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For two-country model of currency union with sticky prices the problem of model 

uncertainty is analyzed. By methods of robust control we derive robust monetary 

policy that works reasonably well even in the worst-case of model perturbations. We 

find some violation of Brainard principle and show that central bank’s optimal 

reaction to the economic shocks becomes more aggressive with an increase in its fear 

of misspecification. 
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Introduction 

A usual way of elaborating optimal monetary policy is to design it in the context 

of a particular model of the economy. However nobody knows the true and 

extremely complex structure of the economy. In attempt to capture at least some 

of the most important economic regularities by means of tractable model a certain 

degree of simplification is needed. The resulting analytical framework appears to 

be more or less stylized. Consequently, nobody can be absolutely confident about 

the predicting power of any particular model employed for the monetary policy 
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analysis. Thus, the problem of dealing with this model uncertainty or uncertainty 

about the true structure of the economy arises.  

There are two common approaches to this problem. The first one implies 

policymaker’s learning about the true structure of the economy. But this process 

requires a lot of time and possibly the second approach is more appropriate to 

tackle uncertainty quickly. This second method is a searching for the robust 

monetary policy that works reasonably well across a certain set of models or 

model specifications. According to the type of the model set and specific type of 

uncertainty the analysis can be made in different ways. 

The main question which is usually in the centre of attention in the robust 

literature concerns the comparison of robust policies and simple optimal ones, 

designed for the particular model. The seminal result called Brainard 

conservatism assumes that robust policy is less aggressive in the reaction to the 

economic shocks than a policy, constructed for a single model without taking into 

account model uncertainty.  

There are many examples of such analysis for the USA and for the euro area and 

some authors agree with this general finding while the others do not. All the 

models used in such analysis in the application to the euro area represent the area-

wide models which operate with aggregated data. But it seems to be not the best 

approach, as a euro area represents a set of interacting heterogeneous countries. 

So in our analysis we adopt for this problem two-country micro-founded model of 

currency area. We derive a micro-founded welfare criterion on which a policy 

evaluation is based. It is shown that terms of trade between these regions matter 

for the population welfare and so using a one-country model for analysis of such 

constructions as monetary union is unjustified. 
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Then we calibrate this model for the European Union taking into account the 

differences between regions.  

After that we construct a robust to model uncertainty monetary policy under 

commitment. This construction is based on the robust control methodology. 

We illustrate how the robust control techniques initiated by Hansen, Sargent 

(2001) can be applied for multi-country models with rational expectations. We 

show, contrary to Bihan (2002), Zacovic, Wieland, Rustem (2005), that the main 

characteristics of robust policy and economic outcome depends crucially on the 

particular parameter – a willingness of the central bank to construct a robust 

policy or a fear of model misspecification. 

To choose a proper extent of model misspecification we adopt an error detection 

probability approach firstly initiated by Hansen, Sargent. 

The rest of the paper is organized as follows: Chapter 1 outlines existing literature 

on the robust questions. The two-country model is presented in Chapter 2 where 

the central bank’s micro-founded loss function is also derived. In Chapter 3 we 

apply robust control techniques for this model and derive the characteristics of the 

robust policy. The last section concludes and outlines the possible directions for 

the future research. 
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Chapter 1. Literature  

1.1 Types of uncertainty  

The notion of uncertainty can be referred to some empiric variables or to the 

model structure as a whole. To clearly understand the application area of robust 

theory accurate distinction of different sources of uncertainty is needed. Knight 

(1921) contrasted risk with uncertainty. Risk refers to the processes which have 

known distributions, while uncertainty arises from unknown factors and processes 

or from the processes which hardly can be described by statistic terms. Speaking 

about empiric variables knightian notion of risk corresponds to the aleatory or 

statistical uncertainty, while the term ‘uncertainty’ refers to the epistemic or 

systemic uncertainty.  

Uncertainty about the model structure or model uncertainty can arise both from 

aleatory (possible estimation errors, par example) and epistemic sources 

(unknown factors or interactions of economic variables). In both cases robust 

techniques can be implemented, but the practical method differs with the 

particular type of model uncertainty. All possible cases of model uncertainty can 

be roughly divided into two broad classes. 

The first class can be named ‘more or less parametric’ uncertainty. In this case the 

overall structure of the model is taken as true but the values of specific parameters 

are uncertain. This very class can be divided into 3 types according to the extent 

to which model uncertainty is counted as a parametric (Tetlow, Muehlen 2004): 

• Bayesian uncertainty, the most parametric case. Under this type of 

model uncertainty parameters of the model are assumed to have known 

distributions. 
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• Structured Knightian uncertainty. In this case uncertainty is 

assumed to be located in some particular parameters of the model. The true values 

of these parameters are supposed to lie between the known minimum and 

maximum possible levels.  

• Unstructured Knightian uncertainty, the less parametric variant. 

Under such uncertainty neither its location nor its nature are specified. This case 

can be analyzed as a game played by the central banker against a “malevolent 

nature” (Onatski, Stock 2000).  

The second class takes into account much more severe extent of uncertainty than 

the first one – so called specification uncertainty. Not only the precise parameters’ 

values but even core structural model characteristics are treated as unknown. In 

the macroeconomic models such core characteristics can represent a character of 

expectations (forward- or backward-looking), adherence to microfoundations or, 

par example, lag structure. In all cases this class of uncertainty admits the true 

economy to be considerably different from the given model, and not only by the 

value of some parameters. 

 

1.2 Methods of analysis  

Like possible kinds of model uncertainty, all analyzing robust techniques can also 

be divided in two classes. The first one refers to the fist class of uncertainty – the 

parametric one and implies that the policymaker or economist has only one 

reference model. The real structure of the economy may differ from this model 

and the policymaker believes that the true economy lies in the ‘specified 

neighborhood’ of a baseline model (Brainard, 1967). This neighborhood includes 
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all possible deviations from the reference framework and one can interpret this 

approach as analysis of a set of similar but not identical models (Giannoni, 2002). 

The second approach to the analysis implies a much more serious extent of 

uncertainty – specification uncertainty. In this case such important characteristics 

as a kind of expectations (backward- or forward-looking or even a hybrid case) or 

lag structure of variables are taken as uncertain. Thus the risk of specification 

error is so high that the use of a single reference model is not appropriate. 

Moreover, monetary policy rules based only on a single model may cause very 

bad performance if the true economy differs from the baseline model by character 

of expectations implemented (Levin, Williams 2003). That’s why the followers of 

this approach propose the analysis of a set of distinct or ‘competing’ models with 

very different core characteristics. 

 

1.3 Choice criteria 

Despite of general approach chosen we need to have criteria according to which 

one can evaluate the robustness of monetary policy rule (a rule which works 

reasonably well in all models from the model set (either similar or competing 

models)).  

The fist possible way is model or Bayesian averaging (Brock, Durlauf, West 

(2004)) when the parameters of final rule minimize a weighted sum of 

policymaker’s losses under distinct models from the using set. The weights used 

are posterior probabilities of each model to be the true one. There are several 

problems concerning this method. The first one is the difficulty with computing 

these probabilities. The second concerns the fact that large difficult models fit 

data better than the smaller ones only due to the inclusion of large set of variables, 
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not because of their ‘better’ quality. But in this case the weights of these large 

models will be unreasonably high in comparison with simpler constructions. 

Both problems concerned here are not a question if equal weights are chosen as in 

Levin, Williams (2003). This method differs from the Bayesian averaging because 

model weights do not correspond to posterior probabilities. 

Minimax criterion implies minimization of policymaker’s losses in the worst 

variant from the set of possible outcomes. This choice allows expecting a 

reasonably well performance of this robust rule in all possible cases.  

Some authors try to combine advantages of different choice variants and some 

hybrid criteria arise. Kuester, Wieland (2008) utilizes an ambiguity aversion 

principle when model weights are attached like in the Bayesian method but to the 

worst possible outcomes extra weights are given. 

Performance maximization criterion is very similar to the min-max one. In this 

case the problem is represented as a zero-sum game between a policymaker and a 

‘malevolent nature’, which is aimed to maximize the losses (Giannoni, 2002).  

Under stability maximization criterion (for example in Onatski and Stock (2002)) 

policy is chosen to maximize a set of models, which are stable under such a rule. 

Finally, fault tolerance approach initiated by Levin, Williams (2003) implies 

firstly constructing the optimal policy rule for each model from the using set. 

Then a researcher assesses a model’s fault tolerance by analyzing deviations of 

one of the policy parameters from its optimal value, holding the other parameters 

fixed. If the loss function is relatively insensitive to changes in all parameters of 

the policy rule, the model is considered as a fault tolerant one. Then zones of 

mutual tolerance are computed. For these zones a “compromise” policy can be 
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constructed. And this policy is considered as a robust monetary policy under 

model uncertainty. 

 

1.4 General results 

The core characteristics of obtained robust rules crucially depend on the choice 

criteria applied. Many authors try to compare these different rules in order to 

recognize some regularity in their performance. The first result was so called 

‘Brainard’s principle’ according to which a policy under uncertainty must be less 

aggressive than a certain one. This principle is confirmed by some authors (Bihan 

(2002), Zacovic, Wieland, Rustem (2005), etc) and rejected by others (Onatski, 

Stock (2002), Leitemo and Söderström (2008)), who have found a more 

aggressive than a certain policy robust rules. Generally speaking model averaging 

techniques lead to comparatively moderate policy reaction while min-max 

approach implies more aggressive monetary rules (Zacovic, Wieland, Rustem, 

2005). But even this very cautious statement is not always the truth. Leitemo and 

Söderström (2005) state that the extent of policy reaction depends on the shock 

type, the source of uncertainty and even on the willingness of policymaker to 

implement robust policy (his robust preferences). 

 

1.5 Robust analysis for euro area 

The extent of model uncertainty for euro area and consequently the pertinence of 

robust techniques are very high. There are several reasons for it. First of all in 

comparison with the USA models, constructing models of euro area is relatively 

new and unelaborated domain. Secondly the true interactions between European 

authorities are really complex. While monetary policy is decided uniquely by the 
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European Central Bank the fiscal measures are undertaken in each country 

independently which in turn provoke additional questions when constructing 

monetary policy. Monetary authority cannot monitor entirely the fiscal motives 

and measures, so that is an additional source of uncertainty. Thirdly the question 

of data aggregation arises. There is also a more normative problem of necessary 

central bank’s reactions on the country specific shocks or what is the true welfare 

criterion for these models.  

As the first ECB’s president Willem Duisenberg once said, “this is not a trivial 

task given the large uncertainties that we are facing due to the establishment of a 

multi-country monetary union. Not only can we expect some of the historical 

relationships to change due to this shift in regime, but also, in many cases, there 

is a lack of comparable and cross-country data series that can be used to estimate 

such relationships.”  

So, many authors deal with the problem of model uncertainty relative to the euro 

area. Altavilla, Ciccarelli (2008) shows on the models of euro area that model 

uncertainty really represents a danger for the monetary policy and model 

averaging can be a useful tool for the policy conduct.  

The whole domain of analysis concerns monetary policy under inflation 

uncertainty. Ungueloni, Coenen, Smets (2003), Jaaskela (2005), Adalid, Coenen, 

McAdam, Siviero (2005) and Coenen (2007) found that under high degree of 

inflation the optimal monetary policy rules are more aggressive and moreover, 

such rules are more robust. Some of these articles are based on the sole baseline 

model while others examine different sets of competing frameworks. The main 

general recommendation for the monetary authority is to assume higher extent of 

inflation persistence when constructing monetary policy. So, optimal robust 

policy should imply relatively high degree of inertia.  
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The similar result is obtained by Bihan, Sahuc (2002) who examine parameter 

uncertainty and find that for the model of euro area ‘Brainard’ principle holds. 

Similar result is obtained by Zcovic, Wieland, Rustem (2005) in spite of min-max 

criterion applied. 

Kuester, Wieland (2008) search for the robust policy using a hybrid approach 

which combines Bayesian and min-max features. The weights attached to the 

competitive euro models are computed according to the Bayesian principle but the 

extra weights are added to the worst possible variants. 

