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This paper investigates the US Treasury market volatility and develops new ways of dealing with the 

underlying interest rate volatility risk. Our innovative approach is based on a class of model-free interest 

rate volatility (VXI) indices we derive from options traded on the CBOE. The empirical analysis indicates 

substantial interest rate volatility risk for short and medium-term instruments which declines to the levels 

of the equity market only as the tenor increases to 30 years. This risk appears do be priced in the market 

since we find a significant negative interest rate volatility premium. Moreover, for the first time we 

present evidence that interest rate and equity volatility risk premia have a significant time-varying 

relationship. We also demonstrate that US Treasury market volatility is appealing from an investment 

diversification perspective since the VXI indices are negatively correlated with the levels of interest rates 

and of equity market implied volatility indices, respectively. The VXI indices are affected by 

macroeconomic and monetary news but are only partially spanned by information contained in the yield 

curve. Motivated by our results on the magnitude and the nature of interest rate volatility risk and by the 

phenomenal recent growth of the equity volatility derivative market, we propose the use of our VXI 

indices as benchmarks for monitoring, securitizing, managing and trading interest rate volatility risk. As a 

first step in this direction, we describe a framework of one-factor equilibrium models for pricing VXI 

futures and options on the basis of empirically favored mean-reverting jump-diffusions. 
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1. Introduction 

The volatility of interest rates is of prime importance to monetary authorities, financial institutions, policy 

makers and journalists since interest rates have such a central position in most economic theories, models 

and systems. Bond and foreign exchange market participants are also particularly concerned about the 

future evolution and variability of interest rates since volatility is a protagonist in the pricing, hedging and 

risk management of financial instruments involving interest rates (see the reviews by Chapman and 

Pearson, 2001; Dai and Singleton 2003; Ederington and Lee, 2007).1 Not surprisingly, an impressive body 

of research over the past years investigates issues related to interest rate volatility. Although various 

hypotheses have been evaluated and some stylized facts have been uncovered, there is no strong 

consensus yet in the empirical literature on how interest volatility should be measured and modeled. More 

importantly, although we now understand well that interest rate volatility exhibits large swings (eg., see 

Ait-Sahalia, 1996; Andersen and Lund, 1997; Amin and Morton, 1994, and Amin and Ng, 1997), few 

advances have been made on how this particular risk should be monitored and dealt with (existing risk 

management practices are reviewed by Ho, 2007).  

Expanding on an idea originally mentioned in Brenner and Galai (1989), we take a fresh look at 

interest rate volatility by employing ideas and tools from the extensive recent research on volatility 

indices in equity markets. This allows us to make a number of extensions to the literature. Specifically, 

using a well established model-free methodology which was first used for the VIX equity market 

volatility index, we build a set of new metrics for interest rate volatility. In our particular application, 

these metrics are employed as proxies of expected volatility for Treasury market instruments on the basis 

of information contained in interest rate options traded on the CBOE. We argue that the so-called VXI 

implied interest rate volatility indices we build are advantageous when compared to alternative proxies. 

We add to the empirical evidence on interest rate volatility by studying the behaviour of four VXI indices 

with maturities of 13 weeks, 5 years, 10 years and 30 years, respectively. The results indicate that implied 

volatility over a twelve year period is substantial in magnitude and variation and is subject to violent 

jumps. For example, in the case of the 5-year instrument, volatility is almost double in comparison to that 

of the VIX equity volatility index (39.34% vs. 20.41%). Over the recent credit crisis, levels of implied 

interest volatility of short and medium-term rates have increased sharply more than fourfold compared to 

                                                            
1 As pointed out in a recent Economist article (Interest-rate risk. Surf's up. Banks’ next big problem appears on the 
horizon, Feb 25th 2010), the corporate effect of interest rates ‘varies’: “‘Asset-sensitive’ firms, whose assets are of 
shorter duration than their liabilities and therefore reprice faster, tend to do well when rates rise. ‘Liability-
sensitive’ banks are more exposed to rising funding costs and see their margins squeezed”. As discussed in a study 
by the research firm CreditSights cited by the article: “Among big banks the picture is mixed. A 0.5 percentage-point 
rise in rates would cost Citigroup $771m in annual net interest income...Wells Fargo would gain by a similar 
amount.” 
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the recent past. As expected, a negative premium is attached to the interest rate volatility risk which is 

much higher in magnitude than that reported for the equity market. An important new result is that our 

estimates of interest rate volatility risk premia have a time varying-correlation with equity market 

volatility risk premia. Another useful contribution is related to the finding that our VXI indices, as is the 

case with the VIX index, offer valuable diversification opportunities to bond and equity investors. 

Specifically, our measures of interest rate volatility have a strong negative correlation with interest rate 

levels (up to -85.8) and equity market implied volatility index levels (up to -24.7%). 

In line with previous research, we show for the first time that macroeconomic and monetary 

announcements affect significantly implied interest rate volatility by decreasing (increasing) it the day 

before (after). Another new result is that this effect varies across the term structure and becomes more 

prominent at the longer maturities. In agreement with several other studies we find that interest rate 

implied volatility is not fully spanned by the information which is contained in the underlying yield curve. 

Finally, motivated by our results and the rapid development of the equity volatility derivative market, we 

propose our VXI indices are vehicles for developing options and futures which can be used for managing 

and trading interest rate volatility risk. On the basis of a horserace amongst popular continuous time 

models for representing the VXI index empirical behavior, we develop a single-factor pricing framework 

using autonomous mean-reverting jump-diffusions.  

 

2. Methodology: Interest Rate Implied Volatility Indices (VXI) 

Measuring interest rate volatility is a daunting task due to the fact that, as with the volatility of equities, it 

is empirically unobservable. Two main approaches are typically employed by academics and 

practitioners. The first resorts to historical time series of interest rates in order to derive estimates of 

“historical volatility” using unconditional moment estimators, exponential moving averages, ARCH 

models, stochastic volatility models, etc. (for a comprehensive treatment of these models see Mills and 

Markellos, 2008; a review of the historical interest rate volatility literature is Ederington and Lee, 2007). 

The second approach aims at calculating the “implied volatility” that equates actual prices of interest rate 

options with those given by some theoretical pricing model. Since this estimate reflects market data, it 

incorporates investor expectations, behaviors and risk attitudes about the future evolution of volatility. 

Although there is controversy in the empirical literature about which approach is superior, most 

researchers seem to agree that implied volatility is better than historical volatility in terms of forecasting 

power (see, for example, Poon and Granger, 2003). A third nonparametric approach employs intraday 

price data to derive so-called realized volatility measures (see Andersen and Benzoni, 2008). Although 



4 
 

this last approach is known now to be theoretically and empirically appealing, it is still not widely applied 

due to the significant data requirements it has.   

Turing now to the interest rate in particular, most of the previous empirical research on volatility 

is based on estimates derived by inverting observed option prices on the basis of the Heath, Jarrow and 

Morton (1992) model (see, among others, Amin and Morton, 1994; Amin and Ng, 1997). Two notable 

exceptions are the studies by De Jong, Driessen and Pelsser (2001) and Christiansen and Hansen (2002) 

which estimate implied volatility via the LIBOR market model. Unfortunately, the implied volatility 

estimation approach used by the above studies comes with two important disadvantages. First, the 

accuracy of the estimates depends critically on the validity of the option pricing model assumed. Second, 

at any particular moment, there are as many implied volatility estimates as strike prices of the options. In 

order to overcome such problems, Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) propose 

a model-free methodology that calculates implied volatility using the entire set of the option prices at a 

certain point of time. In both studies, the authors provide evidence that the model-free implied volatility is 

better than both historical volatility and model-driven implied volatility.  

