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ABSTRACT

Volatility indices have been designed for many markets as gauges to measure investors’ fear
of market crash. The recent market turmoil has produced historically high volatility levels, in
some cases around four times higher than their previous average levels. These levels are not
anticipated by continuous-time models calibrated using old market data. We take a new look
at the behavior of various volatility indices by including the recent market turmoil into the
data. We re-estimate various continuous-time models for different volatility indices with focus
on the structure of the drift and diffusion functions. Two methodologies are utilized: the
maximum likelihood estimation, and Aı̈t-Sahalia’s parametric specification test. While the
results from the parametric specification test advocate strongly for specifying more flexible
drift and diffusion functions, nonlinear drift structure often only adds negligible benefit in
terms of the likelihood function value. Our results call for caution against finite sample bias
when adopting a particular model or fixing a particular parameter vector.
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I. Introduction

While the modern world financial markets have evolved for at least a few hundreds of years, the

markets are still far from being complete. A complete market means that investors are able to

hedge against any kinds of risk, such as traditional market risk, liquidity risk and credit risk, as

well as nontraditional ones such as labor income risk, longevity risk, climate risk, etc. The process

of financial engineering during the past half century can be thought of as an explosive effort by

investors of trying to complete market.1 A very significant boost in the process of completion is in

1973, when CBOE introduced first batch of exchange-traded stock options. Following that, there

have been a plethora of new financial products both on exchanges and over the counter. These

include single stock futures, credit derivatives, weather derivatives, freight derivatives, housing

derivatives, economic derivatives, leveraged ETFs, catastrophe bonds, survival derivatives, etc.

Merton Miller asked: “(c)an any twenty-year period in recorded history have witnessed even a

tenth as much financial innovation?” The astonishing rapid pace of financial innovation has met

with mixed reactions. While Warren Buffet famously labeled derivatives as “financial weapons of

massive destruction,” former Fed chair Allen Greenspan spoke highly of derivatives to a Senate

Banking Committee in 2003: “What we have found over the years in the marketplace is that

derivatives have been an extraordinarily useful vehicle to transfer risk from those who shouldn’t

be taking it to those who are willing to and are capable of doing so.” The recent market turmoil

has added fuel to some people’s resentment to derivatives, a common phrase one often reads is

“Math + Market = Mayhem.” Nonetheless, the consensus of the market is that derivatives are

going to stay and to develop further. In this regard, the recent market turmoil might turn out

to be a good breathing point for financial engineers and regulators to take a critical look at the

past achievements and the challenges ahead.

Adding to the arsenal of financial innovations is the introduction of volatility derivatives,

such as volatility futures, variance swaps, volatility options, etc. These products allow investor

to hedge against and speculate on pure volatility risks. Most of the time, these products are built

upon some volatility indices, the most well-known one being the CBOE VIX index introduced

in 1993. This index has been mimicked by many other markets both inside the U.S. and outside.

For example, CBOE also computes the volatility index VXN for Nasdaq 100 (NDX) and the

index VXD for Dow Jones Industrial Average (DJIA). Outside the U.S., there is a growing list of

volatility indices being introduced. For example, Deutsche Börse back calculated volatility index
1Of course, financial engineering serves some other purposes too, such as minimizing transaction costs, allevi-

ating agency problems or information asymmetry, etc. For articles on financial innovation, see Miller (1986, 1991,
1992) and Tufano (2003).
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VDAX (as well as VDAX-NEW) based on the DAX from year 1992, while MONEP publishes

VX1, VX6, and other related volatility indices based on CAC 40 since 1997. Two other examples

are the VSTOXX and VSMI which will be studied in detail in this paper.

Derivative products are intrinsically related to volatility. Recently, direct bets on volatility

have been introduced both on exchanges and over the counter. For example, the CBOE started

trading VIX futures in March 2004. These products are welcome by market participants because

they not only allow one to direct bet on the movement of volatility, but also allow one to isolate

and hedge the volatility component in other derivative products. See Grünbichler and Longstaff

(1996) on pricing volatility derivatives, Brenner, Ou, and Zhang (2006) on hedging volatility

risk, and Windcliff, Forsyth and Vetzal (2006) on both. To reliably price volatility products and

to calculate the optimal hedge positions, a good understanding of the dynamics of the volatility

indices is essential. There are a few choices researchers can make. One could use a discrete-time

process such as GARCH to model the volatility indices, or use a continuous-time process. In this

paper, we focus on the second approach. Two earlier research papers are worth mentioning. In

Bakshi, Ju, and Ou-Yang (2006), the authors employ maximum likelihood estimation to render a

rank-ordering of various continuous-time models. A single volatility index (VXO) is used in this

study.2 Their results show that there is substantiate variance dynamics with nonlinear mean-

reversion. Also, their results support the presence of a nonlinear diffusion coefficient structure.

The combined specification of nonlinear drift and diffusion provides superior performance relative

to its nested variants. Dotsis, Psychoyios, and Skiadopoulos (2007) further consider the addition

of jumps in modeling the volatility dynamics. In addition to VIX, they also consider the VXO

index, as well as several European volatility indices. However, because of the limitation of

tractability, they have to restrict themselves to affine drift functions. This allows them to use

a maximum likelihood estimation technique. With this restriction, their results show that it

is necessary to add jumps to capture the evolution of implied volatility indices while (linear)

mean-reversion is of second-order importance.

In this paper, we reexamine the continuous-time dynamics of various volatility indices. We

have several motivations. First, most studies on volatility dynamics are completed before year

2007 and miss the recent market turmoil. Bakshi, Ju, and Ou-Yang (2006) use a sample period

from July, 1, 1988 to January 10, 2000. Dotsis, Psychoyios, and Skiadopoulos (2007) use a sample

period from October 14, 1997 to March 24, 2004. The year 2007 marks the dramatic downturn
2CBOE changed its methodology of computing VIX in 2003 and renamed the old VIX index to VXO. My

private communications with the authors clarifies that the VIX index referred to in Bakshi, Ju, and Ou-Yang
(2006) is actually the VXO index.
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of the world financial markets and the subsequent dramatic increase of market volatility in

2008. For example, the maximum VIX level for the sample period in the study of Dotsis,

Psychoyios, and Skiadopoulos (2007) is a little over 40 while it reached above 80 in 2008.

This is largely unexpected from the estimations in previous studies. For example, using the

parameter estimates from Bakshi, Ju, and Ou-Yang (2006), the probability that VIX reaches

such a high level is extremely low. Thus, it is useful to reexamine the volatility dynamics and

to understand what have changed and what have not. For example, is it still important to

incorporate nonlinearity in the volatility dynamics? Second, most previous studies have focused

on the maximum likelihood estimation technique. Li (2009) studies diffusion processes whose

diffusion functions are damped. Through Monte Carlo simulation, the author shows that the

maximum likelihood estimation is often susceptible to finite sample bias. For example, it often

misidentifies the damped diffusion with nonlinear drift. Thus, in addition to maximum likelihood

estimation, we also use a parametric specification test developed in Aı̈t-Sahalia (1996). This

test is based on matching the invariant density of the volatility process with the one implied

by the data. Thus, one can roughly view this estimation as matching various sample moments

altogether at the same time, somewhat similar to the method of generalized moments. Loosely

speaking, the maximum likelihood estimation cares more about the local behavior such as the

transition probability next step, while the parametric specification test cares more about global

behavior. With large sample size, the two estimation methods have to give similar results

because both are consistent. Thus, it is useful to see whether these two estimation techniques

give similar results on the volatility dynamics. Conflicting results indicate the presence of finite

sample bias and calls for caution when one wants to adopt a particular model. Third, we use

two European volatility indices not studied in Bakshi, Ju, and Ou-Yang (2006) and Dotsis,

Psychoyios, and Skiadopoulos (2007), namely, the VSTOXX and VSMI indices. In addition,

we also briefly look at the volatility term structure by examining a constant one-year maturity

VIX-1Y index. Finally, as a minor difference, we study the volatility process directly instead of

its squared variance process.

Several important results come out of our study. First, we perform two identical maximum

likelihood estimation on the VIX index with and without including the two most recent years.

