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Abstract

I employ a parsimonious model with learning but without conditioning information to ex-

tract time-varying measures of market-risk sensitivities, pricing errors and pricing uncertainty.

Parameters estimated for U.S. equity portfolios show signi�cant �uctuations, along patterns

that change across size and book-to-market categories of stocks. Time-varying betas display

superior predictive accuracy for portfolio returns against constant and rolling-window OLS esti-

mates. I also study the relationship of betas with business-cycle variables, �nding that those of

high BE/ME stocks move pro-cyclically, unlike those of low BE/ME stocks. Investment growth,

rather than consumption, predicts the betas of high BE/ME and small-�rm portfolios.
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1 Introduction

According to the Capital Asset Pricing Model (CAPM), di¤erences between asset expected

returns re�ect di¤erences in their exposure to systematic risk, as measured by market betas.

In practice, market-risk sensitivities are the slope coe¢ cients from OLS regressions of asset

excess returns on the market�s excess return. However, the descriptive accuracy of this pro-

cedure rests on the key assumption that the actual parameters are time-invariant. Moreover,
�Department of Economics, University of Brescia,Via San Faustino 74/B, 25122 Brescia. Tel. +39 030 2988812,

fax +39 030 2988837, trecroci@eco.unibs.it, www.eco.unibs.it/~trecroci. This paper was in part developed while I
was a visiting scholar at the Department of Finance of the Carroll School of Management, Boston College. I wish to
thank Pierluigi Balduzzi for very useful suggestions on this research. All errors are mine.

1



Electronic copy available at: http://ssrn.com/abstract=1498752

there are some reasons, both theoretical and practical, which instead call for a conditional

speci�cation of the CAPM. In particular, one could allow for parameter uncertainty and

variation over time. In this paper, I construct and estimate a parsimonious one-factor model

with time-varying alphas and betas that are endogenous with respect to the uncertainty

surrounding their actual values. The market-risk sensitivities that I obtain reveal superior

predictive ability for portfolio returns against constant and rolling-window OLS estimates. I

also evaluate their �uctuations, �nding that alphas and betas of portfolios characterised by

di¤erent book-to-market values (BE/ME) and market capitalization (size) evolve according

to di¤erent cyclical patterns.

There are no reasons to think that the exposures to fundamental sources of risk vary across

assets, i.e. across claims to di¤erent cash �ows, but not over time, i.e., when the information

set and economic circumstances a¤ecting the valuation of the �rm�s cash �ows possibly

change. In addition, if the variance of market return or its covariance with asset returns is

time-varying, an asset�s beta with the market will change over time too. Indeed, there is

ample evidence on the persistence and heteroskedasticity of market returns at business-cycle

frequencies (Schwert, 1989a, b). Finally, even assuming that individual stocks have time-

invariant betas, changes in portfolio weights imply that portfolio returns satisfy a linear

factor model, but one with time-varying coe¢ cients and a heteroskedastic disturbance term

(see Mamaysky et al., 2008).

Many real-world factors are likely to play a signi�cant role in the determination of mar-

ket betas. One of them is investors�uncertainty, which might a¤ect investment choices in

various ways. This study focuses on broad economic uncertainty, that is, on the impact that

volatility and heteroskedasticity of fundamentals have on investors�ability to identify the

distribution of asset payo¤s. It is plausible to think that, under uncertainty, investors�fore-

casts of key quantities like market betas will be the result of some complex learning process

that re�ects that uncertainty. Indeed, puzzles and anomalies are pervasive in empirical asset

pricing. At least in part this evidence might be due to the fact that some key parameters of

�nancial models are in fact uncertain and subject to learning e¤ects. For instance, Bekaert et
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al. (2009) study the relative importance of variations in heteroskedasticity of fundamentals

and stochastic risk aversion on various asset prices and returns1. Pástor and Veronesi (2009)

argue that the market betas of innovative �rms are likely to increase during technological

revolutions. These and other arguments suggest that the traditional, constant-coe¢ cient

models for portfolio returns could mis-specify the identi�cation of asset risk. Changes in

the structure of the economy and in �nancial markets make reasonable to model risk sen-

sitivities as potentially time-varying quantities, particularly over long samples and at lower

frequencies.

In this paper, I propose and estimate a conditional one-factor model with time-varying

alphas and betas, and extract an endogenous measure of the uncertainty surrounding their

values. In detail, uncertainty is de�ned as the conditional error variance of the optimal

forecast of alphas and betas. The aim is to account for the e¤ects of uncertainty and change

by replicating the learning process of rational investors. I assume that the latter must infer

the risk loadings from available information, and optimally update them as new information

becomes available. This paper also holds that changes in market returns e¤ectively sum-

marize the arrival of relevant information; hence, the estimated risk loadings do not rely on

conditioning information.

Accordingly, I design a parsimonious model that allows for changes in perceived risks due

to factors fully unobserved by the econometrician, such as shifts in the quantity of market risk

that might be learning-induced. I then estimate a conditional one-factor relationship with

time-varying parameters, based on the Kalman �lter. This methodology generates monthly

alpha and beta time series without relying on conditioning information or time/frequency

assumptions. The main advantages of this estimation strategy over existing alternatives are

its simplicity, and its ability to adapt to assets�or portfolios�actual loadings on market risk in

a way that constant-coe¢ cient, but also rolling or �xed-window OLS regressions, simply do

not permit to. In contrast to some recent contributions, the resulting joint estimates of each
1They also �nd a limited but positive e¤ect of shocks to the conditional volatility of the dividend growth process

on risk premia (which are mainly driven by shocks to risk aversion).
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period�s conditional alphas and betas are obtained without making any assumption about

period-to-period variation in beta. Consequently, the time-varying betas in this paper denote

systematically superior predictive ability for portfolio returns against conventional rolling-

window OLS estimates. Furthermore, estimated parameters �uctuate signi�cantly over time;

this con�rms that investors update their forecasts on a more frequent and systematic basis

than existing analyses entertain. Finally, I study whether market-risk sensitivities evolve

according to some cyclical pattern, �nding clear-cut evidence that their relationship with

the business cycle depends persistently on portfolio characteristics such as size and book-to-

market.

Methodologically, the determination of CAPM coe¢ cients should be endogenous with

respect to investors�uncertainty about actual factor loadings. This means that the variance

of returns should be time-varying too. The empirical exercise in this paper accounts for two

sources of uncertainty: uncertainty arising from future idiosyncratic risk, and uncertainty

arising because of evolution in the risk loadings. Conditional uncertainty is therefore di-

rectly associated to observed returns, which contain and update the information relevant

for investment choices. In addition, the model allows for both time variation in the mean

and homoskedastic stochastic components of the alpha and beta processes, thus combining

features that the existing literature does not consider jointly2.

I apply this methodology to the 1926-2007 monthly returns of U.S. equity portfolios sorted

by size and BE/ME, obtaining estimates of alphas, betas and pricing uncertainty that evolve

over time. Crucially, the time-varying, Kalman-�lter based (TVK, henceforth) estimates that

I obtain depend only on portfolio and market returns and appear to be precisely estimated.

To assess their predictive accuracy against conventional rolling OLS betas, I perform an

out-of-sample simulation over a hedging strategy based alternatively on these two measures.

A large literature explains the risk premia associated with size and BE/ME ratios with

the relationship between those characteristics and �uctuations in aggregate consumption or

wealth. I further examine whether the TVK alphas and the risk loadings of portfolios that
2Jostova and Philipov (2005) is the only exception.
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belong to di¤erent BE/ME and size categories evolve according to di¤erent patterns. Un-

derstanding exactly how the sensitivity of characteristic portfolios to market risk changes

over time, and in relation to which economic conditions, is an issue of primary interest.

Accordingly, I evaluate the association of TVK betas with key state variables and macro-

economic indicators, obtaining fresh evidence on the dynamics of market-risk sensitivities at

business-cycle frequency.

The remainder of the paper and its main �ndings are as follows. Next Section sets

out the literature background to the empirical exercise in this paper. In Section 3 I test

formally for the presence of breaks in time-invariant CAPM coe¢ cients, detecting multiple

structural breaks. Section 4 introduces a speci�cation of the Kalman �lter that accounts for

the learning problem of investors under uncertainty. Section 5 presents estimates of time-

varying alphas, betas and pricing uncertainty, and tests for the relative information content

of TVK betas for market returns. Market betas are more tightly estimated and have superior

predictive ability for actual portfolio returns than those obtained through the conventional

rolling-window approach. Also, the evolution of TVK parameters appears to be very rich

and di¤erentiated across portfolios sorted on the basis of book-to-market ratios and market

capitalization. Section 6 evaluates the association of time-varying betas with business-cycle

indicators at the monthly and quarterly frequencies. The betas of high BE/ME stocks turn

out to move pro-cyclically, whereas those of low BE/ME stocks denote an opposite, though

weaker tendency. Large-cap portfolios have betas strongly correlated with state variables,

and which help predict future output. Finally, investment growth, rather than consumption

growth, helps forecast the betas of high BE/ME and small �rms portfolios, whereas risk

loadings of large-cap portfolios anticipate future output developments. These results lend

some support to recent production-based asset-pricing models. Section 7 concludes. The

Appendix contains summary statistics about the returns and CAPM parameters of the test

portfolios.
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2 Literature review

There are essentially two sources of systematic risk. First, the risk of an asset is a function

of the sensitivity of its cash �ows to �uctuations in the market return or to changes in the

economy�s rate of growth. Also, the present value of those cash �ows is contingent on the

aggregate discount rate. Depending on the time distribution of cash �ows, shocks to the

discount rate drive changes in asset returns. Hence, the sensitivity to cash-�ow risk and

discount-rate risk determines an asset�s risk-return trade-o¤3.