In recent years there has been a great deal of research also on the construction and the properties 

of equity implied volatility indices (Fleming et al., 1995, Moraux et al., 1999, Whaley, 1993, 2000, 2009, 

Simon, 2003, Wagner and Szimayer, 2004, Giot, 2005, Carr and Wu, 2006). The first volatility index 

(VIX) was introduced in 1993 by the CBOE. Soon after the introduction of the index, CBOE was subject 

to strong criticism regarding the methodology used for the calculation of VIX. Originally the VIX was 

calculated as an average of the Black and Scholes (1973) at-the-money (ATM) option implied volatility, 

according to the methodology proposed by Whaley (1993). As a response, on September 22, 2003, the 

CBOE changed the Black-Scholes based methodology of VIX calculation. The new VIX methodology is 

independent of any model and allows VIX to be robustly replicated by a portfolio of options (see CBOE, 

White Paper, 2009 and Carr and Wu, 2006, for a detailed description of “new” VIX methodology and for 

the comparison of the two methodologies).2 Specifically, the new VIX implied volatility index is 

constructed as the weighted sum of out-of-the-money (OTM) call and put option closing prices at two 

nearby maturities across all available strikes. The implied volatility index captures the implied volatility 

of a synthetically created ATM option with a constant maturity of 30 days. Several other equity implied 

volatility indices have also been developed. These include the VXN, the VXD and the RVX in the CBOE, 

which are the equivalent to VIX implied volatility indices for the NASDAQ, Dow Jones Industrial 

Average and Russell 2000 Index, respectively. Similarly, we have the DAX-30 volatility index (VDAX-

NEW) in Germany, the CAC-40 volatility index (VCAC) in France and the Dow Jones EURO STOXX 

                                                            
2 CBOE still quotes the “old” VIX, which is calculated with the old methodology, under the ticker “VXO”. All 
volatility indices, apart from VXO, quoted in CBOE are calculated with the new model free methodology.  
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50 volatility index (VSTOXX) in the Eurex. Given the great success of equity implied volatility indices 

and the rapidly expanding market for volatility futures and options, CBOE recently decided to launch 

three more implied volatility indices in different asset classes than equity: the Crude Oil Volatility Index 

(OVX), the EuroCurrency Volatility Index (FVX) and the Gold Volatility Index (GVX).  

Although the model-free methodology and index construction has been widely applied for 

equities, to the best of our knowledge no relevant research has been done yet in the interest rate literature. 

This will be one of the objectives of our paper. In order to construct the interest rate implied volatility 

index (VXI) we closely follow the methodology of VIX. The price of the interest rate implied volatility 

index at time t is then calculated by: 
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Where T is the time to maturity of interest rate options involved in the calculation, Ft is the forward 

interest rate level at time t derived from the interest rate option prices, K0 is the first strike below Ft, Ki is 

the strike price of ith OTM option (call if Ki>K0, put if Ki< K0; both put and call if Ki=K0, ∆Ki is the half 

interval between the strike prices Ki+1 and Ki-1), r is the time t risk-free interest rate to expiration and 

Q(Ki) is the average of the quoted bid-ask spread (mid-quote) for each option with strike Ki. 

In short, the calculation of each daily VXI price is as follows. First, two option series with the 

nearest expirations are selected. Both option series must have at least one week to expiration. Otherwise, 

we roll to the next option series with the nearest expiration. The methodology uses all the OTM options 

with non-zero bid prices, except the put (call) options with a higher (lower) strike price than the strike 

price of two consecutive puts (calls) with zero bid prices. Second, for each option selected, we calculate 

the mid-quote Q(K,T). Third, the forward level Ft of the underlying interest rate is determined for each 

expiration under consideration. Ft is derived via the put-call parity relation: 
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where Ct and Pt is the call and put price respectively. Fourth, we apply the formula (1) on each of the two 

series with mid-quotes that we have generated, and we come up with two index values, one for each 

expiration. Fifth, we interpolate between the two index values to obtain an index value with 30 days 

expiration. We use the same interpolation formula that CBOE uses for the case of VIX. Finally, VXI is 

the square root of that value which is then typically multiplied by 100. The VXI represents the risk-
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neutral expectation of the annualized volatility of the underlying interest rate over the next 30 calendar 

days. As in the case of equity implied volatility indices, where each implied volatility index corresponds 

to the implied volatility of a stock index, we can construct as many interest rate implied volatility indices, 

as the different maturities of interest rates. The same methodology can be applied to all interest rate 

markets, where there is an active options market, e.g., options on Eurodollar futures traded at CME, 

treasury option traded at CBOE or at CBOT, etc. 

 

3. Empirical Results  

The data employed in the empirical analysis correspond to daily market prices for interest rate call and 

put options traded on the Chicago Board Options Exchange (CBOE) over the period 1/4/96 to 8/29/08, a 

total of 3,159 trading days. These are cash-settled European style options written on the spot yield of U.S. 

Treasury securities. Currently there are 4 different contracts available written on: the annualized discount 

rate of the most recently auctioned 13-week Treasury bill, and, on the yield-to-maturity of the most 

recently auctioned 5 year Treasury note, the 10 year Treasury note and the 30 year Treasury bond, 

respectively. The ticker symbols of the underlying instruments are IRX, FVX, TNX and TYX, 

respectively (see the website of CBOE for more details). Most studies of interest rate implied volatility 

use data from swaptions (see, among others, Trolle and Schwartz, 2009) and option contracts written on 

Eurodollar futures (see, for example, Amin and Morton, 1994, and, Amin and Ng,1997). To the best of 

our knowledge, only Christiansen and Hansen (2002) uses interest rate options data from CBOE to 

analyze the IRX rate. However, since they calculate the implied volatilities through the LIBOR market 

model, their estimates are subject to model misspecification. Our dataset offers four main advantages. 

First, it gives us the opportunity to provide empirical evidence on a relatively unexplored market. Second, 

the interest rate options we analyse are much simpler than options on Eurodollar futures, since the former 

are written directly on interest rates. In this manner we deal directly with the quantity of interest and 

avoid any irrelevant effects. Third, since we are dealing with new volatility metrics and derivatives, it 

makes sense to base our study around the CBOE which is leader in the volatility securitisation and 

monitoring industry. Finally, since all the data are provided by the CBOE, we preserve homogeneity and 

minimize the errors that may result from asynchronous trading and variations in data quality.  

Using the model-free methodology described previously we derive the implied volatility from the 

option contracts on IRX, FVX, TNX and TYX and coin the corresponding indices as VXI-13W, VXI-5Y, 

VXI-10Y and VXI-30Y, respectively. We estimate also simple logarithmic returns for these indices and 

denote them as: ∆VXI-13W, ∆VXI-5Y, ∆VXI-10Y and ∆VXI-30Y (these will be refereed to simply as 

returns or changes in the remainder of the paper). The implementation of the model-free methodology 
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assumes a very liquid market. However, due to the relatively low liquidity of interest rate options during 

some days some of the conditions imposed by the method are not met for the construction of the indices. 

For the days where the value of the implied volatility index cannot be computed, around 5% of the 

sample, we use the value of the previous trading day. 

 

Figure 1. VXI Indices over the period 1/4/96 to 8/29/08 
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Time series plots of the indices and underlying yields are presented in Figures 1 and 2. Descriptive 

statistics of index levels and returns are given in Table 1. We also include some results for the VIX, 

S&P500 and the Merrill Option Volatility Expectations (MOVE©) indices in order to facilitate 

comparative inferences. The MOVE© is calculated by Merrill Lynch using implied yield normalised 

volatility from constant one-month at-the-money OTC Treasury securities with maturities of 2 years, 5 

years, 10 years and 30 years, respectively. Yields of all maturities are equally weighted with 20% except 

VXI-13W  VXI-5Y 

VXI-10Y  VXI-30Y 
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for the 10-year which has a weight of 40%. No detailed information was found on the exact method that is 

used to normalise the volatility and to derive it from the options data.  

 

Figure 2 Treasury rates over the period 1/4/96 to 8/29/08 
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In line with previous studies (see, among others, Ait-Sahalia, 1996; Andersen and Lund, 1997; Amin and 

Morton, 1994, and Amin and Ng, 1997), the plots indicate that interest rate volatility is substantial and 

varies significantly across time. The averages and standard deviations are very different cross-sectionally 

between the indices analyzed. The two indices with the shortest maturity of the underlying have the 

highest level of implied volatility (µVXI-13W = 35.24, µVXI-5Y = 39.34) and variability (CVVXI-13W = 72.64%, 

CVVXI-5Y = 83.69%), much higher than those for the VIX (µVIX = 20.41, CVVIX= 32.83%). This other two 

indices have a similar average level and variability compared to the VIX. A sharp shift took place recently 

in volatility as the credit crisis unfolded. Specifically, the VXI-13W and VXI-5Y increased more than 

VXI-13W  VXI-5Y 

VXI-10Y  VXI-30Y 
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fourfold since June 2008 from an average level of 33.56 and 37.02 to 135.71 and 177.86, respectively. 

The extreme positive and negative returns confirm what can be seen visually in the plots as violent and 

abrupt changes. All VXI indices are non-normally distributed with a positive skewness and excess 

kurtosis. Again these characteristics are far more prominent for the two short term indices studied. Finally 

we see that the behavior of the VXI indices to the MOVE is quite different. The differences in magnitude 

are expected since MOVE is based on some normalization scheme. MOVE changes are far more smooth 

and closer a Gaussian distribution. 