We find that the inclusion of the recent market turmoil has a much larger effect on the estimated

parameters in the drift function than those in the diffusion function. With the inclusion of the

recent data, the mean-reversion in the drift function becomes weaker and less significant. How-

ever, the diffusion function is almost unchanged. Second, our maximum likelihood estimation

shows that nonlinearity parameters in the drift function are often insignificant or only marginally
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significant if we include most recent data in the analysis. Judging from the likelihood ratios,

it often suggests not including the nonlinear parameters. Also, our results show that with the

exception of the VSMI index, a CEV-type diffusion function is sufficient. This result is similar

to the one obtained in Durham (2003) for interest rates, where he find that it is often optimal

to specify a constant drift function if one’s objective is to maximize the likelihood function. Our

final result from a parametric specification test, however, contradicts the result obtained from

the maximum likelihood estimation. The estimation unanimously rejects all models with only

linear drift, and for the VSTOXX and VSMI indices, it even rejects the nonlinear drift and

nonlinear diffusion model and calls for more complicated specifications. The reason seems to

be that the observed data suggests a bimodal or multi-modal invariant density which a simple

parametric specification is not able to deliver.

These results continue the debate on whether the existence or nonexistence of nonlinearity in

the drift function estimated from various different methods is due to finite sample bias. A short

list on papers examining this issue includes Aı̈t-Sahalia (1996, 1999), Chapman and Pearson

(2000), Durham (2003), Jones (2003), Li, Pearson and Poteshman (2004), and Takamizawa

(2008). That maximum likelihood and parametric specification tests yield conflicting conclusions

with regard to the inclusion of nonlinearity in the drift function indicates the existence of finite-

sample bias in either or both of these two methods. Without additional data, it is difficult to

draw the final conclusion on this issue. A joint estimation together with observations on VIX

derivative prices might offer more insights on this issue, although the need to specify volatility

risk-premium might make this estimation difficult.

The paper is organized as follows. Section II describes the data we use. Section III studies

the continuous dynamics of various indices using the maximum likelihood estimation technique.

Section IV studies the continuous dynamics of various indices using a parametric specification

test. Section V concludes.

II. Data description

The data employed in this paper include time series for four volatility indices and three stock

market indices. The four volatility indices are denoted as VIX, VIX-1Y, VSTOXX and VSMI.

The first two volatility indices are for the U.S. market and cover both short-term (30-day) and

long-term (1-year) horizons. The last two indices are for the European markets. The selection

of these four indices allows us to examine both short-term and long-term volatility indices, and

both domestic and foreign markets.
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The VIX index is the volatility index introduced by the Chicago Board Options Exchange

in 1993 based on the paper by Whaley (1993). See also Whaley (2000). The original volatility

index (now with ticker symbol VXO) was based on model-specific implied volatilities of S&P 100

index options, while the new VIX index is a model independent measure of future volatility based

on S&P 500 index options. Both can be regarded as measures of market’s expectation of the

stock market volatility with a 30-day constant maturity. A good analysis of the theoretical

underpinnings of the two indices is carried out in Carr and Wu (2006). According to CBOE,

“(s)ince its introduction in 1993, VIX has been considered by many to be the world’s premier

barometer of investor sentiment and market volatility.” Since the VIX index is back calculated

to year 1990, we use the time period January 2, 1990 to April 15, 2009, a total of 4859 daily

observations.

Our second volatility index VIX-1Y is a volatility index very similar to VIX but with a

constant horizon of one year. It is based on the VIX term structure data published by CBOE,

which date back to year 1992. On each business day, the VIX term structure data consist of about

8 implied volatility indices with maturities up to about three years. Figure 1 plots the volatility

term structure as a function of the calendar time. A few things are easy to notice. First, there

is a dramatic increase in volatility levels during the recent years. Second, for different calendar

days, the volatility term structure could be either downward-sloping or upward-sloping. The

downward-sloping feature is particularly prominent during the recent market turmoil. Finally,

the short-term volatility indices seem to be more volatile than long-term volatilities, although

there is still considerable variability for long-term volatilities.

Since the maturities in Figure 1 change day by day and are not constants, we construct

a constant one-year maturity volatility index (VIX-1Y) based on the same methodology that

CBOE uses during their final step of computing the VIX index. Specifically, we do an interpo-

lation of the total variance on each day using the two maturities nearest to one year to get the

VIX-1Y. The time-period of VIX-1Y thus covers from January 2, 1992 to April 15, 2009, a total

of 4342 daily observations. We use this VIX-1Y index as a proxy of the future volatility level

implied by the market for one-year horizon.

Our last two indices cover the European markets. The VSTOXX index is based on Dow

Jones EURO STOXX 50 option prices and is designed to reflect the market expectations of

near-term (30-day) volatility of the Eurozone markets. The Dow Jones EURO STOXX 50 Index

is a blue-chip index in the Eurozone covering Austria, Belgium, Finland, France, Germany,

Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain. The VSMI index is

a similar volatility index based on the SMI index of the Six Swiss Exchange. The SMI index
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is Switzerland’s key equity index representing 20 blue-chips. Both of these two indices start

on January 4, 1999, with 2617 daily observations for VSTOXX and 2618 daily observations for

VSMI.

Table 1 presents the summary statistics of the four volatility indices as well as their first-order

differences. The means of the four indices are all very close to 20, except that the VSTOXX index

has a mean of 25. This is a little bit surprising given that the STOXX index is for 50 blue-chip

companies while the S&P 500 is a much broad market index. The VSTOXX index also behaves

somewhat differently from the other three in terms of median and mode. For the maximum, the

VIX-1Y index has a considerably smaller maximum of 55.53 while all the other three indices

have a maximum larger than 80. The standard deviations of the indices are much larger than

those reported in other studies using data before 2008, for example, Dotsis, Psychoyios, and

Skiadopoulos (2007). All four indices have positive skewness and somewhat large kurtosis. For

the first-order differences, the means are all close to 0 with standard deviations from 0.70 to 1.84.

Judging from the relatively small standard deviations, the minimum and maximum values of the

changes are huge in magnitude. For example, for the changes in VSTOXX, the highest one-day

negative change is 13.98, while the highest one-day positive change is 22.64. All these large

changes are realized in years 2008 and 2009 amid the recent market turmoil. The skewnesses

of changes of the four indices behave differently, with two of them positive and two of them

negative. The most striking feature is that the changes of all four indices display huge kurtosis,

with the kurtosis of ∆VIX-1Y being 78.44. The first-order autocorrelations of changes of the

indices are all slightly negative, except for changes of the VSMI index, which has a positive

autocorrelation of 0.10.

In addition to these four volatility indices, we also collect daily data for the underlying

market indices, namely, the S&P 500 index in the U.S., the DJ STOXX index, and the SMI

index. The S&P 500 index data is from Yahoo Finance historical data, while the other two

indices are obtained from STOXX Ltd. and Six Swiss Exchange, respectively. Figures 2 to 4

plot the volatility indices together with their underlying market indices. All three market indices

experienced an “M-shape” during the sample periods, with a strong run leading to the first peak

around the middle of year 2000. Following the burst of the internet bubble, stock indices picked

up again starting around the end of year 2002. However, starting from the middle of year 2007,

we see a big continuous drop of the market indices as a result of the subprime mortgage crisis and

the following credit crunch. Both of these two market downturns have had significant impact on

the behavior of the volatility indices. For example, the VIX shoot up to around 80% during the

recent market turmoil. In addition, the Asian currency crisis in 1997 and the Russian sovereign
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bond default in 1998 also had strong impacts on the VIX and VIX-1Y.

Table 2 reports the correlation structure of the volatility indices and their underlying market

indices (Panel A), as well as that of their first-order differences (Panel B). As we see, all four

volatility indices are strongly correlated, with the two European volatility indices most strongly

correlated with a coefficient of 0.96. All the market indices are also strongly positively corre-

lated. However, all volatility indices are negatively correlated with the market indices. This is

the reason why investors have treated these volatility indices as the market “fear gauges” for

possible crashes. The behavior for the first-order differences is similar, although the correla-

tions of volatility index changes are much smaller than the correlations of the volatility indices

themselves. The two European indices, however, are still strongly positively correlated with

coefficient 0.7095.

III. Maximum Likelihood Estimation of Volatility Indices

We consider a one-dimensional diffusion process for a state variable Xt:

dXt = µ(Xt; θ)dt + σ(Xt; θ)dWt, (1)

where µ(Xt; θ) and σ(Xt; θ) are the drift and diffusion coefficients respectively, and θ is the

parameter vector. Different from Bakshi, Ju, and Ou-Yang (2006), we use the state variable

Xt to model the volatility indices themselves instead of the squared process. The values of the

indices are divided by 100 so that they are expressed in percentage terms. We will often suppress

the argument θ.