There is substantial evidence on the variability over time of market premia (see for in-

stance, Ang and Bekaert, 2007; Cooper and Priestley, 2009), and some also of similar behav-

iour by market betas (Lewellen and Nagel, 2006; Ang and Chen, 2007; Adrian and Franzoni,

2009). Therefore, the well-known poor empirical performance of unconditional CAPM might

be the result of time variation in the conditional moments used to capture systematic risk (see

Lettau and Ludvigson, 2001; Santos and Veronesi, 2004; Zhang, 2005; Lewellen and Nagel,

2006). A common approach to testing conditional CAPM is to model betas as a function of

observed macroeconomic and �nancial variables. However, these tests are strictly valid only

if the econometrician knows the full set of state variables available to investors. Lewellen

and Nagel (2006) use short-window regressions to estimate conditional alphas and betas for

momentum, size and BE/ME portfolios. They �nd that the measured variation in CAPM

coe¢ cients is not sizeable enough to explain large unconditional alphas. Lewellen and Nagel

also uncover large conditional pricing errors, hence validating once again the model�s poor

empirical performance. Fama and French (2006) employ rolling OLS regressions to estimate

one-year betas and alphas, whose properties essentially con�rm the existence of value, size

and momentum "anomalies"4. On the other hand, Ang and Chen (2007) extract conditional

CAPM parameters using a model with persistent betas, time-varying risk premia and sto-
3Campbell and Vuolteenaho (2004) and Bansal et al. (2005) among others study the relevance of shocks to

cash �ows and the discount rate in determining the cross-section of returns. Santos and Veronesi (2004) build a
general-equilibrium model that explains the time variation of betas.

4Fama and French (2006) acknowledge that betas should not be modeled as time-invariant; they use slope dummies
to model discrete breaks in betas of coarser portfolio sorts than those I use here.
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chastic systematic volatility. Their results support the CAPM over a long sample span, and

therefore clash with the aforementioned evidence.

The empirical exercise in this paper, which does not focus on a formal test of CAPM,

shares the tenet of the literature that latent measures of systematic risk are likely to vary

signi�cantly over time. However, the work in this article goes beyond the existing literature

along various dimensions.

First, the one-factor model that I estimate yields parameters that account endogenously

for the level of uncertainty. In particular, this paper de�nes conditional uncertainty as

the variance of the error in the optimal forecast of alphas and betas. Pástor and Veronesi

(2009) argue that investors�uncertainty about future cash �ows warrants a larger role for

learning mechanisms in various areas of �nance, starting with stock valuation. Besides the

paper by Bekaert et al. (2009), other recent studies take this view. For instance, Ozoguz

(2009) extracts some measures of uncertainty based on two-state regime-switching models

for market return and aggregate output. She �nds that uncertainty is a priced risk factor in

the cross-section of stock returns5. This paper has a di¤erent and complementary aim, and

adopts a speci�cation of the market model that allows for multiple sources of uncertainty

about market risk. In addition, my approach models investor�s learning about unobserved

conditional moments in a parsimonious way, yields minimum mean-squared-error forecasts

of the quantity of risk, and it is based only on observed returns.

A second improvement in relation to existing studies derives from the use of the Kalman

�lter. The algorithm provides consistent parameter estimates and therefore allows for robust

inference. On the contrary, the inference generally based on betas estimated through short-

window or rolling regressions rests on a key hypothesis. The variance of the rolling beta is

generally held (for instance in Fama and French, 1997) to be the sum of the variance of the

true market beta and the variance of the estimation error. But this holds true only if the

sampling error of the market beta is uncorrelated with the true value of the beta. Now, if

investors formulate their forecasts under uncertainty, the volatility of beta�s estimation error
5See Anderson et al. (2009) for an interesting alternative approach.
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is likely to be increasing in the volatility of the true beta, making such assumption quite

restrictive. Also, holding that coe¢ cients are constant in-sample but changing discretely out-

of-sample introduces a small-sample bias that cannot be corrected using HAC estimators.

Lewellen and Nagel (2006) and Campbell and Vuolteenaho (2004) employ short-window

regressions. For instance, the former employs daily returns to estimate monthly betas. This

could generate some bias in the estimates, as a consequence of the assumption about period-

to-period variation in beta and various microstructure issues (bid/ask bounce, irregular

trading, stale pricing). Bali (2008) employs a GARCH (1,1) model to extract conditional

moments and betas for a variety of test portfolios, but using conditioning information. On

the contrary, Jostova and Philipov (2005) model time-varying betas of industry portfolios

using Bayesian techniques (Monte Carlo Markov Chain with Gibbs sampling) based on an

explicitly mean-reverting beta. Their study provides time-varying betas that are shown to be

more precisely estimated than those from either rolling regressions or GARCH approaches6.

In this paper, I directly estimate model parameters that share the returns�frequency, without

using state variables. An approach that avoids conditioning information has the advantage

of deriving betas directly from portfolio returns, thereby reducing any potential omitted-

variable bias due to mis-speci�cation of the information set.

Adrian and Franzoni (2009) too employ a learning-based form of CAPM and estimate

betas using the Kalman �lter (albeit on quarterly data). However, they assume constant

long-term means for asset betas, estimates are based on conditioning variables, and their

model implies that, asymptotically, investors�uncertainty over the value of beta is solved,

i.e., it disappears. These hypotheses are not consistent with the idea that equity risk changes

over time, and that investors face uncertainty on a systematic basis. Still, Adrian and

Franzoni�s alphas and idiosyncratic risk are not time-varying, whilst it would be appropriate

to endogenize their dynamics along that of betas. Finally, their use of the smoothing version

of the �lter likely makes estimates further su¤er from a look-ahead bias. Indeed, an additional
6However, conditional alphas and idiosyncratic risk are not endogenously determined in Jostova and Philipov

(2005), and their estimates show that a mean-reversion assumption about betas might signi�cantly constrain the
dynamics of factor loadings.
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di¤erence over previous contributions is that in this empirical exercise I estimate jointly time-

varying betas, alphas and a measure of pricing uncertainty.

3 Are market factor loadings time-invariant?

As reported above, Jostova and Philipov (2005) and Ang and Chen (2007) �nd substantial

evidence of inconsistence in the estimation of conditional CAPM coe¢ cients from constant-

parameter and rolling regressions. Building on such results, in this Section I check for the

presence of breaks in the parameters of conventional one-factor models, with the help of

formal stability tests.

In this paper, the test assets are the well-known 5� 5 Fama-French (FF) value-weighted
portfolios, formed as the intersections of independent sorts of stocks on the basis of book-to-

market ratios and market capitalization, spanning from July 1926 to August 20077. There

are at least two motivations for the use of these returns. First, starting from Fama and French

(1992), these portfolios have featured in several studies closely related to the objective of this

paper. Second, estimated betas are inevitably measured with error, and this error typically

induces a downward bias in regression betas. Hence, using portfolio returns rather than

those of individual stocks should help reduce this bias. Portfolio betas are likely to be more

precisely measured also because portfolio returns have lower idiosyncratic risk.

Let us begin with a look at the data. The Appendix at the end of the paper reports

some descriptive statistics for the average returns on the test assets, and estimates from the
7Data are from the CRSP database. The portfolios, which are constructed at the end of each June, are the

intersections of 5 portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio of book equity
to market equity (BE/ME). The size breakpoints for year t are the NYSE market equity quintiles at the end of June
of t. BE/ME for June of year t is the book equity for the last �scal year end in t � 1 divided by ME for December
of t � 1. The BE/ME breakpoints are NYSE quintiles. The portfolios for July of year t to June of t + 1 include all
NYSE, AMEX, and NASDAQ stocks for which there are market equity data for December of t � 1 and June of t,
and (positive) book equity data for t � 1. The ending of the sample right before the start of the 2007-2009 crisis is
fully unintentional. Nevertheless, this allows looking for possible signs of the impending �nancial turmoil and calls
for further investigation based on data covering its entire duration.
I thank Kenneth French for making a large amount of data publicly available in his online data archives, from

which I downloaded the data I use in this paper.
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standard one-factor regression:

Reit = ai + biReMt + eit;

where Reit = Rit � Rft is the return on test portfolio i in excess of the one-month Treasury

bill rate and ReMt = RMt � Rft is the excess return on the market, i.e., the value-weighted

return on all NYSE, AMEX, and NASDAQ stocks minus the one-month Treasury bill rate

(from Ibbotson Associates). Each portfolio is dubbed by reference to its BE/ME and size

category. In the notation, �rm size increases from S1 to S5 and the BE/ME ratio from B1

to B58.

The data (see Table A1) con�rm the existence of a signi�cant value premium in both

samples, and of a size premium particularly in the longest one. The focus of this paper is

not on whether the value premium is de�nitely limited to small-stock returns, but we note

that average returns within each BE/ME class are smaller for stocks of larger �rms, and for

low BE/ME portfolios within each size category. As in other studies, portfolio B1S5 breaks

such regularities, especially over the early part of the sample. In fact, this portfolio has even

missing observations from July 1930 to June 19319.

Over the whole sample, most regression intercepts are positive and sometimes statistically

signi�cant, particularly for high BE/ME portfolios10. Overall, regression slopes appear to be

very tightly estimated. That said, Figure A1 gives some perspective on the extent to which

unconditional market betas fail to explain the so-called value and size premia. Average

returns are not only too loosely associated with market betas; the lines connecting portfolio
8So, for instance, portfolio B2S5 contains stocks of the largest �rms within the second highest BE/ME category,

and so on. In addition to the 25 size-BE/ME portfolios, I report results for some of their combinations. H � L is
the di¤erence between the average return for the two highest BE/ME quintiles within a size quintile and the average
return of the two lowest BE/ME quintiles. Similarly, S � B is the di¤erence between the average return for the
two smallest quintiles within a BE/ME quintile and the average return of the two largest quintiles within a BE/ME
quintile.

9 I estimate the regressions over both the whole sample (1926-2007) and the shorter period 1963-2007. Tables A2
and A3 exhibit estimated coe¢ cients a and b and their t-values, constructed using HAC standard errors, following
Andrews (1991).
10For the 1963-2007 sample, one obtains broadly similar estimates, with somewhat more signi�cant and sizeable

high BE/ME intercepts, but also a few negative and statistically signi�cant ones for the low BE/ME portfolios.
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returns in each panel also show that di¤erences in BE/ME and size yield to di¤erences in

average returns that are negatively and positively related, respectively, to regression slopes.

