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Abstract 
This paper investigates the profitability of a trading strategy, based on recurrent 
neural networks, that attempts to predict the direction of the market in the case of the 
NASDAQ general index. The sample extends over the period 2/8/1971 – 4/7/1998, 
while the sub-period 4/8/1998 – 2/5/ 2002 has been reserved for out-of-sample testing 
purposes. We demonstrate that the incorporation in the trading rule of estimates of the 
conditional volatility changes strongly enhances its predictability during “bear” 
market periods. This improvement is being measured with respect to a nested model 
without the volatility variable as well as to a buy & hold strategy. We suggest that our 
findings can be justified by invoking either the “volatility feedback” theory or the 
existence of portfolio insurance schemes in the equity markets. 
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1.         INTRODUCTION 

 

 Over the past years an important line of research has focused on testing the 

predictability of stock returns. Overall, the findings of this literature are that stock 

returns are predictable from past returns and other economic and financial variables. 

For instance, Fama and French (1988) and Poterba and Summers (1988) assume that 

stock returns are generated by the sum of a random walk and a stationary mean-

reverting process and  report that long (three-to five-year) holding period returns are 

significantly negatively serially correlated. Lo and MacKinlay (1988) use a volatility 

based specification test and reject the random walk hypothesis in favor of positive 

serial correlation for weekly and monthly holding-period returns of value weighted 

and equally weighted portfolios. Then they show that nonsynchronous trading cannot 

fully account for the observed autocorrelation while they further report slightly 

negative correlation for individual securities that is attributed to their considerable 

idiosyncratic noise. Lo and MacKinlay (1990) attempt to reconcile the positive serial 

dependence in market indexes returns with the negative autocorrelation in individual 

returns. They show that positive cross-autocorrelations across securities can account 

for more than 50 percent of the profits from contrarian investment strategies. Pesaran 

and Timmermann (1995) examine whether the predictability of the Standard and 

Poor’s 500 index returns could have been historically exploited by investors to earn 

profits in excess of a buy-and-hold strategy. They also find that the predictive power 

of various economic factors is increased during volatile periods.  

 The focus of the papers cited above, and in many others in the related 

literature, is the linear predictability of asset returns that relies on weighted 
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combinations of return autocorrelations. However, many aspects of economic 

behavior may not be linear. Recent research into the time series properties of stock 

market indices by Pesaran and Timmermann (1994) and  Abhyankar, Copeland and 

Wong (1997), to name a few, have indicated the presence of non-linear dynamics. An 

interesting issue therefore that is worth addressing is whether the predictability of 

stock returns can be improved by using non-linear models. One of the approaches that 

have been found to improve the ability of forecasting asset returns is the Artificial 

Neural Networks (ANNs). An ANN can be viewed as a general nonlinear time series 

model that under general regularity conditions can approximate any number of a class 

of functions to any desired degree of accuracy. Gençay (1998) incorporates the buy 

and sell signals from a simple technical trading strategy, which is based on a moving 

average rule, into an ANN specification.   The results show that the moving average 

rules in an ANN provide a forecast improvement, as measured by the mean square 

prediction errors (MSPEs), when they are compared with the predictions of the Dow 

Jones index daily returns from a linear regression or a GARCH-M(1,1) process. 

Gençay and Stengos (1998) extend the previous work by incorporating a volume 

average rule in their trading strategy. The MSPEs of the ANN conditional mean 

specification are smaller than those obtained from the benchmark, linear and 

GARCH-M (1, 1) models. Gençay (1998) extends the evaluation criteria of the 

competing strategies to include measures of profitability. The results indicate that 

nonparametric models with technical strategies provide significant profits when tested 

against a simple buy-and-hold strategy. Fernández-Rodriguez et. al. (2000) conduct a 

similar exercise for the Madrid stock market general index and show that a simple 

trading rule based on ANNs is always superior to a buy-and-hold strategy during 

“bear” market conditions.  
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 In the present we explore the predictive ability of trading rules that 

incorporate, among others, estimates of the conditional volatility changes over the 

next trading period. The empirical investigation of the relation between stock return 

volatility and stock returns has a long tradition in finance. According to the “time-

varying risk premium theory” the return shocks are caused by changes in conditional 

volatility. When news arrives in the market the current volatility increases and this 