The processes we want to consider are the same ones as in Bakshi, Ju, and Ou-Yang (2006).

They are a class of nested models with the following drift and diffusion functions proposed in

Aı̈t-Sahalia (1996):

µ(x; θ) = α0 + α1x + α2x
2 + α−1x

−1, (2)

σ(x; θ) =
√

β1x + β2xβ3 . (3)

Thus, for the full model, θ = (α0, α1, α2, α3, β1, β2, β3). We have chosen not to use a constant

term β0 in σ(x; θ) following Bakshi, Ju, and Ou-Yang (2006). Similar to their findings, we find

that β0 is often not significant and does not affect the likelihood function much. Different models
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are different restrictions of the parameter vector θ as listed below:

AFF : α2 = α−1 = 0, β2 = 0, β3 irrelevant (4)

CEV-CD : α1 = α2 = α−1 = 0, β1 = 0 (5)

CEV-LD : α2 = α−1 = 0, β1 = 0 (6)

CEV-ND : β1 = 0 (7)

SEV-CD : α1 = α2 = α−1 = 0 (8)

SEV-LD : α2 = α−1 = 0 (9)

SEV-ND : no restrictions (10)

Here in naming the models, AFF stands for the “affine” model which is often referred to as the

Cox-Ingersoll-Ross (CIR) model in finance. See Cox, Ingersoll and Ross (1985). The shorthand

notations CD, LD, and ND refer to constant drift, linear drift, and nonlinear drift, respectively.

The notations CEV and SEV refer to constant elasticity of variance and stochastic elasticity of

variance, respectively.

It is important to notice that the class of models considered in Dotsis, Psychoyios, and

Skiadopoulos (2007) and the class of models considered in this paper are not subsets of each

other. Dotsis, Psychoyios, and Skiadopoulos (2007) have focused more on adding jumps to the

volatility dynamics. The cost is this makes them only able to examine a handful of special

models with very special drift and diffusion functions. In this paper, we take Bakshi, Ju, and

Ou-Yang (2006)’s approach by considering more flexible drift and diffusion functions at the cost

of excluding the jump structure. As Dotsis, Psychoyios, and Skiadopoulos (2007) have rightly

pointed out, while it would be useful to study jump diffusion models with flexible drift and

diffusion functions, technically this is fairly difficult. Thus, in this paper we restrict ourselves

with the class of models above.

Let pX(∆, x|x0) be the transition density of the process Xt after time period ∆ from the

current level of x0 to future level x. To use the maximum likelihood estimation, one needs

the transition density pX(∆, x|x0). Except for a few special cases, explicit expressions for the

transition densities do not exist. Fortunately, Aı̈t-Sahalia (1999, 2002) has designed efficient

and accurate analytical approximations. The method is based on a series expansion method by

treating ∆ as small. More specifically, it first develops the part of the transition density that

is singular in ∆ and then uses a Taylor series expansion for the analytical part. The expansion

coefficients were given iteratively in the original papers of Aı̈t-Sahalia. The following proposition
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in Li (2009) simplifies the expansion by solving the iterations to the second order.3 A brief proof

is contained in Li (2009).

Proposition 1 Consider the process dXt = µ(Xt)dt + σ(Xt)dWt with σ(·) > 0 except possibly

at the boundaries. Define µ̂(x) ≡ µ(x)
σ(x) − 1

2σ′(x) and λ(x) ≡ −1
2(µ̂2(x) + µ̂′(x)σ(x)).

1. The approximate transition density p
(K)
X (∆, x|x0) for the process Xt to order K = 2 in ∆ is

given by

p
(2)
X (∆, x|x0) = p

(0)
X (∆, x|x0)(1 + c1(x|x0)∆ + c2(x|x0)∆2/2), (11)

where

p
(0)
X (∆, x|x0) =

1√
2π∆

√
σ(x0)
σ3(x)

exp

(∫ x

x0

µ(u)
σ2(u)

du− 1
2∆

(∫ x

x0

1
σ(u)

du

)2
)

, (12)

and for x 6= x0,

c1(x|x0) =

∫ x
x0

λ(u)/σ(u)du∫ x
x0

1/σ(u)du
, c2(x|x0) = c1(x|x0)2 +

λ(x) + λ(x0)− 2c1(x|x0)(∫ x
x0

1/σ(u)du
)2 , (13)

and for x = x0, c1(x0|x0) = λ(x0) and c2(x0|x0) = λ(x0)2 + (σ(σλ′)′)(x0)/6.

2. The series approximation of log pX(∆, x|x0) to order K = 2 in ∆ is given by

log p
(2)
X (∆, x|x0) = log p

(0)
X (∆, x|x0) + C1(x|x0)∆ +

1
2
C2(x|x0)∆2, (14)

where C1(x|x0) = c1(x|x0) and C2(x|x0) = c2(x|x0)− c1(x|x0)2. Writing out explicitly, we have

C1(x|x0) =

∫ x
x0

λ(u)/σ(u)du∫ x
x0

1/σ(u)du
, C2(x|x0) =

λ(x) + λ(x0)− 2c1(x|x0)(∫ x
x0

1/σ(u)du
)2 . (15)

The above proposition allows the fast computation of the transition densities. To implement

the second-order approximation, one just needs to compute three integrals, namely,
∫

µ/σ2,∫
λ/σ, and

∫
1/σ. For many models, these integrals can be computed explicitly. For example,

for the AFF model dXt = (α0 + α1Xt)dt +
√

β1XtdWt above, applying the above proposition
3Bakshi, Ju, and Ou-Yang (2006) solve the iteration to the fourth order for diffusion processes with unit

diffusion functions. However, we use a second-order expansion because it is already extremely accurate. Another
paper worth mentioning is Bakshi and Ju (2005).

10



gives the following second-order approximation:

p
(0)
X (∆, x|x0) =

1√
2π∆β1x

(
x

x0

)α0/β1−1/4

exp
(

α1(x− x0)
β1

− 2(
√

x−√x0)2

β1∆

)
, (16)

C1(x|x0) = −α2
1

(
6α0/α1 + x +

√
xx0 + x0

)

6β1
+

16α0 − 3β1

32
√

xx0
− α2

0

2β1
√

xx0
, (17)

C2(x|x0) =
48α0β1 − 9β1

2 − 16
(
3α2

0 + α2
1xx0

)

384xx0
. (18)

In situations where explicit expressions are not available, these three integrals can be very effi-

ciently computed using numerical integration such as quadrature method. This is the approach

taken in this paper. The accuracy of Aı̈t-Shalia’s density expansion approximation has been

established and verified in many papers, including Jensen and Poulsen (2002), Bakshi, Ju, and

Ou-Yang (2006), and Li (2009). In particular, the uniform error of a second-order approximation

is usually in the order of 10−4.

Given discretely observed data xi for i = 0, 1, · · · , n with fixed intervals ∆, the maximum

likelihood estimation searches the optimal parameter values by maximizing the following log-

likelihood function

max
θ
L[θ] =

n∑

i=1

log pX(∆, xi|xi−1). (19)

We use a simplex method for this maximization. This is a slow but very robust optimization

algorithm. For an introduction of this method, see Press, Flannery, Teukolsky, and Vetterling

(1992).

For all the four time series (VIX, VIX-1Y, VSTOXX and VSMI) considered in this paper, we

collect data until April 15, 2009. Maximum likelihood estimation is performed on all four indices.

For the VIX index, we also consider two different sample periods. The first sample period is from

January 2, 1990 to December 31, 2007, while the second one covers the whole sample period,

namely, from January 2, 1990 to April 15, 2009. This allows us to get a rough understanding of

how the results change, if any, by including the most recent two years in the data. During the

most recent two years, the market volatility level has been much higher than previous years. It

is useful to know whether this has any effect on the estimated drift and diffusion functions. For

example, does the inclusion of the most recent data affect the nonlinearity in the drift functions?

Does the diffusion function (volatility of volatility index) become more volatile if we include the

most recent data?