This con�rms the existence of non-beta risks related to value and size that go unaccounted

for by the way in which the unconditional one-factor model describes average returns across

categories of stocks11.

Next, I investigate whether market-risk sensitivities are stable throughout the sample. I

employ the test of multiple structural changes devised by Bai and Perron (1998, 2003; see

also Qu and Perron, 2006). The test is particularly suited to our case, as it is designed for the

evaluation of multiple structural breaks in the context of linear models estimated by OLS.

It provides a way of testing, through the use of a Sup Wald-type test, the null hypothesis

of no change in the coe¢ cients versus an alternative containing a �nite number of shifts.

Furthermore, Bai and Perron propose an algorithm that allows testing the null of m changes

versus the alternative hypothesis of m+ 1 changes. I apply the tests to a speci�cation with

a constant, also accounting for serial correlation and di¤erent variances in the residuals12.

For brevity, Table I shows the results for �ve "average" portfolios formed on the ratio of

book equity to market equity and �ve "average" portfolios formed on size, over the period

1963-200713.

Only for few cases the supFT (m) statistics, computed by pre-specifying the number of

breaks, are not signi�cant. Also, for the UDmax and WDmax tests, which allow testing

the null of no structural break against an unknown number of breaks, most statistics are

signi�cant at conventional levels, thus revealing multiple structural breaks in the coe¢ cients

of the one-factor regression. Therefore, traditional OLS regressions of the one-factor model

that are based on time-invariant coe¢ cients are de�nitely mis-speci�ed and produce incon-

sistent inference about the distribution of risk premia. Next Section introduces an intuitive

framework that models risk loadings as time-varying processes.
11Fama and French (2006) elaborate more extensively on this point.
12 I thank Pierre Perron for making available his GAUSS procedure to implement the test.
13The results of the test for the longer 1926-2007 sample and all 25 FF portfolios are in line with those reported

here.
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4 Uncertainty, learning and time variation in a parsimonious model

The arrival of new information and the presence of investor uncertainty have de�ned impli-

cations on CAPM predictions. The conditional CAPM states that asset expected returns

are proportional to their conditional market betas (Zhang, 2005). I de�ne the latter under

uncertainty as the expectation of the factor loadings on the market:

E
�
Reit
�
= E

�
ReMt j t�1

�
� E
�
�itj t�1

�
(1)

Here Reit is asset i�s excess return, �
i
t is CAPM�s beta and  is the information set. Accord-

ingly, I posit that returns follow a linear regression model, in which the coe¢ cients change

over time according to an autoregressive dynamics:

Reit = xt�
i
t + "it, t = 1; 2; : : : ; T (2)

�it = e�i + F i�it�1 + �it (3)

where

"it � IIDN (0; S) (4)

�it � IIDN (0; Q) (5)

and xt is a vector of exogenous or predetermined variables. Importantly, "it and �it are

mutually independent and xt contains only a constant and the market�s excess return. Unlike

in Adrian and Franzoni�s (2009) setup, the betas (and alphas) are not held to be conditional

on any exogenous variable. To spare notation, I drop the superscript "i" to denote asset i�s

return, CAPM coe¢ cients, etc.

If investors were fully informed and under no uncertainty, all parameters (e�; F; S;Q)
would be known. If this was really the case, a sequence of GLS regressions would deliver

an estimate of the state vector. However, such approach tends to be extremely ine¢ cient in

terms of computational burden. More important, we have discussed above several reasons
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for which it is plausible to think that investors are instead uncertain about the true values

of those parameters and therefore need to update systematically their forecasts. Finally, if

only some of the hyperparameters were not known, they would have to be estimated anyway

before making any inference about �t. All this leads quite naturally to consider the Kalman

�lter (KF, henceforth) to make inferences about �t.

The Kalman �lter is a recursive procedure for computing the estimator of a time-t unob-

servable component, the state vector, based only on information available up to time t. When

the shocks to the model and the initial unobserved variables are normally distributed, the KF

also enables to compute the likelihood function through prediction error decomposition14.

Both features are particularly suited for the treatment of time variation and uncertainty in

the cross-section of market risk.

The KF computes a minimum mean-squared-error estimate of �t conditional on  . De-

pending on the information set used, one obtains �ltered or smoothed estimates. The �lter,

which is used in this paper, refers to an estimate of �t based on information available up

to time t, whereas the smoothing version of the Kalman algorithm yields an estimate of �t

based on all the available information in the sample through time T . The latter version,

which is employed in Adrian and Franzoni (2009), hence assumes that investors know the

true value of hyperparameters -like the long-run level of beta- when they form forecasts of

time-varying parameters.

Now, I de�ne �tjt�1 = E
�
�tj t�1

�
as the expected value of �t conditional on  t�1, whereas

�tjt = E [�tj t] represents the estimate of �t conditional on  t, and therefore on the realiza-
tion of the prediction error. Let us also de�ne Ptjt�1 = E

h�
�t � �tjt�1

� �
�t � �tjt�1

�0i
, and

Ptjt = E
h�
�t � �tjt

� �
�t � �tjt

�0i
as their respective covariance matrices15.

The asset�s expected excess return, which represents an optimal forecast given information

up to time t� 1, is Retjt�1 = E
�
Ret j t�1

�
= xt�tjt�1. This forecast has prediction error equal

to �tjt�1 = Ret �Retjt�1, in turn characterised by conditional variance ftjt�1 = E
h
�2tjt�1

i
.

14See Hamilton (1989) and Kim and Nelson (1999) for reviews of the Kalman �lter.
15For smoothed Kalman estimates, we have �tjT = E [�tj T ] and PtjT = E

h�
�t � �tjT

��
�t � �tjT

�0i
, respectively.
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The timing assumption of the model is straightforward. At the beginning of time t, xt

becomes available; at the end of time t a new realization of Ret becomes public knowledge.

As a consequence, the basic KF involves two steps:

Step 1 At the beginning of time t, investors formulate an optimal prediction of the asset�s

expected return, Retjt�1, based on all the information up to time t � 1. To do this,
investors need to compute �tjt�1 :

�tjt�1 = e� + F�t�1jt�1 (6)

Ptjt�1 = FPt�1jt�1F
0 +Q (7)

�tjt�1 = Ret �Retjt�1 = xt�tjt�1 (8)

ftjt�1 = xtPtjt�1x
0
t + S (9)

Besides �tjt�1, the KF algorithm therefore generates an estimate of the conditional

variance of the forecast errors, eq. (9). This equation demonstrates that the model

accounts for two sources of uncertainty: uncertainty arising from future idiosyncratic

risk, and uncertainty arising because of evolution in the model�s coe¢ cients. In this

simple way, conditional uncertainty is directly associated with observed returns, which

contain and update the information relevant for investment choices.

Step 2 Once Ret is realized at the end of time t, the prediction error can be calculated: �tjt�1 =

Ret � Retjt�1. This contains new information about the model�s coe¢ cients �t, beyond

that contained in �tjt�1. Thus, after observing R
e
t , a more accurate inference about

�t can be made. �tjt, an inference of �t based on information up to time t, has the

following form

�tjt = �tjt�1 +Kt�tjt�1 (10)

Ptjt = Ptjt�1 �KtxtPtjt�1 (11)

14



The quantity

Kt = Ptjt�1x
0
tf
�1
tjt�1 (12)

is the so-called Kalman gain, which determines the weight assigned to new information

about �t contained in the prediction error.

The speci�cation above is very general, underlying that some relevant aspects, like the

betas�rule of motion, are far from obvious. That said, the results from our tests of struc-

tural changes on unconditional betas point to a particular dynamics for the time-varying

parameters, and call for a speci�cation that allows for multiple breaks. Indeed, Engle and

Watson (1985) suggested to model as unit root processes the regression coe¢ cients of rela-

tionships derived under the hypothesis that agents update their estimates only when new

information becomes available, which is exactly our case. There is also a broad consensus in

the literature (see for instance Santos and Veronesi, 2004) that betas are likely to be highly

persistent quantities, essentially because they are functions of persistent shocks. Ang and

Chen (2007) model betas as quasi-unit root AR(1) processes. Adrian and Franzoni (2009)

share the random walk assumption in their priors, whereas Fama and French (2006) do not.

Lo and MacKinlay (1998) and Lo (2007) contain further empirical and theoretical support

to the unit-root hypothesis. I also estimate my model positing an autocorrelation of 0.95

for conditional betas, obtaining no signi�cantly di¤erent results. On the one hand, none

of the TVK beta displays exploding behaviour (see below). On the other hand, some ev-

idence shows that specifying the betas as explicit mean-reverting processes imposes costly

restrictions on their dynamics. Indeed, this is what seems to happen in Jostova and Philipov

(2005), where most estimated betas are not statistically di¤erent from unity and display

very limited time variation. Hence, I assume that each regression coe¢ cient in �t follows a

random walk, and in the following set F = Ik.

In equation (6), an inference on coe¢ cients �t given information up to time t � 1 is a
function of the inference on �t�1 given information up to time t�1, due to the law of motion
of the state vector. Thus, uncertainty underlying �tjt�1 is a function of the uncertainty
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underlying �t�1jt�1 and Q, the covariance of the shocks to �t. This is shown in equation (7).

More importantly, the prediction error in the time-varying parameter model consists of

two parts: the component due to error in making an inference about �t
�
i.e., �t � �tjt�1

�
,

which is related to systematic risk, and the prediction error due to "t, the random shock

to excess return Ret . Therefore, in equation (9), the conditional variance of the prediction

error is a function of the uncertainty associated with �tjt�1 and of S, the variance of "t.

