acquired signal together with a prior distribution generate through Bayesian

updating a unique posterior. Given a posterior about input cost, the seller chooses

an optimal price, p. Since signals can be represented by prices they lead to1, the

process of information processing and responding to imperfect knowledge can be

summarized by the joint distribution f(µ, p).

Conditional distribution f(µ|p) represents a posterior about cost leading to a se-

lected price equal to p, while distribution f(p|µ) is a distribution of prices given the

realized unit input cost is µ. If the seller had an unlimited information capacity, the

conditional distribution f(p|µ) would be degenerate, it would be a delta function at

p = popt(µ).

1To economize on information capacity, it is never optimal to choose two signals leading to the

same price
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Moreover, the joint distribution allows for expressing the expected profit, which is

to be maximized.

f(µ, p) = arg max
f ′(·,·)

E[Π(µ, p)] = arg max
f ′(·,·)

∫
µ

∫
p

Π(µ, p)f ′(µ, p)dµdp, (2)

subject to ∫
p

f ′(µ, p)dp = g(µ) ∀µ (3)

f ′(µ, p) ≥ 0, ∀µ, p (4)

I(µ; p) ≤ κ. (5)

I(µ; p) is mutual information between µ and p, defined as

I(µ; p) = H(µ)−H(µ|p) =

=

∫
µ

∫
p

f ′(µ, p) log
( f ′(µ, p)

g(µ)f ′(p)

)
dµdp. (6)

(3) requires consistency with prior knowledge and (4) states non-negativity of a

probability distribution. (5) is the information constraint.

In case the seller could observe the cost µ, he would charge an optimal price p =

popt(µ). However, if his information capacity does not allow him to learn the cost

exactly2,we should expect that pricing will not be optimal. For a given µ, the

distribution of selected prices will be noisy and somehow dispersed around popt(µ).

The higher the information capacity, the tighter this distribution should be. Pricing

will also be more precise in regions where the seller’s profit function is more concave.

In such regions, processing information is relatively more valuable since the seller

loses more from suboptimal pricing.

2An agent can learn the input cost exactly even with a limited information capacity, for example

if the prior distribution consists of two points only. In such a case, the agent needs just 1 bit of

information to observe the cost.
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2.1 Solutions of the Model

The seller chooses an optimal strategy, which is a solution to (2)-(6). The demand

function is assumed to be

d(p) = p−θ, (7)

where θ is its price elasticity. Unit input cost will in all studied cases have a bounded

support, it will typically be uniformly distributed. Unfortunately, I was not able to

solve the model analytically. Thus far, no analytical solutions are available for most

setups under rational inattention. However, most properties can still be discussed

qualitatively using insights about the structure of the model.

To solve the problem numerically, I coupled an optimization language AMPL with a

solver LOQO3. The solver is based on interior point methods, which are very efficient

for large scale convex optimization problems, such as this one. The two dimensional

domain of µ and p was discretized into 70×70 cells.

If the seller had unlimited information capacity, he would know the input cost exactly

and would charge the optimal price

popt(µ) =
θ

θ − 1
µ. (8)

The joint distribution of price and cost would thus be concentrated on the line given

by (8). Since the seller can not learn the price exactly, his knowledge about the price

will be noisy. Therefore, the joint distribution will be somewhat dispersed. However,

the seller would still like to keep his pricing strategy as close to the optimal line as

possible, realizing limits to his inattention.

Let us first inspect some basic properties of the seller’s strategies under the con-

straints on his information capacity. Figure 2 shows the joint distribution f(µ, p)

plotted in two different ways. It is a solution to a setup with θ = 3, κ = 1 bit and

the unit input cost uniformly distributed over (0.8, 1.2). The dashed line represents

the optimal pricing strategy arising under perfect information. θ = 3 is a value used

3(Robert J. Vanderbei 1999)
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Figure 2: Joint distribution: θ = 3, κ = 1 bit, uniform cost

in (Kehoe & Midrigan 2007). By the seller’s choice, there are only three different

signals he acquires. Each of these signals then leads to a different choice of price.

For low input costs, the seller is the most likely to realize the posterior knowledge

on the left, that input cost is most probably somewhere between 0.8 and 0.95. This

signal leads to a choice of p = 1.28. Higher input costs are likely to generate one of

the two other signals, which lead to p = 1.43 and 1.64.

In rational inattention, agents have complete freedom in acquiring all shapes of

signals they like, as long as their information capacity is not exceeded. It assumes,

that all signals are available. A signal on a unit input cost can for example be a

noisy representation of the cost, an aggregate cost of a group of products or a first

digit of a unit input cost of the best selling product in the same category. A first

digit of another product’s input cost would provide signals similar to those in Figure

2. A digit takes a few different values only, so there would be a few different signals

only, just like in Figure 2.

A simulated realization of a time series of prices corresponding to this solution is

shown in Figure 3. The most apparent properties of solutions of the model are the

following.
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Figure 3: Simulated time series of price, θ = 3, κ = 1 bit

1.Pricing strategies are sub-optimal. Figure 2 shows that the seller almost never

charges the optimal price given by the dashed line. In case the seller processed more

information, the joint distribution would be more closely concentrated around the

dashed line of optimal pricing. Figure 4 presents a solution to a case with 2 bits of

information capacity.