All the papers concerning robust policy characteristics in the euro zone deal with 

area-wide models. But Benigno (2004) showed that terms of trade between 

different countries also matter and thus must be in the optimal policy construction. 

In our paper we illustrate a robust policy construction for the two-country model 

of monetary union. 
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Chapter 2. Reference model of monetary union 

  

In this paper we assume a unique central bank that decides for the monetary 

policy in a two-country currency union. This bank has in its possession a single 

micro-founded model with sticky prices that is taken as reference but there are 

some doubts concerning its quality, thus the monetary authority tackles with a 

model uncertainty problem. So, the central bank needs to construct not simply an 

optimal policy for this model but a robust policy for the possible misspecification.  

Possible model distortions are introduced as choices of some malevolent agent 

which aims at the central bank’s losses maximization. So the main task is a 

resolution of min-max problem by means of robust control techniques initiated by 

Hansen, Sargent (2001). 

 

In this paper we apply the two-country optimizing model with sticky prices 

described in Benigno (2004). The difference of this paper from the base model of 

Benigno is the choice of α - parameter of price inertia. While Benigno doesn’t 

specify its value for the future calculations, in our analysis we need to have some 

specific numbers. So on a base of European data in divide countries of EMU in 

two regions according to their price rigidity and compute the parameter α for each 

of regions. Then these values are used to derive the robust monetary policy for the 

union. 

The whole derivation of the final equations is presented in the Appendix A and 

here we introduce only the main features of the model.  

The currency union consists of two countries or regions (H and F).  The 

population of this union represents a unit-continuum where agents from [0, n) 

interval belong to the H-country and the rest [n, 1] are F-country’s inhabitants.  
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Each country has an independent local government, which determines fiscal 

policy in a corresponding region. Monetary measures are defined by a single 

central bank. 

Each agent is simultaneously producer of a single differentiated good and 

consumer of all good types manufactured in the union. So there is an inter-

regional trade while migration of labor force is absent. Number of goods, 

produced in the H  region, equals to n , so this parameter represents also an 

economic size of this region or the share of union GDP produced in the region H . 

 

2.1 Consumer problem   
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where [ ]0,1j ∈ is agent’s index, i  - country’s index ( H or F ). β  - intertemporal 

discount rate. Utility function of agent j at period s positively depends on his 

consumption j

sC , his stock of real money balances 
j

s

i

s

M

P
  (this can be interpreted 

as some liquidity preferences of agents) and negatively on the 'j s  supply of a 

differentiated good ( j

sy ), as j

sy  is a function of labor hours and a term ( )V •  

represents labor disutility. 

i

sε is a country-specific liquidity preference shock, while i

sz  represents a 

productivity shock in country i . 



14 

 

t t kE X +  stands for the expected in the period t  value of variable X in the period 

t k+  ; tE  is an operator of rational expectations. 

Every agent consumes home and foreign good bundles, which are substitutes. So 

index j

tC is a composition of consumption indices for home and foreign goods: 

( ) ( )
( )

1

1
1

n n
j j

H Fj

nn

C C
С

n n

−

−
=

−
          (3) 

Within each bundle distinct products are substitutes with an elasticity of 

substitution
 
σ . Indices of j  agent’s consumption of home and foreign goods are 

represented by the following relations: 

( )

1 1
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where ( )j

tc h  is a quantity of a good [0, )h n∈  from the H country consumed by 

the j  agent and ( )j

tc f  is the same for the good [ ,1]f n∈ produced in the 

F region. 

Corresponding price indices are: 

Region i ’s price index: ( ) ( )
1n n

i i i

H F
P P P

−

≡
 

We also introduce terms of trade in the following way: 

F

t
t H

t

P
T

P
=

. 
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Price indices of H and F bundles sold on the i  region’s 

market:

( )
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where ( )i
p h is a price of a good h sold in the region i , the same is assumed for 

the good f . Under assumption of zero transaction costs every good j  must be 

sold at equal prices in both regions, or ( ) ( )H F
p j p j j= ∀ . 

Consumer’s budget constraint (2) includes: 

,j i

tB  the real value at time t  of the agent j ’s portfolio of contingent 

securities issued in region i  and denominated in units of the 

consumption-based price index with one-period maturity 

i

tq  the vector of the security prices 

j

tB  the agent j ’s holding of the nominal one-period non-contingent 

bond denominated in the union currency 

tR  the nominal interest rate, monetary authority’s instrument 

iτ  a regional proportional tax on nominal income 

,j i

tQ  nominal lump-sum transfers from the fiscal authority of region i  

to the agent j  

 

  

 

2.2 Fiscal policy 

Fiscal policies are determined by the local governments in each country 

separately.  Each government collects taxes iτ  , determines transfers ,j i

tQ  and 
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purchases only products produced in its own country. We don’t deal with the 

problem of fiscal policy determination, so we don’t solve any programs for the 

transfers or taxes. We only take these values as given under assumption that the 

intertemporal budget constraint is held: 

( )0

0

0

1

i i i i

t t t

t
t

s

s

Y Q G
E
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=

− −
=

+
∑
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So, the whole sums of government expenditures are given by H

tG and 

F

tG respectively. 

 

It should be noted that we assume a central bank which takes the fiscal measures 

as given and autonomous and so there is no space for the fiscal-monetary 

interactions and even for the optimal construction of fiscal policy. But one can 

incorporate an additional assumptions concerning the fiscal policy and even the 

relations between fiscal and monetary authorities interactions to expand an 

analysis to the optimal construction of fiscal measures or taking into account 

game aspects of policy determination. For example, the similar analysis can be 

made for the model of Beetsma, Jensen (2005), where policy interactions can be 

taken into account. 

2.3 Total demand 

The total demand for each good is a sum of all private agents’ demands and the 

demand of the corresponding government: 
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Or, naming a union-wide index of consumption 
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Or on the region level: 
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2.4 Firms 

 

Producers in the model are monopolists on their products’ markets. They set 

prices according to the Calvo (1983). Each seller faces a probability ( )1 α−  of 

adjusting his price.  

This type of nominal rigidity implies that dynamics of price level in every country 

i can de represented by the following link: 

( ) ( )
11 1

, , 1 1J J

J t J t tP P p i
σσ σα α

−− −
−= + − %       (10)

  

So, the term α can be interpreted as an extent of nominal rigidity in the 

corresponding region. With a help of this parameter heterogeneity between 

regions can be introduced into analysis (like in Brissimis, Skotida, 2008).  
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2.5 Deterministic steady state 

Unfortunately, this model cannot be solved in the closed-form. Consequently, the 

analysis is made in the terms of deviations from the deterministic equilibrium. 

Deterministic steady state without any shocks and zero inflation rate is taken as a 

base for the analysis. In the following analysis a notation X corresponds to the 

value of variable X in the deterministic steady state. So we assume that 

0G zε π= = = =  and 

C const

T const

Y const

=

=

=

 

We simplify the future analysis restricting our attention only to the case of equal 

tax rates 

H Fτ τ=
 and 

1T =
and 

F H
Y Y C= =

 

 

2.6 Equilibrium with sticky prices 

In the following analysis only equilibria which are close to the deterministic case 

described earlier are discussed. So the solution can be made in terms of small 

fluctuations from the deterministic case and an appropriate log-linearization of the 

model is usually conducted. 

In the log-linearized equilibrium conditions by 
tX%  we denote the deviation of 

logarithmic of variable X from the steady state when prices are flexible, while ˆ
t

X  

is the same deviation under sticky prices. In other words 

( . )
ln

( . )ˆ ln

X fl prices
X

X

X st prices
X

X

≡

≡

%

 

Differences between these two deviations are named by small letters: 
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ˆ
t t t

x X X= − %
 

In some cases it is useful to determine a union-wide variable
WX , which represents 

a weighted average of specific countries values: ( )1W H F
X nX n X= + −

, or a 

relative variable, which is simply the difference between some values for different 

countries: 
R F HX X X≡ −

. 

So, the law of motion of the economy is presented by the following equations: 
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The first three equations determine the relations between consumption, 

government spending, output gap, expected future inflation and the value of 

nominal interest rate. To simplify future calculations we assume that a fiscal 

policy is autonomous from any monetary decisions and is treated as known with 

certainty, so 
1 1

i i

t t tg E g+ += . In this case we can rearrange equations (11-13) into 

(17): 
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1 1

1 ˆW W W

t t t t tE y y R E π
ρ

+ +
 = + − 

       (17) 

This equation is a usual form of IS-curve for the hole currency area, which 

determines an output gap, which depends positively on its future expected value, 

expected future inflation and negatively – on the nominal interest rate. 

Equations (15-16) describe supply side of the union economy and stand for the 

New Keynesian Phillips curves. From these equations inflation rates in the union 

regions are determined by the union-wide output gap, expectations of future 

inflation and the union terms of trade. Usually inside terms of trade are omitted 

from such type of analysis, based on the union-wide models, so the optimal policy 

is constructed for the aggregate levels of inflation and output. But from the 

equations (15-16) is clear that taking into account trade flows between regions can 

be important for policy constructing. For this very purpose we offer a more-than-

one-country model for analyzing robustness characteristics.  

Equation (14) goes explicitly from the definition of terms of trade and represents a 

dynamic of this variable determined by its past value and the current inflation 

rates in both countries.  

So the central bank’s task has to set a nominal rate minimizing its welfare 

function subject to the equations (14-17). Thus, in the model there are 4 forward-

looking variables ( tT , ,H F W

t t tyπ π ) and one policy control variable ( tR
). 

 

2.7 Welfare criterion 

We assume that central bank is benevolent and tries to maximize social welfare W 

given by 0

0

t

t

t

W E wβ
+∞

−

 
=  

 
∑  - an expected weighted sum of all future values of 

average utility in the union ( ) ( )( )
1

0
, i

t t t t
w U C V y j z dj≡ − ∫ .  
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The second-order approximation of the welfare function is based on the Beetsma 

(2005) and gives the following form of welfare criterion (see Appendix for 

details): 

0

0

t

t

t

W E Lβ
+∞

−

 
= −  

 
∑ , where one period loss is given by 

( ) ( ) ( ) ( )
2 2 22 3ˆ1 . .W H F

t t t t H t F t
L y n n T T t i p oγ π γ π ε  = Λ + − Γ − + + + +   

% (18) 

Where t.i.p. stands for the terms independent from policy and the last part of this 

relation 
3

ε includes all parameters of more-than-second order of approximation 

and
( )

1/

/ 1 /H F

C Cn k n k

σ
Λ =

+ −
       (19) 

( )
( ) ( )
1 /

( / 1 / )H F

C Cn k n k

η σ

ρ η

+
Γ =

+ − +
      (20)

 

 

( )
/

/ 1 /

H

C
H H F

C C

n k

n k n k
γ =

+ −
       (21) 

( )
( )

1 /

/ 1 /

F

C

F H F

C C

n k

n k n k
γ

−
=

+ −
       (22)

 

  

We can see that in this model the loss function tL  has a usual quadratic form. But 

contrary to the seminal representation where the loss value is defined by the 

output gap and inflation rates, terms of trade are also present in this function. It 

can be explained by the reference model structure, as the Phillips curves structure 

includes trade between regions and takes into account not only a currency area as 

a whole but also relationships within a union. 

 

2.8 Calibration 

In our calibration we partly follow Benigno (2004). Thus we chose a value of 

elasticity of producing differentiated goods η equal to 0.67. Parameter of 
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intertemporal substitution β  equals to 0.99. The degree of monopolistic 

competition σ  is taken to be equal to 7.66. Risk-aversion coefficient ρ  is 

assumed to be 1/6. 

Moreover, it is assumed that the shock 
tT%  follows the auto-regressive process of 

the kind 
10.95t t tT T ε−= +% % , where the term 

tε stands for the white-noise process 

with variance 0.0086. 

The main difficulty concerns the choice of price inertia parameter
iα . In this 

section we don’t follow Begnino (2004) who allows these parameters to vary 

across a wide range of possible values. In contrast, our choice of these values is 

based on the estimations of by Vermeulen at al (2007). 