causes upward revisions of the conditional volatility since there is a well-documented 

fact that volatility is persistent.  This increased conditional volatility has to be 

compensated by a higher expected return, leading to an immediate decline in the 

current value of the market. So in the case of bad news the volatility feedback effect 

reinforces the initial drop in stock market prices. However when good news arrives in 

the market and volatility increases, prices decline to induce higher expected returns 

offsetting thus the initial price movement.1   An alternative rationalization for the 

presence of conditional volatility revisions in the trading rule may be offered by 

invoking trigger strategies in the equity markets (see, e.g. Krugman, 1987). When 

participants in portfolio insurance schemes react whenever the maximum expected 

loss, as measured by the Value-at-Risk (VaR), reaches a predetermined level then we 

will observe share price dynamics that are being driven, partly, by revisions in the 

measured conditional volatility.2 If we assume a continuity of portfolios that deviate 

to a varying degree from their pre-determined level of VaRs then each time the 

conditional volatility rises, a number of those portfolios will hit their risk limits and 
                                                 
1 An asymmetric nature of the volatility response to return shocks emerges from the above discussion.  
Bad news generates an increase in conditional volatility while the net impact of good news in not clear. 
An alternative explanation to the asymmetric reaction of the conditional volatility may be offered 
through the “leverage effects” [see, e.g. Christie (1982)]. A negative (positive) return increases 
(reduces) financial leverage, which makes the stock riskier (less risky) and increases (reduces) 
volatility.  The causality however here is different: the return shocks lead to changes in conditional 
volatility, whereas the time-varying premium theory contends the opposite [see Bekaert and Wu, 
2000].  
2 The VaR depends entirely on a multiple of the estimated conditional volatility under the assumption 
of normally distributed returns.  
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this will generate a re-allocation of assets towards safer ones.   Each time portfolio 

insurers leave the market the stock prices must fall in order for the other investors to 

be given an incentive to hold a larger quantity of stock. If we further assume a rational 

expectations world then investors take into account the effects of portfolio insurance 

schemes and no step drop in stock prices is being observed. 3 

 The structure of the paper is as follows. In section two we discuss the 

construction of the trading rule and the way this is incorporated into an ANN as well 

as the estimation techniques that have been applied. In section three we present the 

data, we discuss the statistical and financial criteria we adopt to evaluate the 

forecasting ability of the various models and finally the empirical results are shown. 

Section four provides some concluding remarks.  

 

1. METHODOLOGY 

 Neural networks use a non-parametric method of forecasting which means that 

the underlying non-linear function is not prescribed, ex-ante, explicitly. Thus, the 

model is not limited to a restrictive list of non-linear functions. 4 In financial 

applications the most popular class of ANN models has been the single-layer 

feedforward networks (FNR). In a FNR, information, suitably weighted, is passed 

from the point of entry (the input layer) to a further layer of hidden neurons. This 

hidden information is also assigned a weight and finally reaches the output layer 

which represents the forecast.  

                                                 
3 Under static expectations however the portfolio insurance schemes can cause a stock market crash as 
the market moves to its new regime (see Krugman, 1987).  
4 Cybenko (1989) and Hornik et.al. (1989) have demonstrated that ANN models can approximate, 
under certain regularity conditions, any continuous function. This unveils the main weakness of the 
ANNs since they may end up fitting the noise in the data rather than the underlying statistical process. 
Cheng and Titterington (1994) have shown that ANNs are equivalent to non-linear non-parametric 
models while they claim that most forecasting models (ARMA, autoregressive with thresholds, non-
parametric with kernel regression, etc.) can be written in the form of a network of neurons.  
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 Let Ttpt ,....,2,1, =  be the daily stock index price. The daily returns are then 

calculated by )log()log( 1−−= ttt ppr .  The output, y , of a single layer FNR is then 

given by: 
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The inputs in the suggested FNR correspond to the returns in the previous n days, 

following Gençay (1999) and Fernadez-Rodriguez et.al. (2000), and the revisions of 

the estimated conditional volatility, 2/1h∆ , over the past p days. As concerns the 

transfer functions G and S we use the tansig and the purelin function respectively. The 

tan-sigmoid function normalizes the values of each neuron to be in the interval (-1, 