Markups deviate from the optimal markup 1/(θ − 1). Standard deviations of log-

markup are 0.16 for κ = 1 and 0.08 for κ = 2. The more information is processed,

the less volatile markups are since prices are more tightly distributed around the

optimal price. Due to the sub-optimality of pricing, the seller loses some fraction of

expected profit. The higher the information capacity, the smaller the amount of the

profit is lost. The marginal value of information is however decreasing. Already 2

bits of information are sufficient to recover 99.8% of expected profit under perfect

information.

2.Posterior knowledge is imperfect. Due to limits to abilities of processing infor-

mation, the seller cannot know the input cost exactly, and thus cannot respond

optimally. According to the constraint (5), he can only acquire signals that imply
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Figure 4: Joint distribution: θ = 3, κ = 2 bits

posterior knowledge represented by a distribution that is not too concentrated.

Posterior knowledge coincides with the conditional probability distribution f(µ|p).

In Figure 2, different forms of posterior knowledge are represented by the three

clearly visible distributions along the lines of fixed prices. Figure 4 corresponds to a

solution with higher information capacity and the posterior knowledge about input

cost is therefore tighter, i.e. it is more precise.

If f(p) > 0, then the first order condition for the conditional distribution is:

f(µ|p) = eν(µ)eΠ(µ,p)/λ, (9)

where ν(µ) ∈ R is a Lagrange multiplier on the constraint (3) and λ > 0 is a multi-

plier on the information constraint (5). Since eν(µ) > 0 for all µ such that g(µ) > 0,

posterior knowledge has the same support as the whole prior distribution of input

cost. In other words, to allocate his information capacity efficiently, the seller never

acquires signals that rule out some values of input cost with certainty. As long as

the information constraint is binding, all signals overlap completely.

3.Signals and responses are noisy. Existence of noise in signals and responses is
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Figure 5: Overall distribution of price, θ = 9, κ = 1 bit

related. Noise in signals means that given a unit input cost, the seller might acquire

different signals and thus realize different posterior knowledge. Different forms of

posterior knowledge lead to different responses in prices. Noise in responses is there-

fore generated by noise in signals. Since signals overlap, they can be realized for all

different input cost.

4.Pricing is discrete. Inspecting the numerical solutions, it seems that the seller

charges only a small number of different prices. The distribution f(p) of prices is

shown in Figure 5. It is a marginal distribution of f(µ, p), which is obtained after

integrating the joint distribution over µ. The distribution of prices is supported

by three narrow regions consisting of one or two cells only. However, the nature

of numerical solutions does not allow us to infer with certainty whether the true

analytical solution is completely discrete, or just highly concentrated.

However, complete discreteness tends to arise in various setups under rational inat-

tention. This phenomenon is studied in (Matějka & Sims 2010). For example, we

show that analytically that for quadratic utility functions, a prior distribution with

a bounded support always leads to complete discreteness in responses.
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Figure 6: Bifurcation diagram of prices, θ = 3

It is worth mentioning that the discreteness arises although all functional forms

appearing in the model are completely continuous. Unfortunately, in the present

settings, we have to rely on evidence from numerical solutions. By acquiring signals

of discrete values, the seller can economize on information, which in turn allows

him to respond more accurately. The more information the seller possesses the finer

discretization occurs. The bifurcation diagram in Figure 6 shows price distributions

as a function of information capacity. When the capacity increases, new price points

emerge.

5. Pricing is asymmetric. Although the distribution of unit input costs is uniform,

the resulting distribution of prices shown in Figure 5 is not symmetric. The highest

realized price is chosen with higher probability than the lower prices.

The seller chooses to process the least amount of information in the region of high

costs and and thus charges the highest price very often to a wide range of different

unit input costs. In this region, marginal utility from processing extra information

is relatively lower.

Although I have not found an analytical solution to the model, some intuition for the
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result of asymmetric pricing can be obtained if we abstract from the full generality

of rational inattention. It is shown in Appendix A that the seller is likely to choose

more precise signals in regions where a loss factor given by (22) is higher. The

factor indicates magnitudes of losses due to imperfect knowledge. Change in profit

due to misjudging unit input cost µ by a small amount ε is approximately equal to

−L(µ)ε2/2. For the profit function p−θ(p− µ),

L(µ) = θ
( θ

θ − 1

)−θ
µ−θ−1, (10)

it is proportional to µ−θ−1. For a fixed θ and the same amount of error ε, losses are

larger for lower µ. The seller thus chooses to pay more attention to regions of low

µ. The highest price has the highest probability of being realized - discretization is

coarsest at high prices.

If the distribution of unit input cost is uniform, the most probable price is always the

highest price. The distribution of prices approximates the distribution of optimal

prices as responses to all costs. If the distribution of costs were not uniform, if it

had a concentrated area with high density in the middle and tails with lower mass

of probability, the resulting distribution of prices would also have less probable tails.