 

Table 1. Descriptive statistics of daily VXI, MOVE and VIX indices over the period 1/4/96 to 8/29/08 

 VXI-13W VXI-5Y VXI-10Y VXI-30Y MOVE VIX 

Observations 3,159 3,159 3,159 3,159 3,159 3,159 

Mean 35.2442 39.3429 27.0728 22.9346 99.3071 20.4110 

Median 23.5991 29.7287 25.3819 22.4687 99.6800 19.7800 

Max 180.6814 183.6313 114.4094 94.9674 195.0000 45.7400 

Min 4.9360 5.9831 6.4852 13.9961 51.2000 9.8900 

St. Deviation 25.6010 32.9273 8.3109 5.3406 22.8868 6.7018 

CV 0.7264 0.8369 0.3070 0.2329 0.2305 0.3283 

Skewness 1.7776 3.0927 1.0918 2.2918 0.3165 0.7741 

Kurtosis 6.8120 12.5641 6.7058 23.7647 2.9542 3.4807 

Jarque-Bera 3.5764E+03 1.7076E+04 2.4353E+03 5.9518E+04 5.3011E+01 3.4592E+02 

ρ(1) 0.9792 0.9891 0.9624 0.8897 0.9834 0.9832 

 ∆VXI-13W ∆VXI-5Y ∆VXI-10Y ∆VXI-30Y ∆MOVE ∆VIX 

Mean 0.0064 0.0028 0.0019 0.0018 0.0009 0.0016 

Median 0.0000 0.0000 0.0000 0.0011 -0.0009 0.0000 

Max 4.9648 1.8604 1.5804 1.9344 0.2875 0.6422 

Min -0.6462 -0.7241 -0.6800 -0.6755 -0.1653 -0.2591 

St. Deviation 0.1464 0.0729 0.0623 0.0665 0.0413 0.0550 

Skewness 17.4234 9.8764 7.8762 16.3295 0.9183 1.1050 

Kurtosis 487.2888 212.8932 193.5014 467.8288 8.2960 11.1054 

Jarque-Bera 3.1021E+07 5.8483E+06 4.8079E+06 2.8571E+07 5.3011E+01 9.2873E+03 

ρ(1) -0.1249 -0.1698 -0.2293 -0.2745 0.0312 -0.0482 

Jarque-Bera is a test of normality. ρ(1) is the coefficient of an AR(1) model with a constant. 
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In line with studies such as Dai and Singleton (2003), Litterman, Scheinkman, and Weiss (1991) and 

Chapman and Pearson (2001), our results across the 4 maturities studied suggest that the implied 

volatility term structure is hump-shaped with a peak at the 5 year period. In addition to the level of 

volatility, we find that the variability of the indices also has a similar hump-shaped pattern. As in Amin 

and Morton (1994) and Ball and Torous (1999), the preliminary analysis for all series demonstrates that 

interest rate volatilities are highly persistent but mean reverting. A first indication for this is given by the 

time series plots and the fact that autocorrelation coefficients of levels at lag 1 are just below unity. These 

results are confirmed by various univariate and panel econometric tests for stationarity and unit roots 

(results available upon request). An exception is the VXI-5Y index which has a sharp shift over the recent 

period and has a first order autocorrelation very close to unity. However, if we exclude from the sample 

the last months since September 2008, which correspond the credit crisis period, this series also appears 

to be stationary. In contrast to Ball and Torous (1999), we find that interest rate volatility displays similar 

mean-reversion to that of the equity market, as captured by the size of the first-order autocorrelation 

coefficient. A possible exception is the VXI-30Y which as a considerably smaller coefficient.  

It is interesting to examine if the substantial volatility risk is priced by investors. In other words, 

if a volatility risk premium (VRP ) is demanded as a compensation for assuming interest rate volatility 

risk. According to Bollerslev, Tauchen and Zhou (2009), and Carr and Wu (2009), the VRP over the 

period from t to t+τ can be defined as the difference between the realized volatility under the statistic 

measure P and the expectation of the future volatility under risk neutral measure Q, i.e.:3 

 , , ,[ ] [ ]P Q
t t t t t t t tVRP E V E Vτ τ τ+ + += −  (2) 

A number of theoretical and practical implications of the VRP  have been discussed in the literature. 

Chernov (2007) emphasizes the role of the VRP  for portfolio managers and policymakers in allowing 

them to form better forecasts of future volatility. Accordingly, Bollerslev, Tauchen and Zhou (2009) show 

that the VRP  can explain a significant portion of the variation in the post-1990 aggregate stock market 

returns. Almeida and Vicente (2009) argue that the VRP  is crucial in reconciling option market implied 

volatilities with spot market historical volatilities. Joslin (2007) discuss the importance of the market 

price of volatility risk for matching the option price dynamics. Bakshi and Kappadia (2003) point out that 

a negative VRP  implies that option prices are higher than the prices when volatility risk is not priced. A 

                                                            
3 Bollerslev, Tauchen and Zhou (2009) use the VIX index as a proxy for the risk-neutral expectation of the future 
volatility along with realized volatility derived from S&P500 intraday returns. Car and Wu (2009) employ futures 
prices and swap rates for the calculation of the realized and future volatility, respectively. An earlier approach by 
Bakshi and Kapadia (2003) measures the VRP from the delta-hedged profits of options portfolios. Specifically, these 
authors assume a long call option position which hedged by a short position in the underlying stock, such that the net 
investment outcome the risk-free return. The sign and magnitude of the average delta-hedged returns determine the 
volatility risk premium if volatility risk is priced. 
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variety of option pricing models explicitly incorporate a volatility risk premium and account for stylized 

facts such as stochastic and the sensitivity to the level of volatility.  

Empirical studies in equity (Bakshi and Kappadia, 2003; Bakshi and Madan, 2006; Bollerslev, 

Tauchen and Zhou, 2009; Carr and Wu, 2009; Todorov, 2010), currency (Guo and Neely, 2004) and fixed 

income markets (Joslin, 2007; Fornari, 2008; Almeida and Vicente, 2009) show that the volatility risk 

premium is negative, time-varying and dependent on the level of volatility. Estimates of the VRP  range 

between -2% to -3% and -4% to -5% for developed equity and fixed income markets, respectively. The 

negative sign of the premium is explained by considering that investors that are long in volatility are 

willing to pay a premium in order to insure themselves against upward movements in volatility.  

 

Figure 3. Interest rate volatility risk premia over the period 1/4/96 to 8/29/08 
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Table 2. Descriptive statistics of interest rate volatility risk premia over the period 1/4/96 to 8/29/08 

 VRP.IRX-13W VRP.FVX-5Y VRP.TNX-10Y VRP.TYX-30Y VRP.SP500 

Mean -0.0755 -0.1029 -0.0477 -0.0571 -0.0194 

Median -0.0900 -0.0631 -0.0552 -0.0601 -0.0245 

Max 3.1727 0.4114 0.3468 0.1944 0.2386 

Min -1.1455 -1.3833 -0.8336 -0.7588 -0.2045 

St. Deviation 0.3679 0.2300 0.0661 0.0522 0.0543 

Skewness 4.6106 -3.3782 0.2354 -0.8980 0.9781 

Kurtosis 39.6867 16.7485 11.9236 24.3514 6.0989 

Jarque-Bera 1.9053E+05 3.1292E+04 1.0503E+04 5.9352E+04 1.7846E+03 

ρ(1) 0.9823 0.9866 0.9232 0.8668 0.9564 

 ∆VRP.IRX-13W ∆VRP.FVX-5Y ∆VRP.TNX-10Y ∆VRP.TYX-30Y ∆VRP. SP500

Mean 0.0113 -0.0714 0.0445 -0.0681 0.3869 

Median -0.0006 -0.0013 -0.0074 0.0002 -0.0254 

Max 69.9752 22.7400 197.4842 77.6308 1973.2390 

Min -77.8863 -117.1709 -114.1927 -83.1226 -1951.7070 

St. Deviation 3.0478 3.1409 5.4068 2.7911 52.5937 

Skewness 1.8901 -27.9670 21.8505 -5.4509 1.6669 

Kurtosis 393.3872 962.1677 930.5794 510.7815 1252.4380 

Jarque-Bera 1.9916E+07 1.2100E+08 1.1300E+08 3.3707E+07 2.0400E+08 

Jarque-Bera is a test of normality. ρ(1) is the coefficient of an AR(1) model with a constant. 

