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Abstract

Stochastic volatility models have been seen as a real alternative to conditional variance

models assuming that volatility follows a different than the observed stochastic process. How-

ever, issues such as data’s normality violations in the form of excess kurtosis and skewness can

give rise to the use of distributional assumptions away from normality. Here, the noncentral

t-distribution is used in the stochastic volatility model set-up. By nesting both excess kurtosis

and skewness in the same specification, we derive the noncentral-t stochastic volatility model

which counts for two types of normality violations. Thus, we generalise stochastic volatility

analysis, in a way that the non-skewed stochastic volatility model nests the skewed one. In

this framework, a fully Bayesian estimation approach is followed where the Markov Chain

Monte Carlo engine is used for parametric and log-volatility estimation. The new model is

then investigated for its performance using real financial data series.
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1 Introduction

Stochastic volatility (SV) models have come as a natural alternative to conditional variance models

of the ARCH family. They allow volatility to be seen as a different stochastic process than

the observed one in a way that the observed and the latent-volatility processes are driven by

separate error terms. It has attracted much interest as a way of generalising the Black-Scholes

option pricing formula that allows volatility persistence in asset returns (Hull and White (1987),

Jacquier et al. (1994)). In its basic version SV model assumes that error disturbances are

stationary uncorrelated Gaussian white noise ones (Harvey and Ruiz (1993), Jacquier et al.(1994)).

Some additional extensions involve the use of either mixtures of normals or the t-distribution as

an approximate to the asset’s return deviations from normality towards fat-tailness (Geweke

(1994), Shephard and Pitt (1997)). Some other SV model extensions involve the “leverage” effect

assumption in which the observed and latent volatility process innovations are correlated. Under

this assumption observed and volatility innovations are negatively correlated in which negative

return shocks are associated with volatility increases (Gallant et al. (1994), Jacquier et al.(2004)).

Despite the big number of papers devoted to the long-tailed probability nature of observed

financial return process, little to no attention has been put on its asymmetric nature. Fernan-

dez and Steel (1998) have considered the use of an asymmetric distribution with different scale

parameters to derive the left and the right skewness of the distribution. However, issues like the

co-existence of both asymmetry and long-tailness has only recently been considered in financial

econometrics literature (Tsionas (2002)). Skewness, is well documented in many economics and

financial data series such as exchange rates and stock returns (Harvey and Siddique (1999)(2000),

Jondeau and Rockinger (2003)). Negative skewness in returns can be viewed as the case where

negative returns of a given magnitude are more likely than positive ones of the same magnitude

(Harvey and Siddique (1999)). Thus, in portfolio analysis, negative skewness makes a portfolio

less preferable than a positively skewed one.

In conditional and SV literature there have been some attempts of modeling skewness in

a Gaussian or an asymptotically Gaussian framework (Higgins et al. (1992), Tsiotas (2002,

2007)). However, no attention has been given to the introduction of distribution away from

normality. In this paper, we intent to incorporate these normality violation assumption within

the SV framework by using the noncentral t-distributional assumption. In doing so, we will create
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a generalised t-distribution SV model where the symmetric t-distribution SV model will be nested

in the asymmetric one. Therefore, data long-tailness can be treated together with asymmetric

frequency distribution in data with volatility persistence.

At the estimation stage, although the observed return process is not assumed to follow a

Gaussian process, the latent log-volatility process is restricted in a Gaussian space. Parametric

and log-volatility estimation is then implemented in a Markov Chain Monte Carlo (MCMC)

set-up. This overcomes the non-conjugacy of the conditional distribution creating very efficient

simulation results (Shephard (1994), Shephard and Pitt (1997)). Due to normality departures

in the observed process, we use the Metropolis-Hastings algorithm within the MCMC engine

(Shephard and Pitt (1997)).

The SV model is demonstrated in terms of its specification and its Bayesian inference using

three different models. These are then compared for their ability to capture data normality

violations using standard Bayesian model selection estimators such as the DIC one (Springelhalter

et al. (2002)). In doing so, we will measure the models’ ability to capture return series second

order dependency. Finally, the robustness of the posterior density results of the specification

selected via the DIC estimator is further tested. Results show that the noncentral-t SV model

outperforms all the other competing models.