The updating equation in (10) suggests that �tjt is formed as a kind of weighted average of

�tjt�1 and new information contained in the prediction error �tjt�1, the weight assigned to

new information being the Kalman gain. Examining Kt more carefully, we notice that it

is an inverse function of S, the variance of "t: the larger the idiosyncratic risk component,

the smaller the weight assigned to new information about �t contained in the prediction

error. For a given market excess return in xt, Kt is a positive function of the uncertainty

surrounding �tjt�1. On the other hand, if for simplicity we assume that �t and xt are 1� 1,
then the Kalman gain can be rewritten as

Kt =
1

xt

Ptjt�1x
2
t

Ptjt�1x
2
t + S

(13)

where Ptjt�1x2t is the portion of the prediction error variance due to uncertainty in �tjt�1 and

S is the component due to the random shock "t. We can easily see that����� @Kt

@
�
Ptjt�1x2t

������ > 0 (14)

suggesting that, when uncertainty associated with �tjt�1 increases, relatively more weight is

given to new information in the prediction error, �tjt�1. Intuitively, the algorithm interprets

an increase of uncertainty about �tjt�1 as a deterioration of the information content of �tjt�1

relative to that of �tjt�1.

More complex approaches to the treatment of time variation and uncertainty in the mar-

ket�s assessment of risk are certainly viable. Ang and Chen (2007) employ a reduced-form

version of the conditional CAPM in which only betas are allowed to change over time and
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conditional but constant alphas are extracted via numerical optimization. However, Ang

and Chen�s is a richly parametrized model (13 parameters vs. 5 in Jostova and Philipov and

only 3 in the present study), and crucially relies on priors and assumptions about time vari-

ation in the mean and volatility of the conditional market return16. The KF methodology I

adopt in this paper presents a number of advantages. First, it accounts for investors�uncer-

tainty about asset risk in a straightforward way, as it entails a simple learning process on the

model�s coe¢ cients: rational investors have to infer the factor loadings from observable port-

folio returns and past prediction errors. The uncertainty they face depends upon the error

variance of their past optimal forecast. Second, it is methodologically parsimonious, as its

implementation requires narrow parametrization compared to, say, multi-equation settings,

or alternative state-space models with regime-switching. Third, estimation is not based on

conditioning information or strong assumptions about period-to-period variation in beta.

For instance, this exercise does not employ restrictive assumptions as to the frequency of

actual betas and their changes17. Fourth, it is consistent with a time-varying representation

of CAPM in which uncertainty about current betas directly translates into changing condi-

tional variance of returns. Finally, whereas most existing studies do not deal directly with

the issue of parameter uncertainty and limited information on pricing errors, the approach

in this paper endogenizes the realization of pricing errors and prevents future information

from a¤ecting today�s forecasts.

5 Time variation and systematic risk

This Section reports estimates of TVK alphas, betas and other parameters from the one-

factor model above. An additional useful feature of the KF speci�cation chosen in this paper

is that it yields endogenously consistent volatilities for alphas, betas, and idiosyncratic risk,
16Also, idiosyncratic risk is not allowed to change over time.
17Ozoguz (2009) considers a two-state regime-switching model of the aggregate market return, based on the idea

that the economy �uctuates between two states. While interesting, this intuition however rests on a relatively rigid
assumption on the number and nature of the states. This is why this exercise allows for smoother �uctuations of
alphas and betas.
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rather than forcing their computation through simulation or other approximations. Hence, I

will comment on results beginning with the KF estimates of volatility parameters ��, �� and

�" for the 25 FF portfolios and their combinations HLS, HL2, HL3, HL4, HLB and SBH,

SB2, SB3, SB4, SBL, reported in Table II (respective standard errors are in parentheses).

Several interesting �ndings emerge from Table II. First of all, alphas are very smooth.

Their standard deviation is at most 0.06% per month, with extreme portfolio B1S5 and

its combinations as exceptions. Such volatilities are on average much smaller than those

implied by the OLS quarterly measures computed by Lewellen and Nagel (2006). This also

says that the parameter variability allowed for by the KF algorithm does not introduce

excess variation in the coe¢ cients. Alphas of small-stock portfolios exhibit a slight tendency

to higher volatility than those of large-stock portfolios, and the same applies to high BE/ME

portfolios vis-à-vis low BE/ME ones. Both betas and idiosyncratic risk are de�nitely more

volatile for small stocks than for large-stock portfolios; there is no discernible impact of

BE/ME on this e¤ect.

Matching the standard deviations with the time-varying estimates of alphas and betas

reported below and the speed with which tje KF algorithm converges, we can conclude that

TVK parameters are tightly estimated. It is also worth noting the smaller volatility of these

coe¢ cients compared with the constant-coe¢ cient, OLS case that I presented above, and

which does employ the same information set. This �ts in well with �ndings by Ang and

Chen (2007), who employ asymptotic theory to demonstrate that standard OLS inference

provides misleading results, precisely because of time variation in the quantity of market

risk. However, the magnitude and persistence of estimated parameters imply, as shown

below, that TVK estimates lend much less support to CAPM�s ability to explain the spreads

in average returns than most results in Ang and Chen�s study.

Figures I-IV plot, for some representative portfolios, the time series of interest, as gen-

erated by the procedure. The top panels of each �gure show estimated conditional betas

(beta) and, closer to the x-axis, alphas (alpha); the lower panels show the conditional forecast

error variance of portfolio returns (vareta). Projected over the length of the estimation sam-
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ple, and compared with the 60-month window often considered, most betas exhibit marked

medium-term variation, typically over an interval of one year or two. Therefore, to discrim-

inate between these �uctuations and more slow-moving drifts in betas, I also plot simple

centered 30-month moving averages (betaMA)18.

Let us start with portfolio B1S1, that is, the basket of highest BE/ME stocks based on the

smallest �rms. The dynamics of this portfolio�s TVK parameters di¤ers substantially from

most other cases. Nevertheless, this portfolio�s estimates reveal some properties of alphas and

betas, like their quite di¤erent inertia, that will feature regularly in many other examples.

Recall that over the 1926-2007 sample this portfolio commands the highest monthly average

return amongst the 25 FF portfolios (1:74%), whereas its unconditional CAPM coe¢ cients

are �u = 0:50% and �u = 1:4. Its TVK beta (Figure I) displays ample variation over the

entire sample. We can neatly detect an upward trend between the late 1920s and mid-

1940s (peaking to nearly 5 and with an average of 2.4), then a substantial fall for longer

than a decade thereafter, some stabilization in the 1960s and then a resumption of the

downward drift until early 2000s (trough about 0.7). The run-up to the 2007-09 �nancial

crisis witnesses a sudden increase in the beta�s value. Of equal interest, the TVK estimate

of this portfolio�s alpha steadily creeps up, starting from negative values in the 1930s and

growing to or staying close around zero between the 1940s and the mid-1960s. Afterwards,

it turns de�nitively positive, reaching and then overtaking its unconditional value towards

the end of the sample19.

Overall, the results for this portfolio, which is particularly skewed towards small-cap

and high BE/ME stocks, reveal that CAPM�s preferred measure of systematic risk trends

downward over 1926-2007. However, substantial changes in both beta and alpha do take

place over long sub-periods, with a gradual upward drift of alpha easily the clearest one. In

contrast, we will see below that the estimated alphas of small-cap, low BE/ME portfolios are

persistently negative over the whole sample. This arguably con�rms that the conventional
18Alternatively, HP-�ltering would be an equivalent smoothing transformation, albeit not more parsimonious.
19To avoid further cluttering the charts, I omit con�dence bands -available upon request along with complete

estimates. As Table II shows, all coe¢ cients are precisely estimated.
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CAPM fails to explain the so-called value e¤ect, to a larger extent as the sample period gets

longer.

In the lower chart of Figure I, I plot the conditional variance of the prediction error.

The methodology yields vareta as a measure of uncertainty, and models it as endogenous

with respect to both future idiosyncratic risk and the evolution of beta. For portfolio B1S1,

we notice clusters of higher uncertainty in the 1930s and across the 1990s, whereas it was

relatively subdued in 1940s-1970 and in the 2000s. Signi�cantly, the considerable rise of this

beta over 2001-2006 takes place alongside low conditional volatility. As a consequence of

the model�s structure, the largest absolute pricing errors occur in periods when uncertainty

was greater. Results for portfolios B1S2, B1S3, B1S4 and B1S5, that is, the progressively

larger-stock sorts with the highest BE/ME stocks, do not qualitatively di¤er from those for

B1S1. This arguably means that market capitalization does not signi�cantly alter the e¤ects

we uncover.

As a sample of �ndings for the low BE/ME sorts, let us now turn to B5S5, that is, the

portfolio with lowest BE/ME stocks of the largest �rms (average return 0:91%, �u = �0:05%,
�u = 0:98). Volatilities in Table II say that this portfolio�s beta varies within a much narrower

band. Indeed, Figure II portraits a dynamics that di¤ers markedly from what characterizes

the small-value portfolio. Its TVK beta still tends to somehow rise and fall, but in this case

never markedly departing from about unity, roughly its unconditional value. In contrast, its

alpha follows a long downward trend from small, positive (and signi�cant) values at the start

of the sample up until small, negative (and signi�cant) values in the mid-1980s. The growth

in aggregate market values over 1983-2000 coincides with a reversal of this trend, whereas

that in 2003-2007 witnesses a simultaneous fall of both alpha and beta. In sum, the beta

of this low BE/ME, large-cap portfolio displays quite limited variation in the medium and

long run, whereas alpha trends downwards over the whole sample. Here again, the largest

pricing errors occur when the conditional variance of the forecast error exhibits larger values.

However, the conditional variance of returns is comparatively small. The latter two �ndings

further validate the choice made in Section 4 over how to measure uncertainty.
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As for the smaller-cap, growth-stock portfolio, which we know to have on average a much

smaller return, Figure III shows results for B5S2 (average return 0:88%; �u = �0:26%,
�u = 1:25). Unlike the results for B5S5, same BE/ME category but larger �rms, alpha here

is anywhere negative and its magnitude is particularly sizeable in the 1930s and early 1940s.

Its beta moves between 1 and 2, with large long-term swings, overall drifting upwards from

the mid-1950s onwards. As with other small-cap portfolios, the years 1999 to 2006 witness

a remarkable increase of its beta, despite its persistently negative or insigni�cant alpha.