 

Since volatility risk management and option pricing is a prime objective in the present paper, we examine 

the empirical behavior of the interest rate volatility risk premium using our VXI data. Specifically, we 

estimate the VRP at time t as following: 

 , 30t t t tVRP RV VXI+= −  (3) 
Where tVXI  is the risk neutral interest rate expected volatility over the next month and RVt,t+30 is the 

realized volatility for the same period. Following Carr and Wu (2009), the realized volatility is calculated 

from the following formula: 
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where rt denotes the time t treasury rate. In approximating the second term, we use the volatility estimates 

based on the sum of squared interest rate daily returns over the period of one month. The estimated risk 
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premia are depicted in Figure 3 while Table 2 gives some summary statistics. In order to facilitate 

comparisons we also include descriptive statistics on the SP500 VRP . The latter was estimated using the 

same methodology as for the interest rate VRP. The VIX index used as a proxy of the model-free S&P500 

implied volatility, while realized volatility estimated over the next month using the sum of squared 

S&P500 index daily returns. The results indicate that interest rate VRP are time varying and subject to 

violent upward and downward shifts. The median interest rate volatility premium ranges between -5.52% 

for the 10 year maturity down to -9% for the 13-week instrument. These estimates are higher than the -4% 

premium obtained for US interest rates by Fornari (2008) using a different methodology and dataset. The 

interest rate VRP are also clearly much higher than the -2.45% premium estimate obtained for the equity 

market using the VIX and S&P500 returns. The interest rate VRP we find have high variability, especially 

for the two shortest tenors examined. The distributions of premia and premia changes are highly 

nonnormal with many violent positive and negative jumps. The plots suggest that premia are increasing 

over the recent past. Specifically, since June 2008 median premia have increased in magnitude by a factor 

of 1.92, 2.36, 1.3 and 1.15 when compared to the previous period for the case of the IRX, FVX, TNX and 

TYX, respectively. It is interesting to note that the VIX volatility risk premium decreased in magnitude by 

a factor of 0.47 since June 2008. Comparable results are obtained if averages are used rather than the 

outlier-robust median measures of central tendency.   

 

Table 3. Correlation analysis of volatility risk premia over the period 1/4/96 to 8/29/08 

 VRP.IRX-13W VRP.FVX-5Y VRP.TNX-10Y VRP.TYX-30Y VRP.SP500 IRX FVX TNX 

VRP.IRX-13W 100.0 -4.4 29.7 15.2 6.9 15.1 6.9 5.3 

VRP.FVX-5Y -4.4 100.0 51.2 46.4 -5.9 24.5 32.1 35.1 

VRP.TNX-10Y 29.7 51.2 100.0 78.4 -2.8 14.9 18.0 22.3 

VRP.TYX-30Y 15.2 46.4 78.4 100.0 -7.7 6.0 17.6 25.4 

VRP.SP500 6.9 -5.9 -2.8 -7.7 100.0 -0.5 -7.9 -8.7 

IRX 15.1 24.5 14.9 6.0 -0.5 100.0 87.7 75.4 

FVX 6.9 32.1 18.0 17.6 -7.9 87.7 100.0 96.9 

TNX 5.3 35.1 22.3 25.4 -8.7 75.4 96.9 100.0 

TYX 4.0 37.6 28.0 34.5 -10.1 55.7 85.1 95.0 

The two-tailed 5% and 1% critical values for the absolute value of the correlation coefficient are 3.49% and 4.59%, 
respectively.  
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Figure 4. Correlation between VRP.TYX-30Y and VRP.SP500 risk premia over the period 1/4/96 to 

    8/29/08 using a rolling window of 125 trading days (6 months) 
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The two-tailed 5% and 1% critical values for the absolute value of the correlation  
coefficient are 17.5% and 22.87%, respectively.  
 

A correlation analysis of the VRP with respect to the underlying interest rates is shown at Table 3. The 

inspection of the table reveals several interesting results. First, interest rate VRP are interrelated between 

them, especially at the longer maturities considered (eg., the VRP at the two longer maturities have a 

correlation of 78.4%). Second, there is a positive “level effect” in that VXI-derived VRP are correlated to 

the levels of the underlying interest rates. In other words, risk premia are higher at higher levels of interest 

rates. Third, there appears to be a weak correlation between equity and interest rate volatility risk premia. 

This correlation is positive only for the shortest-term maturity considered. The relationship between these 

two premia should be examined in the context of the voluminous literature on the association between 

bond and equity markets (see Baele et al., 2010, inter alia). Volatility risk premia, as proxies of investor 

risk aversion and attitudes, should be equal between these two markets according to most asset pricing 

frameworks. However, the “flight to quality” and “flight from quality” phenomena predict an inverse 

relationship between the risk premia in the two markets. Specifically, when the stock market crashes 

(rallies) then risk aversion towards equities (bonds) increases (decreases) and investors move to bonds 

(stocks). Empirical evidence with respect to the direction of the relationship between stocks and bonds 

has been conflicting. However, recent studies suggest that this relationship is time-varying and depends 
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on a variety of macroeconomic and microeconomic variables (see Baele et al., 2010). In light of this 

evidence we undertook a rolling correlation analysis using a window of 125 trading days which is 

equivalent to a calendar period of 6 moths (for a similar approach see, for example, Connolly et al., 

2005). The results for the VRP.TYX-30Y, depicted in Figure 4, suggest that the relationship is indeed 

time-varying with correlation assuming negative values over most of the sample period under study.  

 

Table 4. Correlation coefficients (%) of VXI levels and changes with other variables (1/4/96 to 8/29/08) 

 VXI-13W VXI-5Y VXI-10Y VXI-30Y MOVE IRX-13W FVX-5Y TNX-10Y TYX-30Y ∆SP500 VIX 

VXI-13W 100.0 67.4 73.3 65.1 35.3 -66.1 -66.5 -60.8 -51.0 -2.2 -9.8 

VXI-5Y 67.4 100.0 80.3 75.0 44.4 -54.7 -61.3 -58.7 -52.3 -1.0 -20.7 

VXI-10Y 73.3 80.3 100.0 86.2 49.0 -79.2 -85.8 -80.3 -68.9 -2.2 -3.7 

VXI-30Y 65.1 75.0 86.2 100.0 29.7 -53.9 -71.8 -74.8 -74.4 -1.5 -23.5 

MOVE 35.3 44.4 49.0 29.7 100.0 -45.0 -27.2 -11.2 7.7 -1.8 21.6 

IRX-13W -66.1 -54.7 -79.2 -53.9 -45.0 100.0 87.7 75.4 55.7 2.5 -16.9 

FVX-5Y -66.5 -61.3 -85.8 -71.8 -27.2 87.7 100.0 96.9 85.1 2.5 -2.3 

TNX-10Y -60.8 -58.7 -80.3 -74.8 -11.2 75.4 96.9 100.0 95.0 2.2 6.3 

TYX-30Y -51.0 -52.3 -68.9 -74.4 7.7 55.7 85.1 95.0 100.0 2.0 19.1 

∆SP500 -2.2 -0.9 -2.0 -1.2 -1.9 2.2 2.2 1.8 1.6 100.0 -10.9 

VIX -9.8 -20.7 -3.7 -23.5 21.6 -16.9 -2.3 6.3 19.1 -10.2 100.0 

 ∆VXI-13W ∆VXI-5Y ∆VXI-10Y ∆VXI-30Y ∆MOVE ∆IRX-13W ∆FVX-5Y ∆TNX-10Y ∆TYX-30Y ∆SP100 ∆VIX 

∆VXI-13W 100.0 4.4 5.7 4.0 0.2 2.6 3.7 2.5 1.0 -1.1 0.0 

∆VXI-5Y 4.4 100.0 38.8 19.1 4.7 1.3 0.3 0.6 -1.0 0.1 -1.8 

∆VXI-10Y 5.7 38.8 100.0 57.1 11.9 -2.5 3.5 4.0 2.7 0.7 -2.3 

∆VXI-30Y 4.0 19.1 57.1 100.0 8.3 -1.2 1.5 0.5 -0.4 1.6 -3.2 

∆MOVE 0.2 4.7 11.9 8.3 100.0 -4.2 10.2 13.5 15.4 0.2 -0.5 

∆IRX-13W 2.6 1.3 -2.5 -1.2 -4.2 100.0 30.0 24.8 19.6 -0.1 2.0 

∆FVX-5Y 3.7 0.3 3.5 1.5 10.2 30.0 100.0 94.6 82.5 0.3 -2.0 

∆TNX-10Y 2.5 0.6 4.0 0.5 13.5 24.8 94.6 100.0 93.1 0.4 -2.0 

∆TYX-30Y 1.0 -1.0 2.7 -0.4 15.4 19.6 82.5 93.1 100.0 0.3 -1.3 

∆SP500 -1.1 0.1 0.7 1.6 0.2 -0.1 0.3 0.4 0.3 100.0 -71.6 

∆VIX 0.0 -1.8 -2.3 -3.2 -0.5 2.0 -2.0 -2.0 -1.3 -71.6 100.0 

The two-tailed 5% and 1% critical values for the absolute value of the correlation coefficient are 3.49% 
and 4.58%, respectively.  
 