 

Table 1 Frequency of price changes and country weights in Euro GDP (%) 

 (2) (3) 

 

Belgium 0.24 4.0 

France 0.25 22.3 

Germany 0.22 34.3 

Italy 0.15 17.5 

Portugal 0.23 1.5 

Spain 0.21 8.5 

Euro area 0.22  

 

Note: 

(2): Frequency of price changes ( )1 α− Source: Vermeulen at al (2007) 

(3): Country weight in Euro GDP (%) 
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We take a frequency of price changes as a proxy for the probability to change a 

price ( )1 α− . 

We divide countries in two groups according to the following scheme: if a 

frequency of price changes is lower or equal to 0.22 (average frequency for the 

union), the country belongs to the H region. If this frequency is higher than 0.22, 

the country is a part of F  region. Thus for the countries with available data region 

H  consists of Germany, Spain and Italy, while region F  consists of France, 

Belgium and Portugal.  

According to the Table 1 H region produces around 70% of union output, so we 

calibrate the region size to the 0.7.  According to the corresponding weights we 

assume that an average frequency of price change in the region H  equals to 0.17, 

while the same ratio for the region F  comes to 0.23. 

These values correspond to the model parameters 0.83
Hα =  and 0.77

Fα =   

Now we compute the corresponding weights in the welfare function: 

0.0058Λ =
 

0.0024Γ =
 

0.82

1 0.18

H

F H

γ

γ γ

=

= − =
 

So, we can see that the weight attached to the stickier region ( H ) in the loss 

function is higher than a weight of a more flexible one which corresponds to the 

main findings of papers studying questions of nominal inertia in the models of 

euro-area (see, for example, Adalid, Coenen, McAdam, Siviero (2005)). 

2.9 Central bank optimization problem 

According to the made assumptions and the calibration from the previous section 

we can compute values of the main parameters of the model. So, the central 

bank’s program can be rewritten as: 
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( ) ( )

0

0

2 2 22

max

ˆ0.0058 0.0024 0.82 0.18

t

t

t

W H F

t t t t t t

E L

L y T T

β

π π

+∞

−

 
 
 

  = + − + +   

∑

%

  (23)

 

 

( )
( )

1 1

1

1

1 1

1

6

ˆ0.03 0.005 0.99

ˆ. . 0.014 0.01 0.99

ˆ ˆ

0.95

W W W

t t t t t

H W H

t t t t t t

F W F

t t t t t t

F H

t t t t t t t

t t t

E y y R E

T T y E

s t T T y E

T T T T e

e e

π

π π

π π

π π

ε

+ +

+

+

− −

−

  = + − 
 = − + +



= − − + +


− = − + − +


= +


%

%

% %

 

 

This specification represents the problem of search for the optimal monetary 

policy on the base of one reference model. From here is seen that the main 

concern of the central bank is inflation in the region with the highest price 

stickiness.  

In the following sections we discuss a policy of central bank which takes this 

model as reference one but fears that reality can be rather different from this base 

framework. In the next section we state the program of robust policy construction 

and then we find parameters of the monetary policy under model uncertainty. 

2.10 State space form of the model 

For the convenience of further analysis the program (23) can be rewritten in the 

usual state space form. 

For this we firstly expand the low of motion of terms of trade to the period 1t +  

and take the rational expectation: 

( )

1 1 1 1 1

1 1 1 1

ˆ ˆ 0.95

ˆ ˆ 0.95

F H

t t t t t t t

F H

t t t t t t t t t t

T T T T e

E T T T T E E e

π π

π π

+ + + + +

+ + + +

− = − + − +

− = − + − +

% %

% %

     (24) 

From this, using (14), we obtain:
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( ) ( )
( )

( )

1 1
ˆ ˆ ˆ1.01 1.01*0.014 1.01*0.01

ˆ1.01 1.01*0.03 1.01*0.005 0.95

ˆ1.044 1.01 1.01 0.01515 0.95

F W

t t t t t t t t t

H W

t t t t t

F H W

t t t t t

E T T T T T T y

T T y e

T T y e

π

π

π π

+ +− = − + + − −

− + − + +

= − + − − +

% % %

%

%

 

(25) 

From other equations of (23) we obtain expressions for the all expectations of 

forward-looking variables:

 
( )
( )

( )

1

1

1

ˆ0.012 1.04 4.24 1.82 6

ˆ0.003 0.005 1.01

ˆ0.014 0.0098 1.01

W W H F

t t t t t t

H W H

t t t t t

F W F

t t t t t

E y T T y R

E T T y

E T T y

π π

π π

π π

+

+

+

= − − + − − +

= − − − +

= − − +

%

%

%

   (26) 

So the state space form of our model is the following: 

( ) ( )
( )
( )

( )

1 1

1 1

1

1

1

0.95

ˆ ˆ1.044 0.01515 1.01 1.01 0.95

ˆ0.012 1.04 4.24 1.82 6

ˆ0.003 0.005 1.01

ˆ0.014 0.0098 1.01

t t t

W H F

t t t t t t t t

W W H F

t t t t t t

H W H

t t t t t

F W F

t t t t t

e e

E T T T T y e

E y T T y R

E T T y

E T T y

ε

π π

π π

π π

π π

+ +

+ +

+

+

+

= +

− = − − − + +

= − − + − − +

= − − − +

= − − +

% %

%

%

%

 (27) 

Or in the brief form: 

1

1

1

t t

t

t t t

e e
A BR C

E z z
ε+

+

+

   
= + +   

   
      (28) 

Where 

ˆ
t t

W

t

t H

t

F

t

T T

y
z

π

π

 −
 
 =
 
 
  

%

 - a vector of forward-looking variables, 1t tE z +  is an expected 

in the period t future value of vector z .  A  is matrix of size 5 5×  of 

corresponding coefficients from (27). 

0

0

1

0

0

B

 
 
 
 =
 
 
  

 and 

1

0

0

0

0

C

 
 
 
 =
 
 
  

, showing that only a 

predetermined variable te  is allowed to be affected be shocks. 
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Minimizing loss function can be also rewritten in the following form: 

0

0

( ' )t

t t

t

E x Qxβ
∞

=
∑         (29) 

where t

t

t

e
x

z

 
=  
 

 and Qis matrix of size 5 5× : 

( )
0 0 0 0 0

0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 1

H

H

n n

Q

γ

γ

 
 − Γ 
 = Λ
 
 
 − 

     (30) 

So, the problem (53) can be rewritten as: 

0

0

1

1

1

min ( ' )

. .

t

t t
R

t

t t

t

t t t

E x Qx

e e
s t A BR C

E z z

β

ε

∞

=

+

+

+

   
= + +   

   

∑
      (31) 
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Chapter 3. Robust control specification 

3.1 Model uncertainty specification 

In modeling the robust program we implement a Hansen-Sargent’s approach 

which is also called robust control. 

We assume that the central bank has (57) as a reference model describing the 

economy. But at the same time this monetary authority fears that this reference 

construction doesn’t correspond to the real state of nature properly – there is a risk 

of misspecification. In other words some perturbations of modeled economy from 

the real one are allowed. The possible sources of these perturbations are some 

unknown variables or processes.  

To account this possible misspecification monetary authority analyses only a class 

of alternative models, which cannot be distinguished from the reference one with 

help of statistical methods. In other words a set of possible perturbations is limited 

- it includes only such perturbations, which with some fixed probability will not 

be discovered. The reason to impose this restriction on the possible 

misspecification is quite clear – for great perturbations, when the real economy 

differs considerably from the reference one, there is no any reason to take any 

decision on the base of this concrete model and adaptation of the model to reality 

is needed.  

So the task for the central bank is to construct not an optimal for this model policy 

but a policy, which performs reasonably well even if there is any perturbation. For 

this purpose a min-max criterion is applied – a robust policy is such one that 

produces the smallest losses in the case of the worst model perturbation.  

For this worst-case criterion we can suppose that perturbations from the reference 

model take the form of some additional shocks t sυ + which are added to the 
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standard t sε +  in the model (57) and are induced by so called ‘malevolent nature’ 

or ‘evil agent’, which tries to maximize losses of the central bank. So the robust 

program can be represented by simultaneous two-agents’ game, where the evil 

agents chooses a perturbation from the reference model 
t sυ +  

, the central bank 

decides the values of its instrument – interest rate. The set of possible 

perturbations is modeled by the restriction on the evil agent’s measures t sυ + . 

In general there are three possibilities for the central bank to interact with private 

agents who form expectations in the economy: 

1) Commitment to the optimal policy 

2) Commitment to some simple policy rule (for example, seminal Taylor 

rule) 

3) Discretion 

Here we assume commitment case. In this situation several assumptions 

concerning the private perceptions of the possible misspecification can be made: 

1) Population has the same fear of misspecification as the central bank 

2) Population is more cautious than monetary authority 

3) Population is more careless 

In our analysis we consider the first simplest case, when population and central 

bank have the same reference model and the same ideas concerning possible 

misspecifications. In the rest two cases the population’s reference model and its 

set of model deviations should be specified. 

Moreover, we need decide if the evil agent commits or not. Following Hansen, 

Sargent we analyze a case when both optimizing agent commit. The main reason 

for this assumption is the fact that our malevolent agent is only a metaphor used to 

construct and solve the min-max problem. The central bank under uncertainty 
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derives its policy as if this evil nature existed. That’s why we suppose that evil 

agent arrives and solves its program only when the central bank optimizes.  

3.2. Constraint robust control problem 

 

As we’ve already discussed in the previous section, there is some restriction on 

the evil agent’s measures. We assume the following intertemporal constraint of 

the malevolent nature: 

0 1 1

0

't

t t

t

E β υ υ η
∞

+ +
=

≤∑         (32) 

where 
tυ is a vector of disturbances initiated by the malevolent nature in the 

economy. And η is a possible total extent of model misspecification. In other 

words, (32) represents the allowed set of perturbations discussed earlier. If we 

imagine all possible perturbed models as a cloud around the reference one and η  

is its radius.  

This representation of possible model set corresponds to the constraint robust 

control problem of the central bank in the following form: 

( )

0

0

1

1 1

1

0 1 1

0

min max ( ' )

. .

'

t

t t
R

t

t t

t t

t t t

t

t t

t

E x Qx

e e
s t A BR C

E z z

E

υ
β

ε υ

β υ υ η

∞

=

+

+ +

+

∞

+ +
=

   
= + + +   

   

≤

∑

∑

     (33) 

Size of possible perturbations, η  is defined by the central bank’s fear of 

misspecification: higher fear allows higher possibilities of the malevolent agent 

and bigger deviations of the real economy from the reference one and is reflected 

by higher η  in (32). Higher fear of misspecification at the same time stands for 

higher preferences for the robustness. 
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For example, if we assume that the central bank has no any fear of 

misspecification or it has no preferences for robustness, 0η = , and we obtain the 

program equivalent to (31). 

Notice that we analyze policy decisions for the moment t and evil actions for the 

moment 1t + . This means that the value of this strategic shock is known at the 

time t . (Alternative assumption supposes that the evil agents’ actions are not 

known at the previous moment or are hidden by the stochastic errors of this 

period). 

For a given law of motion of economy the total welfare depends only on the 

policymaker’s and malevolent agent’s steps and the economic shocks. So we 

rewrite problem (33) in the following form: 

0

1

0

min max ( , )

( )

t

t
R

t

t

t

t

L R

D

υ
β υ

β υ η

∞

=

∞

+
=

≤

∑

∑

         

(34) 

where R is a sequence of central bank’s decisions and υ is a sequence of strategic 

shocks initiated by malevolent agent: ( )1 1 1't t tD υ υ υ+ + +=  

 

3.3. Multiplier or penalty robust control problem 

 

Another possible representation of robust control program is so called multiplier 

or penalty problem. The program (33) takes the following form: 

( )

0 1 1

0

1

1 1

1

min max ( ' ' )

. .

t

t t t t
R

t

t t

t t

t t t

E x Qx

e e
s t A BR C

E z z

υ
β θυ υ

ε υ

∞

+ +
=

+

+ +

+

−

   
= + + +   

   

∑
     (35) 

where θ represents a set of possible deviations of reference model from the real 

economy. When this term θ is low this set is very large, when θ  is high, there 
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are only very limited distortions. The case of θ → ∞ corresponds to the usual 

optimal control program when no account of possible misspecifications is taken. 