+1) while the linear output layer lets the network produce values outside the range -1 

to +1.  The problem we are faced with is that the FNR has the correct weights such 

that y has the correct value corresponding to the inputs. This is being accomplished by 

the error backpropagation method under which the neural network runs through all 

the input data over an initial “training” period and produces a list of outputs. Then the 

weights are revaluated, by using a recursive “gradient” descent method, so that the 

mean-squared error between the observed output and the predicted one is minimized.5 

Once the neural network has been trained, it is applied over a different data set 

                                                 
5 As White (1992) has shown the existence of such weights is guaranteed since any non-linear function 
can be approximated as above, with a single layer, to an arbitrary degree of accuracy with a suitable 
number of neurons, g  .  
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covering the so-called “validation” period. The purpose here is to evaluate the 

generalization ability of a supposedly trained network in order to avoid overfitting.  

 In a dynamic context it is natural to include lagged dependent variables as 

explanatory variables in the FNR in order to capture dynamics. This problem is being 

addressed in the relevant literature by constructing recurrent networks, i.e. networks 

with feedbacks from the hidden neurons, g , to the input layer with delay. The 

recurrent neural networks (RNR) memorize thus information since its output depends 

on both current and prior inputs. In this paper we apply the Elman (1990) RNR with a 

single hidden layer and feedback connection from the output of the hidden layer to its 

input. In a RNR model equation (2) can be re-written as: 
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and it is easy to show, with back-substitution, that the output ty depends on the entire 

history of the inputs r  and 2/1h∆ .  

 The trading rule over the testing period works as follows. At the end of each 

trading day the RNR is being re-estimated over a rolling sample that is equal to the 

training period set. The output unit, eq. (1), receives the weighted sum of the signals, 

in the (-1, 1) interval, from eq. (3) and produces a signal through the output transfer 

function ( S ). If the value of the signal is greater than zero it is interpreted as a “buy” 

signal for the next trading day while a value less than zero as a “sell” signal. Then, the 

total return of the strategy, when transaction costs are not considered, is estimated as: 
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where  ty
^

 is the recommended position which takes the value of (-1) for a short 

position and (+1) for a long position (see e.g. Gençay, 1998a and Fernadez-Rodriguez 

et.al., 2000).        

 

3. EMPIRICAL RESULTS 

 We have estimated the RNR model of equations (1) and (3) on daily returns of 

the NASDAQ index that span the period 2/8/1971 to 2/5/2002 (figure 1).  The testing, 

out-of-sample, period has been split into two subperiods; a “bull” market period from 

4/2/1998 to 3/12/2000 and a “bear” market period from 3/1/3/2000 to 2/5/2002.  The 

training and validation period account for the rest of the sample with the validation 

period covering almost 30% of the entire data set.   

 In order to rationalize the use of neural network models we have tested for the 

presence of non-linear dependence in the series. To that end, we have made use of the 

well known BDS test statistic which under the null of i.i.d. is given by (see Brock 

et.al., 1991): 

)()()( ,,1,
2/1

)(, /][ εεε σε TmTTmTm CCTW −= .                 (5) 

)(, εTmC is the correlation integral from m dimensional vectors that are within a distance 

ε from each other, when the total sample is T, and )(, εσ Tm is the standard deviation of 

)(, εTmC . Under the null hypothesis, )(, εTmW , has a limiting standard normal distribution. 

The BDS test has been applied on: (a) the original data, (b) the residuals from an 

autoregressive filter, in order to ensure that the null is not rejected due to linear 

dependence, and (c) the natural logarithm of the squared standardized residuals from a 

GARCH-M (1,1) model, in order to ensure that rejection of the null is not due to 

conditional heteroscedasticity (see De Lima, 1996). The results are shown in Table 1. 
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In all three cases we were unable to accept the null of i.i.d. at the 1% marginal 

significance level and the evidence seems to suggest that a genuine non-linear 

dependence is present in the data.   

 The results relating to the predictability as well as the profitability of the 

Elman network we estimated appear in table 2.  They correspond to a specification 

where two lags of the returns and no lag of the conditional volatility changes appear 

in equation (3), (n=2 and p=0).6 In addition there is one hidden layer with ten neurons 

(g) and one output layer with a single neuron (y). Conditional volatility 

estimates, 2/1
th , have been obtained from: a rolling 20-day standard deviation of 

returns; an exponentially weighted moving average with decay factor equal to 0.94;7 a 

GARCH (1,1) model; and a Glosten, Jagannathan and Runkle (1993) (GJR) GARCH 

(1,1) model that allows for an asymmetric response of volatility to positive or 

negative shocks.   