2.2 Choice of Information Amount

Thus far, we have addressed the question of attention distribution, while the total

amount of information was kept fixed. However, we could assume that agents also

choose how much information to process. Let RIκ stand for the original model

of a rationally inattentive seller with a fixed information and RIλ denote a model

with fixed unit cost of information. In RIλ, sellers find the processing somewhat

unpleasant and process more information only as long as its cost is lower than the

marginal benefits from it. Instead of maximizing Π given by (1), they maximize

expectation of

Π̃(µ, p, κ) = Π(µ, p)− λκ, (11)
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where λ is the cost of processing 1 bit of information about µ, and κ is the amount

of information the price-setter chooses to process. The RIλ problem takes the same

form as RIκ,(2)-(6), except that (2) is replaced by

f(µ, p) = arg max
f ′(·,·),κ

E[Π(µ, p)] = arg max
f ′(·,·),κ

∫
µ

∫
p

Π̃(µ, p, κ)f ′(µ, p)dµdp. (12)

For a given prior distribution, RIκ and RIλ are equivalent. Solutions can be pa-

rameterized by either of the two quantities, κ or λ. If κ is fixed, λ is a Lagrange

multiplier on the information constraint (5). For instance, If θ = 3 and input cost

is uniformly distributed in (0.8, 1.2), then κ = 1 corresponds to λ = 3 · 10−3, while

λ = 6 · 10−4 when κ = 2. In these cases, expected profit is 0.15, marginal value of

information is thus about 2% of the profit when κ = 1 and 0.4% for κ = 2.

However, given the same λ, different θ can lead to a different choice of the infor-

mation amount. In fact, the higher elasticity of demand the more information the

agent chooses to process. Therefore, the model predicts prices to be more flexible

and conveying more information in industries with higher demand elasticity. In

Hayek’s words, competitive markets convey more information.

Appendix B discusses the relation between κ and λ in a linear-quadratic problem.

In dynamic models, distribution of knowledge changes - a setup with a fixed λ can

lead to a volatile κ since different knowledge results in different value of additional

information.

3 Richer Dynamics

In this section, I will discuss an extension to the original model, (2)-(6), that will

make it truly dynamic. Previously, the input cost was i.i.d. The price setter pro-

cessed information about it and decided what price to charge. Since the input cost

was not serially correlated, the processed information had no significance to agent’s

knowledge about next period’s cost. Responses were imperfect, but they were not
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delayed. In the following model, there are two stochastic variables to which the seller

responds. Let one be an i.i.d. real unit input cost denoted by µ and the second one

be a serially correlated nominal variable A. µ is supposed to be an idiosyncratic

volatile part of the input cost specific to the seller, while A plays the role of a slowly

moving aggregate variable, e.g. a price level. I will assume that the profit function

has the following form.

Π(A, µ, p) = p−θ(p− Aµ). (13)

A is a price index shifting the distribution of the nominal input cost Aµ.

Solving fully dynamic problems under rational inattention is very demanding. A

state variable is current knowledge, which is given by a distribution. For continu-

ously distributed variables, the distribution is thus an infinitely dimensional object.

For the sake of simplicity, I will assume that the aggregate variable takes two differ-

ent values only and that it is Markov. Let the Markov process be symmetric with a

probability of transition to the other state equal to t.

The seller maximizes discounted future profits. Since µ is i.i.d., the only state

variable is the seller’s knowledge about A. A is assumed to be binary, its distribution

is determined by the probability of either one of the two states. Let the state variable

be x = Prob(AL), where AL stands for the lower value of A.

The recursive formulation of the seller’s dynamic problem, a RIκ version, is as

follows.

V (x) = max
f

∫ [
Π(A, µ, p) + βV (x′)

]
f(A, µ, p)dAdµdp, (14)

subject to

x′ = f(AL|p)(1− t) +
(

1− f(AL|p)
)
t (15)∫

f(A, µ, p)dp = g(A, µ) = g1(A)g2(µ) (16)

g1(AL) = x (17)

I(A, µ;P ) ≤ κ. (18)

f(A, µ, p) is a joint distribution summarizing the seller’s choice of signals and re-
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sponses in the given period, (15) is law of motion for knowledge, it generates a prior

on A in the following period from a posterior in the current period via a Markov

process with the transition probability t. (16) is the constraint on a prior, µ and

A are assumed to be independent. g2(µ) is fixed, g1(AL) = x,(17), which implies

g1(AH) = 1 − x. (18) is the traditional constraint on mutual information between

the source variables µ and A, and a response variable p.

For computations, I used κ = 1, θ = 3, µ uniformly distributed over (0.8, 1.2),

AL = 1, AH = 1.1, t = 0.002 and β = 0.9992. One period is supposed to be one

week. t = 0.002 implies that the probability of changing a state (a 10% shock to the

aggregate variable) at least once during a year is about 10%. The annual discount

factor is 0.96.

Figure 7 shows the results of simulations over 120 periods. There is a shock to A

in the period denoted as 1, when A switches from AL to AH . The top series in the

figure presents one realization of a price series and the second one shows a time-series

of knowledge about A in the same simulation.