Rewriting it in the same form as (34), we obtain: 

1

0 0

min max ( , ) ( )
t t

t t
R

t t

L R D
υ

β υ θ β υ
∞ ∞

+
= =

−∑ ∑      (36) 

 

3.4. Relations between two robust programs 

 

In this section we derive relations between two robust programs presented earlier. 

First of all we rename the overall losses of the constraint robust program as 

( )

( )

( )
0

1

0

min max ( , )

: ( )

t

t
R

t

t

t

t

K L R

D

υ η
β υ

η υ

η

β υ η

∞

∈Η
=

∞

+
=



=


Η = ≤ 

 

∑

∑
      (37) 

The resulting level of optimized function for the penalty problem is named: 

( ) 1

0 0

min max ( , ) ( )
t t

t t
R

t t

V L R D
υ

θ β υ θ β υ
∞ ∞

+
= =

= −∑ ∑     (38) 

Now we reformulate constraint robust problem (34) in the Lagrangian form: 

1

0 0

min max min ( , ) ( )t t

t t
R

t t

L R D
θυ

β υ θ β υ η
∞ ∞

+
= =

 
− − 

 
∑ ∑     (39), 

where  θ is a Lagrange multiplier for the malevolent agent’s constraint. 

Changing the order of optimization (we can do it if we consider only cases when 

equilibrium exists) we obtain 

( )

1

0 0

min min max ( , ) ( )

min

t t

t t
R

t t

L R D

V

θ υ

θ

β υ θ β υ η

θ θη

∞ ∞

+
= =

 
− − = 

 

= +

∑ ∑

    

(40) 

From (40) it is seen that for a given θ the last term of this expression (θη ) doesn’t 

influence the choice of R andυ . So the following statement is true: 
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Statement 1. For the given η  *R and *υ are solutions of constraint robust 

program. Then exists a *θ  (equal to the optimal Lagrange multiplier from the 

constraint robust program) such that the corresponding penalty robust program 

has the same solution and 

( ) ( )* *minK V
θ

η θ θη= +        (41) 

 

Now we consider that for some *θ the penalty program is resolved. From (41) it 

follows that for any η and θ ( ) ( )K Vη θ θη≤ + , so for any η  

( ) ( )* *
V Kθ η θ η≥ −         (42) 

From here we conclude that  

( ) ( )* *maxV K
η

θ η θ η≥ −        (43) 

Or, using the definition of ( )K η , 

( )* *

( )
0

max min max ( , )
t

t
R

t

V L R
η υ η

θ β υ θ η
∞

∈Η
=

  
≥ −  

  
∑     (44) 

We maximize the right side of the expression if we put 
1

0

( )
t

t

t

Dβ υ
∞

+
=
∑ instead of η , 

as the constraint in (64) holds. 
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1
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*
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∑
    (45) 

We rewrite the penalty robust program 
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(46) 

Taking into account (45) and (46) we rewrite the definition of ( )*
V θ :   

( )
( )

( )
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0
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max max min ( , )
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t
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V L R
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η υ η

η
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(47) 

For given η  the last part of expression, *θ η doesn’t influence the choice of R and 

υ , so the solution of penalty robust corresponds to the solution of the constrain 

robust program. 

 

Statement 2. For some *θ *R and *υ are solutions of penalty robust program. Then 

the constraint robust program with 
0

* *

1( )
t

t

t

Dβ υη
∞

+
=

=∑ has the same solution. 

 

So, we’ve showed that two robust programs are tightly related. The size of 

possible uncertainty is given by η in the constraint robust program and by θ in the 

penalty program. These two measures are interconnected in the way presented by 

Statements 1 and 2. From (41) and (47) we can see that higher θ means lower 

corresponding value of η and vice versa. So when we speak about higher 

uncertainty we mean higher η and lowerθ .  

 

 

3.5. Robust control program solution 
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In this and the next sections we tackle with the penalty robust program 

remembering that all these results can be easily represented as the solution of 

corresponding constraint problem. This problem is solved numerically and here 

we present some technical details of solution proposed in Giordani, Soderlind 

(2004). 

Giordani, Soderlind (2004) assume the following robust policy program: 

{ } { }

( )

0

2 1

'

0 1 1

0

1 1 1

1 1

2 1 2

1

min max ( ' ' 2 ' )

. .

t

t t t t t t t t
u t

t t

t t t

t t t

n n

E x Qx u Ru xUu

x x
s t A Bu C

E x x

C
C

υ
β θυ υ

ε υ

∞

∞

+ +
=

+

+ +

+

×

+ + −

   
= + + +   

   

 
=  Ο 

∑

, where 

1tx is a 1 1n × vector of predetermined or backward-looking variables, 2tx is 

2 1n × vector of forward-looking variables, vector '

tx is a vector of all variables of 

interest equal to ( )' '

1 2
,

t t
x x . tu is a vector of central bank instruments of size ( )1k × . 

1tε + is an iid 
1 1n × vector of shocks and 

1tυ + is an 
1 1n × vector of strategic shocks, 

initiated by evil agent. Q  and R  are symmetric matrices. 

Our program (35) is a private case of such of Giordani, Soderlind (2004) with 

zero-matrix and the sole policy instrument – interest rate, so 1k = . 1 1n = , as we 

have only one predetermined variable te  and there are 4 forward-looking variables 

in the model, so our vector of forward-looking variables is of size 2 4n = . Because 

the core structure of our model and such proposed in Giordani, Soderlind (2004) 

are identical we now pass to the solution algorithm of our specific program.  

First of all we define the error of expectations for the period 1t + : 

1 1 1

z

t t t tz E zξ + + += −         (48) 

Then we note the total error of the model as: 
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1

1

1 5 1

t

t z

t

ε
ξ

ξ
+

+

+ ×

 
=  
 

         (49) 

So the program (36) can be rewritten as follows: 

0 1 1

0

1 1 1

min max ( ' ' )

. .

t

t t t t

t

t t t t

E x Qx

s t x Ax BR C

β θυ υ

ξ υ

∞

+ +
=

+ + +

−

= + + +

∑
     (50) 

The Lagrangian of this representation is: 

( )
1 1

0 0

0 1 1 1 1

( ' ' )

2 '

t t t tt

t t t t t t t

x Qx
L E

Ax BR C x

θυ υ
β

ρ ξ υ

∞
+ +

= + + + +

− + 
=  

+ + + + − 
∑    (51) 

where 1tρ + is a vector of size 5 1× of corresponding langrangian multipliers. 

The first-order conditions with respect to 1tρ + , tx , tR and 1tυ + are: 

5 5 1 5 1 5 5 1 5 5 5 1 5 1 5 5

5 5 5 1 5 1 5 5 1 5 1 5 1 5 1 5

1 5 1 1 1 1 1 5 2 1 5 1 1 1 1 1 5 1

1 5 1 1 1 1 1 5 1 1 5 1 1 1 1 5

'

'

'

t t

t t

t t

t t t

I x A B C x

A R Q I R

B

C E I

β β

υ υ

ρ θ ρ

× × × + × × × ×

× × × × + × × ×

× × × × + × × × × +

× × × × + × × ×

Ο Ο Ο Ο      
      Ο Ο Ο − Ο Ο      =
      Ο Ο Ο Ο Ο Ο Ο
      
Ο Ο Ο Ο Ο Ο      

1

5 1

1 1

1 1

tξ +

×

×

×

  
  Ο  +
  Ο
  

Ο 

(52) 

where n k×Ο stands for zero-matrix of n k× size. 

Or if we rename the matrices of corresponding coefficients in (52) we obtain 

1 1

1 5 1

2 1 1 1

1 1 1

t t t

t t

t t

t t t

x x

R R
G D

E

ξ

υ υ

ρ ρ

+ +

+ ×

+ + ×

+ ×

     
     Ο     = +
     Ο
     

Ο    

      (53) 

Then we take conditional expectation of (53) and noting that e

tρ is a shadow price 

corresponding to the predetermined variable te and z

tρ is a vector ( )4 1× of 

shadow prices for the tz  we obtain: 
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1

1

1

1

2 1

1

t t

t t

z z

t t
t

t t

t t

e e

t t

e e

z z
GE D

R R

ρ ρ

υ υ

ρ ρ

+

+

+

+

+ +

+

   
   
   
   
   =
   
   
   
      

, or posing t

t z

t

e
k

ρ

 
=  
 

and 
1

t

t

t

t

e

t

z

R
λ

υ

ρ
+

 
 
 =
 
 
 

we obtain: 

1

1

t t

t

t t

k k
GE D

λ λ
+

+

   
=   

   
        (54) 

Vector t

t z

t

e
k

ρ

 
=  
 

 has initial conditions: the first term is the predetermined variable 

with some initial condition 0e  and the second represents shadow prices for the 

forward-looking variables and thus can be chosen freely at the initial period to be 

equaled to zero, so that
0 0zρ = . 

Then we use decomposition proposed in the Giordani, Soderlind (2004). 

Square matrices G and D can be represented by the following decomposition: 

H

H

G VSZ

D VTZ

=

=
, when 

HZ is a transpose of conjugate of Z . 

Then, 
H H

V V Z Z I= =  and S and T are upper triangular. 

Hence, (54) can be rewritten as: 

1

1

t tH H

t

t t

k k
VSZ E VTZ

λ λ
+

+

   
=   

   
       (55) 

Premultiply (55) by 
H

V  

1

1

t tH H

t

t t

k k
SZ E TZ

λ λ
+

+

   
=   

   
       (56) 

As S and T are upper triangular, (56) can be rewritten so that at the first places 

stable solutions go. Stability of the solution is checked by the corresponding 

eigenvalue – its modulus should be less than 1. If we denote now  
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t tH

t t

k
Z

θ

δ λ

   
=   

   
,        (57) 

 where θ corresponds to the stable roots and δ - to the unstable ones, we obtain: 

 1

1

t t

t

t t

SE T
θ θ

δ δ
+

+

   
=   

   
, or, as S and T are upper triangular,  

1

1

t t

t

t t

S S T T
E

S T

θθ θδ θθ θδ

δδ δδ

θ θ

δ δ
+

+

       
=       Ο Ο       

,     (58) 

where 
i j

J comes for the corresponding part of J matrix. 

For every stable solution 0tδ = , so 1t t tS E Tθθ θθθ θ+ = or 1

1t t tE S Tθθ θθθ θ−
+ =  (59) 

Then, using 
1 1 1t t t e te E e C ε+ + +− =  and from Giordani (2004) 

1 1 0z z

t t tEρ ρ+ +− = , we 

have 

1 1 1

1 1

1 1

t t e t

t t t tz z

t t

e e C
E k E k

ε

ρ ρ
+ + +

+ +

+ +

     
− = − =     Ο    

     (60) 

From (42) t t k k t

t t t

k Z Z
Z

Z Z

θ δ

λθ λδ

θ θ

λ δ δ

       
= =       

       
     (61) 

And as 0tδ = ,  

t k

t

t k

k Z

Z

θ

δ

θ
λ

   
=   

   
        (62) 

Hence, 
1

1 1 1 1( )
e t

t t t k t t t

C
k E k Z Eθ

ε
θ θ +

+ + + +

 
− = − =  Ο 

    (63) 

In assumption that kZ θ is invertible and using (44), we obtain: 

11 1

1

4 1
k

e t

t t

C
S T Z

θθθ θθ

ε
θ θ +− −

+

×

 
= +  Ο 

      (64) 

Then  

1 11

1 1

1 4 1

t e t

t k t k tz

t

e C
k Z Z S Tθ θ θθ θθ

ε
θ θ

ρ
+ +−

+ +

+ ×

   
= = = +   Ο  

    (65) 

Or 1 1 11 1

1 4 1 4 1

t t te t e t

k kz z z

t t t

e e eC C
Z S T Z Mθ θθ θθ θ

ε ε

ρ ρ ρ
+ + +− −

+ × ×

        
= + = +        Ο Ο        

  (66) 
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And 1

1

t

t t t

t k z z

t t t

e

t

z

R e e
Z Z Nλθ θλ

υ ρ ρ

ρ

−

+

 
 

    = = =        
 
 

     (67) 

From the last equation (67) one can derive an optimal robust policy, which is 

constructed as some reaction on the values of predetermined variables and shadow 

prices of forward-looking variables: 

( )1 t

t k zR
t

e
R Z Zλθ θ ρ

−  
=  

 
        (68) 

Equilibrium dynamics of the model depends crucially on the actions taken by the 

evil agent in reality. And here we distinguish two variants: worst-case model and 

approximating one.  