This is further evidence suggesting that sorting on BE/ME, much more than on market

capitalization, is the main driver of alphas and of their evolution.

Finally, I chart estimates for portfolio B3S3 (average return 1:29%; �u = 0:21%, �u =

1:15), which lies exactly at the intersection of both BE/ME and size sorts, and therefore is

not tilted towards any characteristic. Figure IV shows that its TVK beta reaches a maximum

of about 1:5 in the 1930s, then gradually declines until the late 1950s, when it resumes an

upward trajectory, culminating in the late 1960s. Since then, beta steadily falls in value,

accelerating to a sharp drop around the dotcom bust, when it attains an all-time minimum

of 0.5, suddenly reversed by a marked increase since then. This portfolio�s alpha is always

positive, although not sizeable, and persistent throughout the sample, except for the very

early years. As for other cases, there are bouts of conditional uncertainty in the 1930s and

around the 1990s.

5.1 Out-of-sample predictive performance

It is now vital to assess the relative predictive ability of the TVK and rolling OLS estimates,

as the latter often feature in tests of conditional CAPM as well as in many, more practical

uses. To this end, I evaluate the outcomes of a simple hedging strategy, implemented using

either the rolling betas or the TVK ones. For each portfolio i, I compute the return over

month t + 1 of the position consisting of selling short �jt dollars of the market portfolio for

each dollar invested in portfolio i, where �jt is time-t estimate of portfolio�s beta obtained
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through either rolling OLS (j = ROLS) or the TVK algorithm (j = TV K)20. Formally, I

calculate for each portfolio the return over month t + 1 of the hedged long-short position,

which is the hedging error hjt+1

hjt+1 = Rt+1 � �jtR
eM
t+1, j = ROLS; TV K

For each month t + 1, I estimate �ROLSt based on a rolling 60-month window ending in

month t, whereas �TV Kt is simply the month-t beta extracted via the KF technique. This

simulation amounts to an out-of-sample test on the predictive ability of the TVK betas

against the standard rolling-window OLS estimates often employed in the literature and the

�nancial industry. Of course, the perfect hedge would yield a zero return. Table III reports

for all portfolios the implied average hedging errors and their standard deviations.

Results are clear-cut. The absolute values of average hedging errors are smaller when

�TV Kt is used instead of �ROLSt . Only for 3 out of the 25 portfolios the opposite holds, and

these are the "irregular" B1S5 portfolio, plus the two extreme small-cap, low BE/ME ones.

Moreover, while almost all avg
�
hROLSt+1

�
are sizeable and negative, avg

�
hTV Kt+1

�
sligthly over-

shoots in some cases but it goes the other way round for the lowest BE/ME portfolios. This

indicates that ROLS betas su¤er from some bias that does not a¤ect the TVK counterparts.

Even more striking in terms of hedging e¢ ciency, the ROLS model yields hedging errors

that are always more volatile than with the rival TVK model21. This evidence supports

unambiguously TVK betas against those from rolling-window regressions as forward-looking

indicators of market-risk sensitivity.

6 The cyclical behavior of market-risk loadings

Are market betas tied to economic activity and market conditions? This is a long-standing

question, whose relevance rises given the rich temporal and cross-sectional variation of the
20Jostova and Philipov (2005) perform a very similar exercise on industry portfolios.
21With the usual exception of portfolio B5S1. t -tests on the sample averages and volatilities (not shown here for

brevity) show that those di¤erences are almost always signi�cant at conventional levels.
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TVK estimates. To assess the interplay between time-varying betas and economic �uc-

tuations, I perform two complementary exercises. First, I run simple regressions of each

portfolio�s TVK beta on a battery of state variables, at the monthly frequency. Second, I

use quarterly averages of each monthly beta in unrestricted bivariate vector autoregressions

(VARs) along with a quarterly business cycle indicator, to gauge the lead-lag relations among

the variables at a more typical business-cycle frequency.

In the monthly regressions, the explanatory variables are: the value-weighted excess re-

turn on the market (MKT), the one-month Treasury bill rate (TBILL), the yield spread be-

tween ten-year and one-year Treasury bonds (TERM), the yield spread between Moody�s sea-

soned Aaa and Baa corporate bonds (DEF), the log dividend yield on the value-weighted mar-

ket index (DP), the consumption-to-wealth ratio of Lettau and Ludvigson (2001) (CAY)22

and the log of the PMI Composite Index (PMI). To pin down the marginal power of the

correlations with the dependent variable, I include all the variables jointly as regressors.

Each of them is standardised, so that the resulting coe¢ cient estimate can be interpreted

as the change in TVK beta predicted by a one-standard-deviation change in the regressor.

As before, computed standard errors are autocorrelation- and heteroskedasticity-consistent,

following Andrews (1991)23. All these choices make the ensuing inference acceptably robust.

A few regularities emerge from the estimates, presented for each portfolio beta in Table

IV. First, R2s increase almost monotonically with the size of �rms, reaching 54% for portfolio

B2S5. State variables jointly explain a larger portion of time variation in the betas of larger

�rms�portfolios, particularly those characterized by high BE/ME, whereas those of small-

stock portfolios are much more weakly related to them. Apparently, the market loadings of

larger �rms are more tightly associated with cyclical conditions. Second, the value-weighted

excess return on the market and the Aaa-Baa spread seem to be almost orthogonal to betas,

besides few correlations with the market loadings of some large-cap, low BE/ME portfolio.

Third, CAY is the state variable most highly and systematically correlated with betas. CAY
22CAY is available only at the quarterly frequency. I computed monthly observations from the original data using

linear interpolation.
23Due to data constraints, the estimation sample here starts in May 1953.
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exhibits a strong and negative relationship with most betas, regardless of their BE/ME

category. There are some exceptions among largest-cap portfolios, whereas for the smallest-

cap portfolios this e¤ect is stronger. Lettau and Ludvigson (2001) claim that their CAY

indicator is broadly counter-cyclical. To the extent that the joint regressions I run do not

dim this tendency, a negative coe¢ cient would imply that betas evolve in a pro-cyclical way,

particularly those of small-cap portfolios.

Fourth, when signi�cant, a unit variation in TBILL has the largest impact on TVK betas

among state variables. Regardless of market capitalization, the betas of high (low) BE/ME

portfolios are negatively (positively) associated with TBILL. The latter is often found to have

strong predictive power for economic activity (the same applying to TERM). This is addi-

tional, and more precise, evidence that the market-risk loadings of value (growth) portfolios

tend to move with (against) the business cycle. It also con�rms that high BE/ME portfolio

betas are �rmly procyclical, a �nding partly supported by the positive associations of these

portfolios�betas with PMI. Also, high (low) BE/ME betas are positively (negatively) corre-

lated with DP, which implies that the betas of value stocks rise when the market valuation

of cash �ows declines. Lastly, the term spread does reveal some predictive content for TVK

betas, but only for those of large-stock portfolios, whose betas have a positive correlation

with the spread.

Taken together, these results say that some state variables, commonly used as leading

indicators of the business cycle, also hold some useful information for developments in our

betas. Betas of high BE/ME portfolios tend to move pro-cyclically, whereas those of low

BE/ME portfolios lean towards an opposite tendency, albeit more weakly. Large-cap betas

have stronger associations with state variables. These �ndings are particularly valuable, as

the risk loadings were explicitly derived to account for the e¤ects of uncertainty and time

variation, but are based only on asset and market return data. It is appropriate to check

whether these regularities are robust with respect to the choice of the data frequency, a

di¤erent lead-lag structure, and alternative macroeconomic indicators. This is why next I

examine the information content of TVK betas at a lower frequency and within a di¤erent
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statistical speci�cation.

I compute simple three-month averages of each beta, and insert them in unrestricted

bivariate VARs in which a TVK beta is jointly regressed on a quarterly business cycle

indicator. Then, I runWald tests on the signi�cance of estimated coe¢ cients to infer whether

the indicator Granger-causes, i.e., is helpful in predicting future developments in betas, or

rather the other way round. The logic of such exercise is straightforward. If markets process

information e¢ ciently, and if the TVK beta is an unbiased measure of the quantity of risk,

its quarterly dynamics might be predicted by lagged indicators of business �uctuations. If

instead, as broadly resulting from the monthly estimates, betas also contain coincident or

forward-looking information about macroeconomic risk, its current value might help forecast

future business conditions. Cross-sectionally, this exercise should also provide evidence as

to whether sorting stocks according to BE/ME ratios and market capitalization leads to

di¤erent patterns in the relationship between systematic risk and economic activity.

I employ three alternative indicators of aggregate �uctuations, all typically constructed

at quarterly frequency: GDP-based output gap (YGAP, the deviation of actual from equi-

librium real GDP), the log change in real personal consumption expenditure (PCE), and the

log change in real private non-residential �xed investment (INV)24. I de�ne the output gap

by using the Congressional Budget O¢ ce�s measure of potential GDP25. Given some data

constraints, the estimation sample is from 1947Q2 (1949Q1 for YGAP) to 2007Q2. The

VARs lag lengths are chosen according to conventional information criteria: this involves

estimating a VAR(3), (4) or (5).

Table V lists the portfolios for which a TVK beta or a macroeconomic variable turns out

to Granger-cause signi�cantly (10% con�dence level or less) one another. There are some

clear regularities. Changes in aggregate consumption Granger-cause betas only weakly and

only for few high BE/ME portfolios. On the other hand, betas do not predict future con-

sumption growth. Therefore, consumption growth seems largely orthogonal to TVK betas.
24All data in this Section are from the Federal Reserve Bank of St. Louis� FRED database

(http://research.stlouisfed.org/fred2)
25Alternative measures, obtained using Hodrick-Prescott and Baxter King �ltering, yield very similar results.
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The risk sensitivities of large-cap portfolios, both high and low BE/ME, tend to Granger-

cause the output gap, whereas the latter does not help predict future betas. Finally, growth

in aggregate investment predicts the market-risk loadings of high BE/ME and small �rms

portfolios. However, only betas of high BE/ME portfolios have some predictive content for

future investment growth. Therefore, whilst in theory the cost of equity is a key determi-

nant of a �rm�s decision to invest, it is investment growth that leads developments in TVK

betas, rather than the other way round. The exceptions represented by some high BE/ME

portfolios possibly re�ect the fact that these sorts are skewed towards funding-constrained

�rms. These results lend some empirical support to the recent development of investment-

and production-based asset pricing models (Liu et al., 2009).