Table 3 reports the results of the maximum likelihood estimation on the VIX index for the

shorter sample period. There are a total of 927 weekly observations (Wednesdays) from January
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2, 1990 to December 31, 2007. We use weekly observations to save computational time and our

results do not change much if we use daily observations. We report the parameter estimates

together with their standard errors in parentheses. Also reported are the optimized log-likelihood

function L and Akaike’s information criterion (AIC) which is computed as −2/n(L−d), where n

is the number of observations and d is the dimension of the parameter vector. A more properly

specified model has a smaller AIC value. To rank-order two nested models, likelihood ratio

(LR) test statistic −2(LR − LU ) is used, when LR and LU refer to the likelihood functions of

the restricted and unrestricted models respectively. The statistic is asymptotically chi-square

distributed, with degree of freedom given by the number of restrictions. For readers’ easy

reference, the 5% critical values of χ2(df) with df equaling 1, 2, 3, and 4 are 3.84, 6.00, 7.82,

and 9.50, respectively.

From Table 3 we see that the full model (SEV-ND) has the largest log-likelihood value,

2393.84. However, the LR test statistic between the CEV-ND and SEV-ND models is only 0.006,

which is smaller than 3.84, the critical value of χ2(1). Thus, the result favors CEV-ND over SEV-

ND. Similar results hold for the LR statistics between the SEV-LD and CEV-LD pair, and the

SEV-CD and CEV-CD pair. These results are consistent with the fact that β1 are insignificant

in all three SEV models judging from the large asymptotic standard errors. The AFF model

is clearly inadequate if we look at the LR statistic between the AFF and SEV-LD models.

Among the CEV models, the LR statistic between the CEV-CD and CEV-ND is 28.24 while

the LR statistic between CEV-LD and CEV-ND is 15.78. Since both exceed the critical value of

χ2(3), the results favor the CEV-ND over either CEV-CD or CEV-LD. Judging from Akaike’s

information criterion, the CEV-ND model also has the lowest value. Therefore, the CEV-ND

model seems to be the most favorable model among all seven models considered. The estimated

drift function for the CEV-ND model is µ(x) = −10.0343+55.6598x−99.4579x2+0.5920/x, with

all four parameters statistically significant. Thus, similar to Bakshi, Ju, and Ou-Yang (2006), the

nonlinearity in the drift function is important in capturing the strong mean-reverting behavior

near both boundaries of the volatility process. On the other hand, a diffusion function with

constant elasticity given by σ(x) =
√

2.0802x2.7365 is sufficient.

The stationary density of the process Xt with drift and diffusion functions µ(x) and σ(x) is

given by (see Karlin and Taylor 1981)

π(x; θ) =
ξ(θ)

σ2(x; θ)
exp

(∫ x

0

2µ(u; θ)
σ2(u; θ)

du

)
, (20)

where ξ(θ) is a normalization constant so that π(x; θ) integrates to 1. For the CEV-ND model

estimated in Table 3, under the stationary density, there is a 0.003 probability that the the
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volatility level is above 0.4, 5× 10−7 probability above 0.6, and around 10−11 probability above

0.8. Thus, using purely data before year 2007, the probability that the process would ever reach

a level of 0.8 is extremely low and the sudden increase in VIX in 2008 was unexpected at the

end of 2007 purely from the VIX data.

Table 4 reports the results from the maximum likelihood estimation of the VIX for the full

sample period from January 2, 1990 to April 15, 2009. The general pattern is very similar to

that of Table 3. Again, the affine model AFF is insufficient. The SEV models all lose out to

their CEV counterparts judging from the LR statistics. However, judging from the LR statistic

between the CEV-LD and CEV-ND models, the CEV-LD model is weakly preferred over CEV-

ND at 5% significance level. The LR statistic is 2 × (2511.80 − 2509.07) = 5.46 while the 5%

critical value of χ2(2) is 6.00. This is consistent with the fact that the nonlinear mean-reverting

parameters α2 and α−1 are not as significant as in Table 3. This behavior is different from the

one implied by the shorter sample period ending in 2007, where the nonlinear mean-reverting

parameters are very important. The strength of nonlinear mean-reverting in the CEV-ND model

is also much weaker for the whole sample period compared with the shorter sample period. On

the other hand, the CEV-LD model is quite strongly preferred over the CEV-CD model for

the full sample period, indicating that although there is no strong evidence for nonlinear mean-

reverting, linear mean-reverting is still very important in describing the data. However, the AIC

gives a conflicting recommendation which ranks CEV-ND first, although the difference in AIC’s

is extremely small. These results together imply a marginal need for prescribing a nonlinear

drift function. Nonetheless, by computing the LR statistics between the AFF model and its

nesting SEV-LD model, we see that it is important to specify a more flexible diffusion function

than the square-root function in the AFF model.

It is interesting to look at the stationary density with parameters estimated from the full

sample period. Since the log-likelihood L and AIC give somewhat different rank-ordering, we

consider both CEV-LD and CEV-ND models. For the CEV-LD model, under the stationary

density, the probabilities that the volatility level is above 0.4, 0.6 and 0.8 are approximately 0.04,

0.01, and 0.004, respectively, while for the CEV-ND model, these three probabilities are 0.04,

0.003, and 0.0002, respectively. The corresponding empirical probabilities from the observed

VIX time series are 0.032, 0.003, and 0.0002, respectively. Judging purely from these three tail

probabilities, the CEV-ND seems to be doing a better job than the CEV-LD model.

Below we examine the results for the VIX-1Y, VSTOXX, and VSMI indices. Table 5 reports

the results of the maximum likelihood estimation on the VIX-1Y index for the full sample period.

There are a total of 891 weekly observations (Wednesdays) from January 2, 1992 to April 15,
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2009. Overall, all models indicate a weaker mean-reversion strength and a smaller variance of

volatility for the VIX-1Y index than the VIX. Same as the situation for the VIX and VIX-1Y

indices, the AFF model is insufficient. This can be seen by computing the LR statistic between

the AFF model and its nesting model SEV-LD. Also, all the SEV models again lose out to their

CEV counterparts. Among the CEV models, the story is a little bit different from that of the

VIX index. The CEV-CD model is weakly preferred over the CEV-LD and CEV-ND models

judging from their respective LR statistics. However, the AIC criterion ranks CEV-ND first.

Table 6 reports the results of the maximum likelihood estimation on the VSTOXX index.

There are a total of 528 weekly observations (Wednesdays) from January 4, 1994 to April

15, 2009. The AFF model is still insufficient. The SEV models still lose out to there CEV

counterparts. However, judging from both the LR statistics and the AIC criterion, the CEV-CD

model is preferred over the other two CEV models.

Table 7 reports the results of the maximum likelihood estimation on the VSMI index. There

are a total of 528 weekly observations (Wednesdays) from January 4, 1994 to April 15, 2009.

The AFF model is still insufficient. However, now the parameter β1 in the diffusion function

becomes very significant for all the SEV models. As a result, the SEV models now outperform

their CEV counterparts. Among the SEV models, the SEV-CD model is preferred over the other

two models judging from the LR statistics. However, the AIC criterion ranks SEV-LD first.

In summary, while there are individual differences for different indices, the maximum like-

lihood estimation for all four indices suggests that there is no need or only a marginal need to

prescribe a nonlinear drift function. This result is somewhat similar to Durham (2003), where

the author finds that to model the short-term interest rate, adding additional flexibility to the

drift function beyond a constant term provides negligible benefit in terms of the value of the

likelihood function. See also Li (2009) for a discussion. On the other hand, it is important to

specify a more flexible diffusion function than that of the AFF model. Except for the VSMI

index, a CEV diffusion function is sufficient for all other three indices.

IV. Specification Tests of Volatility Models

The maximum likelihood estimation above shows that it is only marginally useful to stipulate

a nonlinear drift function if we include the more recent data into the analysis. However, as

Li (2009) shows, maximum likelihood estimation is subject to finite sample bias, especially

when applied to parametric models. For example, Monte Carlo experiment in Li (2009) shows

that when the true data-generating model is linear drift but with damped diffusion function,
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maximum likelihood estimation tends to mistake the damped diffusion with nonlinear drift

function when the time series is of finite sample size. One possible indication of finite sample bias

is that the tail probabilities under the stationary density implied by the estimated parameters

deviate significantly from those implied by the sample data. Therefore, in the following, we take

a different approach, namely, the specification test for diffusion processes originally proposed in

Aı̈t-Sahalia (1996). This method was also used in Li (2009) to detect the existence of a damped

diffusion function.

The idea of the approach is fairly intuitive. For a given parameter vector, we could compute

the theoretical stationary density (or the marginal density as it was referred to as in Aı̈t-Sahalia

(1996)) as given by equation (20). At the optimal parameter values, this theoretical density

should be close to the stationary density implied by the data if the data is truly generated by

the proposed model. Thus, the difference of these two densities could be used as a criterion

for estimating the parameters. The actual procedure involves a few steps, as we now describe

below. We do not repeat all the details below such as the assumptions on the processes, the

optimal choice of the bandwidth parameters, etc. Readers are referred to the original paper by

Aı̈t-Sahalia (1996).