The worst case takes place when the evil agent’s action realizes in reality. So such 

a model is described by (66-67). The opposite situation, when the central bank 

constructs the robust policy but the evil agent doesn’t act refers as an 

approximating model. We obtain it from approximating model by putting all 

strategic shocks in (67) equal to zero.  

Surely, the resulting dynamics of the economy depends crucially on the value of 

misspecification fears, θ . The next section is devoted to the definition of 

reasonable value for this parameter. 

3.6. Definition of possible model set θ  
 

Following Dennis (2009), we choose the value of this parameter on the basis of 

error detection probability method. The main idea under this approach is that 

model from the possible model set cannot be easily distinguished using the 

available data. In other words, the central bank cannot decide if real data are 



39 

 

generated with the actions of malevolent agent or in the reality there is no any 

anti-authority measures. 

The first situation, when the malevolent nature takes all possible resources to 

influence the central bank’s losses, is named ‘worst case’ model ( )W . The second 

case, when the central bank insure against this agent by robust policy but the evil 

nature doesn’t takes any measures is treated as ‘approximating’ model ( )A .  

So, according to the error detection method, the central bank should not be able to 

distinguish between this to models, ( )W and ( )A , using all available information. 

In the opposite case, when he can truly decide if there is any model detection, a 

policymaker has no any need of robust policy, he simply adopts the model to the 

reality. 

Probability of error ( )π θ : 

( ) ( ) ( )Pr / 2 Pr / 2A W W AL L W L L Aπ θ = > + >     (69) 

Where L  is a likelihood function. The first part of right-hand expression stands 

for the probability to treat the model as an approximating case while in reality 

malevolent nature interrupts the data generating process and the second part is 

probability to take the model as a worst-case one while there are no any nature 

actions. 

This probability is computed with a help of simulations and depends crucially on 

the value ofθ . We need to choose allowed error probability and find 

corresponding size of misspecification. 
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For example, 50% error probability corresponds to zero robustness (the case of 

standard optimal policy in the model with rational expectations). Lower 

( )π θ
means higher misspecification fear and higher robust preferences (or lower 

θ
). 

3.7. Some computational results 

 

We’ve analyzed several variants of policy robustness. Corresponding results of 

computations are summarized in Appendix B, where notions M and N stand for 

the worst-case, aM and aN describe law of motion of approximating model. 

vF represents a malevolent agent reaction on the predetermined variables.  

What we are interested in are the coefficients of the robust policies, which are 

represented by ( )1 t

t k zR
t

e
R Z Zλθ θ ρ

−  
=  

   

The monetary policy reactions under different preferences for robustness are 

summarized in Table2. 

 

Table 2. Parameters of robust monetary policy  

( )1 t

t k zR
t

e
R Z Zλθ θ ρ

−  
=  

   

Error detection probability θ

 
1r

 
2r

 
3r

 
4r

 
5r

 

20% 1.11 0.0025
 

-0.6147
 

-29.1285
 

0.0394
 

0.1278
 

30% 1.8797 0.0023   -0.6154   -29.1285    0.0394   0.1278
 

40% 1.8816 0.0022   -0.6154   -29.1285    0.0394   0.1278
 

50% 2000 0.0020  -0.6166    -29.1285    0.0394   0.1278 
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The most important is the first coefficient 
1r

, which represents reaction on the 

terms of trade. As this parameter is subject to the shock influence, this coefficient 

also reflects policy reaction to the shocks. If we tract the module of the 

corresponding coefficient as a degree of policy aggressiveness, we can see that 

aggressiveness of policy reaction on the predetermined variable 
te

rises with 

increase in the preferences for robustness. This relation can be explained by the 

fact that with higher fear of misspecification the central bank supposes that there 

is higher possibility that the shock in the economy is not simply i.i.d process but is 

initiated by the malevolent agent, and he reacts more aggressively. Here we see 

some violation of Brainard principle for the monetary union and result similar to 

the standard min-max strategy of more aggressive reaction to any shocks. 

Another interesting point is the sign of policy reaction on the shock: if there is a 

positive shock, the central bank raises the interest rate. There is a clear intuition 

under this fact: according to (23) this shock increases inflation in the H region and 

decreases inflation in the second part of the union. But according to the 

coefficients in the policy loss function, the thing of its most concern is inflation in 

the region with higher inflation persistence – H, as its weight in losses is much 

more important than other variables. So in response to such shock the reasonable 

response of central bank is an increase in interest rate what decreases total output 

in the union and thus stabilizes inflation in the region of the highest interest. 
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Now we simulate conduct of economy under a shock of union’s terms of trade, 
t

ε

 

Impulse-response functions are summarized in the Graph 1, where the following 

notations are used: 

TT Terms of trade V Value of strategic evil shock 

Y Output gap L Value of loss function 

pih 
Inflation in the 

H

region 
WC Worst-case model 

pif 
Inflation in the 

F

region 
A Approximating model 

R Monetary policy instrument RE Rational expectations without robustness 



Graph 1. Terms of trade shock in the worst-case, approximating model and rational expectations without robustness  
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We can see from this picture that malevolent nature reacts on this shock by editing 

some ‘strategic’ shock (worst-case model). Knowing this, the central bank 

increases interest rate. The result of this measure is a moderation of the H’s 

inflation rise.  

Result of policy-nature game in the worst case is a rise of output gap and inflation 

in the H region rise, while region F ’s inflation decreases. The last graph in the 

first column represents losses associated with the worst-case model. We can see, 

that malevolent actions cause sufficient welfare losses.  

When there is no malevolent action, the losses of nation are practically nil (see 

column 2), even if robust policy is applied. So, in this case the robust policy can 

properly counterattack any external shock. If we consider RE case, when central 

bank takes the possibility of misspecification as zero, the losses are higher than in 

the case of a simple robust policy.  

We compare these two policies defining the difference between total welfare 

under robust policy and under non-robust one. Result is presented in the following 

graph: 

Graph 2. Welfare benefits from robust policy application 
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We can see that robust policy entails some welfare benefits in comparison with 

the alternative. So there is an evident basis for robust policy construction. 

 

Conclusion  

 

For the micro-founded two-country model of currency union we have constructed 

a robust policy under commitment. We’ve found that the central bank reacts on 

the shocks more aggressively when higher extent of possible misspecification is 

admitted, thus Brainard principle is violated.  

We’ve shown technical details of robust control optimization in the adaptation for 

two-country models. There are many possible applications of this method for the 

construction of monetary policy in the currency area. 

First of all we’ve considered only the case of terms of trade shock. The analysis 

can be easily extended to other economic shocks. For example, technological 

changes can be taken into account. 

Secondly, we’ve constructed a full commitment policy. But the control of such 

policy is rather difficult, so the problem of policy inconsistency can arise. Control 

of simple monetary rules (for example, of a Taylor type) is easier and so such 

rules can contribute to the population confidence to the central bank measures. So 

the fist possible extension is construction of robust monetary policy rule. 

Thirdly, in our model there is no stance for monetary and fiscal policy 

interactions. The influence of central bank preferences for robustness on the 

economy under assumption of strategic interactions between monetary and fiscal 
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authorities can be analyzed, for example, on the base of two-country model of 

Beetsma, Jensen (2005). 

Then, our analysis can be easily extended to the case of tree or more countries. 

For example, representation of EMU as a union of Germany, France and Italy, the 

largest European economies, might provide the research with some important 

extensions. 

Finally, we’ve discussed only a case of two-country world. Nevertheless, 

interactions with the rest of the world via international trade and capital flows can 

be analyzed. 
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Appendix A. Derivation of the reference model 

1) Solution of consumer problem 

Solution of the consumer problem consists of 3 stages: 

1) Solving a problem (1) subject to (2) one determines an optimal value of 

consumption index j

tC , an optimal real balances stock 
M

P
,an optimal output 

supplied. 

This problem can be easily rewritten: 

( ) ( )
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From where we obtain the relevant first-order conditions: 

( ),
1

i
i it t

M t C t

t tP

M R
L U C

P R
ε

 
= 

+        (A.1) 

( ) ( ) ( )1

1

1i i t
C t t t C t

t

P
U C R E U C

P
β +

+

 
= +  

 

     (A.2) 

( )j t s
t C t s t

t s

EU C E
P

λ +
+

+

=

         (A.3) 

(A.1) tells us that in the optimal consumer choice marginal rate of substitution 

between consumption and real money balances holdings must coincide with the 

price of real money balances in terms of consumption index. (A.2) represents a 

usual Euler equation for the forward-looking model. According to (A.2) the 

marginal utility of consumption in the period t  must equals to the expected 
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marginal utility of the consumption in the next period with regard to the relative 

prices and the time preference. 

2) Given a decision of the first stage j

tC  an individual must optimally allocate 

this value between H  and F bundles so to minimize expenditures. In other 

words, the second stage problem is: 

{ }min

. .(3)

j j j j

H H F FP C P C

s t

+

         (A.4) 

Solution of this stage is the following: 

1

(1 )

n

j j F
H

H

n

j j H
F

F

P
C C n

P

P
C C n

P

−
 

=  
 

 
= −  

 

 

Or, naming 
F

H

P
T

P
≡  terms of trade between two regions,  

( )

( )

1

(1 )

nj j

H

nj j

F

C C n T

C C n T

−

−

=

= −
       (A.5)

 

3) Given the optimal values j

HC  and j

FC from the previous stage an individual 

must optimally allocate these values between distinct goods from the 

corresponding bundles. The corresponding problems are: 

( )
0

min ( )

. .(4)

n
jp h c h dh

s t

∫
 and 

( )
1

min ( )

. .(5)

j

n
p f c f df

s t

∫

    (A.6)

 

Solutions of this stage are given by: 



49 

 

( )
( )
( )

( )
( )

( ) ( )1

j

H Hj

j

F Fj

C P
c h

np h

C P
c f

n p f

σ

σ

σ

σ

=

=
−

, or, using a solution of the previous stage, 

( )
( )

( )
( )

1j n j

H

j n j

F

p h
c h T C

P

p f
c f T C

P

σ

σ

−

−

−

−

 
=  
 

 
=  
 

       (A.7) 

2) Governments  

Given these values the problem of the choice for the distinct goods is similar to 

the problem (A.6) of a private agent who allocates optimally H

tG  and F

tG between 

different goods. So the problem of fiscal authorities can be rewritten in the 

following manner: 

( )
0

1 1

0

min ( )

. . ( )

n
H

n
H

p h g h dh

s t G g h dh

σ
σ σ
σ

− − 
=  
 

∫

∫

 for the government H

 

and 

( )
1

1 11

min ( )

. . ( )

F

n

F

n

p f g f df

s t G g f df

σ
σ σ
σ

− − 
=  
 

∫

∫ . Corresponding solutions are: 

( )
( )

( )
( )

H

H

F

F

p h
g h G

P

p f
g f G

P

σ

σ

−

−

 
=  
 

 
=  
 

       (A.8)
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3) Firms program 

If a firm changes a price at period t, it sets a price ( )tp j%  which has to maximize 

the following function: 

 

( ) ( ) ( ) ( ) ( )( ), ,

0

1 ,
k

i i i

t t k t t t k t t k t k

k

E p j y j V y j zα β λ τ
∞

+ + + +
=

 − − ∑ % % % ,  (A.9) 

Where 
( )c t k

t k

t k

U C

P
λ +

+

+

= represents the marginal utility of nominal income from 

(A.3) and ( ),t t ky j+
%  is a total demand for the good j at period t k+  if ( )tp j%  is 

applied. 