In order to examine the contemporaneous relationship between the VXI indices and other series, we 

undertake a correlation analysis. The results, shown in Table 4, demonstrate clearly that a strong positive 

relationship (all correlations over 65%) exists between the VXI indices at the four maturities studied. The 

MOVE index is positively related to VXI levels with correlation coefficients ranging between 29.7% and 
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49%. The negative correlation of -10.9% between the VIX and S&P500 returns confirms what is widely 

known in the financial industry with respect to the hedging benefits of implied equity volatility. Although 

we find that the VXI indices have no linear correlation with SP500 returns, they are negatively correlated 

with VIX levels, especially for the 5 year and 30 year maturity studied (-20.7% and -23.5, respectively). 

A strikingly significant result is the strong negative relationship between levels of VXI and interest rates 

with the correlation coefficients ranging between -51% (VXI-13W with TYX-30Y) and -85.8% (VXI-

10Y with FVX-5Y).  

 

Figure 5. VXI against underlying TYX-30Y Treasury rates over the period 1/4/96 to 8/29/08 
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This negative relationship, also apparent in the scatter plot given in Figure 5 for the TYX-30Y, is 

consistent with findings throughout the interest rate literature on the so-called “level effect” according to 

which interest rate volatility is sensitive to the level of interest rates. However, there is controversy with 

respect to the size and sign of the level effect. Earlier studies characterize this relationship as strongly 

positive, whereby high volatility is associated with high interest rate levels (see, for example Chan, et al. 

1992). Later studies, which account for properties of the series such as autocorrelation and 

heteroskedasticty, find a much weaker positive relationship (see, for example, Brenner et al, 1996; 

Andersen and Lund, 1997; Ball and Torous, 1999). More recently, Trolle and Schwartz (2009) use 

interest rate implied volatility estimates from swaptions and caps, and report both positive and negative 

relationships between interest rate implied volatility and interest rate levels, depending on the model used 



17 
 

to back-out implied volatilities. Our model-free estimates of volatility shed new light on this empirical 

puzzle.  

It must be noted also that the level effect, positive or negative, has not been justified theoretically 

or at least intuitively in the interest rate literature. A possible explanation of the negative level-effect 

could be based by inverting the leverage-effect arguments that have been used in equities. Specifically, 

the leverage effect hypothesis proposed by Black (1976) and Christie (1982), postulates that negative 

returns will usually reduce the stock price and market value of the firm, which in turn means an increase 

in financial leverage, i.e., a higher debt to equity ratio, and this will ultimately lead to an increase in risk 

and equity volatility. However, from a debt market perspective, higher levels of interest rates mean that 

the market value of debt (or the price of bonds) decreases which it turn implies less financial leverage 

and, ultimately, smaller interest rate risk and volatility. In practical terms, our results concerning the 

negative association of VXI indices with other variables have important practical implications since they 

suggest that interest rate volatility can act as significant hedge against variations in the underlying interest 

rate levels and equity market volatility.  

A similar picture to that painted above, although correlation coefficients are much smaller in 

magnitude, is drawn if changes in volatility and interest rates are used in the analysis. Finally, we also 

examine the behavior of correlations across different subsamples of our data. As in Chan et al. (1992) and 

Chapman and Pearson (2001) we find that the sensitivity of volatility to the level of interest rates changes 

through time. Specifically, the average correlation of the VXI-13W with the four interest rates considered 

changes from -8.46% in the first half of the data (1/4/96 to 2/5/02) to -33.81% in the second half of the 

data (3/5/02 to 8/29/08). For VXI_5Y, VXI_10Y and VXI_30Y the average correlation changes from -

66.90%, -63.64% and -53.85% to -40.44%, -56.98% and -31.41%, respectively. 

In order to assess the dynamic relationships and possible spillovers between the variables and 

markets under consideration we employ Granger-causality analysis. Both levels and changes of the 

volatility indices and interest rates are considered in order to capture possible dynamic level effects. The 

statistically significant results, contained in Table 5, allow two main conclusions. First, various 

intermarket spillovers exist in the Treasury market with interest rates Granger-causing volatility and vice 

versa. As Amin and Ng (1997) suggest it appears that implied volatility is useful in predicting the future 

interest rate implied volatilities. Second, the intermarket spillover effects that can be observed between 

the S&P500 and the Treasury rates involve some of the volatility variables studied. Moreover, in all cases 

except two, the VIX and ∆VIX appear to lead Treasury market rate variations, levels and volatilities. The 

two exceptions concern the relationship of ∆VXI-30Y with ∆VIX, and, ∆IRX-13W with VIX, 

respectively. For the other significant intermarket dynamic relationships we can see that ∆VIX (VIX) 

Granger-causes ∆FVX-5Y, ∆TNX-10Y, FVX-5Y and TNX-10Y (∆VIX and VXI-30Y). 
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Table 5. Granger causality tests for 1 lag of the null hypothesis that “Variable A” causes “Variable B” 
Variable A Variable B F-Statistic Variable A Variable B F-Statistic 
∆VXI-13W VXI-13W 203.37** MOVE VXI-30Y 5.92* 
VXI-13W ∆VXI-13W 4.99* MOVE ∆MOVE 34.66** 
VXI-13W ∆VXI-30Y 21.92** ∆VIX ∆FVX-5Y 7.97** 
VXI-13W FVX-5Y 10.72** ∆VIX ∆TNX-10Y 6.76** 
VXI-13W VXI-10Y 74.27** ∆VIX FVX-5Y 5.06* 
VXI-13W VXI-30Y 144.62** ∆VIX TNX-10Y 5.36* 
VXI-13W VXI-5Y 7.45** VIX ∆VIX 19.53** 
VXI-13W TNX-10Y 9.73** VIX VXI-30Y 11.61** 
VXI-13W TYX-30Y 7.73** ∆IRX-13W ∆VXI 13.25** 
∆VXI-5Y ∆FVX-5Y 7.92** ∆IRX-13W IRX-13W 33.97** 
∆VXI-5Y ∆TNX-10Y 10.72** ∆IRX-13W VIX 8.17** 
∆VXI-5Y ∆TYX-30Y 7.74** IRX-13W VXI-10Y 93.10** 
∆VXI-5Y FVX-5Y 6.99** IRX-13W VXI-13W 17.90** 
∆VXI-5Y VXI-10Y 5.55* IRX-13W VXI-30Y 74.74** 
∆VXI-5Y VXI-5Y 14.69** ∆FVX-5Y ∆VXI-10Y 20.45** 
∆VXI-5Y TNX-10Y 9.67** ∆FVX-5Y ∆VXI-30Y 9.60** 
∆VXI-5Y TYX-30Y 8.04** ∆FVX-5Y ∆TNX-10Y 4.17* 
VXI-5Y ∆VXI-30Y 9.86** ∆FVX-5Y ∆TYX-30Y 9.81** 
VXI-5Y IRX-13W 5.68* ∆FVX-5Y IRX-13W 18.21** 
VXI-5Y VXI-10Y 90.48** ∆FVX-5Y VXI-10Y 14.19** 
VXI-5Y VXI-13W 21.56** ∆FVX-5Y VXI-30Y 6.28* 
VXI-5Y VXI-30Y 229.26** FVX-5Y IRX-13W 18.14** 

∆VXI-10Y ∆VXI-13W 15.36** FVX-5Y VXI-10Y 188.57** 
∆VXI-10Y VXI-10Y 443.04** FVX-5Y VXI-13W 15.90** 
∆VXI-10Y VXI-30Y 199.15** FVX-5Y VXI-30Y 210.97** 
∆VXI-10Y VXI-5Y 11.00** FVX-5Y MOVE 5.24* 
VXI-10Y ∆VXI-10Y 10.82** ∆TNX-10Y ∆VXI-10Y 14.30** 
VXI-10Y IRX-13W 11.98** ∆TNX-10Y ∆VXI-30Y 6.21* 
VXI-10Y VXI-13W 23.72** ∆TNX-10Y IRX-13W 4.63* 
VXI-10Y VXI-30Y 154.98** ∆TNX-10Y VXI-10Y 7.55** 
VXI-10Y MOVE 8.17** ∆TNX-10Y TNX-10Y 4.16* 
∆VXI-30Y ∆VIX 4.98* TNX-10Y IRX-13W 6.92** 
∆VXI-30Y VXI-10Y 387.4** TNX-10Y VXI-10Y 125.39** 
∆VXI-30Y VXI-30Y 1130.28** TNX-10Y VXI-13W 11.32** 
VXI-30Y IRX-13W 5.97* TNX-10Y VXI-30Y 255.74** 
VXI-30Y VXI-10Y 14.30** TNX-10Y MOVE 5.96* 
VXI-30Y VXI-13W 15.15** ∆TYX-30Y ∆VXI-10Y 12.69** 
VXI-30Y MOVE 5.13* ∆TYX-30Y ∆VXI-30Y 6.46* 
∆MOVE ∆VXI-10Y 31.21** ∆TYX-30Y VXI-10Y 4.82* 
∆MOVE ∆VXI-30Y 5.50* ∆TYX-30Y TNX-10Y 6.04* 
∆MOVE ∆VXI-5Y 50.38** TYX-30Y VXI-10Y 62.90** 
∆MOVE VXI-5Y 12.4** TYX-30Y VXI-13W 6.37* 
∆MOVE MOVE 7.58** TYX-30Y VXI-30Y 250.64** 
MOVE ∆VXI-10Y 6.89** TYX-30Y MOVE 6.15* 
MOVE ∆VXI-5Y 10.76**    