7 Conclusions

The value of a �rm re�ects the sum of current investments plus the options to invest in

all future projects (growth opportunities). In e¤ect, there are no reasons to think that the

exposures to fundamental sources of risk vary across assets, i.e. across claims to di¤erent cash

�ows, but not over time, i.e., when the information set and economic circumstances a¤ecting

the market valuation of the �rm�s cash �ows likely change. Shifts in assets�unobserved risk

loadings are likely to be the result of the arrival of new information as well as of investors

adjusting their forecasts in a context of parameter and model uncertainty. Despite the

growing interest of the �nance literature about the role played by uncertainty and structural

change, there are relatively few studies that investigate empirically their e¤ects on investment

choices.

I this paper, I employ a parsimonious learning model with no conditioning information

to extract time-varying estimates of market-risk sensitivities, pricing errors and a measure of

pricing uncertainty for the returns of portfolios sorted on book-to-market ratios and market

capitalization. Estimated conditional parameters display signi�cant �uctuations over time,

along patterns that change across di¤erent size and BE/ME categories of stocks, although
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there is clear evidence that sorting on BE/ME, much more than on size, is the main driver

of alphas and their evolution. The methodology I adopt allows for time variation in both

the systematic and idiosyncratic components of stock returns, and yields time-varying betas

that have markedly superior predictive ability for portfolio returns against rolling-window

OLS estimates. I also examine the relationship of time-varying betas with state variables at

business-cycle frequencies. Several other �ndings stand out. High (low) BE/ME betas move

pro-cyclically (counter-cyclically). Large-cap portfolio betas have stronger associations with

state variables. Finally, investment growth helps predict the betas of high BE/ME and small

�rms portfolios, whereas the betas of large-cap portfolios, both high and low BE/ME, have

some predictive content for future output gap.

Looking ahead, this paper�s approach, thanks to its simplicity and precision, lends it-

self easily to several developments. One application would extract TVK risk loadings in a

multifactor framework. A further extension might involve a more formal test of conditional

CAPM, in which the statistical signi�cance of pricing errors is evaluated cross-sectionally for

each sample observation. Finally, the method could also shed some light on the long-standing

question of how conditional volatility enters the risk-return trade-o¤.
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Table I
Tests of multiple structural change on market betas: 1963-2007

The table contains the results of the tests proposed by Bai and Perron (1998, 2003) on the stability of

estimated OLS coe¢ cients for the intercept and slope of the linear regression Reit = a+ bR
eM
t + et;where

Reit = R
i
t � R

f
t is the return on test portfolio i in excess of the one-month Treasury bill rate and R

eM
t =

ReMt � Rft is the excess return on the market. The supFT (k) tests allow for the possibility of serial

correlation in the disturbances. The HAC covariance matrix is constructed according to Andrews (1991)

and Andrews and Monahan (1993) using a quadratic kernel with automatic bandwidth selection based on an

AR(1) approximation. The residuals are pre-whitened using a V AR(1). Data are sampled at the monthly

frequency, and span the period July 1963 to August 2007 (530 observations). *, **, *** indicate signi�cance

at the 90%, 95% and 99% level, respectively. TheWDmax statistics, when not signi�cant, is displayed at

the 5% signi�cant level.

Test HLS HL2 HL3 HL4 HLB

supFT (1) 20.42*** 6.98 3.24 15.01*** 6.78

supFT (2) 10.59*** 3.93 4.31 10.45*** 6.25

supFT (3) 11.16*** 5.95* 3.88 10.58*** 14.65***

supFT (4) 8.82*** 4.67* 4.13 10.74*** 4.84*

supFT (5) 10.31*** 4.15** 3.43** 8.78*** 9.78***

UDmax 20.42*** 6.98 4.31 15.01*** 14.65***

WDmax 25.81*** 8.41* 7.53 21.97*** 24.48***

Test SBH SB2 SB3 SB4 SBL

supFT (1) 5.57 9.00** 16.46*** 11.33** 12.89***

supFT (2) 3.78 3.80 9.62*** 10.26*** 7.45**

supFT (3) 3.60 6.98** 7.94*** 9.04*** 7.11**

supFT (4) 4.14 5.41** 6.72*** 8.91*** 6.02**

supFT (5) 2.36 3.31 5.00*** 5.98*** 3.85*

UDmax 5.57 9.00** 16.46*** 11.33** 12.89***

WDmax 7.11 10.05** 16.46*** 17.70*** 12.89**
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Table II
Volatilities of time-varying parameters for 25 size-BE/ME portfolios: 1926-2007

The table contains estimated time-varying parameter estimates from the model Rt = xt�t + "t, where

�t = F�t�1 + �t, and ��, �� and �" are conditional estimates of the standard deviations of one-factor

regression coe¢ cients and disturbance. Rt is the return on test portfolio i in excess of the one-month

Treasury bill rate. Standard errors are in parentheses. Data are sampled at the monthly frequency and cover

the period July 1926 to August 2007 (974 observations).

Small ! Big

High
��

��

�"

B1S1
0.02 (0.01)

0.45 (0.03)

4.11 (0.12)

B1S2
0.02 (0.02)

0.22 (0.03)

3.72 (0.12)

B1S3
0.03 (0.01)

0.16 (0.02)

3.14 (0.08)

B1S4
0.01 (0.01)

0.13 (0.02)

3.37 (0.09)

B1S5
4.86 (0.22)

0.41 (0.04)

1.26 (0.44)

SBH
2.39 (0.15)

0.27 (0.03)

3.28 (0.16)

��

��

�"

B2S1
0.03 (0.02)

0.41 (0.03)

3.37 (0.1)

B2S2
0.01 (0.01)

0.19 (0.02)

2.86 (0.08)

B2S3
0.01 (0.01)

0.11 (0.01)

2.45 (0.07)

B2S4
0.01 (0.01)

0.13 (0.01)

2.17 (0.06)

B2S5
0.01 (0.01)

0.06 (0.01)

2.43 (0.06)

SB2
0.00 (0.01)

0.31 (0.02)

2.76 (0.09)

# ��

��

�"

B3S1
0.00 (0.02)

0.28 (0.03)

4.22 (0.12)

B3S2
0.03 (0.01)

0.26 (0.02)

2.41 (0.07)

B3S3
0.00 (0.01)

0.08 (0.01)

2.08 (0.05)

B3S4
0.01 (0.01)

0.1 (0.01)

1.89 (0.05)

B3S5
0.01 (0.04)

0.04 (0.01)

1.88 (0.05)

SB3
0.00 (0.01)

0.20 (0.02)

3.25 (0.1)

��

��

�"

B4S1
0.06 (0.03)

0.69 (0.04)

4.54 (0.14)

B4S2
0.00 (0.01)

0.26 (0.02)

2.82 (0.09)

B4S3
0.00 (0.01)

0.06 (0.01)

2.23 (0.06)

B4S4
0.00 (0.00)

0.06 (0.01)

1.71 (0.04)

B4S5
0.00 (0.02)

0.04 (0.01)

1.38 (0.03)

SB4
0.02 (0.02)

0.48 (0.03)

4.00 (0.11)

Low
��

��

�"

B5S1
0.03 (0.03)

0.58 (0.06)

6.89 (0.21)

B5S2
0.00 (0.02)

0.15 (0.03)

3.78 (0.12)

B5S3
0.00 (0.01)

0.13 (0.02)

2.88 (0.09)

B5S4
0.00 (0.01)

0.03 (0.01)

2.04 (0.05)

B5S5
0.00 (0.01)

0.01 (0.00)

1.45 (0.03)

SBL
0.02 (0.07)

0.37 (0.04)

4.50 (0.14)

��

��

�"

HLS
0.03 (0.02)

0.13 (0.03)

3.77 (0.12)

HL2
0.00 (0.01)

0.05 (0.01)

2.82 (0.07)

HL3
0.00 (0.01)

0.08 (0.01)

2.60 (0.07)

HL4
0.00 (0.01)

0.12(0.01)

2.70 (0.07)

HLB
2.44 (0.14)

0.17 (0.02)

2.40 (0.14)
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Table III

This table contains the sample mean (avg
�
hjt+1

�
) and standard deviation (�

�
hTV Kt+1

�
) of the hedging

error hjt+1= Rt+1��
j
tR

eM
t+1 where the superscript j = ROLS; TV K denotes the betas obtained either

through a rolling 60-month window regression ending in month t, or via the Kalman algorithm. Data are

monthly and the estimation sample is from 1928.6 to 2007.7.

avg
�
hROLSt+1

�
avg

�
hTV Kt+1

�
�
�
hROLSt+1

�
�
�
hTV Kt+1

�
B1S1 -1.30 0.63 10.91 6.84

B2S1 -0.86 0.44 8.55 6.05

B3S1 -0.77 0.36 10.02 5.90

B4S1 -0.43 -0.21 11.66 7.48

B5S1 -0.20 -0.54 16.91 10.42

B1S2 -1.04 0.34 8.50 4.92

B2S2 -0.68 0.32 5.84 3.92

B3S2 -0.55 0.25 5.04 3.89

B4S2 -0.54 0.10 6.07 4.08

B5S2 -0.16 -0.27 7.16 4.58

B1S3 -0.85 0.27 8.83 4.13

B2S3 -0.49 0.25 4.00 2.93

B3S3 -0.42 0.23 3.82 2.45

B4S3 -0.35 0.19 3.32 2.49

B5S3 -0.20 -0.04 5.72 3.55

B1S4 -0.85 0.23 10.05 4.18

B2S4 -0.45 0.25 4.52 3.13

B3S4 -0.34 0.20 2.73 2.42

B4S4 -0.14 0.04 2.53 1.99

B5S4 -0.07 0.01 3.23 2.15

B1S5 -0.42 -1.24 6.84 13.92

B2S5 -0.16 0.00 4.80 2.71

B3S5 0.01 0.07 2.40 2.06

B4S5 0.09 0.00 1.65 1.53

B5S5 0.08 -0.08 1.57 1.53
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Table IV

This table contains OLS estimates for the slope and R2 of a regression of each portfolio�s time-varying

beta on one lag of all of the state variables together. *, **, *** indicate signi�cance at the 90%, 95% and

99% level, respectively. HAC standard errors were computed, following Andrews (1991). Data are sampled

at the monthly frequency, and the estimation sample is from May 1953 to August 2007 (652 observations).