The price setter processes information about Aµ and responds to it, trying to target

the optimal price θ/(θ− 1)Aµ. Although Aµ is distributed over a continuous range

in every period, prices again exhibit lots of rigidity of the values as well as in the i.i.d.

case. Given prior knowledge about A, together with its true value, the distribution of

prices as responses to realizations of µ is discrete. However, when knowledge about

A changes, the distribution of prices changes too. For the used values of parameters

(κ, t, AH , etc.), knowledge adjustment is rather abrupt. The second series in Figure

7 shows a knowledge adjustment that is quite typical for all realizations of single

simulations with these parameters. What varies from one simulation to another

is the period in which the seller finds out that A has probably switched to a new

value. The sudden change of knowledge is, however, not inherent to all solutions

under rational inattention. The next subsection discusses this point in a little more

detail.
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Figure 7: Two stochastic variables, sudden learning, t = 0.002, κ = 1
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The bottom two series in Figure 7 are prices and knowledge averaged over 10 000

runs. The average knowledge about A shifts slowly, while the average price does

actually change abruptly in period 1. The variable of interest to the seller is in

fact Aµ, not values of A and µ separately. Due to different dynamical properties of

A and µ, and a non-uniform prior on Aµ, the agent does not process information

exactly about Aµ only. Although, the seller does pay special attention to Aµ, he

also refines knowledge about other regions in the whole A× µ space. In period one,

after a positive shock to A, the seller is likely to find out that the value of Aµ is high

and thus the probability that a distribution’s top price is realized increases. Due to

the prior knowledge that A is probably at the lower state, the agent underestimates

the true value of Aµ. Expected price adjusts abruptly, but still less than optimally.

Since A stays at the higher level, the agent obtains signals on a high Aµ several

periods in a row and slowly learns that it is not due to a streak of high µ, but rather

due to a jump in A. The average price further increases towards the new optimal

level. Prices change frequently, but responses to shocks to the aggregate variable

are delayed.

3.1 Sudden or Gradual Learning and Responses of Averages

Figure 7 presents solutions for t = 0.002 and κ = 1. Since the probability of

transition from AL to AH is very low, the seller pays attention mostly to the joint

characteristics Aµ only. When he processes a signal that the input cost is high,

then it is usually attributed to a high µ. Once more such signals are processed in

succession, the agent’s prior changes a little bit. At that infrequent moment, the

seller chooses to process more information specifically about A and very quickly

finds out what its true value is, with little noise.

For different parameters, however, the knowledge dynamics can be different. If for

instance the probability t were higher, then the transition would be smoother since

the agent would be more willing to accept that A has changed.
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To avoid confusion, let us emphasize that also the abrupt change of expected price

in period 1 relies on the specific form of stochastic properties of µ and A. The seller

pays attention to sudden changes of Aµ, since µ is very volatile. Such changes are

thus at first attributed to shocks to µ rather than to A. If a rationally inatten-

tive agent tracks some joint characteristics of several variables, a dynamic path of

knowledge about a single variable depends on how unexpected a shock to the vari-

able is, while the path of responses to the same shock depends on how unexpected

is a resulting shock to the joint characteristics of interest. In such several-variable

models, knowledge about joint characteristics that determines agent’s decisions ad-

justs faster if the characteristics are more stable. On the other hand, knowledge

about more volatile single variables is more up-to-date relatively to other variables.

Decision responses and knowledge about the joint characteristics typically adjust

faster than knowledge about single variables.

Figure 8 presents solutions to a dynamic problem with µ being fixed at 1, the only

stochastic variable left is A. The seller’s information capacity is κ = 0.02. In

this case, responses to A and knowledge about A are perfectly synchronized. The

average price is fully smoothed and delayed, while single simulations display sudden

changes of knowledge and price. The seller’s knowledge does not change gradually.

It stays constant for a while and then suddenly switches at one specific moment.

This moment is, however, not given deterministically.

Such a dynamics of knowledge resembles the one assumed in the sticky-information

model, introduced in(N. Gregory Mankiw & Ricardo Reis 2002). They postulate

that agents’ information updating is staggered; and when agents update they acquire

perfect information. In each period, a firm updates with a certain probability ν, i.e.

only a fraction ν of firms update information in that period. Figure 8 shows that a

similar form of updating can emerge under rational inattention too. The observed

dynamics is driven by the discussed discreteness in responses - agents sometimes

prefer to receive a few different signals only rather than a complete spectrum of

them. Receiving one signal instead of another then results in a sudden and significant
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Figure 8: Serially correlated variable only
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change of knowledge.

A model presented in (Woodford 2008) also generates similar time-series of knowl-

edge and prices. The model assumes that agents process information to make a

binary decision only: whether to update price or not. Prior knowledge is fixed, in-

formation processed in every period between the updates is immediately forgotten.

The solutions in Figure 8 have a similar property to that of the rigid knowledge.

The agent chooses to acquire one of two different signals only. If he keeps receiv-

ing a signal that price did not change, then his prior stays virtually unchanged.

Knowledge stays pretty much constant for a while even after a shock occurs. Once

the other signal is received, both knowledge and price jump discretely. Price then

quickly stabilizes on a new level, which is again somewhat rigid. Unlike in the model

of Woodford, this behavior is not assumed, but it can emerge endogenously.