The structure of the paper is the following. Section 2 outlines the existing SV model approaches

together with the newly derived noncentral-t SV model. Special reference is given to the Bayesian

inference strategies, the priors, and the MCMC algorithms used in the the three competing models.

Section 3 describes the empirical results based on daily exchange rates data series. We focus on

the model selection issues based on the DIC estimator. Finally, a sensitivity testing experiment

of the skewness prior is demonstrated for the robustification of the inference results.

2 SV models

2.1 The basic SV model

In literature SV models have received much attention due to treating volatility as a stochastic

process different than the observed one taking into account its variability as an additional to that

of the financial series returns. The basic SV model consists of

yt = eht/2 · εt, ht = µ+ φ(ht−1 − µ) + σu · ut t = 1, . . . , T (1)
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εt ∼ Niid(0, 1), ut ∼ Niid(0, 1) t = 1, . . . , T (2)

where ht represents log-volatility and the (et, ut) ∼ Niid(0, I) Gaussian iid process with zero

mean and variance equals to one. We let θ = (µ, φ, σu) as the parameter vector, with µ be

the intercept, φ the log-volatility’s autocorrelation coefficient and σu the log-volatility’s standard

deviation. First we set the Bayesian hierarchical structure of the model’s conditional density

functions, p(y | h), p(h | θ) and p(θ) where y = (y1, . . . , yT ) and h = (h1, . . . , hT ) the observed

and unobserved log-volatility vector. Second we generate estimates from the unobserved h and θ

using the conditional density engine of Markov Chain Monte Carlo method.

2.2 The fat-tailed SV model

The existence of fat tailness, widely documented in conditional variance literature (Geweke (1994),

Gallant et al. (1997)), has been considered either as an outlier approach using mixtures of normals

(Shephard (1994)) or as a purely t-distribution representation (Shephard and Pitt (1997), Jacquier

et al. (2004)). In the later case, the fat tailed model takes the form

yt = eht/2 · εt ≡ eht/2 ·
√

λtzt, ht = µ+ φ(ht−1 − µ) + σu · ut t = 1, . . . , T (3)

zt ∼ Niid(0, 1), λt ∼ IG(k/2, k/2) (4)

where λt is an i.i.d Inverse Gamma process which implies that εt =
√
λtzt ∼ tk is a t-Student

random process with k degrees of freedom. Here the parameter vector becomes equal to (θ, λt, k).

Having h as the sufficient statistics for the θ parameter vector the posterior densities for it is not

affected by the introduction of fat tailness. Having independent λt along the observed index, its

joint density function will be a product of its marginal ones. Using an Inverse Gamma prior for

the λt parameter value we can generate posterior densities from the conjugate family. Details of

this posterior density implementation of λ = (λ1, · · · , λT ) is fully demonstrated in ¶2.6.

2.3 The noncentral t-distributed SV model

The co-existence of fat tailness and asymmetry can be considered using the noncentral t-distribution

(Johnson et al. (1995)).

yt = eht/2 · εt ≡ eht/2 ·
√

λt(zt + δ), ht = µ+ φ(ht−1 − µ) + σu · ut t = 1, . . . , T (5)

zt ∼ Niid(0, 1), λt ∼ IG(k/2, k/2) (6)
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where λt is an i.i.d Inverse Gamma process which implies that εt =
√
λt(zt+δ) ∼ tk is a noncentral

t-distribution random process with k degrees of freedom and skewness parameter δ ∈ <. Here the

parameter vector becomes equal to (θ, λt, k, δ).

2.4 Priors

We assume a flat Inverse Gamma (IG) prior for the log-volatility’s variance σu with vo = 1 degrees

of freedom and a reasonably small sum of squares of s = 0.005 such as to secure a sparse random

draw. The above prior will then result in an IG posterior where sampling is then straightforward.

Also, for the µ parameter a flat Gaussian prior, such as µ ∼ N(0, 100) together with the Gaussian

ut assumption will generate posterior density from a Gaussian process.