From (7) demand constraint for the firms can be rewritten 

as:

( )
( )

( )
( )

1

,

,

,

,

n Ht

t t k t k t k t k

H t k

n Ft

t t k t k t k t k

F t k

p h
y h T C G

P

p f
y f T C G

P

σ

σ

−

−
+ + + +

+

−

−
+ + + +

+

 
 = +    

 

 
 = +    

 

%
%

%
%

    (A.10) 

So the firm’s problem can be rewritten in the following form: 
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( )
( ) ( )

( )

( )

( )( ) ( ) ( )

( )
( )

1

,

0
1

,

,

0

,

0

1

max

,

:

1 1

1
'

i n Jt

t k t t k t k t k

J t kk
i

t

k
n J Jt

t k t k t k t k

J t k

k
i i

t t k t t k

k

t y t t k

kt

p j
p j T C G

P

E
p j

V T C G z
P

FOC

E y j

E V y j
p j

σ

σ

λ τ

α β

τ σ λ α β

σ

−

−
+ + + +

∞ +

−
=

−
+ + + +

+

∞

+ +
=

∞

+
=

  
  − +      
 

   
  − +          

− − +

+

∑

∑

∑

%
%

%

%

%
%

( ) ( )

( )
( )( )

( )( ) ( )

( ) ( )

,

, ,

0

,

0

, 0

' ,

1 1

J

t k t t k

J

t y t t k t k t t k

k
t i k

i

t t k t t k

k

z y j

E V y j z y j

p j

E y j

σ

τ σ λ α β

+ +

∞

+ + +
=

∞

+ +
=

=

=
− −

∑

∑

%

% %

%

%

  

 (A.11) 

4) Deterministic equilibrium 

From the first-order conditions of consumer problem it can be seen that this 

stationary equilibrium can be implemented if the monetary policy instrument, 

interest rate is set so to countervail the intertemporal discount rate: 
1

1 R
β

+ = . 

From (A.11) using (A.3) the following expression can be obtained: 

( )( )

( ) ( ) ( )

( )

( )( )
( ) ( )

0

0

( ),0

1 1
( )

( ),0

( )1 1

k
i

y
i k

i k
i

k

yi

i

C

y j V y j

p

y j

y j V y j P
p

U y j

α β
σ

τ σ λ α β

σ

τ σ

∞

=
∞

=

=
− −

=
− −

∑

∑
    (A.12) 

Taking into account that from (A.12) in the deterministic equilibrium the 

following equation should be accomplished: 

H

F

H

F

p P

p P

=

= . From the definition of 

terms of trade 
( )

1 n n

H F
P P T P T

− −= =
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Also 
1H n

F n

y T C

y T C

−

−

=

=
 

Hence, FOC of consumer problem can be rewritten in the following form: 

( ) ( )
( )

( )

( ) ( )
( )

( )

1 11 ,0
1

1 ,0
1

H n n

C y

F n n

C y

U C T V T C

U C T V T C

σ
τ

σ

σ
τ

σ

− −

− −

− =
−

− =
−

     (A.13) 

5) Linearization of sticky-prices equilibrium 

To obtain a linearization under flexible prices we derive an approximation of 

(A.13) around the steady state: 

( ) ( )

( ) ( )

1 1 H H

t t t t t t

F F

t t t t t t

C n T n T C g Y

C n T n T C g Y

ρ η η

ρ η η

 − = − + − + + − 

 − = − + − + + − 

% %% % %

% %% % %     (A.14) 

Where 

iY
is supply shock in the region 

i
, and 

ig%
is a corresponding shock of 

government purchases. Summing (A.14) with weights n and (1-n) we obtain: 

W W

t t tC C g Yρ η η − = + − 
% % %

 

Or ( )W W W

t tC Y g
η

η ρ
= −

+
% %

       (A.15) 

Subtracting (A.14) we obtain 
0 R R

t t t t
T T g Yη η = + + − 
% % %

 

1

R R

t t tT g Y
η

η
 = − +

% %
        (A.16)

 

And also, taking into account that W W W

t
Y C g= +%% , we can rewrite: 

W W W

t t tY Y g
η ρ

ρ η ρ η
= +

+ +
%        (A.17) 

Now we obtain a linearized equilibrium conditions under sticky prices. Firstly we 

take first order condition from the consumer problem (A.2) to derive:  

( )1

1 1
ˆ ˆ ˆW W W

t t t t t t
E C C R Eρ π−

+ += + −       (A.18)  



53 

 

Then, log-linearizing (9) around the steady state we obtain:   

  

( ) ˆˆ ˆ1H W H

t t t t
Y n T C g= − + +        (A.19) 

ˆˆ ˆF W F

t t t t
Y nT C g= − + +         (A.20) 

Then, using definition of terms of trade, we have 

1
ˆ ˆ F H

t t t t
T T π π−= + −         (A.21) 

To obtain the log-linearized Phillips curves, we need to rewrite FOCs from 

(A.11): 

( ) ( ) ( ) ( )( ) ( ), ,

0

1 , 0
k

i i i

t t k t y t t k t k t t k

k

E p j V y j z y jα β λ τ
∞

+ + + +
=

 − − = ∑   (A.22) 

Taking  from (A.2) we have 

( )c t k

t k

t k

U C

P
λ +

+

+

=

( ) ( ) ( ) ( )
( )( ) ( )1

, ,

0 ,

1 , 0
k

ti i n i

t C t k t k y t t k t k t t k

k H t k

p j
E U C T V y j z y j

P
α β τ

∞
−

+ + + + +
= +

 
− − = 

  
∑  (A.23) 

Linearization of (A.23) gives: 

( ) ( ),

0

ˆˆˆ ˆ1 0
k

i

t t t k t k t k t k

k

E p n T C yα β ρ η
∞

+ + + +
=

 − − − − = ∑
    (A.24) 

with 

,

,

ˆ ln t
t t k

i t k

p
p

P
+

+

=

. 

Now we log-linearise ( ),t y k
y j+
% . For example, for the region H  from (8) 

( ),
ˆˆˆ ˆ 1

t k t t k t k t k
y p n T Cσ+ + + += − + − +

      (A.25)
 

Subtracting (A.25) into (A.24) yields: 

( ) ( ) ( ){ }

( ) ( ) ( )( ) ( )

, ,

0

,

0

ˆ ˆˆ ˆˆ ˆ1 1 0

ˆˆˆ1 1 1 0

k
i i

t t t k t k t k t t k t k t k t k

k

k
i i

t t t k t k t k t k

k

E p n T C p n T C Y

E p n T C Y

α β ρ η σ

α β ησ η η ρ η

∞

+ + + + + + +
=

∞

+ + + +
=

 − − − − − + − + − =
 

 + − − + − + + = 

∑

∑
(A.26) 
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And reminding that 
, ,

1

ˆ ˆ
k

i

t t k t t t s

s

p p π+ +
=

= +∑ , 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

,

0 1

,

0 0 1

0

ˆˆˆ1 1 1 0

ˆ1 1

ˆˆ1 1 0

k
k

i i i

t t t t s t k t k t k

k s

k
k k

i i i

t t t t t s

k k s

k
i i

t t k t k t k

k

E p n T C Y

p E E

E n T C Y

α β ησ π η η ρ η

ησ α β ησ α β π

α β η η ρ η

∞

+ + + +
= =

∞ ∞

+
= = =

∞

+ + +
=

  
+ + − − + − + + =  

  

+ + + −

 − − + + + − = 

∑ ∑

∑ ∑ ∑

∑
(A.27) 

Or, 

( )
( ) ( )

( ) ( )( ) ( )

,

0 1

0

ˆ1
1

1

ˆˆ1 1

k
k

t t i i

t t si
k s

k
i i

t t k t k t k

k

p
E

E n T C Y

ησ
ησ α β π

α β

α β η η ρ η

∞

+
= =

∞

+ + +
=

+
= + +

−

 + − + + + − 

∑ ∑

∑ , from where 

( )

( )
( ) ( )( ) ( )

,

0 1

0

ˆ

1

1 ˆˆ1 1
1

k
k

t t i i

t t si
k s

k
i i

t t k t k t k

k

p
E

E n T C Y

α β π
α β

α β η η ρ η
ησ

∞

+
= =

∞

+ + +
=

= +
−

 + − + + + − +

∑ ∑

∑   (A.28) 

After log-linearisation of (10) we obtain that ,
ˆ

1

i
i

t t ti
p

α
π

α
=

−
, and so  

( )

( )
( ) ( )( ) ( )

0

0

1 1 1

1 ˆˆ1 1
1

i i i
k

it t k
ti i i

k

k
i i

t t k t k t k

k

E

E n T C Y

π α π
α β

α β α α β

α β η η ρ η
ησ

∞
+

=

∞

+ + +
=

= +
− − −

 + − + + + − +

∑

∑   (A.29) 

Or 

( )

( )
( ) ( )( ) ( )

0

0

1

1 1 ˆˆ1 1
1

i
k

i i i

t t t ki
k

i i
k

i i

t t k t k t ki
k

E

E n T C Y

α
π α β π

α

α α β
α β η η ρ η

α ησ

∞

+
=

∞

+ + +
=

−
= +

− −  + − + + + − +

∑

∑  (A.30) 

Taking the same for 

1t +

period and taking expectation for the previous period, we 

have: 
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( )

( )
( ) ( )( ) ( )

1

1

1

1

1 1 ˆˆ1 1
1

i
k

i i i

t t t t ki
k

i i
k

i i

t t k t k t ki
k

E E

E n T C Y

α
π α β π

α

α α β
α β η η ρ η

α ησ

∞

+ +
=

∞

+ + +
=

−
= +

− −  + − + + + − +

∑

∑   (A.31) 

Then we multiply (A.30) by 

β

and subtracting this value from (A.29) we obtain: 

 

( )

( )
( )( ) ( )

1

0

1

1 1 ˆˆ1 1
1

i
k

i i i i

t t t t t ki
k

i i
i

t t ti

E E

n T C Y

α
π β π α β π

α

α α β
η η ρ η

α ησ

∞

+ +
=

−
− = +

− −  + − + + + − +

∑

   (A.32) 

From (A.15-17): 

( )( ) ( )1 1 H

t t tn T C Yη ρ η η− + − − + = −%%

     (A.33) 

So, (A.31) can be rewritten: 

( ) ( ) 1
ˆ1H H H W H

t T t t C t t tn k T T k y Eπ β π += − − + +%

     (A.34) 

Analogically 

( ) 1
ˆF F F W F

t T t t C t t tnk T T k y Eπ β π += − − + +%

     (A.35) 

Where i

Tk  and i

Ck  are combinations of model coefficients stated earlier in the 

following form: 

( )( )1 1

1

1

i i

i

C i

i i

T C

k

k k

α β α ρ η

α ση

η

ρ η

 − −  +
=    +    

 +
=  + 

      (A.36)

 

 

 

6) Derivation of micro-founded loss function 

Derivation of micro-founded loss function is based on the Beetsma (2005) 

method, applied for our model.  
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Welfare criterion for the central bank, as it was shown in the paper, is a weighted 

expected sum of future one-period welfare ratios tw : 

0

0

t

t

t

W E wβ
+∞

−

 
=  

 
∑

         (A.37) 

( ) ( )( )
1

0
, i

t t t t
w U C V y j z dj≡ − ∫  

To obtain a loss function of a usual type the second-order expansion of welfare 

function around a steady state is needed. We remind briefly the main 

characteristics of this steady-state: 
C Y=

and 
1T =

 

A welfare criterion can be rewritten as: 

( ) ( )( ) ( )( )
1

0
, ,

n
H F

t t t t t t
n

w U C V y h z dh V y f z df≡ − −∫ ∫    (A.38) 

 

a) 
( )tU C

  

We take the second-order expansion of 
( )tU C

around the steady-state value 
C

. 