1. Estimate the empirical stationary density π̂(Xi) nonparametrically for each realized value

Xi in the data. More specifically, we use

π̂(Xi) =
1
N

N∑

j=1

1
hN

K

(
Xi −Xj

hN

)
, (21)

where K(x) = exp(−x2/2)/
√

2π is the normal density kernel function, and hN is the

optimally chosen bandwidth depending on the sample size N .4

2. For each of the models we consider in equations (4) to (10), estimate the vector θ by

minimizing the statistic

M̂ = M̂(θ) ≡ 1
N

N∑

i=1

M̂i (22)

where

M̂i ≡ NhN

(
π(Xi; θ)− π̂(Xi)

)2
, (23)

4More information on the kernel estimation technique can be found in Silverman (1986) and Wand and Jones
(1994).
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and π(x, θ) is the model implied marginal density given by equation (20). Let the true

marginal density of X be π0(X) and let E denote the expectation under this true marginal

density. Then M̂ is the empirical counterpart of the following distance measure

M ≡ min
θ
E

[
(π(X; θ)− π0(X))2

]
. (24)

3. To test whether a particular parametric model should be accepted or rejected, we compare

M̂ with the critical value cα. It is shown in Aı̈t-Sahalia (1996b) that the test statistic M̂

is asymptotically distributed as

h
−1/2
N

(
M̂ −EM

) d−→ N(0, VM ), (25)

where

EM ≡ 1
2
√

π

∫ ∞

0
π2

0(x) dx, (26)

VM ≡ 1√
2π

∫ ∞

0
π4

0(x) dx. (27)

That is, at a given significance level α, a particular parametric model cannot describe data

well if M̂ ≥ cα ≡ ÊM + h
1/2
N zαV̂

1/2
M . If α = 5%, then zα ≈ 1.645.5

In doing Step 1 above, it is useful to take a look at the histograms of the daily observations

of the four volatility indices. This is plotted in Figure 5. For each of the four indices, daily

observations from the full sample period are used. Therefore, the numbers of observations are

4859, 4342, 2617, and 2618 for the VIX, VIX-1Y, VSTOXX and VSMI indices, respectively. For

each of the indices, the kernel estimated density π̂(Xi) can be thought of as a kernel smoothing

of the histogram of the daily observations after a normalization. It seems that the empirical

densities for all four indices are multi-modal with quite heavy right tails. This is especially true

for the VIX-1Y, VSTOXX and VSMI indices, where the multimodality feature seems to be very

prominent. It is also very important to notice that somewhat contrary to people’s common

reaction, this multimodality feature is not at all due to the recent market turmoil. A similar

graph plotted using data before year 2007 or before year 2008 yields quantitatively very similar

histograms. The recent market turmoil only makes the right tail heavier and does not really

contribute to the multimodality feature.

In our actual implementation, we will fix the values of α0 for all the models considered

and all four indices. The fixed values of α0 are those in Tables 4 to 7. The reason for doing
5Notice that there is a typo in equation (14) of Aı̈t-Sahalia (1996).
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this is as follows. A careful analysis of the implied marginal density π(X; θ) in equation (20)

reveals that if we quadruple the drift function µ(X; θ) and double the diffusion function σ(X; θ),

then the marginal density does not change for any value of X. Therefore, depending on the

particular functional forms of µ(X; θ) and σ(X; θ), there could be an infinite set of parameters

which minimize M̂ . For example, in the AFF model, without restricting the values of some

parameters, if (α0, α1, β1) minimizes M̂ , then (4α0, 4α1, 4β1) would also minimize M̂ . Therefore,

there is a need to fix some of the parameters in the drift or diffusion in order to get rid of the

indeterminateness. This identification issue is also explained in Li (2009). It is important to

understand that this indeterminateness does not in any way affect the validity of Aı̈t-Sahalia

(1996)’s specification test.

We now take a look at the results from the specification tests. While we examine all four

indices, we will focus more on the VIX index. Table 8 presents the results from the specification

tests of the continuous-time parametric models for the VIX index for the sample period from

January 2, 1990 to April 15, 2009. It reports the estimated parameters, the test statistic M̂ ,

and the corresponding critical value cα. All seven models are rejected by the specification tests,

except for the CEV-ND and SEV-ND models. Also, the drift parameters for each of the models

are quite close to the ones in Table 4 from the maximum likelihood estimation. However, for the

five rejected CEV and SEV models, the parameters for the diffusion functions are quite different

from those in Table 4. This reflects the fact that for these models, the optimization could not

find a parameter vector that can fit the empirical marginal density. For these rejected models,

the parameters estimated from the maximum likelihood function will give even larger values

of M̂ , indicating that models without nonlinear drift are not able to match the theoretical and

empirical stationary densities, even though the previous maximum likelihood estimation implies

that nonlinear drift function is only of marginal importance. Since the two approaches give

somewhat different results, a modeler has to exert caution if he/she has to choose between a

model with linear drift and another one with nonlinear drift. Model risk has to be taken into

account if these models in turn are used to price volatility derivatives.

Table 8 makes it clear that the nonlinear drift function is extremely important for the

theoretical marginal density to match its empirical counterpart. The drift and diffusion functions

from the AFF and SEV-ND models are plotted in Figures 6 and 7. The drift and diffusion

functions for the other accepted model, CEV-ND, are very similar to those of the SEV-ND

model and omitted. As we see in Figure 6, while the drift functions from the two models are

very close in the volatility index range from 0.1 to 0.35, the drift function of the SEV-ND model

is much larger for lower VIX levels and much more negative for higher VIX levels, resulting in
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stronger mean-reversion near the boundaries. For the diffusion function, Figure 7 shows that the

diffusion function grows much faster in the SEV-ND model than in the AFF model, resulting in

larger volatility when the volatility index level is high.

To get a better idea of how the parametric specification test works, it is useful to take a look

at the empirical marginal density and the model implied densities from the optimized parameter

vectors in Table 8. Two models are selected for this purpose, namely, the AFF model and the

SEV-ND model. Figure 8 plots the goodness of fit for the AFF model. The empirical stationary

density estimated from nonparametric kernel estimation (in gray) as well as the theoretical

densities (in black) computed from the optimized parameter vector are plotted on the same

graph. As we see, the AFF model is rejected by the specification test because the distance

between these two densities is fairly large for much of the range of index values. Figure 9 plots

the same two densities but now with the SEV-ND model. It is clear that the SEV-ND model

fits better than the AFF model, and the test statistics shows that the SEV-ND model cannot

be rejected at 5% significance level.

We now take a look at the specification test results for the other three volatility indices,

namely, VIX-1Y, VSTOXX and VSMI. Table 9 presents the results from the specification tests

of the continuous-time parametric models for the VIX-1Y index for the sample period from

January 2, 1992 to April 15, 2009. As we see, all seven models are rejected by the specification

tests, except for the nonlinear drift and stochastic variance (SEV-ND) model. Comparing with

the parameters in Table 5 from the maximum likelihood estimation, we see that the drift param-

eters have not changed much for the SEV-ND model, but the point estimates of the diffusion

parameters have changed quite a lot. Graphic analysis shows that the diffusion function from

the specification test is much larger for volatility values above 0.4 than that from the maximum

likelihood estimation. This is not that surprising as a large diffusion function is needed in order

to generate high volatility values so as to match the empirical marginal density.

Table 10 presents the results from the specification tests of the continuous-time parametric

models for the VSTOXX index for the sample period from January 4, 1999 to April 15, 2009.

All seven models are now strongly rejected by the specification tests. The inability to match the

empirical distribution of the VSTOXX index is clearly shown in Figures 10 and 11 for the AFF

and SEV-ND models, respectively. As we see, the empirical distribution is strongly multimodal.

At the optimized parameter vectors, the theoretical marginal densities from both the AFF and

SEV-ND models are unimodal and cannot closely match the empirical distribution.

Finally, Table 11 presents the results from the specification tests of the continuous-time

parametric models for the VSMI index for the sample period from January 4, 1999 to April
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15, 2009. Similar to the results for the VSTOXX index, all seven models are rejected by the

specification tests. Again, graphic analysis shows that none of the models are able to match the

multimodal empirical density.