One (two) stars denote statistical significance at the 95% (99%) level 
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Our results are consistent with evidence of volatility spillover between equity and bond markets (see, for 

example, Fleming, Kirby and Ostdiek, 1998 for historical volatility spillover, and, Wang, 2009 for 

implied volatility spillover). These spillovers can be justified on the basis of commonalities in the 

information set that simultaneously affects expectations in both markets, i.e., changes in the 

macroeconomic variables (see, for example, Harvey and Huang, 1991; Ederington and Lee, 1993). 

Another explanation is based on cross-market hedging which dictates that hedging a position in one asset 

class by taking an offsetting position in another asset class with similar price movements. Portfolio 

managers often shift funds from stocks into bonds and vice versa due to a new information arrival that 

alters their expectations about stock or bond returns. So, a shock in one market will be transferred to the 

other market due to trading activity meaning that volatility spillover takes place (see, for example, 

Fleming, Kirby and Ostdiek, 1998).  

Another interesting point that receives much attention in the empirical literature is if the volatility 

implied from interest rate derivatives contains important unspanned components. This issue is of great 

practical concern since it determines if bonds can be used to hedge interest rate volatility as is predicted 

by most ‘afine’ term structure models. Most of the previous studies have used data on LIBOR, swap rates 

and Eurodollars with mixed results (for a review see Andersen and Benzoni, 2008). For example, Collin-

Dufresne and Goldstein (2002), and Li and Zhao (2006) report unspanned stochastic volatility factors 

which drive interest rate derivatives without affecting the term structure. Heidari and Wu (2003) 

demonstrate that the level, slope, and curvature term-structure factors manage to explain only around 60% 

of the cross-sectional variability in option-implied volatilities. This finding is puzzling since these three 

factors explain over 95% of the variation in the underlying interest rates (see, for example, Litterman and 

Scheinkman, 1991). Andersen and Benzoni (2008) also find unspanned factors in realized interest rate 

volatility. In an attempt to address this issue, we undertake a principal component analysis of the four 

interest rate series under consideration. The results, presented in Table 6a, indicate that the first two 

factors are able to explain over 99% of the variation in the four interest rate series. However, the four 

principal components are able to explain only a portion of the variation in the implied volatility indices. 

Specifically, as shown in Table 6b, the first two yield curve principal components are always significant 

regressands of the VXI indices. However, they are able to explain only a portion of the variability in the 

volatility ranging from 37.37% in the case of the VXI-5Y up to 73.27% in the case of the VXI-10Y. 

Although, these results are only preliminary, since we examine only four instruments, they provide results 

in support of the hypothesis that interest rate volatility are not fully explained by information contained in 

the yield curve.  
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Table 6a. PCA of interest rate levels (1/4/96 to 8/29/08) 

 Principal Component 

 1 2 3 4 

Eigenvalue 3.4928 0.4766 0.0289 0.0016 

Variance Prop. 0.8732 0.1192 0.0072 0.0004 

Cumulative Prop. 0.8732 0.9924 0.9996 1.0000 

 Eigenvector 

Variable 1 2 3 4 

VXI-13W -0.4543 -0.7565 -0.4629 -0.0835 

VXI-5Y -0.5301 -0.1217 0.6166 0.5692 

VXI-10Y -0.5279 0.2204 0.2959 -0.7650 

VXI-30Y -0.4837 0.6035 -0.5639 0.2895 

 

Table 6b. Regression of yield curve principal components against VXI indices (1/4/96 to 8/29/08) 

Principal Component VXI-13W VXI-5Y VXI-10Y VXI-30Y 

1 8.9459 10.7120 3.7381 2.1097 

2 7.4610 2.9680 1.9355 -1.3265 

Constant  35.2442 39.3429 27.0728 22.9346 

R-squared 0.4671 0.3737 0.7327 0.5746 

One (two) stars denote statistical significance at the 95% (99%) level. Heteroskedasticity and 
autocorrelation consistent covariances and standard errors are estimated using the Newey and West 
(1987) approach.  
 

Finally, we examined the relationship between VXI and four types of news announcements over the 

period 1/4/96 to 8/29/08. Specifically, we studied CPI and PPI announcements (152 and 150 events, 

respectively), Federal Open Market Committee (FOMC) meetings (137 events) and employment 

announcements (148 events). The meeting dates were downloaded from the website of the Federal 

Reserve. Since Goodhart and Smith (1985), several papers over the years investigate the impact of such 

announcements on equity market returns and volatility (for a recent overview of this literature see Chen 

and Clements, 2007). However, empirical evidence is mixed. Three recent papers focus on implied 

volatility market and give more conclusive results. Kearney and Lombra (2004) show that the VIX 

increases along with the surprise element in employment announcements. Nikkinen and Sahlström (2004) 

find that the VIX rises prior to, and falls after announcements related to the CPI, PPI and FOMC 

meetings. Chen and Clements (2007) find that the VIX makes a significant drop only on the day of 
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FOMC meetings. Motivated by this research, it is instructive to see if macroeconomic and monetary news 

constitute a significant factor in the fixed income market. Following Nikkinen and Sahlström (2004), we 

adopt the following regression framework in order to examine the impact of news on interest rate 

volatility: 

 
1 1 1 1
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Where 1,
CPI

tD−  ( 1,
CPI

tD+ ) is a dummy variable which takes the value of 1 one day prior (after) to the 

employment report release day and zero otherwise. On the release day 0,
CPI

tD  assumes a value of 1 and 

zero otherwise. The other dummies are defined accordingly. As Nikkinen and Sahlström (2004), a lagged 

tVXI∆  term is used in order to capture persistence in the dependent variable. However, rather than using 

a GARCH(1,1) specification with normally distributed errors, as in Nikkinen and Sahlström (2004) and 

Chen and Clements (2007), we adopt the more richer EGARCH(1,1) with errors following a Generalized 

Error Distribution (GED).  

The estimation results are presented in Table 7. In general, the announcements studied have a 

significant effect on the volatility of all the series except for the case of the VXI-13W. In most cases for 

the CPI, and FOCM, this effect is negative on both the day of the announcement and the day before. In 

most cases for the PPI and EMPL, the effect is positive for the day before the announcement and positive 

on the day. Implied volatility tends to increase following the announcement day for the CPI, PPI and 

FOCM. These results are broadly in line with those reported by previous researchers for implied equity 

volatility and suggest that derivative market investors consider the meetings studied as significant for 

fixed income pricing. For example, Chen and Clements (2007) report a 2% drop in the VIX on the day of 

FOCM meetings. Here we find a somewhat milder effect with the VXI-10Y and VXI-30Y falling by 

1.18%and 0.92% on the FOCM meeting day. The estimation results in Table 7 offer some further insights 

in the dynamics of the VXI series. The GED parameter is statistically significant and equal or less than 2 

in all cases sugegsitng that the errors have a fat-tailed distribution. Implied volatility is highly persistent 

since all the 3λ  GARCH coefficients in the conditional variance equation are well above zero. The effect 

of news is asymmetric for all series ( 2 0λ ≠ ) and in all but one case there is a leverage effect ( 2 0λ < ). 
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Table 7. Coefficients of regressions between ∆VXI and dummies for macroeconomic announcements 

 ∆VXI-13W ∆VXI-5Y ∆VXI-10Y ∆VXI-30Y 
α  1.02E-05 9.75E-09 0.0010** 0.0016** 
φ  0.0839** 0.0090 -0.0324** -0.0867** 

1β−  9.88E-06 -0.0022** -0.0021** -0.0010 

0β  5.49E-05 -0.0017** -0.0059** -0.0083** 

1β+  -6.24E-05 4.07E-04 0.0023* 0.0032** 

1γ −  1.42E-04 0.0027** 0.0051** 0.0009 

0γ  9.98E-06 0.0006 -0.0081** -0.0053** 

1γ +  3.03E-05 0.0015 0.0055** 0.0013 

1δ−  -1.84E-04 0.0004 -0.0074** -0.0028** 

0δ  6.28E-05 -0.0032** -0.0044** -0.0064** 

1δ+  5.85E-05 0.0080** 0.0022* 0.0108** 

1ζ −  -1.18E-04 0.0063** 0.0074** 0.0034** 

0ζ  -7.78E-05 -0.0121** -0.0117** -0.0065** 

1ζ +  1.83E-04 0.0001 -0.0010 -0.0019 
ω  -3.6175** -0.6282** -2.5272** -1.7718** 

1λ  0.2878** 0.2338** 0.3372** 0.1400** 

2λ  -0.1198** -0.0763** -0.1294** 0.0486* 

3λ  0.5039** 0.9295** 0.6616** 0.7637** 
GED paremeter 0.9999** 0.6251** 0.7012** 0.7449** 

One (two) stars denote statistical significance at the 95% (99%) level. 