MKT TBILL TERM DEF DP CAY PMI R2

B1S1 0:00 �0:09� �0:01 0:01 0:06 �0:12��� 0:04 0:12

B2S1 0:01 �0:04 �0:01 0:00 0:05 �0:11��� 0:03 0:09

B3S1 0:01 0:06� 0:02 �0:01 0:02 �0:12��� 0:06�� 0:14

B4S1 0:00 0:05 0:04 0:00 0:00 �0:13��� 0:00 0:05

B5S1 �0:02 0:03 �0:06 0:06 �0:12�� �0:11�� �0:02 0:13

B1S2 0:00 �0:10�� 0:00 0:01 0:09�� �0:08�� 0:06� 0:18

B2S2 0:01 �0:1��� �0:05 0:04 0:04 �0:07�� 0:03 0:12

B3S2 0:00 0:00 0:01 �0:03 0:05 �0:13��� 0:02 0:14

B4S2 0:00 0:06� 0:04 0:01 0:00 �0:08�� 0:04 0:08

B5S2 �0:01 0:18��� 0:05� 0:00 �0:12��� �0:09��� 0:02 0:28

B1S3 0:00 �0:10�� 0:03 0:01 0:12��� �0:08��� 0:08��� 0:24

B2S3 0:01 �0:13��� �0:03 0:03 0:09��� �0:04� 0:06�� 0:28

B3S3 0:00 �0:02 0:02 0:01 0:06�� �0:06��� 0:03 0:19

B4S3 0:00 0:09��� 0:05�� �0:02 0:00 �0:06��� 0:03� 0:18

B5S3 �0:02� 0:20��� 0:09��� �0:06� �0:08��� �0:07�� �0:03 0:26

B1S4 0:01 �0:13��� �0:01 0:03 0:15��� �0:05� 0:09��� 0:34

B2S4 0:01 �0:12��� �0:01 0:00 0:09��� �0:07��� 0:04 0:25

B3S4 0:01 0:00 0:03 �0:02 0:06�� �0:02 0:04�� 0:14

B4S4 0:00 0:08��� 0:03�� 0:02 0:02 �0:05��� 0:04��� 0:31

B5S4 �0:02��� 0:10��� 0:04��� 0:01 �0:09��� �0:02� 0:00 0:44

B1S5 0:00 �0:12�� 0:02 �0:06 0:11��� �0:07�� 0:02 0:18

B2S5 0:02��� �0:10��� �0:02 �0:03�� 0:14��� 0:02 0:03� 0:54

B3S5 0:01�� 0:00 0:01 0:01 0:03 0:00 0:04��� 0:11

B4S5 0:00 0:03� 0:01 0:02 0:02 0:01 0:01 0:17

B5S5 0:00 �0:02��� 0:00 �0:01 0:00 0:03��� 0:00 0:34
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Table V

This table contains the p-value of signi�cant (at least 10% con�dence level) �2statistic of Wald tests

on estimated coe¢ cients of unrestricted bivariate VARs of each portfolio�s time-varying beta (quarterly

average of original monthly estimates) and a macroeconomic indicator. HAC standard errors were computed

(Andrews, 1991). Data are quarterly, and the estimation sample is from 1947Q2 (1949Q1 for YGAP) to

2007Q2.

Y GAP INV PCE

B1S1
Y GAP ! BETA : 0:86

BETA! Y GAP : 0:07
B1S1

INV ! BETA : 0:03

BETA! INV : 0:05
B2S1

PCE ! BETA : 0:04

BETA! PCE : 0:47

B2S3
Y GAP ! BETA : 0:11

BETA! Y GAP : 0:02
B2S1

INV ! BETA : 0:01

BETA! INV : 0:12
B1S2

PCE ! BETA : 0:07

BETA! PCE : 0:54

B5S3
Y GAP ! BETA : 0:40

BETA! Y GAP : 0:06
B3S1

INV ! BETA : 0:01

BETA! INV : 0:11
B1S5

PCE ! BETA : 0:03

BETA! PCE : 0:42

B1S4
Y GAP ! BETA : 0:53

BETA! Y GAP : 0:00
B4S1

INV ! BETA : 0:04

BETA! INV : 0:07

B2S4
Y GAP ! BETA : 0:79

BETA! Y GAP : 0:03
B1S2

INV ! BETA : 0:03

BETA! INV : 0:08

B5S4
Y GAP ! BETA : 0:83

BETA! Y GAP : 0:00
B1S3

INV ! BETA : 0:18

BETA! INV : 0:07

B1S5
Y GAP ! BETA : 0:17

BETA! Y GAP : 0:01
B2S3

INV ! BETA : 0:04

BETA! INV : 0:12

B2S5
Y GAP ! BETA : 0:29

BETA! Y GAP : 0:01
B1S4

INV ! BETA : 0:07

BETA! INV : 0:00

B4S5
Y GAP ! BETA : 0:44

BETA! Y GAP : 0:03
B5S4

INV ! BETA : 0:22

BETA! INV : 0:09

B5S5
Y GAP ! BETA : 0:66

BETA! Y GAP : 0:09
B1S5

INV ! BETA : 0:03

BETA! INV : 0:68

B2S5
INV ! BETA : 0:04

BETA! INV : 0:15

B3S5
INV ! BETA : 0:52

BETA! INV : 0:07
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Figure I
Time-varying, conditional CAPM parameters: 1928-2007. Portfolio B1S1.

The top panel plots estimated time-varying parameters from the model Reit = xt�
i
t + "

i
t, where �

i
t =

F i�it�1 + �
i
t and xt contains a constant and the market�s excess return. betaMA is the centered 30-month

moving average of beta. The lower panel plots the estimated conditional variance ftjt�1 = E
h
�2tjt�1

i
(vareta) of the prediction error �tjt�1 = R

ei
t �Reitjt�1.
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Figure II
Time-varying, conditional CAPM parameters: 1928-2007. Portfolio B5S5.

The top panel plots estimated time-varying parameters from the model Reit = xt�
i
t + "

i
t, where �

i
t =

F i�it�1 + �
i
t and xt contains a constant and the market�s excess return. betaMA is the centered 30-month

moving average of beta. The lower panel plots the estimated conditional variance ftjt�1 = E
h
�2tjt�1

i
(vareta) of the prediction error �tjt�1 = R

ei
t �Reitjt�1.
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Figure III
Time-varying, conditional CAPM parameters: 1928-2007. Portfolio B5S2.

The top panel plots estimated time-varying parameters from the model Reit = xt�
i
t + "

i
t, where �

i
t =

F i�it�1 + �
i
t and xt contains a constant and the market�s excess return. betaMA is the centered 30-month

moving average of beta. The lower panel plots the estimated conditional variance ftjt�1 = E
h
�2tjt�1

i
(vareta) of the prediction error �tjt�1 = R

ei
t �Reitjt�1.
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Figure IV
Time-varying, conditional CAPM parameters: 1928-2007. Portfolio B3S3.

The top panel plots estimated time-varying parameters from the model Reit = xt�
i
t + "

i
t, where �

i
t =

F i�it�1 + �
i
t and xt contains a constant and the market�s excess return. betaMA is the centered 30-month

moving average of beta. The lower panel plots the estimated conditional variance ftjt�1 = E
h
�2tjt�1

i
(vareta) of the prediction error �tjt�1 = R

ei
t �Reitjt�1.
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Appendix
Table A1 reports the average returns for the test assets and for the excess return on the market

(ReMt ), i.e., the value-weighted return on all NYSE, AMEX, and NASDAQ stocks minus the one-

month Treasury bill rate (from Ibbotson Associates). Each portfolio is dubbed by its reference

to the BE/ME and size category. In the notation, the �rm size increases from S1 to S5 and the

BE/ME ratio from B1 to B5. So, for instance, portfolio B2S5 contains stocks of the largest �rms

within the second highest BE/ME class, and so on. In addition to the 25 size-BE/ME portfolios, I

report results for some of their combinations. H � L is the di¤erence between the average return
for the two highest BE/ME quintiles within a size quintile and the average return of the two lowest

BE/ME quintiles. Similarly, S�B is the di¤erence between the average return for the two smallest
quintiles within a BE/ME quintile and the average return of the two largest quintiles within a

BE/ME quintile. �(�) are the t statistics for the means of the time series, i.e., the average monthly
return divided by its standard error.

There is a well-known data constraint. In the early part of the sample, some extreme portfolios

often had very few �rms. Limiting the sample to the period 1963 to 2007, as in Fama and French

(2006) and Lewellen and Nagel (2006), allows considering portfolios with at least 10 stocks. The

bottom panel of Table A1 contains statistics for this shorter sample. Aggregating over four portfolios

for each dimension should make the inference more robust to the impact of extreme portfolios that

are relatively under-diversi�ed for the early part of the sample.

Next, I estimate for each portfolio return the standard one-factor model regression:

Reit = a+ bR
eM
t + et;

where Reit = R
i
t �R

f
t is the return on test portfolio i in excess of the one-month Treasury bill rate

and again ReMt = RMt �R
f
t is the excess return on the market. I estimate the regressions over both

the whole sample (1926-2007) and the shorter period 1963-2007. Tables A2 and A3 below exhibit

estimated coe¢ cients a and b and their t-values26.

