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Abstract 
This paper empirically assesses the ability of dividend yields to predict future stock returns in 
Germany under the assumption of the Efficient Market Hypothesis under Rational Expecta-
tions (EMH-RE). Since the order of integration of regressors are not exactly known, a new 
bounds procedure, namely an autoregressive distributed lag (ARDL) model, is applied to test 
for cointegrating relationships among future stock returns and today’s dividend yield. This 
procedure is efficient for small samples and capable of dealing with the controversial issue of 
exogeneity of the dividend yield. Additionally, ARDL and error-correction models are esti-
mated for (future) stock returns and the dividend yield on consistent estimates and standard 
normal asymptotic theory. Short-run and long-run impacts of the dividend yield on future 
stock returns in Germany are identified only if: (a) stock market returns are measured by the 
annualised one-month dividend growth;(b) if a very specific lag structure is imposed. Hence, 
it cannot be claimed as a rule, that dividend yields are generally useful for forecasting stock 
market returns. 
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1. Introduction 

The forecasting power of the dividend yield (i.e. the ratio between dividend payments and the 
stock price) on future stock market returns is a hypothesis that has a long tradition among 
practitioners and academics (for example, Dow (1920), Ball (1978). The theoretical and em-
pirical literature offers evidence that expected stock returns are predictable. However, the 
predictable component of stock market returns, or equivalently the variation through time of 
expected returns, is a relatively small fraction of return variances (Fama and Schwert (1977), 
Fama (1981), Keim and Stambaugh (1986) and French, Schwert and Stambaugh (1987)). An-
other interesting finding is that the power of the dividend yield to forecast future stock re-
turns, measured by the simple coefficient of determination, increases with the time horizon 
under review (Fama and French (1988)). Fama and French (1988) offer two explanations: (i) 
that high autocorrelation causes the variance of unexpected returns to grow faster than the re-
turn horizon, and (ii) the growth of the variance of unexpected returns with the return horizon 
is attenuated by a discount rate effect: shocks to expected returns generate opposite shocks to 
current prices.  

In view of these findings, several issues have remained unresolved from our point of view. 
First, by construction, the use of dividend yields and future stock returns in the framework of 
the efficient market hypothesis and rational expectations (EMH-RE) generally leads to small 
sample sets. Second, in linear regression analysis there is only a limited number of degrees of 
freedom due to the use of moving averages in calculating stock return measures. However, the 
distribution of the test statistics is only known for larger sample sets. As a consequence, there 
is often no clear information on the integration and cointegration properties of the data. 
Thus, whether variables should be introduced in differenced or levels form is questionable. 
The latest studies in this field (Fama and French (1988) and Domanski and Kremer (1998)) 
have not sufficiently addressed this issue.  

A procedure that avoids these difficulties and appears to be eminently suitable for the problem 
at hand is that proposed by Pesaran, Shin and Smith (1996) and Pesaran and Shin (1999). 
First, it is as efficient as possible in the case of small samples. Second, it is capable of dealing 
with the controversial issue of (lack of) exogeneity of the dividend yield. Also, it has the addi-
tional advantage of yielding consistent estimates of the long-run coefficients that are asymp-
totically normal, irrespective of whether the underlying regressors are I(0) or I(1) and of the 
extent of cointegration. This is a key property since a second objection raised in the empirical 
finance literature is that it is not clear whether stock market performance measures (such as 
holding period return, dividend growth and holding period returns minus dividend growth) are 
stationary (I(0)) or integrated of order one (I(1)) within the specific sample chosen. However, 
economic reasoning would suggest that stock market returns should be stationary, i.e. stock 
market returns should not “outperform” (world) output growth on a sustained basis. A third 
objection against the usual procedures in assessing the impact of dividend yield on asset 
prices, is that these procedures do not allow one to distinguish clearly between long-run and 
short-run relationships, as they estimate VARs only in differences or only in levels. The pro-
cedure used in this paper will also allow the correct dynamic structure to be obtained. 

In this paper we apply the procedure proposed by Pesaran, Shin and Smith (1996) on monthly 
data for the German stock market in the period August 1974 to September 2003. The ap-
proach used here involves two steps. As a first step we test the null hypothesis that there exists 
no long-run relationship between the levels of the variables under consideration using the 
bounds procedure by Pesaran, Shin and Smith (1998). In the spirit of their study, we suggest 
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moving to the next stage only if the null hypothesis is rejected. The test is the standard Wald 
or F-statistic for testing the significance of the lagged levels of the variables in a first differ-
ence ARDL regression (with a non-standard distribution under the null). If the result is sig-
nificant, we take the second step and estimate the long-run coefficients and the corresponding 
error-correction models using the ARDL procedure described in Pesaran and Shin (1999). 
The use of error-correction models has only recently become popular in analyzing the impacts 
of dividend yield on asset prices. However, it has not yet been applied to the relation between 
dividend yields and future stock returns in Germany.  