To summarize, the results of the parametric specification test advocate strongly for specifying

more flexible drift and diffusion functions. In particular, a nonlinear drift structure is a minimum

requirement in order for the theoretical marginal densities to possibly match the empirical

densities. This result is at odds with that from the maximum likelihood function, where we

see that nonlinear drift structure often only adds negligible benefit in terms of the likelihood

function value. We take this as a strong indication of finite sample bias since both methods are

asymptotically consistent. Li (2009) discusses the finite sample bias of the maximum likelihood

estimation in detail. Our results call for caution against finite sample bias when adopting a

particular model or fixing a particular parameter vector in modeling the dynamics of volatility

indices. Methods such as Bayesian analysis with suitable priors or robust estimation with

suitable criteria are probably useful in guiding the model and parameter section processes.

V. Conclusion

In this paper, we take a new look at the continuous-time dynamics of four international volatil-

ity indices: VIX, VIX-1Y, VSTOXX, and VSMI. Two methodologies are taken, namely the

maximum likelihood estimation and the parametric specification test. With more recent data,

the results from maximum likelihood estimation show that there is a marginal need to specify

a nonlinear drift. However, the parametric specification test rejects all models with linear drift

functions. That these two methodologies give somewhat conflicting results about the drift func-

tion indicate the presence of finite sample bias and the need to exert caution when a modeler

has to make a choice among alternative models.

Several future (and probably difficult) directions might be taken. So far we have only con-

sidered diffusion models with no jumps. It is particularly interesting to examine whether the

inclusion of jumps will get rid of the need of nonlinear drift functions in matching the theoretical

and empirical densities. For example, with very restricted drift and diffusion functions, Dotsis,

Psychoyios, and Skiadopoulos (2007) show that it is important to add jumps. Does this result

still hold if we allow for more flexible drift and diffusion functions? To satisfactorily address this

question requires the calculation of the theoretical densities for diffusion models with jumps,

which at current stage poses technical difficulties. Another direction one can take is to estimate

the volatility index dynamics jointly with the underlying index. This is appealing because it
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is well-known that the volatility index and its underlying stock index are negatively correlated.

Unfortunately, this direction is much more difficult than it seems because the volatility index

dynamics does not evolve freely, but rather it is dictated through a complicated mechanism by

the stock index process under the physical measure as well as the unobserved market price of

risk process. Estimating the stock index and volatility index under the physical measure jointly

might not be consistent because there might not exist reasonable market price of risk process

connecting the dynamics of stock and volatility indices. Finally, it is possible that the same

finite sample bias is present in Dotsis, Psychoyios, and Skiadopoulos’s (2007) analysis on jump

diffusion models. One way to examine this is to extend Aı̈t-Sahalia’s (1996) parametric specifi-

cation test to jump diffusion models, which is unfortunately quite difficult technically. We hope

that these issues could be address in future research.
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Figure 1. The CBOE volatility indices term structure. There is a dramatic increase in
volatility levels during the recent years. For different calendar days, the volatility term structure
could be either downward-sloping or upward-sloping. The short-term volatility indices seem to
be more volatile than long-term volatilities, although there is still considerable variability for
long-term volatilities.
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Figure 2. The S&P 500 index, the CBOE volatility index VIX, and the VIX-1Y
index. The index experienced a few downturns during this sample period, including the Asian
current crisis, the Russian default, the internet bubble burst, and more recently the subprime
mortgage crisis. All these events have led the volatility indices to surge, with the recent market
turmoil having the strongest impact.
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Figure 3. The Dow Jones Euro STOXX 50 index and the volatility index VSTOXX.
The index experienced two major downturns during this sample period, namely, the internet
bubble burst and more recently the subprime mortgage crisis. Both events have led the volatility
indices to surge, especially for the recent market turmoil.
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Figure 4. The Swiss market index SMI and the volatility index VSMI. The index
experienced two major downturns during this sample period, namely, the internet bubble burst
and more recently the subprime mortgage crisis. Both events have led the volatility indices to
surge, especially for the recent market turmoil.

26



0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

VIX
0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

200

250

300

VIX−1Y

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

VSTOXX
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

140

160

180

VSMI

Figure 5. Histograms of the daily-observed volatility indices. The numbers of ob-
servations are 4859, 4342, 2617, and 2618 for the VIX, VIX-1Y, VSTOXX and VSMI indices,
respectively. The empirical densities for all four indices are multi-modal with quite heavy right
tails. This is especially true for the VIX-1Y, VSTOXX and VSMI indices, where the multi-
modality feature seems to be very prominent. Separate analysis reveals that the recent market
turmoil only makes the right tail heavier and is not the source for the multimodality feature.
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Figure 6. The drift functions in the AFF and SEV-ND models for the VIX index
estimated from the parametric specification test. The optimized parameters are in Table
8. The drift function for the CEV-ND model (not plotted) is very similar to that of the SEV-ND
model.
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Figure 7. The diffusion functions in the AFF and SEV-ND models for the VIX
index estimated from the parametric specification test. The optimized parameters are
in Table 8. The diffusion function for the CEV-ND model (not plotted) is very similar to that
of the SEV-ND model.
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Figure 8. Goodness of fit of the AFF model on the VIX index by Aı̈t-Sahalia’s
parametric specification test. The empirical stationary density estimated from nonpara-
metric kernel estimation (in gray) as well as the theoretical densities (in black) computed from
the optimized parameter vector are plotted. The AFF model is rejected by the specification test
because the distance between these two densities is fairly large.
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Figure 9. Goodness of fit of the SEV-ND model on the VIX index by Aı̈t-Sahalia’s
parametric specification test. The empirical stationary density estimated from nonparamet-
ric kernel estimation (in gray) as well as the theoretical densities (in black) computed from the
optimized parameter vector are plotted. The SEV-ND model cannot be rejected at 5% signifi-
cance level by the specification test because the distance between these two densities is smaller
than the critical value.
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Figure 10. Goodness of fit of the AFF model on the VSTOXX index by Aı̈t-Sahalia’s
parametric specification test. The empirical stationary density estimated from nonparamet-
ric kernel estimation (in gray) as well as the theoretical densities (in black) computed from the
optimized parameter vector are plotted. The AFF model is rejected by the specification test
because the distance between these two densities is fairly large.
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Figure 11. Goodness of fit of the SEV-ND model on the VSTOXX index by Aı̈t-
Sahalia’s parametric specification test. The empirical stationary density estimated from
nonparametric kernel estimation (in gray) as well as the theoretical densities (in black) com-
puted from the optimized parameter vector are plotted. The SEV-ND model is rejected by the
specification test because the distance between these two densities is fairly large.
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Table 1
Summary Statistics of the Volatility Indices

This table presents the summary statistics of the four volatility indices (VIX, VIX-1Y, VSTOXX
and VSMI) as well as their first-order differences.

VIX VIX-1Y VSTOXX VSMI ∆VIX ∆VIX-1Y ∆VSTOXX ∆VSMI

Start date 1/2/90 1/2/92 1/4/99 1/4/99

Obs. 4859 4342 2617 2618 4858 4341 2616 2617

Mean 20.05 20.26 25.83 21.00 0.00 0.01 0.01 0.00

Median 18.45 19.18 23.40 18.64 −0.04 0.00 −0.09 0.03

Mode 11.65 15.78 28.93 19.52 0.00 −0.11 −0.01 0.00

Min 9.31 7.76 11.60 9.01 −17.36 −11.48 −13.98 −16.33

Max 80.86 55.53 87.51 84.90 16.54 10.24 22.64 16.41

Std. dev. 8.37 6.27 11.10 9.57 1.48 0.70 1.84 1.31

Skewness 2.15 1.66 1.46 1.74 0.41 −1.09 1.91 −0.39

Kurtosis 10.71 7.29 5.36 7.10 22.69 78.44 30.82 31.20

Autocorr. 0.98 0.99 0.99 0.99 −0.09 −0.13 −0.03 0.10
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Table 2
Correlation Structure of the Volatility and Market Indices and Their Changes

This table presents the correlation structure of the volatility indices and the underlying market
indices (Panel A) as well as that of their first-order differences (Panel B).