( ) ( ) ( ) ( ) ( )2 31

2
t C t CC t

U C U C U C C U C C ε= + − + − + Ο
,    (A.39) 

( )3
εΟ

- terms of higher-than-second order. 

Taking into account that  , the second-order expansion of
tC
 around 

C
 implies: 

ˆ ln
C

C
C

=
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( )321ˆ ˆ1
2

t t t
C C C C ε

 
= + + + Ο         (A.40) 

Substituting (A.40) into (A.39) yields: 

( ) ( ) ( ) ( )
2 32 21 1ˆ ˆ ˆ

2 2
t C t t CC t

U C U C U C C C U C C ε
 

= + + + + Ο     (A.41) 

And hence 

( ) ( ) ( )

( ) ( )

2 32

32

1 1ˆ ˆ ˆ . .
2 2

1ˆ ˆ1 . .
2

CC

t C t t t

C

C t t

U C
U C U C C C C t i p

U

U C C C t i p

ε

ρ ε

 
= + + + + Ο = 

  

 
= + − + + Ο  

  (A.42) 

Where 
. . .t i p

stand for terms independent of policy 

 

b) ( )( ),
i

t tV y j z  

For the H region (all steps are to repeated for the F region): 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )

2

3

1
, ( ;0)

2

1
'

2

H H

t t y t z t yy t

h i H

yz t t t zz t

V y j z V Y V y h Y V z V y h Y

V z y h Y z V z ε

= + − + + − +

+ − + + Ο

 (A.43) 

Second-order log-approximation for y : 

( ) ( ) ( ) ( )321
ˆ ˆ1

2
t t t

y h Y y h y h ε
 

= + + + Ο  
     (A.44) 

Substituting (A.44) into (A.43) yields: 
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( )( ) ( ) ( ) ( ) ( ) ( )32 21 1
ˆ ˆ ˆ ˆ, . . .

2 2

yy yzH H

t t y t t t t t

y y

V Y V
V y h z V Y y h y h y h z y h t i p

V V
ε

 
= + + + + +Ο 

   (A.45)

 

Or, as yy

y

V Y

V
η = , 

( )( ) ( ) ( ) ( ) ( )321
ˆ ˆ ˆ, . . .

2

yzH H

t t y t t t t

y

V
V y h z V Y y h y h z y h t i p

V

η
ε

 +
= + + + + Ο 

  
 (A.46) 

Then as 
yy t yz tV YY V z= −  

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

32

32

1
ˆ ˆ ˆ, . . .

2

1
ˆ ˆ ˆ . . .

2

H

yy tH

t t y t t t

y

H

y t t t t

V YY
V y h z V Y y h y h y h t i p

V

V Y y h y h Y y h t i p

η
ε

η
η ε

 +
= + − + + Ο = 

  

+ 
= + − + + Ο  

(A.47) 

Recalling that ( ) ( ) ( )1 ,0C yU C V Yφ− = , where 
1

φ
σ

≡ , we can rewrite (A.47): 

( )( ) ( ) ( ) ( ) ( ) ( )321
ˆ ˆ ˆ, 1 . . .

2

H H

t t C t t t t
V y h z V Y y h y h Y y h t i p

η
φ η ε

+ 
= − + − + + Ο  

(A.48) 

Now we integrate (A.48) over the H region population: 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

32

0

32

1 1
ˆ ˆ ˆ, 1 . . .

2

1
ˆ ˆ ˆ ˆ1 ( ) ( ) . . .

2

n
H H

t t C t t t t t

H

C t t t t t t

V y h z dj V Y Ey h Ey h Y E y h t i p
n

V Y Ey h Vary h E y h Y E y t i p

η
φ η ε

η
φ η ε

+ 
= − + − + + Ο =  

+ 
= − + + − + + Ο  

∫ (A.49) 

A second-order log-expansion of 
HY : 

( ) ( )
31 1ˆ ˆ ˆ ( )

2

H

t t t
Y Ey h Vary h

σ
ξ

σ

−
= + + Ο      (A.50) 

Taking a term ( )ˆ
tEy h  from (A.50) a relation (A.49) becomes 
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( )( )
( ) ( )

( )( )
( )

( ) ( ) ( ) ( )

3

0 2

2 31

1 1ˆ ˆ1
1 2

, . . .
1 ˆ ˆˆ ( )

2

1 1ˆ ˆ ˆˆ1 . . .
2 2

H

t t
n

H

t t C

H H H

t t t t

H H H H

C t t t t t

Y Vary h

V y h z dj U Y t i p
n

Vary h Y Y Y

U Y Y Vary h Y Y Y t i p

σ
φ

σ
ε

η
η

η
φ σ η η ε−

− 
− − + 

= + + Ο = 
+ + + −

  

+  = − + + + − + + Ο   

∫
(A.51) 

The same expression for the second region takes the following form: 

( )( ) ( ) ( ) ( )

( )

21
1

3

1 1 1ˆ ˆ ˆˆ, 1
2 2

. . .

F F F F F

t t C t t t t t
n
V y f z dj U Y Y Vary f Y Y Y

n

t i p

η
φ σ η η

ε

− +  = − + + + −   

+ + Ο

∫  (A.52) 

Substituting (A. 42,51,52) into (A.38) subject to the equality of Cand Y  yields: 

( )

( ) ( ) ( ) ( )

( ) ( )( )( ) ( )

( )

2

1

2 2

3

1ˆ ˆ1
2

1ˆ ˆ ˆ1 1
2

1 ˆ ˆ ˆ ˆ1 1
2

. .

t t

W
t C t t t

H F H H F F

t t t t t t

C C

w U C Y nVary h n Vary f

n Y n Y nY Y n Y Y

t i p

ρ

φ σ η

η
η η

ξ

−

  
+ − −    

   =   − + + + − +     
  −  
 +  + − − − −      

+ + Ο

 (A.53) 

 

c)  Expansion of ˆ
t

Y  

Now we define a function ( ) ( )ˆ ln /H H H

t t t
W Y Y Y Y= = . Thus, an approximation 

yields: 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3

2

3

2
1 1 1 1

3

1ˆ ' ''
2

1

2

1

2

H H H

t t t

H H

t t

n H n H n H n H

t t t t t t

Y W Y W Y Y Y W Y Y Y

Y Y Y Y

Y Y

T C G T C G T C G T C G

Y Y

ε

ε

ε
− − − −

= + − + − + Ο =

   − −
   = − + Ο =
   
   

 + − + + − +
 = − + Ο
  

(A.54) 
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Reminding, , 1C Y T= = , we obtain from (A.54) 

( ) ( ) ( )
2

1 1
30 01ˆ

2

n H n H

t t t t t tH

t

T C G Y T C G Y
Y

Y Y
ε

− − + − + + − +
= − + Ο 

  

  (A.55) 

Now we define ( ) 1, n

t t t tZ T C T C
−≡  and expose it around the steady state: 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

2

2 3

2

3

1
, ,

2

1

2

1
1 1 1 1

2

1 1

t t T t TT t C t

CC t TC t t

t t

t

Z T C Z T C Z T T Z T T Z C C

Z C C Z T T C C

C C
C n C T C n nC T

C

C C
n T C

C

ε

ε

= + − + − + − +

+ − + − − + Ο =

−
= + − − + − − − +

−
+ − − + Ο

  (A.56) 

( )( ) ( ) ( )

( )( ) ( )

1
2

3

1
1 1 1 1

2

1 1

n

t t t
t t

t
t

T C Y C C
n T n n T

Y C

C C
n T

C
ε

−  − −
= − − − − − + + 

 

 −
+ − − + Ο 

 

   

(A.57) 

Expansion for  tT : 

( )321ˆ ˆ1
2

t t t
T T T ε

 
= + + + Ο          (A.58) 

Substituting (A.40) and (A.58) into (A.57) yields: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2 2 2

3 22 2 2 2

3

1 1 1 1ˆ ˆˆ ˆ ˆ ˆ1 1
2 2 2 2

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 1 1
2 2 2 2

ˆˆ1

H

t
t t t t t t

t t t t t t t t

t t

Y Y
n T T n n T T C C

Y

n T T C C n T n T C C

n TC

ε

ε

−      
= − + − − + + + +     

     

  
− + + + Ο = − + − + +  

  

+ − + Ο

 (A.59) 

( ) ( ) ( )
2

32 2 2ˆ ˆˆ ˆ1 2 1
H

t
tt t t t

Y Y
n T C n T C

Y
ε

 −
= − + + − + Ο 

 
    (A.60) 
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( ) ( ) ( )
2

3 31 ˆˆ ˆ1
2

H H
H t t

t t t

Y Y Y Y
Y n T C

Y Y
ε ε

 − −
= − + Ο = − + + Ο 

 
  (A.61) 

In a similar way: 

( ) ( )3ˆˆ ˆF

t t tY n T C ε= − + + Ο        (A.62) 

And 

( ) ˆˆ ˆ ˆ1W H F

t t t t
Y nY n Y C= + − =        (A.63) 

Further, 

( ) ( ) ( )
22 3ˆˆ ˆ1H

t t t
Y n T C ε = − + + Ο        (A.64) 

( ) ( ) ( )
22 3ˆˆ ˆF

t t t
Y n T C ε = − + +Ο        (A.65) 

( ) ( )( ) ( ) ( )

( )

( ) ( )

2 2 2 2 2

2 2 2

3 32 2

ˆ ˆˆ ˆ ˆ ˆ1 1 2 1

ˆ ˆˆ ˆ1 2

ˆˆ(1 )

H F

t t t t t t

t t t t

t t

n Y n Y n n T n TC C

n n T nTC C

n n T Cε ε

 + − = − + − + +
 

 − − + + 

+Ο = − + + Ο

   (A.66) 

Further, 

( ) ( ) ( )3ˆˆ ˆ ˆ1 1H H F F R W

t t t t t t t t
nY Y n Y Y n nT Y C Yη η η ε + − = − − + + Ο 

  (A.67) 

 

d)  Welfare derivation 

Now we can substitute (A.63,66 and 67) into A.53: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

2 2 2 2

3 2 2

1 1 1 1ˆ ˆ ˆ ˆ ˆ1 1 1 1
2 2 2 2

1 1ˆ ˆ ˆ ˆ1 1
2

1 1ˆ ˆ ˆ. . . 1 1
2 2

ˆ ˆ1

1 1
ˆ 1

2

t
t t t t t

C

H H F F

t t t t t t

t t t

H H F F

t t t t

t

w
C C n C n C n n T

U C

nY Y n Y Y nVary h n Vary f

t i p C C n n T

nY Y n Y Y

nVary h n Va

η η
φ ρ η

ησ
η

σ

ε φ ρ η η

η

ησ

σ

+ +
= + − − − − − + −

+ + + − − + −   

+ + Ο = − + − + − +

 + + − 

+
− + − ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3

2 2

3

ˆ . . .

1 1ˆ ˆ ˆˆ ˆ1 1 1
2 2

1 1
ˆ ˆ1 . . .

2

t

R W

t t t t t t t

t t

ry f t i p

C C n n T n nTY C Y

nVary h n Vary f t i p

ε

φ ρ η η η η

ησ
ε

σ

+ + Ο =  

− + − + − − − +

+
− + − + + Ο  

(A.68) 

Now we rewrite (A.68) in terms of gaps: 

( )( ) ( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )

( )

2 2

3

1 1ˆ ˆ ˆˆ1 1
2 2

ˆˆ ˆ1 1 1

1 1
ˆ ˆ1

2

. . .

t
t t t t t t t

C

R W

t t t t t t

t t

w
C C C n n T T C C

U C

n n T T n nTY C Y

nVary h n Vary f

t i p

φ ρ η η ρ η

η η η

ησ

σ

ε

= − + − − + − − − +

− − + − − + −

+
− + −  

+ + Ο

% %%

%

(A.69) 

From Beetsma (25) 

W W

t tC Y
η

η ρ
=

+
%

 

       (A.70) 

Then, 

( ) 0W

t tY Cη ρ η− + =%         (A.71) 

Under substitution of (A.71) into (A.69) we obtain the following expression: 

( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

2 2

3

1 1ˆ ˆ1 1
2 2

1 1
ˆ ˆ1 . . .