In terms of ht’s autoregressive coefficient φ, here we can use both a Gaussian flat prior,

truncated in the rang of (−1,+1), denoted as TrN(0,100) and a Beta one with prior parameters

20 and 1.5. In the later case, letting φ = 2φ∗ − 1, with φ∗ distributed as Beta with parameters

(φ1, φ2) Shephard and Pitt (Shephard and Pitt (1999)) specify a prior density of p(φ) ∝ {.5(1 +

φ)}φ1−1 · {.5(1−φ)}φ1−1 which supports a φ draw within the (−1,+1) range and with prior mean

of {2φ1/(φ1 +φ2)−1}. This φ treatment is due to the fact that we intend to guarantee stationary

conditions for the log-volatility process, although as Jacquier et al. (2004) note non-stationarity

in stochastic volatility is to be seen as unrealistic since it implies that portfolio managers should

adjust long-term option values after each volatility shock.

2.5 The Metropolis-Hastings Algorithm

To sample from the multivariate non-Gaussian random vector h we employ a Monte Carlo Markov

Chain sampler such as the Metropolis-Hastings. We aim to simulate the T -dimensional distribu-

tion π∗(h), h ∈ H ⊆ <T that has density π(h) with respect to some dominating measure. To

define the algorithm, let q(h,h′) denote a candidate density for a candidate draw h
′ given the

current value h in the sampled sequence. The density q(h,h′) is referred to as the proposal or

candidate density function. Then, the M-H algorithm is defined by two steps: a first step in which

a proposal value is drawn from the candidate density and a second step in which the proposal

value is accepted as the next iterate in the Markov Chain according to the probability α(h,h ′),
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where

α(h,h′) =















min

[

π(h′)q(h′,h)

π(h)q(h,h′)
, 1

]

if π(h)q(h,h′) > 0 ;

1 otherwise .

(7)

If the proposal value is rejected, then the next sampled value is taken to be the current value.

2.6 The full Algorithm

At this stage, we will describe the MCMC algorithm that will implement model estimation in

the three competing models. The parameter vector θ in the basic SV model takes the values

(µ, ψ, σu). Then, in the its augmented form for the t-SVM and the noncentral t-SVM becomes

equal to (µ, ψ, σu, λ, k) and (µ, ψ, σu, λ, k, δ) respectively. To simulate the full posterior density

function expressed by p(h, θ | y), p(h, θ, λ, k | y) and, p(h, θ, λ, k, δ | y), we need to sample from

the full conditional densities in each SV model case. Therefore, for the basic SV model we simulate

from the p(θ | h,y) and, p(h | θ,y), for the t-SVM from the p(θ | h,y, λ, k), p(λ | θ,h,y, λ, v),

p(h | θ,y, λ, v), and p(v | θ,h,y, λ, v) and for the noncentral-t SV model the p(θ | h,y, λ, k, δ),

p(λ | θ,h,y, λ, v, δ), p(h | θ,y, λ, v, δ), and p(k | θ,h,y, λ, δ), and p(δ | θ,h,y, λ, k).

• p(h | θ,y): Applying a Gaussian prior for the h process, we can not get a posterior draw

from the conjugate family. For this reason, we apply the M-H algorithm within the MCMC

engine. The candidate density for the simulation draws is a Gaussian random-walk based

on mean and variance generated from the Laplace density approximation (see Appendix).

• p(µ | θ−µh,y): Applying a uniform prior over <, we can generate a Gaussian full conditional

density for the µ parameter, such as

p(µ | θ−µ,h,y) ∼ N(µ̂, σ2
µ)

with mean

µ̂ =
σ2

µ

σ2
u

{(1 − φ2)h1 + (1 − φ)

T
∑

t=2

(ht − φht−1)}

and variance σ2
µ = σ2

u{(T − 1)(1 − φ)2 + (1 − φ2)}−1.

• p(φ | θ−φ,h,y): Applying the beta prior analysed in Section 2.2, we can guarantee the

stationarity assumption. However, since this doesn’t allow us a conjugate match with the

Gaussian h process we apply the M-H algorithm within the MCMC engine. The candidate
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density for the simulation draws is a Gaussian random-walk based on mean and variance

least square components, such that

p(φ | θ−φ,h,y) ∼ N(φ̂, σ2
φ)

with mean

φ̂ =

∑T
t=2(ht − µ)(ht−1 − µ)
∑T

t=2(ht−1 − µ)2

and variance σ2
φ = σ2

u{
∑T

t=1(ht − µ)2}.