 The adequacy of the chosen specification, without the presence of the 

volatility changes, is considered as satisfactory. As the first column of table 2 shows 

the total return of the trading strategy is 29.2% for the entire testing period when a 

buy-and-hold (B&H) policy would have earned only 4.5%. Moreover, the proportion 

of the correctly predicted signs is above 50% and this is reflected in a significant 

value, at the 5% level, of the Henriksson- Merton (HM) test statistic. Finally, the 

Sharpe ratio (SR) and the Ideal profit (IP) index are both positive, although rather 

small in value. As concerns the two testing sub-periods, the chosen strategy behaves 

                                                 
6 The procedure for the selection of the lags involved the estimation of AR models and the calculation 
of the Ljung-Box statistics for the first 16 lags of the series. Significant autocorrelations of up to the 
second lag of the return series were identified. As concerns the conditional volatility variable, 
sensitivity analyses for different number of lags were conducted on the RNR but the results were not 
found to be qualitatively different from those presented in table 2. Similar exercises were conducted for 
a different number of lagged returns but again the results we obtained are not better than those shown 
in table 2. The results of the sensitivity analyses are available upon request.  
7 The exponentially moommage corresponds to the approach adopted by RiskMetrics and for that 
reason it is denoted here as RM(0.94). 
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better during the bull period, according to the Pesaran-Timmerman (PT) and HM tests 

as well as the SR and IP index.  However, the overall return compared to the B&H 

policy is superior during the “bear” market sub-period.  This image accords with 

previous results derived by Fernández et. al. (1999, 2000) from a similar model 

applied on the Nikkei and the Madrid stock market General Indices.  

 Next, we evaluate the trading strategy with the conditional volatility variable 

included. The first evidence that emerges from this change is that the returns improve 

significantly, over the “bear” market period, independently of the model we used to 

produce the conditional volatility estimates. Over, the “bull” market period the 

strategy does not seem capable of succeeding the profits with the “no volatility” 

strategy while it is always below the B&H policy. Similarly, the other performance 

indices, PT, HM, SR and PI, show a substantial improvement over the “no volatility” 

case for the “bear” market period. Those same indices for the “bull” market period 

produce values that are similar or worse to those under the “no volatility” 

specification. The comparison between the four different specifications for the 

volatility estimation show that simple models of historical volatility measurement, 

like the equally weighted and the exponentially weighted moving averages, produce 

substantially better forecasts than the more complicated econometric models that are 

often used to model conditional volatility.8 

  

4.        CONCLUDING REMARKS  

 In the present paper we expand the literature that evaluates the forecasting 

ability of trading rules based on neural networks over simple alternative strategies like 

Buy & Hold. A B&H policy can not be consistently outperformed from any trading 

                                                 
8 This has been surprising since it is well documented that forecasts of volatility, for the NASDAQ 
index, from MA rules closely approximate those from GARCH (1,1) models (see e.g. Schwert, 2002).    
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rule, no matter how elaborate this is, in a random walk market. We first replicate 

previous evidence coming from other stock market indices, according to which the 

forecasting ability of simple rules outperform the B&H profits over “bear” market 

conditions although the evidence from various profitability indices is positive for the 

“bull” period as well. Then we included in the trading rule revisions of the conditional 

volatility of the NASDAQ index that have been produced from alternative estimating 

techniques. This change generated a substantial improvement of the profits, the 

market timing ability and the profitability per unit of risk over the “bear” market 

period. Those results seem to indicate that the neural network has been “trained” to 

relate correctly changes in conditional volatility with the “sign” of the market one day 

ahead. This may be attributed to two factors. The first associates increases in volatility 

to higher expected returns. In the case when increases in volatility have been 

generated from “bad” news we will definitely experience lower prices the next trading 

day. However, when increases in volatility are generated from “good” news it is not 

clear what the net effect on prices will be. This explanation seems to accord with the 

enhanced predictability of the model that incorporates the volatility revisions over the 