3.2 Rational Inattention vs. Signal Extraction

In the presented model, the described dynamics of shocks, knowledge and responses

rather resembles the results of Lucas’s signal extraction model, (Robert Jr. Lucas

1972). In the spirit of signal extraction, an agent would gauge Aµ through another

variable. Let us say, he could observe ξ · Aµ, where ξ is a random variable. In

case Aµ were not revealed after every period, impulse responses to a shock to A

would be similar to those in Figure 7. At first, price would respond rapidly, but not

completely since the agent would not know whether the shock came from ξ or Aµ.

Since A is very persistent, the agent would perceive the shock coming from µ rather

than from A - knowledge about A would adjust slowly, just like in Figure 7.

As noted in (Sims 2003) some implications of rational inattention and signal extrac-

tion go in the opposite directions. If Aµ was very stable, most variations in ξ · Aµ

would be attributed to a shock to ξ and responses would be very delayed. On the

other hand, in rational inattention, stable Aµ is easier to be tracked and responses

to its shocks are thus swifter. In case a stochastic variable switches between two
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states only, an agent needs 1 bit of information to track it perfectly and respond

immediately. Moreover, if the variable is mostly at a state S1 and once in a long

while it switches to a state S2, the information necessary for perfect tracking is even

lower, since the entropy of non-uniform binary distribution is lower than 1. Unlike

signal extraction, rational inattention implies that responses are closer to the op-

timal ones at times when the underlining stochastic variables of interest are more

stable.

In rational inattention, inference of µ from Aµ has a flavor of Lucas’ signal extrac-

tion, rather then inference of Aµ itself. A rationally inattentive agent processes

information about the optimal joint characteristics he chooses and then updates

knowledge about the rest.

(Mackowiak & Wiederholt 2007) also studied pricing responses to two different

stochastic variables. Their setup is partially in the sense of rational inattention.

Unlike in rational inattention, an agent in their model has to process signals about

the two variables separately, while the total amount of information capacity if fixed.

Following their approach, the agent would desire to pay more attention to shocks to

µ, and thus respond to innovations in A very slowly. Processing information purely

about µ does not convey any information about A. In their setup, price responses

to shocks to A would be as smoothed and as delayed as knowledge about A.

3.3 RIκ and RIλ: Implications for Aggregate Dynamics

A RIλ version of the dynamic model takes the form of:

V (x) = max
f,κ

∫ [
Π(A, µ, p) + βV (x′)

]
f(A, µ, p)dAdµdp− λκ, (19)

subject to (15)-(18).

Stochastic properties of the variables of interest (µ and A) influence the agent’s

choice of what pieces of information and potentially how much information to pro-
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cess. Let us vary these properties and study their implications for responses to

shocks to the aggregate variable A.

3.3.1 Idiosyncratic Volatility

Thus far, µ was uniformly distributed in (0.8, 1.2). Table 1 summarizes numerical

results for RIκ with κ = 1, θ = 3 and t = 0.002 for three different widths of the

distribution of µ: for µ fixed at 1, uniformly distributed in (0.9, 1.1) and in (0.8, 1.2).

Two characteristics of responses to a shock to A averaged over 10 000 runs are in

columns 2 and 3. “1st per. adj.” represents a portion of the average long-term adjust

ment that was realized during the first period, while “90% adjustment” denotes the

number of periods it takes the average price until 90% of the full adjustment is

realized.

µ 1st per. adj. 90% adjustment profit loss

1 100% 1 0%

(0.9,1.1) 83% 2 0.28%

(0.8,1.2) 61% 11 1.09%

Table 1: Implications of idiosyncratic volatility for average responses, κ = 1

The more volatile is the seller’s idiosyncratic part of the input cost the slower he

responds to aggregate shocks. When µ is fixed at 1, 1 bit of information is sufficient

to track innovations of the binary variable A perfectly. The column “profit loss”

presents seller’s losses in comparison with pricing under perfect information - this

quantity was evaluated with both µ and A simulated according to their stochastic

properties. As expected for RIκ, losses are higher in more volatile environments.

Results of the similar experiments for RIλ, λ = 0.003, are shown in Table 2 and in

Figure 9. Unlike RIκ, RIλ generates faster responses to aggregate shocks when µ is

more volatile. The table also presents average κ that was selected by the seller during

the simulations. Agents in RIλ choose to process more information when volatility
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Figure 9: Average price response, 3 distributions of µ, λ = 0.003

µ 1st per. adj. 90% adjustment profit loss mean κ

1 8% 25 0.08 0.0086

(0.9,1.1) 22% 17 1.34% 0.014

(0.8,1.2) 60% 12 1.34% 0.86

Table 2: Implications of idiosyncratic volatility for average responses, λ = 0.003

of input cost increases, which increases the marginal value of information. Since a

rationally inattentive agent processes optimal joint signals about A× µ, then more

total information also implies more information about A. However, faster average

responses do not always mean more precise responses - profit loss is the same for

µ ∈ (0.9, 1.1) and µ ∈ (0.8, 1.2). This is an analogy of the result for the RIλ

linear-quadratic problem in Appendix B: varied volatility of a prior influences the

choice of κ, but not the resulting imperfections in tracking. However, the loss drops

dramatically when µ is fixed at 1. Input cost becomes a binary variable, thus the

intuition derived from the linear-quadratic approximation does not apply very well.