 

4. Interest Rate Volatility Risk Management 

Following the large success of equity implied volatility indices, CBOE introduced volatility futures and 

options written on the VIX (March 2004 and February 2006, respectively). Futures on the VXD were 

introduced in April 2005 and European options followed soon. According to a recent CBOE Futures 

Exchange press release (December 3, 2009), year-to-date through November 2009, almost 29 million VIX 

options have changed hands, making VIX options the second most-actively traded index option at the 

exchange. Motivated by the success of the VIX market and the relative magnitude of interest rate 

volatility risk demonstrated in the present study, we believe that it is useful to discuss relevant solutions 

for trading and managing interest rate volatility risk. 

 A first step in the direction of building pricing and risk management models is to understand and 

approximate empirically the continuous time dynamics of the volatility processes considered. The models 
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under consideration are nested in the following stochastic differential equation, under the real probability 

measure P: 

 ( ) ( ) ( ), , ,t t t t t tdV V t dt V t dW y V t dqµ σ= + +  (5) 

where, tV  is the value of VXI at time t, tW is a standard Wiener process, and ( ),tV tµ , ( ),tV tσ  and 

( ),ty V t  are the drift, the diffusion and the jump amplitude coefficients, respectively. The jump 

component is driven by a Poisson process tq  with constant arrival parameter λ, i.e. 

Pr{ 1}tdq dtλ= = and Pr{ 0} 1tdq dtλ= = − . tdW , tdq  and y are assumed to be mutually independent. 

We allow ( ),tV tµ , ( ),tV tσ  and ( ),ty V t  to be general functions of time and the interest rate volatility. 

Hence, by changing the specification of the above coefficients we come up with the following seven 

models: 

Mean Reverting Square-Root process (MRSRP) ( )t t t tdV V dt V dWκ θ σ= − +  (6) 

Mean Reverting Logarithmic process (MRLP) ( ) ( )( )ln lnt t td V V dt dWκ θ σ= − +  (7) 

Constant Elasticity of Variance (CEV) ( )t t t tdV V dt V dWγκ θ σ= − +  (8) 

MRSRP with Jumps (MRSRPJ) ( ) ( )1t t t t t tdS V dt V dW y V dqκ θ σ= − + + −  (9) 

MRLP with Jumps (MRLPJ) ( ) ( )( ) ( )ln ln 1t t t t td V V dt dW y V dqκ θ σ= − + + −

 (10) 

The choice of models is based on four criteria: economic intuition, stationarity, mathematical tractability, 

and popularity among the researchers. Random walk processes make no economic sense, as they imply 

that volatility can drift off to arbitrarily high levels. The inclusion of jump diffusions is motivated by our 

empirical findings concerning abrupt upward and downward changes in the VXI indices. All jump-

diffusion processes are the natural extensions to their diffusion analogues, so as to facilitate a direct 

comparison. The jump size distribution is assumed double exponential, which allows for the derivation of 

the characteristic function of the examined processes (see Duffie et al., 2000, and Psychoyios et al., 2009 

for more details on the specifications of the jump-diffusions processes under consideration)4. Without 

bounded lower support on the jump size distribution it is possible that in some of the models the volatility 

becomes negative. We could restrict the jump sizes to be positive to avoid such problems (see for similar 

assumptions Broadie et al., 2007, Eraker, 2004). However, we deliberately use “unrestricted” jump-

diffusion models in order to account for the empirically observed negative jumps in implied volatility. 

The models under consideration have been widely used to model the dynamics of the instantaneous and 
                                                            
4 The derivation of the characteristic functions can be provided by the authors upon request. 
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implied volatility/variance for equities in continuous time setting (see among others Brenner et al, 2006, 

Jones (2003), Detemple and Osakwe, 2000, Chan et al., 1992, Eraker (2004) for the models (3), (4), (5) 

and (6), respectively). 

Estimation is done in MATLAB using a Maximum Likelihood (ML) approach (see Psychoyios et 

al. for details on the estimation methodology). The ML results for the four indices under study are given 

in Table 8. The table also provides two performance measures: the likelihood ratio test and the Bayes 

Information Criterion (BIC). The likelihood ratio test can be used only for comparisons between nested 

models, i.e., between MRLP and MRLPJ, and, between CEV, MRSRP,  and MRSRPJ, respectively5. 

Comparison of the non-nested models can be made using the BIC criterion. The results provide several 

interesting insights. First, the MRSRPJ is the best performing model. Second, the jump-diffusion 

processes significantly outperform their diffusion counterparts. Third, although MRSRPJ is the best 

performing process, its diffusion counterpart (MRSRP) is almost the worst performing model among the 

diffusion processes. In this case, CEV process dominates all the other models, closely followed by the 

MRLP process. The only exception occurs in the case of the VXI-5Y, where MRSRP performs better than 

CEV. A further investigation of the results, regarding the diffusion processes, reveals that the higher the 

dependence of the volatility of volatility parameter (σ) on the current level of interest rate implied 

volatility (i.e MRLP and CEV), the higher the fitting performance6. In general, the findings indicate that 

interest rate implied volatility has a proportional, mean reverting structure with jumps, i.e., they are 

subject to large movements that cannot be explained by standard diffusion processes. These three main 

conclusions are supported by all the performance criteria used and hold for all four interest rate implied 

volatility indices. Moreover, they are consistent with the descriptive analysis findings from the previous 

section, namely: the existence of jumps, the nonormality of returns and the stationarity of the interest rate 

implied volatility processes.  

                                                            
5 The likelihood ratio test statistic for comparing the nested models is given by: ( ) 22 ( )R ULR dfχ= − × ℑ −ℑ − , where df is the 
number of parameter restrictions and ,R Uℑ ℑ  are the log-likelihoods of the restricted and unrestricted model, respectively. 
The 5% level critical values are: [ ]2 ( ) 3.84( 1),7.82( 3),9.49( 4) `df df df dfχ = = = = . In order to facilitate the direct comparison of 
the logarithmic processes (i.e. MRLPJ and MRLP) with the rest of the processes, we apply the following change of variable 

to the log-likelihoods of the MRLP and MRLPJ: '

1
ln( )

T

R t R
t

V τ+
=

ℑ = + ℑ∑ . 

6 Two additional specifications were also examined: the Mean Reverting Gaussian Process 
( ( )t t tdV V dt dWκ θ σ= − + ), and its counterpart augmented by jumps ( ( ) ( )1t t t t tdS V dt dW y V dqκ θ σ= − + + − However, 
the subsequent analysis indicated that the processes where misspecified and their performance was inferior with 
relation to the other models. Due to space limitations neither the processes nor the results are presented. 
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Table 8. Estimation results of diffusion and jump diffusion processes over the period from 1/4/96 to 

8/29/08 for all four interest rate implied volatility indices. Numbers in brackets denote t-statistics. The 

table also gives the Log-Likelihood value (ℑ ) and the Bayes Information Criterion (BIC).  