“bear” market period. Unfortunately however, when we adopt a model of asymmetric 

volatility the evidence in favor of the explanation offered above deteriorates. The 

second factor associates increases in volatility with trigger strategies followed by 

many portfolio managers. Each time volatility rises the risk limit is being hit for some 

portfolios and then liquidation follows. This puts a pressure on the market that is more 

severe during “bear” market conditions.   
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Table 1: BDS test  

 

Series m=2 m=3 m=4 

 ε = 1  ε = 1.5 ε = 1 ε = 1.5 ε = 1 ε = 1.5 

OD 5.18* 4.93* 8.98* 8.24* 10.74* 9.54* 

RAF 4.74* 4.53* 8.30* 7.80* 9.87* 9.05* 

NLSNR 3.15* 3.64* 3.97* 4.22* 4.20* 4.19* 

 

Notes: OD = original data (daily returns of the NASDAQ index), 
 RAF = residuals from an autoregressive filter, 
 NLSNR = natural logarithm on standardized normalized residuals. 
m = the value of the dimension, ε = the number of standard deviations of the data. 
Brock et. al. (1991) suggest that the standardized normal distribution is a good approximation of the 
finite sample distribution for a sample of 500 or more observations, values of the dimension m below 5 
and values of the distance ε between 0.5 and 2 standard deviations of the data. 
(*) indicates significance at the 1% significance level (the critical value is 2.58). 
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Table 2: Out-of-sample tests. Testing period: 4/2/1998 – 2/5/2002. “Bull” market 
period: 4/2/1998 to 3/12/2000. “Bear” market period: 3/1/3/2000 to 2/5/2002. 
 

 
 

RNR (no volatility) 
 

RNR - MA(20) RNR - RM(0.94) 

Sub-
period 

Testing 
period Bull Bear Bull Bear Bull Bear 

Total 
Return  

 
0.292 

 
0.569 -0.277 0.518 1.087 0.400 1.207 

B&H 
Return  

 
0.045 

 
1.027 -0.982 1.027 -0.982 1.027 -0.982 

Sign Rate 
 

0.525 
 

0.543 0.507 0.535 0.533 0.517 0.547 

PT test 
 

1.480*** 

 
1.665** 0.382 1.477*** 1.513*** 0.645 2.195** 

Merton 
test 

 
1.992** 

 
2.110** 0.549 1.875** 2.242** 0.831 3.155* 

MSE 0.029 0.021 0.035 0.023 0.037 0.022 0.035 

Sharpe 
Ratio 

 
0.012 

 
0.063 -0.020 0.057 0.078 0.044 0.087 

Ideal 
Profit 

 
0.016 

 
0.081 -0.026 0.074 0.102 0.057 0.113 

 RNR-GARCH(1,1) RNR-GJR GARCH 
Sub-

period Bull Bear Bull Bear 

Total 
Return  0.177 0.623 0.303 0.606 

B&H 
Return  1.027 -0.982 1.027 -0.982 

Sign Rate 0.499 0.521 0.507 0.513 

PT test -0.008 0.971 0.265 0.594 

HM test -0.010 1.751** 0.344 1.104 

MSPE 0.022 0.046 0.021 0.034 
Sharpe 
Ratio 0.019 0.045 0.033 0.043 

Ideal 
Profit 0.025 0.058 0.043 0.056 

Notes: RNR = Recurrent Neural Network. Methods for forecasting volatility: MA(20) = Moving 
Average with a 20 days window, RM(0.94) = RiskMetrics’  exponentially weighted MA rule(decay 
factor = 0.94), GJR = Glosten-Jagannathan-Runkle (1993) GARCH model.  
PT test = the Pesaran and Timmerman (1992) test. HT test = the Henriksson and Merton (1981) test.  
Both tests are asymptotically distributed as N(0,1).     
The sign rate measures the proportion of correctly predicted signs. The Sharpe ratio is defined as the 
ratio of the mean return of the strategy over its standard deviation. The Ideal Profit is the ratio of the 
returns of the trading strategy over the returns of a perfect predictor.  
(*), (**), (***) indicate significance at the one sided 1%, 5% and 10% levels.  
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FIGURE 1: Daily closing prices of NASDAQ Index (02/08/1971 – 02/05/2002) 
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