In RIλ, the amount of processed information is not constant. It varies according

to the expected value of information given a prior. Figure 10 presents average

information amount as a function of time. Immediately after the shock occurs, a
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Figure 10: Average processed information, µ ∈ (0.9, 1.1), λ = 0.003, t = 0.02

large fraction of sellers realize there might have been a shock and they choose to

process more. Later on, average selected capacity decreases. Once the transition

period is over, the new equilibrium information capacity is actually below the initial

level - the new average input cost is higher and the marginal value of information is

thus lower.

The model of Mackowiak and Wiederholt would generate slower and less precise

responses to A if volatility of µ were increased. Total κ is fixed, while marginal

value of information devoted to µ increases and no joint signals are available. Less

information capacity is therefore devoted to A.

3.3.2 Aggregate Volatility

Aggregate volatility can be adjusted by varying the Markov parameter t, the prob-

ability of transition between the two states. Tables 3 and 4, present characteristics

of average responses for κ = 1 and λ = 0.003 for four different levels of t.

More volatile A generates faster responses to its innovations in both of the models,

RIκ and RIλ. This is due to a higher marginal value of processing new information
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t 1st per. adj. 90% adjustment profit loss

0.001 56% 18 1.08%

0.002 61% 11 1.09%

0.006 73% 7 1.13%

0.02 80% 4 1.20%

Table 3: Implications of aggregate volatility for average responses, κ = 1

t 1st per. adj. 90% adjustment profit loss mean κ

0.001 55% 19 1.34% 0.86

0.002 60% 12 1.34% 0.86

0.006 73% 5 1.35% 0.88

0.02 83% 3 1.35% 0.92

Table 4: Implications of aggregate volatility for average responses, λ = 0.003

about A if A is more likely to vary and due to the signal extraction of A from Aµ.

When volatility of A increases, shocks to Aµ are more likely to be attributed to A.

However, unlike in the Lucas’ signal extraction of the whole Aµ, profit losses are

higher when the aggregate environment is more volatile. Less stable Aµ is more

difficult to be tracked precisely.

The effect of accelerated average adjustment is slightly stronger in RIλ, since higher

volatility provides additional motive for processing more total information.

4 Confronting the Evidence

4.1 I.i.d. Input Cost

The model generates time series of prices that are appealing in various aspects. In

agreement with the data, prices change frequently and jump between a few different

values. The most quoted price is often the highest price. However, unlike in (Kehoe
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& Midrigan 2007), the highest price and the most quoted price do not have any

special significance and they do not always coincide.

Reference prices: the model generates asymmetry in pricing, with the highest price

typically being the most quoted, which is in agreement with the data. (Eichenbaum,

Jaimovich & Rebelo 2008) report that prices stay at the reference price about 60%

of the time; such a fraction is generated by the model for instance when κ = 1 and

θ = 9. If θ = 3, then the fraction is about 50%.

Distribution of markups: tFitheUnlike flexible price models, the presented model

does generate dispersion in markups. The standard deviations of markups however

vary greatly. For θ = 3, the standard deviation is between 0.04 and 0.16 if κ is

between 0.5 and 4. Median standard deviation reported in (Eichenbaum, Jaimovich

& Rebelo 2008) is 0.12. However, if the information capacity is fixed at κ = 1, the

standard deviation of log(markup) is as high as 0.7 once θ reaches 10.

State dependance: Solutions to the presented model do of course feature state de-

pendance since price changes are driven by changes in cost. (Eichenbaum, Jaimovich

& Rebelo 2008) measure the probability of changing a weekly price as a function

of percentage deviation from a hypothetical markup. Given a realized input cost,

a hypothetical markup is a markup that would be realized if price stayed constant.

tIn the model, θ = 3 and κ = 2 generate a state dependance that agrees with the

evidence quite well.

Across industries: if information capacity can be chosen, RIλ model, then sellers

process more information if elasticity of demand is higher. Higher information ca-

pacity generates more flexible prices. It is well documented that prices are more
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flexible in more competitive industries4.

4.2 Serially Correlated Input Cost

Price series on a micro level: (Eichenbaum, Jaimovich & Rebelo 2008) observe in

the data that while prices change very frequently, the value of the reference price

stays quite rigid. The presented model generates similar pricing patterns. However,

the reference price in the model does not have any special significance; it is just one

of the characteristics of the whole distribution of prices.

At times when knowledge about the aggregate variable fluctuates only a little, then

prices take values in a few very narrow regions only. Unlike in the purely i.i.d.

case, the values need not be completely rigid. Figure 7 presents responses to an

aggregate shock in an otherwise very stable aggregate environment. In this case,

knowledge about the aggregate component of cost can adjust with a long delay, but

once it does, it adjusts very swiftly. Such an environment generates rather rigid

values of prices, similar to those in (Eichenbaum, Jaimovich & Rebelo 2008), where

transitions between different distributions of prices are very rapid. See for example

the price-series of Skinner long spaghetti between weeks 50 and 60 in Figure 1.

On the other hand, Figure ?? shows a resulting series when the aggregate variable

is more volatile. After a 10% shock to the aggregate variable occurs, the formerly

almost rigid values become much more flexible. In the data, prices do tend to be

more flexible in periods of high inflation 5, but probably not as much as this model

would predict. In the model, for instance, if the aggregate variable was deterministic

with an upward trend, generated values of prices would be completely flexible.