Panel A

VIX VIX-1Y VSTOXX VSMI S&P 500 STOXX SMI

VIX 1.0000

VIX-1Y 0.9064 1.0000

VSTOXX 0.9096 0.7973 1.0000

VSMI 0.9048 0.8192 0.9609 1.0000

S&P 500 −0.4929 −0.4407 −0.6257 −0.5654 1.0000

STOXX −0.2614 −0.2790 −0.3993 −0.4216 0.8751 1.0000

SMI −0.3484 −0.3653 −0.4982 −0.4332 0.9035 0.8394 1.0000

Panel B

∆VIX ∆VIX-1Y ∆VSTOXX ∆VSMI ∆S&P 500 ∆STOXX ∆SMI

∆VIX 1.0000

∆VIX-1Y 0.6859 1.0000

∆VSTOXX 0.5306 0.3871 1.0000

∆VSMI 0.3946 0.2802 0.7095 1.0000

∆ S&P 500 −0.8000 −0.6310 −0.3971 −0.2746 1.0000

∆STOXX −0.4659 −0.3755 −0.7167 −0.5451 0.5324 1.0000

∆SMI −0.4418 −0.3468 −0.6753 −0.5461 0.4860 0.7949 1.0000
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Table 3
Maximum Likelihood Estimation of the Continuous-time Dynamics of VIX

(1990-2007)

This table reports the results of the maximum likelihood estimation on the VIX index for the
shorter sample period. There are a total of 927 weekly observations (Wednesdays) from January
2, 1990 to December 31, 2007. We report the parameter estimates together with their standard
errors in parentheses. Also reported are the optimized log-likelihood function L and Akaike’s
information criterion (AIC) which is computed as −2/n(L − d), where n is the number of
observations and d is the dimension of the parameter vector. A more properly specified model
has a smaller AIC value. To rank-order different models, likelihood ratio (LR) test statistic
−2(LR − LU ) is used, when LR and LU refer to the likelihood functions of the restricted and
unrestricted models respectively. The statistic is asymptotically chi-square distributed, with
degree of freedom given by the number of restrictions. For readers’ convenience, the 5% critical
values of χ2(df) with df equaling 1, 2, 3, and 4 are 3.84, 6.00, 7.82, and 9.50, respectively.

Model α0 α1 α2 α−1 β1 β2 β3 L AIC

AFF 0.6248 −3.3031 0.1218 2315.78 −4.9898

(0.12) (0.59) (0.004)

CEV-CD 0.1063 2.4201 2.8409 2379.69 −5.1277

(0.03) (0.51) (0.12)

CEV-LD 0.4526 −2.3463 1.9922 2.7202 2385.92 −5.1390

(0.11) (0.69) (0.41) (0.12)

CEV-ND −10.0343 55.6598 −99.4579 0.5920 2.0802 2.7365 2393.81 −5.1517

(2.89) (16.09) (28.19) (0.16) (0.44) (0.12)

SEV-CD 0.1097 −0.0248 1.6669 2.4826 2379.89 −5.1260

(0.03) (0.04) (0.78) (0.44)

SEV-LD 0.4813 −2.5205 −0.1015 0.9550 1.8725 2387.13 −5.1394

(0.10) (0.65) (0.09) (0.24) (0.40)

SEV-ND −10.5288 58.2701 −103.7152 0.6211 0.0102 2.5423 2.9223 2393.84 −5.1496

(3.39) (18.72) (32.53) (0.19) (0.03) (1.58) (0.54)
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Table 4
Maximum Likelihood Estimation of the Continuous-time Dynamics of VIX

(1990-2009)

This table reports the results of the maximum likelihood estimation on the VIX index for the
full sample period. There are a total of 995 weekly observations (Wednesdays) from January 2,
1990 to April 15, 2009. We report the parameter estimates together with their standard errors in
parentheses. Also reported are the optimized log-likelihood function L and Akaike’s information
criterion (AIC) which is computed as −2/n(L − d), where n is the number of observations and
d is the dimension of the parameter vector. A more properly specified model has a smaller
AIC value. To rank-order different models, likelihood ratio (LR) test statistic −2(LR − LU ) is
used, when LR and LU refer to the likelihood functions of the restricted and unrestricted models
respectively. The statistic is asymptotically chi-square distributed, with degree of freedom given
by the number of restrictions. For readers’ convenience, the 5% critical values of χ2(df) with df
equaling 1, 2, 3, and 4 are 3.84, 6.00, 7.82, and 9.50, respectively.

Model α0 α1 α2 α−1 β1 β2 β3 L AIC

AFF 0.5412 −2.6587 0.1356 2406.86 −4.8319

(0.10) (0.42) (0.004)

CEV-CD 0.1094 2.1629 2.7824 2504.21 −5.0276

(0.03) (0.40) (0.11)

CEV-LD 0.3952 −1.9084 1.9062 2.7008 2509.07 −5.0353

(0.10) (0.64) (0.34) (0.10)

CEV-ND −3.1308 14.7547 −23.0396 0.2232 1.8935 2.6942 2511.80 −5.0368

(1.57) (7.54) (11.23) (0.10) (0.36) (0.11)

SEV-CD 0.1130 −0.0228 1.6346 2.4854 2504.50 −5.0261

(0.03) (0.03) (0.57) (0.34)

SEV-LD 0.4084 −1.9826 −0.0466 1.2491 2.2151 2509.85 −5.0349

(0.10) (0.62) (0.04) (0.36) (0.32)

SEV-ND −2.8237 13.2936 −20.9981 0.2038 −0.0126 1.6248 2.5292 2511.86 −5.0349

(1.61) (7.72) (11.31) (0.10) (0.03) (0.63) (0.38)
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Table 5
Maximum Likelihood Estimation of the Continuous-time Dynamics of VIX-1Y

(1992-2009)

This table reports the results of the maximum likelihood estimation on the VIX-1Y index for the
full sample period. There are a total of 891 weekly observations (Wednesdays) from January 2,
1992 to April 15, 2009. We report the parameter estimates together with their standard errors in
parentheses. Also reported are the optimized log-likelihood function L and Akaike’s information
criterion (AIC) which is computed as −2/n(L − d), where n is the number of observations and
d is the dimension of the parameter vector. A more properly specified model has a smaller
AIC value. To rank-order different models, likelihood ratio (LR) test statistic −2(LR − LU ) is
used, when LR and LU refer to the likelihood functions of the restricted and unrestricted models
respectively. The statistic is asymptotically chi-square distributed, with degree of freedom given
by the number of restrictions. For readers’ convenience, the 5% critical values of χ2(df) with df
equaling 1, 2, 3, and 4 are 3.84, 6.00, 7.82, and 9.50, respectively.

Model α0 α1 α2 α−1 β1 β2 β3 L AIC

AFF 0.1731 −0.7864 0.0313 2772.52 −6.2167

(0.07) (0.28) (0.0005)

CEV-CD 0.0360 0.7027 3.0055 2845.17 −6.3797

(0.02) (0.10) (0.08)

CEV-LD 0.1500 −0.6795 0.6763 2.9788 2846.65 −6.3808

(0.08) (0.42) (0.10) (0.08)

CEV-ND −4.2749 18.6341 −25.7796 0.3139 0.6543 2.9553 2849.40 −6.3825

(2.09) (9.43) (13.49) (0.15) (0.09) (0.09)

SEV-CD 0.0373 −0.0077 0.4705 2.5879 2845.41 −6.3780

(0.02) (0.009) (0.21) (0.44)

SEV-LD 0.1567 −0.7133 −0.0114 0.4052 2.4277 2847.05 −6.3795

(0.07) (0.41) (0.01) (0.16) (0.43)

SEV-ND −4.0265 17.4892 −24.1382 0.2970 −0.0052 0.4944 2.6644 2849.50 −6.3805

(2.11) (9.52) (13.59) (0.15) (0.009) (0.24) (0.48)
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Table 6
Maximum Likelihood Estimation of the Continuous-time Dynamics of VSTOXX

(1999-2009)

This table reports the results of the maximum likelihood estimation on the VSTOXX index
for the full sample period. There are a total of 528 weekly observations (Wednesdays) from
January 4, 1999 to April 15, 2009. We report the parameter estimates together with their
standard errors in parentheses. Also reported are the optimized log-likelihood function L and
Akaike’s information criterion (AIC) which is computed as−2/n(L−d), where n is the number of
observations and d is the dimension of the parameter vector. A more properly specified model
has a smaller AIC value. To rank-order different models, likelihood ratio (LR) test statistic
−2(LR − LU ) is used, when LR and LU refer to the likelihood functions of the restricted and
unrestricted models respectively. The statistic is asymptotically chi-square distributed, with
degree of freedom given by the number of restrictions. For readers’ convenience, the 5% critical
values of χ2(df) with df equaling 1, 2, 3, and 4 are 3.84, 6.00, 7.82, and 9.50, respectively.