• p(σ2
u | θ−σ2

u
h,y): Setting a conjugate Inverse Gamma (IG) prior, such that σ2

u ∼ IG(σr/2, Sr/2),

with σr = 5 and Sr = .01 · σr, than the posterior for σ2
u becomes:

σ2
u | θ−σ2

u
h,y ∼ IG{T + σr

2
,
Sr + (h1 − µ)2(1 − φ2) +

∑T
t=1(ht − µ− φ(ht−1 − µ))2

2
}

• p(λt | θ,h,y): Setting a conjugate IG prior, such that λt ∼ IG(k/2, 2/k), than the posterior

for λt becomes:

p(λt | θ−σ2
u
h,y) ∝ 1

λ
1+k

2
+1

t

exp{−yt/σ
2
t + k

2λt
} ∼ IG(

k + 1

2
,

2

y2
t/σ

2
t + k

)

for the t-SV model, and

λt | θ,h,y ∼ IG(
k + 1

2
,

2

( yt

σt
− δ)2 + k

)

for the noncentral t-SV one.

• p(k | θ,h,y, λ): Setting a p(k) as any conjugate prior, we have p(k | θ,h,y, λ) ∼ p(k | λ)

since λ is a sufficient statistic for the parameter k. Thus, we can get posterior draws from

p(k | λ) ∝ p(k)

T
∏

t=1

p(λt | k) ∝ (
kk/2

Γ(k/2)
)T exp{−k

2

T
∑

t=1

(
1

2
+ log λt)}

• p(δ | θ,h,y, λ, k): Setting a p(δ) ∼ N(0, σ2
δ ), we can derive posterior draws from a condi-

tional Gaussian process, such that

p(δ | θ,h,y, λ, k) ∝ exp{−1

2

δ2

σ2
δ

} · exp{−1

2
(
yt

σt

√
λ
− δ)2}

δ | θ,h,y, λ, k ∼ N{(1 + 1/σ2
δ )

−1 · ( yt

σt

√
λ

), (1 + 1/σ2
δ )

−1).
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3 Empirical results

To illustrate the new stochastic volatility model, we focus on an example involving real data series

that demonstrate strong second order dependency. We consider daily exchange rate data for the

British Pound (GBP) against U.S. Dollar (USD). The data series cover the period starting from

the 28th of June 1985 and ending the 28th of April 1989. Before we proceed with the model’s

estimation, we need to demonstrate some stylised statistical properties of the analysed series.

Table 1 demonstrates the mean, standard deviation, minimum, maximum, skewness and kurtosis

coefficients of the logarithmically transformed return series. As far as Gaussian assumptions

are concerned, the return exchange rate series demonstrate a considerable amount of asymmetry

where excess kurtosis is marginally higher than the 3 measure of the Gaussian process. This gives

as the proxy for analysing to what extend this normality violation can be seen as significant so

as to incorporate the skewness and kurtosis assumption in the “standard” SV specification.

Simulation results for the three competing models are demonstrated in Table 2. These repre-

sent the last 40, 000 of the total 60, 000 iterations using the MCMC engine. These demonstrate

the mean, standard deviation, median and the 5% confidence interval for each estimator in the

three SV models. The results demonstrate high significance for all the estimated parameters in

each model. Additionally, due to the right prior selection for the autoregressive coefficient φ the

posterior mean as weel as its confidence interval is away from the non-stationary assumption.

Concerning the level of symmetry in the posterior estimates, the median seem to coincide with

the mean estimates in most of the cases. Finally, the measures of normality violations expressed

by δ and κ, seem to show a systematic deviation from normality. More specifically, in the t-SV

model the confidence interval of the kurtosis parameter κ show a considerable normality violation

for the analysed data. However, the level of the upper and lower confidence interval bound is such

that may penalise the specification at the model selection stage of inference. In the noncentral-t

SV model, the kurtosis parameter κ as well as the skewness parameter δ demonstrate data’s nor-

mality violation but this time with much improved confidence interval bound compared with the

t-SV one’s.