However, it is difficult to conclude much since we do not know the true nature of

shocks to retailers. It is possible that the abrupt transitions in the data correspond

4For instance, see (Luis J. Alvarez & Ignacio Hernando 2005).
5For example, (Luis J. Alvarez, Pablo Burriel & Ignacio Hernando 2010)
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to weeks when contracts with suppliers are renegotiated. The sellers know when

this is going to happen and pay extra attention to it.

This discrepancy could potentially be solved by the introduction of the information

constraint on the consumer’s side too. It is show in (Filip Matějka 2010) that a

seller considering consumer’s limitations in processing information can under some

conditions choose to keep prices rigid. He does so to equip the consumer with better

knowledge about prices, from which the seller benefits by the consumer’s higher

consumption. Such an extension could imply that the seller would choose to modify

the whole distribution of prices quite infrequently even if the nominal variable A

was continuously increasing.

Sectoral volatility: Section 3.3.1 discusses the model’s implications of volatility of µ

on the dynamics of averages prices. (?) found evidence that prices in sectors with

more volatile idiosyncratic shocks react to aggregate shocks faster. This finding

agrees with the results of the RIλ model, Table 2, where agents can chose how much

information to process. If volatility of the idiosyncratic variable increases, sellers

decide to process more information. However, since they process joint signals about

both variables, more information is processed about the aggregate variable too.

The RIκ model, with a fixed information capacity, gives the opposite results, Table 1.

Aggregate volatility: Results presented in Tables 3 and 4 summarize the properties

of dynamics of average prices with respect to volatility of the aggregate variable.

Both models, RIκ and RIλ, generate faster responses in more volatile environments.

(?) observed that Philips curve becomes steeper in more volatile aggregate environ-

ments. The models’ results agree with this finding.

Moreover, both RIκ and RIλ generate higher losses if the aggregate variable is more

volatile, when tracking it becomes a more demanding task. The effect is weaker

33



for RIλ, losses from increased volatility are partially offset by more information

processed by the seller.

4.3 Stochastic Demand

Although the model is formulated in terms of responses to the stochastic input cost,

its results do not rest on this particular assumption. It is true that uncertainty for

instance about demand can in some cases play a more significant role than about

the input cost. However, all interesting properties of the solutions can occur even

with different sources of shocks. The price setter processes information about a

stochastic variable and targets some optimal price. This targeting is imperfect and

delayed. Discreteness arises as an artefact of economizing on information, while

the asymmetry of prices is driven by the shape of the demand curve. The profit

function has higher curvature at lower prices, and thus loses from suboptimal pricing

are potentially higher, etc.

5 Conclusion

This paper presents a model of a rationally inattentive seller responding to shocks

to a unit input cost. The model generates price series simultaneously exhibiting all

three of the following features that can be found in the data.

1. Prices change frequently.

2. Responses of prices to aggregate variables are delayed.

3. Prices move back and forth between a few rigid values.

Such behavior of prices is hard to reconcile with any of the existing models of

pricing. Menu cost and Calvo models can not in general generate very frequent
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price adjustments together with delayed responses. Moreover, no existing models

fully explain the observed rigidity of price values.

In the presented model, discrete pricing arises even if the unit input cost varies in a

continuous range. Whatever unit input cost is realized, the price takes one of only

a few values. Results of the model also agree with the evidence that reductions in

price, e.g. sales, are usually short-lasting and that the highest price in the sample

tends to be the most quoted price. Discrete and asymmetric pricing is a seller’s

optimal response to his limited information capacity.

The proposed mechanism does not attribute any special significance to any value

of price, whether it is the most quoted or the highest price. One price is merely a

single feature of the overall distribution of prices. Asymmetry of pricing towards

the highest price emerges endogenously. Once the distribution of unit input costs

changes, the distribution of prices changes too, together with the most quoted price.

Two versions of the model were discussed. One with a fixed constraint on infor-

mation capacity and the other with a fixed cost of processing a unit amount of

information. The second version is perhaps more appealing - if agents can choose

what information to process, why should not they be allowed to choose how much

to process. In the best scenario, we would construct a model with inattentive agents

processing information about all variables they need to track in their everyday lives.

When considering a restricted model with a few economic variables only, a convex

cost of information could be the most appropriate due to increasing marginal returns

of information about variables not included in the restricted model.

The costly processing of information provides the rationale for:

4. More flexible prices in industries with a higher degree of competition.

5. Faster responses to aggregate shocks in industries with more volatile idiosyn-

cratic shocks.
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In such industries, sellers choose to process more information.

Similarly to signal extraction, rational inattention provides an explanation for the

following.

6. Philips curve becomes steeper when aggregate conditions are more volatile.

However, unlike signal extraction, rational inattention can generate:

7. Higher losses from imperfect tracking when aggregate variables destabilize.

Rationally inattentive agents are not assumed to acquire signals of any specific form

- they simply process the most useful pieces of information. This is a necessary

ingredient for several implications of the model.

• Agents process different amounts of information about different levels of input

cost. Implication: discrete and asymmetric pricing.

• Agents can process signals about a joint characteristic of interest6. Implication:

faster responses to aggregate shocks in more volatile industries.