  VXI-13W VXI-5Y 
Parameter  MRSRP MRLP CEV MRSRPJ MRLPJ MRSRP MRLP CEV  MRSRPJ MRLPJ

 4.0257 3.1177 2.7869 0.3213 2.0902 3.7186 5.3604 4.0004  1.3102 2.0902 
k 

 (4.7331) (4.2509) (2.4461) (14.8527) (0.5220) (1.9818) (2.5758) (3.8513)  (17.9884) (2.8690)
 37.2561 3.4032 36.2001 22.0057 3.1475 56.7050 3.6057 33.2628  21.8304 3.1475 

θ 
 (8.5905) (23.7858) (12.9179) (13.4567) (12.5589) (2.5716) (16.7577) (6.6148)  (10.8815) (23.4622)
 9.8093 1.5744 0.9172 0.6980 0.3819 5.5099 1.0109 1.0831  1.3761 0.3819 

σ 
 (78.6747) (78.9268) (73.8701) (11.8527) (12.6980) (79.1978) (79.1756) (75.5051)  (156.058) (51.7534)
 1.1583 0.9857  

γ 
 

0.5 1.0 
(0.9300)

0.5 1.0 0.5 1.0 
(1.2752)  

0.5 1.0 

 30.0834 20.5204  31.9295 20.5204 
λ 

 
- - - 

(8.8680) (11.2348)
- - - 

 (4.0786) (10.7943)
 0.5674 0.5139  0.5563 0.5139 

ρ 
 

- - - 
(20.5435) (24.2640)

- - - 
 (4.2476) (12.7674)

 1.8894 9.2110  1.7723 9.2110 
1/η1 

 
- - - 

(13.4332) (4.8311)
- - - 

 (2.7580) (7.2640)
 2.3677 5.5907  2.1335 5.5907 

1/η2 
 

- - - 
(6.4003) (12.0988)

- - - 
 (3.6637) (4.8069)

BIC  16,489 15,554 15,489 4,738 7,738 13,295 13,584 13,560  6,724 8,644 

ℑ   -8,233 -7,765 -7,728 -2,341 -3,841 -6,636 -6,780 -6,764  -3,334 -4,294 
             
  VXI-10Y VXI-30Y 

Parameter  MRSRP MRLP CEV MRSRPJ MRLPJ MRSRP MRLP CEV  MRSRPJ MRLPJ
 6.0155 4.9855 4.5465 1.0194 2.0902 5.6594 4.5085 2.6467  1.2543 1.8263 

k 
 (5.9737) (5.4621) (1.8825) (19.9674) (2.1909) (5.8536) (5.2462) 1.4347  (0.8349) (8.2811)
 27.3305 3.2644 24.6630 21.9320 3.1475 23.0471 3.1165 25.2793  38.2533 3.5317 

θ 
 (20.9957) (61.1747) (28.1220) (16.4180) (15.0161) (28.3915) (78.2940) 0.6939  (3.4991) (85.5782)
 5.2769 0.9411 0.4000 1.6458 0.3819 3.3725 0.6345 0.8208  1.3144 0.3079 

σ 
 (78.4612) (78.6474) (76.1675) (120.391) (44.4812) (78.5196) (78.6992) 2.4081  (90.5605) (55.2048)
 1.1104 0.9105  

γ 
 

0.5 1.0 
(1.7411)

0.5 1.0 0.5 1.0 
(1.8489)  

0.5 1.0 

 38.5869 20.5204  32.0856 17.9697 
λ 

 
- - - 

(3.4737) (5.4977)
- - - 

 (2.8870) (6.1650)
 0.5005 0.5139  0.3172 0.2575 

ρ 
 

- - - 
(4.6922) (6.6267)

- - - 
 (4.4092) (3.0683)

 2.2077 9.2110  1.8201 7.8277 
1/η1 

 
- - - 

(4.1794) (7.3612)
- - - 

 (2.2861) (5.0515)
 1.9525 5.5907  2.1371 12.6329 

1/η2 
 

- - - 
(2.0673) (3.4654)

- - - 
 (2.2993) (9.8237)

BIC  12,231 11,635 11,628 6,266 7,013 8,940 8,220 8,188  4,708 5,155 

ℑ   -6,103 -5,805 -5,798 -3,105 -3,478 -4,458 -4,098 -4,078  -2,326 -2,550 

 

ℑ ℑ

ℑ
ℑ

ℑ
ℑ

ℑ
ℑ

ℑ ℑ

ℑ
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Apart from improving the fitting performance, the introduction of the jump component also has two more 

effects. First, it significantly reduces the diffusion volatility parameter (σ), suggesting that jumps account 

for a substantial component of volatility and help to capture additional skewness. For example, in Table 8, 

in all four volatility indices the diffusion volatility drops on average to one-third its prior level (see also 

Das, 2002 for similar results regarding interest rate levels). Second, it significantly reduces the speed of 

the mean reversion parameter. This is caused by the fact that many jumps, as it can be seen also in Figure 

1, have a persistent effect and the process do not pull back to its long run mean. The latter may imply that 

models with non-linear long run mean, or regime-switching jumps diffusion models may be more 

appropriate to capture the characteristics of the interest rate implied volatility (see for example Bakshi, Ju, 

and Ou-Yang, 2006, and Siou and Lau, 2008). However, these models are beyond the scope of this 

research, they require too many parameters to be estimated and they impose a large amount of 

mathematical complexity, which makes derivatives pricing difficult. In order to check for the stability of 

the above general results we estimate all the all the processes again over the period from 1/4/96 to 

31/12/07. We eliminate all 2008 data that corresponds to the latest credit crash, which would bias the 

results in favor of finding jumps. The ranking of the processes as well as the main conclusions remain the 

same. Due to space limitations we do not include the table with the estimated parameters; however the 

results are available from the authors upon request. 

Finally, we have to note that the estimated parameters of the processes that used to model the 

dynamics of the interest rate implied volatility index cannot be used as a proxy for the parameters of the 

instantaneous volatility process. This is because implied and instantaneous volatility processes do not 

share the same structure. However, for the processes under consideration and under certain assumptions, 

it can be proved that under the risk-adjusted probability measure the parameters of the implied variance 

process (i.e. VXI2) are related to the instantaneous variance ones (see also Wu, 2005, and Ait-Sahalia and 

Kimmel, 2006)7.  

Before proceeding to futures valuation, we must rewrite equation (9) under the risk neutral 

probability measure Q. Following Heston (1993), Grunbichler and Longstaff (1996) and Pan (2002), we 

assume that the volatility risk is proportional to the current level of interest rate implied volatility, i.e., ζVt. 

We also assume that there is no “volatility of volatility”, “jump” risk, and model risk8. So, the volatility 

process under the risk neutral measure is given by: 

                                                            
7 The proofs of these statements are available from the authors upon request 
8 We cannot use no-arbitrage arguments to price interest rate volatility derivatives, since the market is not complete. 
Only for the case of VXI-futures, we can derive arbitrage free bounds, following the same methodology as in the 
case of VIX-futures of Carr and Wu (2006). However, in order to do so, Carr and Wu assume a very liquid market 
of plain vanilla options and exotic OTC derivatives, such as forward-start at-the-money forward call options, written 
on the underlying of each VXI index. 
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 ( ) ( )( ) 1t t t tdV k V V dt V dz y dqθ ζ σ= − − + + −  (11) 

or, equivalently, 

 ( )( ) 1t t tdV k V V dz y dqθ σ∗ ∗= − + + −  (12) 

where k k ζ∗ = +  and 
k

k
θθ
ζ

∗ =
+

. 

Denote Ft(V,T) the price of a futures contract on Vt at time t with maturity T. Under the risk-adjusted 

equivalent martingale measure Q, Ft(V,T) equals the conditional on the information up to time t 

expectation of VT at time T, i.e  

 ( )Q
t t TF E V=  (13) 

Since the MRSRPJ process does not have a known density, ( )Q
t TE V is derived by differentiating the 

characteristic function once with respect to s and then evaluating the derivative at s= -i (see Psychoyios et 

al., 2009 for the derivation of the characteristic function).  

 ( ) ( ) ( ) ( ) 1(1 ) (1 )Q k T t k T t k T t
t T tE V V e e e

k
λθ

η
∗ ∗ ∗− − ∗ − − − −

∗= + − + −  (14) 

In order to obtain the valuation formula for a European volatility call, we follow the approach of 

Bakshi and Madan (2000).The price ( , ; )tC V Kτ of the call option with strike price K and τ time to 

maturity is given by: 

 1 1 2( , ; ) ( , ) (1 ) ( , ) ( , )r k r k r
t tC V K e e V t e e t e K t

k
τ τ τ τ τλτ τ θ τ τ

η
∗ ∗− − − − ∗ −

∗

⎛ ⎞
= Π + − + Π − Π⎜ ⎟

⎝ ⎠
 (15) 

The Π1 and Π2 probabilities are determined by 

 
0

( , ; )1 1( , ) Re
2

i K
j t

j

e g V
t d

i

φ τ φ
τ φ

π φ

−
∞ ⎡ ⎤×

Π = + ⎢ ⎥
⎢ ⎥⎣ ⎦

∫  (16) 

where  

1
( , ; )( , ; )
( , ;0)

t
t

t

F Vg V
F Vφ

τ φτ φ
τ

=  and 2 ( , ; ) ( , ; )r
t tg V e F Vττ φ τ φ= . ( , ;0)tF Vφ τ  is the first derivative of 

( , ; )tF V τ φ  with respect to φ, evaluated at φ=0. 
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