Figure 2 demonstrate the histogram of the posterior simulation results in the noncentral-t SV

model for the parameters, δ, k, µ, φ and τ which is the square root of σ2
u.
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3.1 Model selection

As a model choice criterion we will adopt the Deviance Information Criterion (DIC). This criterion

is based on the posterior deviance statistic

D(θ) = −2 log f(y | θ) + 2f(y)

where f(y | θ) stands for the likelihood function and f(y) for the standardising term. Spiegelhalter

et al. (2002) propose that this deviance statistic apart from the goodness of fit measure and to

the analogy of the “classical” Akaike Information Criterion, should have a penalising term for

the possible model complexity increase. Thus, the authors propose for the fitness measure the

posterior expectation of the deviance, D̄ = Eθ|y[D], and for that of the penalising term the

posterior mean of the parameters, such as

pD = Eθ|y[D] −D(Eθ|y[θ]) = D̄ −D(θ̄)

therefore the DIC is defined as

DIC = D̄ − pD = 2D̄ −D(θ̄) (8)

with smaller values of DIC indicating a better-fitting model.

In the context of the SV model choice, the DIC estimator has also been used in the past

(Berg et al. (2004)). They have argued that traditional Bayesian model selection criteria, such as

the Bayes factor, the familiar BIC and the penalised likelihood ratio model choice criterion AIC,

suffer from their dependence to the number of parameters used. In hierarchical Bayesian models

such as the SV one, the number of unknowns outnumbers the number of observations, something

that makes the model choice issue a very complex one.

In our model comparison case, we demonstrate the estimator’s results in Table 3 for the three

competing models. These show that the proposed noncentral-t SV model is favoured against the

other two SV models as it manages to minimise the DIC estimator. Additionally, the t-SVM

model seems to fail in its comparison to the “standard” SVM as it demonstrates a very small pD

value.

3.2 Sensitivity issues

Having selected the noncentral-t SV model at the best performed model, we can now make a

sensitivity “testing” for this model. This will refer to the choice of different priors assumptions
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for the skewness parameter δ.

First, we work on the same type of prior assumption, the Gaussian one, and instead of unity

variance we increase it to 100. Second, we change the prior assumption to the Uniform distri-

bution within the range of values (−10, 10). Third, we increase the range of values the Uniform

distribution prior distribution to (−100, 100). Our intention is to show that for large variance

values for the prior of δ, such as 100, 33.33 and, 833.33 for the three consecutive assumptions, we

can get robust posterior density results.

Table 4, demonstrates the results from this sensitivity experiment. It shows that in all three

cases, the posterior means of the estimated parameter in the noncentral-t-SV model show a

considerable robustness. The parameters’ significance level as well as the confidence interval is

not affected in a way that could affect the model selection stage. However, we can easily observe

than the Uniform distribution prior choice for the δ parameter has slightly affected the posterior

variance of the k parameter, as it has increased the level of its statistical significance.

4 Conclusion

In this paper we have seen how we can incorporate both log-tailed and asymmetric frequencies

in the standard SV model by the use of the noncentral t-distribution. The full Bayesian estima-

tion framework has been worked out using both the Gibbs sampler and the Metropolis-Hastings

algorithm when conditionally conjugacy was not available. An empirical investigation is then dis-

played focusing on the model selection issues among three competing SV models. The standard

SV one, the t-SVM, and the noncentral-t SV one. Results, based on the DIC estimator shows

that the noncentral-t SV model, managing to reveal data’s normality violations, out-performs the

other two specifications.

Future work need to be focused on the comparison, apart the within sample, the forecasting

performance of the present noncentral-t SVM against its main competitors. Also, a direction

towards comparing the noncentral t-distribution with other asymmetric ones such as the Skewed

Normal or the Skewed t-distribution (Azzallini (1985)) within the SV framework can also be an

interesting task.
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Appendix

Using the Laplace method, ht’s posterior density is approximated around its mode. Here, we take

the case of approximating the log-density function ∀t ∈ {1, · · · , T}. Therefore, the conditional

density function for the basic SV model, being the exponential function of the log-density one it

becomes:

p(ht | yt−1) = e`(ht|ht−1) ≈ e
`(θ|εt,ht)+

∂`

∂ĥt

(ht−ĥt|t−1)+
∂
2

`

∂ĥ2
t

1

2
(ht−ĥt|t−1)

2

≈ exp{− (ht − µ(ht−1)))
2

2σ2
v

− y2
t

2
exp{−ĥt}[1 + (ht − ĥt)

2]}

∝ exp{− (ht − µh)2

2σ2
h

}

Thus, the posterior density function of log-volatility, ht, is approximately distributed as a normal

with a mean of µh = σ2
h(µ(ht−1)v

−1
t + ĥtu

−1
t ) and a variance of σ2

h = (v−1
t + u−1

t )−1, i.e.:

ht ∼ N(µh, σ
2
h)

where v−1
t = σ−2

v and u−1
t = y2

t exp{−ĥt} respectively denote the variances of the prior density

function and that of the likelihood function.