• Agents can process information about variables they find the most impor-

tant. Implication: faster responses to aggregate shocks, when the aggregate

environment is less stable.

Other models based on imperfect information processing generate solutions that

typically lack some of these features. Most of the models can be thought of as

proxies to the fully general setup of rational inattention.

Rational inattention seems to be a powerful framework to study patterns of pricing;

it provides a consistent explanation for many different features of the time series of

prices.

6Results are thus independent of a specific selection of variables in the model.
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A Approximate Losses

This section provides an informal analytical justification for some properties of nu-

merical solutions under rational inattention. Let Y be a stochastic variable, which

an agent tracks by processing information about it, and let Z a variable of agent’s

responses to Z maximizing expectation of profit Π(Y, Z). Solving a full rational

inattention problem means that the agent selects a joint distribution f(Y, Z) under

additional constraints on conveyed information and prior knowledge. The agent can

acquire signals from a fairly complicated collection. To gain further insight, I will

for now depart from the full generality of rational inattention assuming something

more specific about signals.

Let the true realized value of the source variable be y∗, the seller acquires a signal

y′ = y∗ + ε, where ε is a random error. We will concentrate on in what regions of

y the seller is likely to acquire more information, and where he would thus prefer a

smaller error in the signal. Let

z = Zopt(y) (20)

be the optimal response to y, if the agent had perfect information. Let us assume

that once the agent observes the signal y′, his response z is Zopt(y
′). Whether this is

actually optimal depends on a specific form of the noise. However, it is the optimal

response for example if the agent’s posterior knowledge is symmetric about y′ and if

profit is a quadratic function of z for a fixed y. Moreover, it is close to the optimal

response if signals are tight and concavity of profit as a function of Z does not change

very rapidly.

Let Πy∗(y
′) = Π(y∗, Zopt(y′)), its Taylor expansion about y∗ is

Πy∗(y
′) = Πy∗(y

∗) +
dΠy∗(y

′)

dy′
ε+

d2Πy∗(y
′)

dy′2
ε2/2 +O(ε3)

= Π(y∗, Zopt(y
∗)) +

[d2Zopt(y
′)

dy′2
dΠ(y∗, z)

dz

+
(dZopt(y′)

dy′

)2d2Π(y∗, z)

dz2

]
ε2/2 +O(ε3)

∣∣∣∣
y′=y∗,z=Zopt(y∗)

.
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The linear term drops out since Πy∗(y
′) attains a maximum at y′ = y∗. Similarly,

dΠ(y∗, z)/dz = 0 at the optimal response z = Zopt(y
∗). The change in profit due to

the signal imperfection thus takes the form:

∆Π = Πy∗(y
′)− Πy∗(y

∗)

=
(dZopt(y′)

dy′

)2d2Π(y∗, z)

dp2
ε2/2 +O(ε3)

∣∣∣∣
y′=y∗,z=Zout(y∗)

(21)

The leading term is quadratic with a negative coefficient, profit is a concave function

of the perceived Y = y′ with a maximum at the true value Y = y∗. If the error ε

is small, then the change in profit can be approximated by −L(y∗)ε2/2, where the

approximative loss factor L(y∗) is

L(y∗) = −
(dZopt(y∗)

dy∗

)2d2Π(y∗, z)

dz2
. (22)

The formula recognizes that loss depends on a curvature of the profit function and

also on how far away from the optimal response the realized response is. The more

sensitively responses change with values of acquired signals, the further away can a

realized z be from the optimal one.

If the seller could decide in what regions of Y to pay more attention and decrease

the noise, he would do so for such y∗ where the loss factor L(y∗) is higher.

B Linear-quadratic Case: RIκ vs. RIλ

If a utility function is linear-quadratic and noise is Gaussian, then the rational

inattention problem simplifies significantly7. Agents acquire normally distributed

posterior knowledge with a constant variance. Let Y be drawn from N(0, σ2
Y ), its

entropy is

H(Y ) =
1

2
log(2πeσ2

Y ). (23)

Information constrain H(Y )−H(Y |Z) ≤ κ takes the following form.

1

2
log
( σ2

Y

σ2
Y |Z

)
≤ κ. (24)

7See (Sims 2003) and (Mackowiak & Wiederholt 2007)
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Variance of posterior:

σ2
Y |Z = σ2

Y 2−2κ, (25)

the less an agent knows at the beginning the less he knows after he processes a given

amount of information, κ. Let the agent minimize a quadratic loss, maximize the

utility: U = −a(Y − Z)2. Its expectations then is:

E[U ] = −aσ2
Y |Z . (26)

If information capacity is fixed, RIκ,

E[U ] = −aσ2
Y 2−2κ, (27)

worse prior knowledge implies higher losses.

A Lagrange multiplier λ is a shadow cost of information,

λ =
∂E[U ]

∂κ
= 2 ln(2)aσ2

Y |Z2−2κ

= 2 ln(2)aσ2
Y 2−4κ. (28)

Higher information capacity and a more concentrated prior correspond to lower λ.

With a fixed cost of processing information, (RIλ),

E[U ] = − λ

2 ln(2)
, (29)

losses and quality of posteriors are independent of initial knowledge, unlike in RIκ.
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