2

t
t t t t

C

t t

w
C C n n T T

U C

nVary h n Vary f t i p

ρ η η

ησ
ε

σ

= − + − − + − − −

+
− + − + + Ο  

% %

   (A.72) 
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Now we derive the last two parameters: ( )ˆ ˆ_ _t tVary and Vary f : 

( ) ( ) ( )32var log var log
t t

y h p hσ ε  = + Ο        (A.73) 

Taking ( )log
t t

p E p h≡    , we have: 

( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

1

var log var log var log

1 log

H

t t t t

H

t t t

p h p h p p h

p h p p

α

α

− −

−

= − = +          

− − − ∆  %

 

Then, ( ) ( )1 11 logH

t t t t
p p p h pα− −− = − −  %      (A.74) 

Using ( )3

,
log

t H t
p P ε= + Ο  we obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 3

1

2 3

0

var log var log
1

. . .
1

H
H H

t t tH

Ht
t s

H H

sH
s

p h p h

t i p

α
α π ε

α

α
α π ε

α

−

−

=

= + + Ο =       −

= + + Ο
−

∑
  (A.75) 

Thus, 

( )
( )( )

( ) ( )2 3

0 0

var log . .
1 1

H
t t H

t tH H
t t

p h t i p
α

β β π ε
α β α

∞ ∞

= =

= + + Ο  
− −

∑ ∑  (A.76) 

And for the second region: 

( )
( )( )

( ) ( )2 3

0 0

var log . .
1 1

F
t t F

t tF F
t t

p f t i p
α

β β π ε
α β α

∞ ∞

= =

= + + Ο  
− −

∑ ∑  (A.77) 

So, the second-order welfare approximation gives: 
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( )( ) ( ) ( )( )

( )( )
( )

( )
( )( )

( )

0

0

2 2

2
2

2
2

1 1ˆ ˆ1 1
2 2

1 11 1

2
1

1 1

t C

t

t

C

t
t t t t

C

H
H

tH H

F
F

tF F

E w

w
C C n n T T

U C

n

n

β

ρ η η

α
σ π

α β αησ

σ α
σ π

α β α

∞

=

= − + − − + − − −

 
+ 

− −+  
−  

 + −
 − − 

∑

% %

   

(A.78) 

Or in terms of losses the welfare function can be rewritten as: 

( )
( ) ( )( )

( ) ( )
( )

( )
( ) ( )

( )
( )

0

0

22

2 2

1 1 /1/ ˆ
/ 1 / ( / 1 / )

1 //

/ 1 / / 1 /

t

t

t

W

t t tH F H F

C C C C

FH
CH FC

t tH F H F

C C C C

L E L

n n
L y T T

n k n k n k n k

n kn k

n k n k n k n k

β

η σσ

ρ η

π π

∞

=

=

− +
= + −

+ − + − +

−
+ +

+ − + −

∑

%  (A.79) 
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Appendix B. Computational results 

Economy under robust monetary policy, 1.11θ = , error detection probability 0.2. 

The worst-case model:

    0.9557    0.0356   -0.0001    0.0001   -0.0004

    0.0121    0.8848   -0.0034    0.0002   -0.0016

M =          0         0           0.001         0            0

    0.0183    0.0514   -0.6626    0.9290    0.0292

   -0.0221   -0.0948   -0.2675    0.0066    0.8842

   -5.1321   36.5837   2.1954        1.0273    -4.4182

    0.0101    2.1954    173.1234    0.8125  

N =

 
 
 
 
 
 
  

  1.5149

   -0.0076    1.0273    0.8125        0.0879    -0.0379

    0.0559   -4.4182    1.5149        -0.0379   0.6573

    0.0025   -0.6147    -29.1285     0.0394    0.1278

    0.0618    0.3827    -0.0006       0.0007    -0.0048

    0.7056    5.1321   -0.0101    0.0076   -0.0559

Approximating model:

    0.9500   -0.0000    0.0000   -0.0000   -0.0000

    0.1586    1.7919    -0.00

Ma =

 
 
 
 
 
 
 
 
 
 
 

48    0.0018   -0.0131

   -0.0039   -0.0242    0.0000   -0.0000    0.0003

   -1.2604   -7.8692   -0.6497    0.9153    0.1293

    0.8978    5.6037   -0.2768    0.0164    0.8122

   -5.13

Na =

 
 
 
 
 
 
  

21   36.5837    2.1954     1.0273     -4.4182

    0.0101    2.1954    173.1234   0.8125    1.5149

   -0.0076    1.0273    0.8125       0.0879    -0.0379

    0.0559   -4.4182    1.5149       -0.0379    0.6573

    0.0025   -0.6147  -29.1285      0.0394     0.1278

         0         0            0                 0             0

    0.7056    5.1321   -0.0101        0.0076   -0.0559

Ma

 
 
 
 
 
 
 
 
 
 
 

[ ]
levolent nature reaction:

Fv =  8.7708    1.8734   -0.0500  -16.3588   11.7701

Losses in the worst case=0.6103

Losses in the approximating model =0.6070    
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Optimal policy without model uncertainty: 

    0.9500    0.0000   -0.0000   -0.0000    0.0000

    0.9500    1.0440   -0.0151   -1.0100    1.0100

M =    48.7227   10.7279   -0.3678  -83.0632 70.4103

   -0.0000   -0.0030   -0.0050    1.0100    -0.0000

   -0.0000    0.0140     -0.0098    0.0000    1.0100

    8.1204     1.7900    -0.2346    -13.1372   12.0384

   59.9670    13.0517   -0.3487   -114.0189   82.0922

   13.0517     2.8706
N

 
 
 
 
 
 
  

=
    -0.0768   -25.0869     18.0723

   -0.3487     -0.0768    0.0083    0.6056        -0.5016

  -114.0189  -25.0869  0.6056    231.5947    -157.0743

   82.0922    18.0723   -0.5016   -157.0743   115.3894

 
 
 
 
 
 
 
 
 
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Rational-expectation case, the central bank doesn’t put any attention to the 

malevolent actions, error probability detection 50%: 

    0.9500    0.0000   -0.0000    0.0000   -0.0000

    0.0117    0.8831   -0.0034    0.0002   -0.0016

M =          0         0            0.001         0          0

    0.0173    0.0482   -0.66

2 00

  

0

26 

θ =

 0.9290    0.0292

   -0.0208   -0.0907   -0.2675    0.0066    0.8841

   -4.9307   37.2998    2.1951    1.0291   -4.4315

    0.0102    2.1951    173.12     0.8125    1.5149

   -0.0070   

N =

 
 
 
 
 
 
  

 1.0291    0.8125     0.0879   -0.0380

    0.0513   -4.4315    1.5149    -0.0380    0.6576

    0.0020   -0.6161   -29.1285   0.0394    0.1278

    0.0000    0.0002   -0.0000     0.0000   -0.0000

    0.6213    4.9307   -0.0102     0.0070   -0.0513

    0.9500   -0.0000    0.0000   -0.0000   -0.0000

    0.0116    0.8829   -0.0034    0.0002   -0.0016

Ma =     0.0000    0.0000   -0.0000   

 
 
 
 
 
 
 
 
 
 
 

 0.0000   -0.0000

    0.0177    0.0504   -0.6626    0.9290    0.0292

   -0.0211   -0.0923   -0.2675    0.0066    0.8841

   -4.9307   37.2998    2.1951      1.0291   -4.4315

    0.0102 

Na =

 
 
 
 
 
 
  

   2.1951    173.1234    0.8125    1.5149

   -0.0070    1.0291    0.8125       0.0879   -0.0380

    0.0513   -4.4315    1.5149       -0.0380   0.6576

    0.0020   -0.6161   -29.1285     0.0394    0.1278

 

[ ]

        0         0             0               0              0

    0.6213    4.9307   -0.0102       0.0070     -0.0513

Fv = -0.0024   -0.0005    0.0000    0.0046   -0.0033

   

Losse

 
 
 
 
 
 
 
 
 
 
 

s worst-case = 0.5373

Losses approximating model=0.5373  
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Error detection probability 30%, θ =1.8797 

    0.9532    0.0206   -0.0000    0.0000   -0.0003

    0.0119    0.8841   -0.0034    0.0002   -0.0016

M =          0         0            0.001         0         0

    0.0179    0.0500   -0.6626    0.9290    0.0292

   -0.0215   -0.0930   -0.2675    0.0066    0.8841

   -5.0414   36.8941    2.1953     1.0281   -4.4241

    0.0102    2.1953    173.1234   0.8125   1.5149

   -0.0073    1.0281

N =

 
 
 
 
 
 
  

    0.8125      0.0879   -0.0380

    0.0538   -4.4241    1.5149      -0.0380   0.6575

    0.0022   -0.6154    -29.1285     0.0394    0.1278

    0.0345    0.2215    -0.0004      0.0004      -0.0028

    0.6666    5.0414    -0.0102      0.0073    -0.0538

    0.9500    0.0000    0.0000    -0.0000    0.0000

   -0.3189   -1.2414    0.0002    -0.0034    0.0248

Ma =     0.0088    0.0567    -

 
 
 
 
 
 
 
 
 
 
 

0.0001    0.0001   -0.0007

    2.9077   18.6130   -0.6935    0.9605   -0.2013

   -2.1013  -13.4526   -0.2453   -0.0161    1.0501

   -5.0414   36.8941    2.1953     1.0281    -4.4241

  

Na =

 
 
 
 
 
 
  

  0.0102    2.1953     173.1234 0.8125    1.5149

   -0.0073    1.0281    0.8125      0.0879   -0.0380

    0.0538   -4.4241    1.5149      -0.0380   0.6575

    0.0022   -0.6154  -29.1285    0.0394     0.1278

         0               0              0                        0         0

    0.6666    5.0414   -0.0102       0.0073   -0.0538

Fv =   -20.7672   -4.4688    0.1193   39.0286  

 
 
 
 
 
 
 
 
 
 
 

[ ]-28.0881
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Error detection probability 40%, θ =1.8816 

    0.9532    0.0206   -0.0000    0.0000   -0.0003

    0.0119    0.8841   -0.0034    0.0002   -0.0016

M =          0         0            0.001         0          0

    0.0179    0.0500   -0.6626    0.9290    0.0292

   -0.0215   -0.0930   -0.2675    0.0066    0.8841

   -5.0413   36.8946    2.1953    1.0281   -4.4241

    0.0102    2.1953    173.1234  0.8125    1.5149

   -0.0073    1.0281

N =

 
 
 
 
 
 
  

    0.8125     0.0879   -0.0380

    0.0538   -4.4241    1.5149     -0.0380    0.6575

    0.0022   -0.6154   -29.1285    0.0394    0.1278

    0.0344    0.2212    -0.0004     0.0004   -0.0027

    0.6665    5.0413   -0.0102      0.0073   -0.0538

    0.9500    0.0000   -0.0000    0.0000    0.0000

   -0.3162   -1.2236    0.0001   -0.0034    0.0246

Ma =     0.0088    0.0563   -0.0001    0.

 
 
 
 
 
 
 
 
 
 
 

0001   -0.0007

    2.8833   18.4577   -0.6932    0.9602   -0.1994

   -2.0838  -13.3409   -0.2454   -0.0159    1.0487

   -5.0413   36.8946    2.1953    1.0281     -4.4241

    0.0102    

Na =

 
 
 
 
 
 
  

2.1953  173.1234    0.8125    1.5149

   -0.0073    1.0281    0.8125      0.0879    -0.0380

    0.0538   -4.4241    1.5149     -0.0380    0.6575

    0.0022   -0.6154  -29.1285     0.0394    0.1278

        

[ ]

 0         0                  0         0              0

    0.6665    5.0413   -0.0102      0.0073    -0.0538

Fv =   -20.5938   -4.4315    0.1183   38.7031  -27.8538

 
 
 
 
 
 
 
 
 
 
 
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