Figure A1 helps gain some perspective on the extent to which conventional market betas fail to

explain the so-called value and size premia. Following popular practice (Cochrane, 2005), the two

panels plot excess returns against betas, for the subsample 1963-2007.

26 t-values are constructed using HAC standard errors, following Andrews (1991).
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Table A1
Average percent monthly returns for 25 size-BE/ME portfolios: 1926-2007 and

1963-2007

The table contains the returns on the FF portfolios, formed as the intersection of independent sorts of

stocks on the basis of BE/ME ratios and market capitalization, and the di¤erence between the value-weighted

market return and the one-month Treasury bill rate. H � L is the di¤erence between the average return
for the two highest BE/ME quintiles within a size quintile and the average return of the two lowest BE/ME

quintiles. Similarly, S �B is the di¤erence between the average return for the two smallest quintiles within

a BE/ME quintile and the average return of the two largest quintiles within a BE/ME quintile. �(�) are the
t statistics for the means of the time series, i.e., the average monthly return divided by its standard error.

Data are sampled at the monthly frequency, and cover the period July 1926 to August 2007 (top panel, 974

observations) and July 1963 to August 2007 (bottom panel, 530 observations).
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Small ! Big S �B �(S �B)
Sample: 1926M7-2007M8

High
B1S1

1.74

B1S2

1.53

B1S3

1.43

B1S4

1.40

B1S5

0.05

SBH

0.91

�(SBH)

4.21

B2S1

1.52

B2S2

1.41

B2S3

1.31

B2S4

1.28

B2S5

1.05

SB2

0.30

�(SB2)

2.52

# B3S1

1.35

B3S2

1.35

B3S3

1.29

B3S4

1.19

B3S5

1.00

SB3

0.26

�(SB3)

1.92

B4S1

1.13

B4S2

1.26

B4S3

1.20

B4S4

1.06

B4S5

0.92

SB4

0.20

�(SB4)

1.17

Low
B5S1

0.78

B5S2

0.88

B5S3

0.99

B5S4

0.99

B5S5

0.91

SBL

-0.12

�(SBL)

-0.62

H � L HLS

0.67

HL2

0.40

HL3

0.28

HL4

0.31

HLB

-0.37
ReMt = 0:66

�(H � L) � (HLS)

4.79

� (HL2)

3.81

� (HL3)

2.64

� (HL4)

2.47

� (HLB)

-1.71
�
�
ReMt

�
= 3:84

Sample: 1963M7-2007M8

High
B1S1

1.44

B1S2

1.50

B1S3

1.49

B1S4

1.36

B1S5

1.09

SBH

0.35

�(SBH)

2.41

B2S1

1.52

B2S2

1.43

B2S3

1.33

B2S4

1.33

B2S5

1.06

SB2

0.28

�(SB2)

2.12

# B3S1

1.32

B3S2

1.40

B3S3

1.22

B3S4

1.21

B3S5

0.96

SB3

0.27

�(SB3)

1.86

B4S1

1.28

B4S2

1.15

B4S3

1.22

B4S4

1.00

B4S5

0.97

SB4

0.23

�(SB4)

1.39

Low
B5S1

0.70

B5S2

0.87

B5S3

0.91

B5S4

1.00

B5S5

0.88

SBL

-0.15

�(SBL)

-0.86

H � L HLS

0.59

HL2

0.46

HL3

0.35

HL4

0.34

HLB

0.15
ReMt = 0:49

�(H � L) � (HLS)

4.32

� (HL2)

3.58

� (HL3)

2.62

� (HL4)

2.75

� (HLB)

1.25
�
�
ReMt

�
= 2:61
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Table A2
Unconditional one-factor model coe¢ cients for 25 size-BE/ME portfolios: 1926-2007

The table reports OLS estimates for the intercept, slope and R2 of the linear regression Reit = a +

bReMt + et; where Reit = R
i
t �R

f
t is the return on test portfolio i in excess of the one-month Treasury bill

rate andReMt = RMt �R
f
t is the excess return on the market. t-values are in parentheses and are constructed

using HAC standard errors, following Andrews (1991). Data are sampled at the monthly frequency, and

cover the period July 1926 to August 2007 (974 observations).

a

b

R2

B1S1
0.50(3.04)

1.40(15.8)

0.61

B1S2
0.32(2.21)

1.37(17.4)

0.71

B1S3
0.20(1.38)

1.40(14.7)

0.76

B1S4
0.13(0.91)

1.45(14.1)

0.75

B1S5
-1.08(-1.26)

1.25(12.5)

0.25

SBH
0.58(1.31)

0.04(0.66)

0.00

a

b

R2

B2S1
0.34(2.27)

1.31(16.9)

0.66

B2S2
0.29(2.41)

1.23(18.5)

0.76

B2S3
0.26(2.61)

1.13(21.9)

0.80

B2S4
0.19(1.86)

1.81(17)

0.82

B2S5
-0.01(-0.13)

1.14(13.5)

0.79

SB2
-0.08(-0.67)

0.11(2.15)

0.03

a

b

R2

B3S1
0.12(0.74)

1.40(17)

0.66

B3S2
0.26(2.43)

1.19(17.3)

0.76

B3S3
0.21(2.41)

1.15(21.5)

0.85

B3S4
0.16(1.98)

1.09(28.5)

0.87

B3S5
0.04(0.46)

0.98(20.9)

0.85

SB3
-0.22(-1.78)

0.26(4.13)

0.11

a

b

R2

B4S1
-0.16(-0.95)

1.48(13.8)

0.55

B4S2
0.11(0.92)

1.28(20.2)

0.76

B4S3
0.14(1.74)

1.13(35.4)

0.86

B4S4
0.02(0.27)

1.10(31.8)

0.90

B4S5
0.00(0.02)

0.93(50.1)

0.91

SB4
-0.34(-2.86)

0.37(4.84)

0.12

a

b

R2

B5S1
-0.62(-3)

1.66(15.6)

0.51

B5S2
-0.26(-1.90)

1.25(19.9)

0.71

B5S3
-0.17(-1.59)

1.29(31.9)

0.81

B5S4
-0.03(-0.33)

1.08(28)

0.86

B5S5
-0.05(-0.86)

0.98(60.8)

0.92

SBL
-0.71(-4.83)

0.43(6.92)

0.14

a

b

R2

HLS
0.51(4.04)

-0.21(-4.27)

0.06

HL2
0.07(0.69)

0.04(0.56)

0.00

HL3
-0.07(-0.57)

0.06(0.90)

0.01

HL4
-0.14(-1.15)

0.23(2.43)

0.10

HLB
-0.83(-1.87)

0.24(3.12)

0.04
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Table A3
Unconditional one-factor model coe¢ cients for 25 size-BE/ME portfolios: 1963-2007

The table reports OLS estimates for the intercept, slope and R2 of the linear regression Reit = a +

bReMt + et;where Reit = Rit � R
f
t is the return on test portfolio i in excess of the one-month Treasury

bill rate and ReMt = RMt � Rft is the excess return on the market. t-values are in parentheses, and
are constructed using HAC standard errors, following Andrews (1991). Data are sampled at the monthly

frequency, and cover the period July 1963 to August 2007 (530 observations).

a

b

R2

B1S1
0.66(3.52)

1.03(19.2)

0.58

B1S2
0.51(3.12)

1.06(19.8)

0.66

B1S3
0.53(3.17)

1.00(18.4)

0.67

B1S4
0.40(2.82)

0.99(19.6)

0.68

B1S5
0.20(1.50)

0.83(17.4)

0.58

SBH
-0.18(-1.29)

0.13(3.31)

0.03

a

b

R2

B2S1
0.56(3.23)

1.00(19.9)

0.61

B2S2
0.48(3.42)

0.98(22.2)

0.70

B2S3
0.41(3.15)

0.91(22.1)

0.72

B2S4
0.40(3.35)

0.92(23.3)

0.75

B2S5
0.20(1.77)

0.80(21.9)

0.80

SB2
-0.25(-1.84)

0.13(3.45)

0.03

a

b

R2

B3S1
0.31(1.80)

1.08(21.8)

0.63

B3S2
0.41(2.95)

1.04(22.9)

0.72

B3S3
0.28(2.17)

0.98(23.3)

0.77

B3S4
0.26(2.32)

0.98(26)

0.80

B3S5
0.07(0.73)

0.85(28.2)

0.77

SB3
-0.27(-1.90)

0.14(3.76)

0.03

a

b

R2

B4S1
0.20(1.02)

1.23(24)

0.60

B4S2
0.10(0.72)

1.17(26.8)

0.74

B4S3
0.20(1.65)

1.11(33.5)

0.81

B4S4
0.00(0.00)

1.08(29.8)

0.85

B4S5
0.03(0.36)

0.95(39.8)

0.87

SB4
-0.33(-2.06)

0.19(4.71)

0.05

a

b

R2

B5S1
-0.48(-1.99)

1.45(25.9)

0.61

B5S2
-0.31(-1.84)

1.44(32.1)

0.73

B5S3
-0.24(-1.77)

1.36(35.9)

0.78

B5S4
-0.09(-0.71)

1.26(42.8)

0.84

B5S5
-0.09(-1.08)

1.01(45.7)

0.88

SBL
-0.78(-4.26)

0.32(6.55)

0.11

a

b

R2

HLS
0.28(1.93)

-0.32(-7.81)

0.20

HL2
0.13(0.95)

-0.28(-8.58)

0.18

HL3
0.02(0.12)

-0.28(-6.37)

0.16

HL4
-0.03(-0.22)

-0.20(-4.56)

0.1

HLB
-0.24(-1.93)

-0.16(-4.11)

0.07
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Figure A1
Average percent excess returns against unconditional market betas: 1963-2007

Top panel: lines connect portfolios with di¤erent BE/ME categories within size categories. Bottom

panel: lines connect portfolios with di¤erent size categories within BE/ME categories.
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