Model α0 α1 α2 α−1 β1 β2 β3 L AIC

AFF 0.7046 −2.6743 0.1982 1111.19 −4.1977

(0.20) (0.63) (0.008)

CEV-CD 0.1368 2.8479 3.0907 1191.52 −4.5020

(0.05) (0.60) (0.14)

CEV-LD 0.3352 −1.1035 2.6362 3.0339 1192.46 −4.5017

(0.16) (0.84) (0.55) (0.14)

CEV-ND −4.7998 20.9366 −28.1429 0.3628 2.7028 3.0477 1194.20 −4.5008

(3.33) (13.69) (17.16) (0.25) (0.59) (0.14)

SEV-CD 0.1387 −0.0142 2.4065 2.8892 1191.64 −4.4986

(0.05) (0.03) (0.91) (0.39)

SEV-LD 0.3446 −1.1536 −0.0219 2.0906 2.7489 1192.68 −4.4988

(0.16) (0.86) (0.03) (0.76) (0.40)

SEV-ND −4.4961 19.7775 −26.8699 0.3393 −0.0099 2.4111 2.9092 1194.25 −4.4972

(3.28) (13.53) (16.88) (0.24) (0.03) (0.98) (0.43)
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Table 7
Maximum Likelihood Estimation of the Continuous-time Dynamics of VSMI

(1999-2009)

This table reports the results of the maximum likelihood estimation on the VSMI index for the
full sample period. There are a total of 528 weekly observations (Wednesdays) from January 4,
1999 to April 15, 2009. We report the parameter estimates together with their standard errors in
parentheses. Also reported are the optimized log-likelihood function L and Akaike’s information
criterion (AIC) which is computed as −2/n(L − d), where n is the number of observations and
d is the dimension of the parameter vector. A more properly specified model has a smaller
AIC value. To rank-order different models, likelihood ratio (LR) test statistic −2(LR − LU ) is
used, when LR and LU refer to the likelihood functions of the restricted and unrestricted models
respectively. The statistic is asymptotically chi-square distributed, with degree of freedom given
by the number of restrictions. For readers’ convenience, the 5% critical values of χ2(df) with df
equaling 1, 2, 3, and 4 are 3.84, 6.00, 7.82, and 9.50, respectively.

Model α0 α1 α2 α−1 β1 β2 β3 L AIC

AFF 0.5167 −2.4761 0.1477 1244.21 −4.7016

(0.14) (0.51) (0.005)

CEV-CD 0.0995 1.7777 2.6971 1318.27 −4.9821

(0.04) (0.32) (0.11)

CEV-LD 0.3345 −1.5735 1.6451 2.6453 1320.43 −4.9865

(0.11) (0.71) (0.31) (0.11)

CEV-ND −0.9826 5.2398 −10.2385 0.0761 1.6462 2.6449 1320.76 −4.9802

(1.65) (8.53) (12.72) (0.09) (0.32) (0.12)

SEV-CD 0.0886 0.0399 5.6161 3.8210 1322.83 −4.9956

(0.04) (0.01) (2.97) (0.46)

SEV-LD 0.3086 −1.4314 0.0400 4.8189 3.7134 1324.44 −4.9979

(0.13) (0.82) (0.01) (2.46) (0.45)

SEV-ND −2.1939 10.5882 −16.6976 0.1549 0.0435 5.4572 3.8400 1325.49 −4.9943

(2.03) (10.56) (16.53) (0.12) (0.01) (3.08) (0.49)
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Table 8
Specification Test of the Continuous-time Parametric Models for VIX

This table presents the results from the specification tests of the continuous-time parametric
models for the VIX index for the sample period from January 2, 1990 to April 15, 2009. Daily
observations are used. The table reports the estimated parameters, the test statistic M̂ , and
the corresponding critical value cα. All seven models are rejected by the specification tests,
except for the nonlinear drift CEV-ND and SEV-ND models.

Model α0 α1 α2 α−1 β1 β2 β3 M̂ cα

AFF 0.5412 −2.9603 0.1574 9.20 2.83

reject

CEV-CD 0.1094 10.3108 3.6900 22.10 2.76

reject

CEV-LD 0.3952 −2.0832 0.2097 1.6462 8.43 2.83

reject

CEV-ND −3.1308 19.7732 −40.3713 0.1757 1.5982 2.5554 2.40 2.93

cannot reject

SEV-CD 0.1130 0.0392 35.2988 4.6121 17.90 2.77

reject

SEV-LD 0.4084 −2.1351 −0.0665 0.2956 1.2690 8.26 2.83

reject

SEV-ND −2.8237 17.8777 −36.4733 0.1577 0.00004 1.5547 2.6052 2.38 2.92

cannot reject
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Table 9
Specification Test of the Continuous-time Parametric Models for VIX-1Y

This table presents the results from the specification tests of the continuous-time parametric
models for the VIX-1Y index for the sample period from January 2, 1992 to April 15, 2009.
Daily observations are used. The table reports the estimated parameters, the test statistic M̂ ,
and the corresponding critical value cα. All seven models are rejected by the specification tests,
except for the nonlinear drift and stochastic variance (SEV-ND) model.

Model α0 α1 α2 α−1 β1 β2 β3 M̂ cα

AFF 0.1731 −0.9288 0.0328 44.51 3.54

reject

CEV-CD 0.0360 8.5115 4.4354 43.83 3.56

reject

CEV-LD 0.1500 −0.7564 0.1309 1.8898 38.18 3.58

reject

CEV-ND −4.2749 22.5402 −39.0526 0.2700 0.2961 2.4163 6.70 3.82

reject

SEV-CD 0.0373 −0.00429 5.6025 4.0922 42.89 3.57

reject

SEV-LD 0.1567 −0.7261 −0.2904 0.4385 1.1832 29.50 3.60

reject

SEV-ND −4.0265 20.0997 −32.1571 0.2621 0.0141 171.6217 7.4841 3.68 3.79

cannot reject
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Table 10
Specification Test of the Continuous-time Parametric Models for VSTOXX

This table presents the results from the specification tests of the continuous-time parametric
models for the VSTOXX index for the sample period from January 4, 1999 to April 15, 2009.
Daily observations are used. The table reports the estimated parameters, the test statistic M̂ ,
and the corresponding critical value cα. All seven models are rejected by the specification tests.

Model α0 α1 α2 α−1 β1 β2 β3 M̂ cα

AFF 0.7046 −2.9663 0.1879 8.17 2.08

reject

CEV-CD 0.1368 6.2837 3.6552 23.97 1.93

reject

CEV-LD 0.3352 −2.1778 0.00835 −1.1930 6.53 2.08

reject

CEV-ND −4.7998 25.0685 −49.4444 0.3088 0.0176 −1.1818 6.49 2.11

reject

SEV-CD 0.1387 −0.0052 6.4326 3.8034 7.40 2.10

reject

SEV-LD 0.3446 −2.2644 0.00994 0.00769 −1.2650 6.50 2.09

reject

SEV-ND −4.4961 36.2891 −89.5761 0.0978 −0.0020 0.0232 −1.3033 5.95 2.10

reject
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Table 11
Specification Test of the Continuous-time Parametric Models for VSMI

This table presents the results from the specification tests of the continuous-time parametric
models for the VSMI index for the sample period from January 4, 1999 to April 15, 2009. Daily
observations are used. The table reports the estimated parameters, the test statistic M̂ , and
the corresponding critical value cα. All seven models are rejected by the specification tests.

Model α0 α1 α2 α−1 β1 β2 β3 M̂ cα

AFF 0.5167 −2.8351 0.1482 10.30 2.79

reject

CEV-CD 0.0995 9.5208 3.7116 5.22 2.73

reject

CEV-LD 0.3345 −1.5508 1.1092 2.3505 4.14 2.77

reject

CEV-ND −0.9826 6.0559 −17.1243 0.1117 3.4474 2.3931 3.95 2.78

reject

SEV-CD 0.0886 0.0119 12.8161 4.0331 4.56 2.75

reject

SEV-LD 0.3086 −1.4499 −0.0853 0.5850 1.6810 3.97 2.78

reject

SEV-ND −2.1939 14.3730 −43.1347 0.2650 −0.0061 9.4519 2.4125 3.90 2.78

reject
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