For the t-SV model, the u−1
t = y2

t λ
−1 exp{−ĥt} and in the noncentral-t SV model the u−1

t =

(ytλ
−1/2 exp{1

2 ĥt} − δ)2.
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Table 1: Summary statistics for GBP/USD return series

Data series

GBP/USD

Mean 0.02964

Standard deviation 0.2900

Minimum −0.9877

Maximum 1.66900

Skewness 0.2332166

Kurtosis 4.696187

Table 2: MCMC results in SV models using Great Britain Pound against U.S. dollars daily

exchange rates data

MCMC results

models estimators mean s.d. 2.5% CI median 97.5% CI

SV

µ −2.558 0.1765 −2.873 −2.571 −2.175

φ 0.9795 0.01175 0.9492 0.9822 0.995

τ 0.102 0.02742 0.06517 0.09601 0.1724

t-SV

k 10.88 2.416 7.193 10.49 16.63

µ −2.711 0.1812 −3.049 −2.721 −2.291

φ 0.9802 0.01039 0.9548 0.982 0.9954

τ 0.08886 0.01817 0.05668 0.08902 0.1288

noncentral-t SV

δ 0.111 0.03261 0.0474 0.111 0.1753

k 10.3 2.747 6.457 9.828 17.42

µ −2.755 0.1899 −3.112 −2.763 −2.337

φ 0.9805 0.01018 0.9561 0.982 0.9955

τ 0.09876 0.02146 0.06611 0.09581 0.1492
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Table 3: Deviance Estimators for the SV models using daily GBP/USD exchange rates data.

Estimators

Models D̄(θ) D(θ̂) DIC p

SV 239.7 208.6 270.8 31.06

t-SV 258.7 241.5 276.0 17.27

noncentral-t SV 142.9 31.39 254.4 111.5

Table 4: Sensitivity MCMC results in the noncentral-t SV model using Great Britain Pound

against U.S. dollars daily exchange rate s data

MCMC results

δ Priors estimators mean s.d. 2.5% CI median 97.5% CI

N(0,100)

δ 0.1134 0.03276 0.04963 0.1136 0.1774

k 10.88 2.822 6.495 10.54 19.38

µ −2.714 0.1879 −3.074 −2.717 −2.316

φ 0.9817 0.007558 0.9648 0.9823 0.9946

τ 0.1026 0.01642 0.07396 0.1011 0.1384

U(-10,10)

δ 0.1088 0.03243 0.04555 0.1086 0.1722

k 10.18 1.773 7.117 10.03 13.9

µ −2.734 0.1985 −3.133 −2.737 −2.339

φ 0.988 0.00562 0.9758 0.9887 0.9972

τ 0.07359 0.009611 0.05755 0.07331 0.09318

U(-100,100)

δ 0.1112 0.03254 0.04736 0.1111 0.1745

k 9.633 1.769 6.507 9.509 13.64

µ −2.749 0.1829 −3.108 −2.754 −2.368

φ 0.9857 0.006832 0.9702 0.9866 0.9967

τ 0.08267 0.01842 0.05713 0.07893 0.1262
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Figure 1: Plot and empirical quantile of the GBP/USD data series.
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Figure 2: Histograms of the posterior distributions derived using from the last 40, 000 iterations.

These represent, from the top and from left to the right, the parameters δ, k, µ, φ and τ which

is the square root of σ2
u.

16



0 20 40 60 80 100

0
.0

0
.4

0
.8

lags

A
C

F

delta

0 20 40 60 80 100

−
0

.2
0

.2
0

.6
1

.0

lags

A
C

F

kappa

0 20 40 60 80 100

0
.0

0
.4

0
.8

lags

A
C

F

mu

0 20 40 60 80 100

−
0

.2
0

.2
0

.6
1

.0

lags

A
C

F

phi

0 20 40 60 80 100

0
.0

0
.4

0
.8

lags

A
C

F

tau

Figure 3: Autocorrelation functions derived using from the last 40, 000 iterations. These repre-

sent,from the top and from left to the right, the parameters δ, k, µ, φ and τ which is the square

root of σ2
u.
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