In the first part of the paper, the bounds-testing procedure proposed by Pesaran, Shin and 
Smith (1996) is applied to the estimation of the impact of dividend yields on future German 
stock market returns for 3 to 48 months. The existence of a long-run relationship between fu-
ture stock returns and the dividend yield is examined. In the second part of the paper, the re-
spective long-run relationship and the respective short-term dynamics are estimated. Some 
new econometric techniques proposed by Pesaran and Shin (1999) are applied to improve on 
some of the critical points of earlier studies on the role of dividend yield variables in forecast-
ing future stock returns. 

2. Dividend Yield Impacts Future Stock Prices? 

It is economically reasonable to think of a stock’s fundamental value as the sum of a firm’s 
discounted expected future cash flow. The discount rate used can be interpreted as the re-
quired (expected) rate of return that attracts investors to hold the asset in their portfolios. In an 
information efficient market, a stock’s market price should then equal its fundamental value 
as calculated by all or the marginal investor depending on whether expectations are assumed 
to be homogenous or not. Applied to the stock market, this general valuation approach leads 
to the dividend discount model. In line with Campbell, Lo and Shiller (1997, pp. 260-2) the 
approximation formula for the continuously compounded one-period return on stocks is:1 

(1)  tttt pd)(pkh −−++= +++ 111 1 ρρ  

where ht+1  = approximate continuously compounded one-period return on stocks over the 
holding period t+1. pt = log of stock price at the end of t; dt+1 = log of dividend paid out be-
fore the end of period t+1; ρ ≡ 1/(1 + exp( pd − )), where pd −  = average of log of dividend 
yield; and k = –log(ρ) – (1 – ρ)log(1/ρ – 1).  

Equation (1) shows a log-linear relation between stock prices, returns and dividends. It is a 
first-order linear difference equation in the stock price. Solving forward and imposing the 
terminal condition 
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Equation (2) is an ex post-identity, which says that today’s stock price is high if future divi-
dends are high and/or future returns are low. Applying the conditional expectation operator 
Etxt+1 = E[xt+1Ωt], where Ωt = market-wide information set available at the end of period t, 
and the law of iterative expectations, equation (2) be changed to an ex ante relation: 

                                                 
1 See Cuthbertson et al. (1997), pp. 1005.  
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Assuming homogenous expectations and instantaneous market clearing, the log stock price 
always equals its single fundamental value, which is the specifically weighted, infinite sum of 
expected log dividends discounted by principally time-varying expected equilibrium returns. 
Combined with RE, equation (3) represents the rational valuation formula (RVF).  

The log-linear approximation framework has two advantages. First, it allows a linear and thus 
simple analysis of the stock price behaviour. Second, it conforms with the empirically plausi-
ble assumption that dividends and stock return follow log-linear stochastic processes. For em-
pirical analyses, equation (3) can be rearranged such that the log dividend yield (or log divi-
dend–price ratio) is singled out as the left-hand variable: 
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The current dividend yield should predict future returns if the discount rates used by forward-
looking investors actually depend on expected holding period returns for subsequent periods, 
and if these expectations do not deviate systematically, and too much, from realised returns.2  

The log-linear relation between prices, dividends and returns provides an accounting frame-
work, which provides an economic interpretation of the relationship between the dividend 
yields and future stock market return measures (Campbell, 1991; Cuthbertson, 1996). High 
prices must eventually be followed by high future dividends, low future returns, or some 
combination of the two. If investor expectations are consistent with this interpretation, high 
prices must be associated with high expected future dividends, low expected future returns, or 
some combination of the two. Similarly, high returns must be associated with upward revi-
sions in expected future dividends, downward revisions in expected future returns, or some 
combination of the two.  

3. Testing for the Existence of Long-Run Relations 

The test for the existence of long-run relations between stock market returns and dividend 
yields was conducted for the German stock market for the period August 1974 to September 
2003. We used monthly data provided by Datastream and calculated three alternative future 
stock market return measures (dependent variables): (i) annualised one-month continuously 
compounded stock returns (h), (ii) annualised one-month dividend growth rates in percent 
(∆d) and (iii) and the difference between the two (h–∆d).3 The measures were calculated over 
holding periods of 1, 3, 12, 24, 36 and 48 months. These performance measures were re-
gressed on the independent variable, that is the dividend yield (dp), after we have reassured 
that there is no problem of “reverse causation”, i.e. that the dividend yield really is the ‘forc-
ing variable’. 

                                                 
2  See Domanski and Kremer (1998), p. 26. Note that the term Etht+1+j is the equivalent to the expected future 

discount rate of the RVF, a finding which will be explained in the following.  
3  Regressions for dividend and profit growth are subject to the omitted variables problem because, in that case, 

expected stock returns introduce noise. To circumvent this problem the differences between h and h–∆d were 
also calculated. 
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Figure 1 shows three scatter plots for the variables over a time horizon of 12-months. It shows 
cross-plots of three measures of stock returns against the dividend yield, respectively. The 
charts suggest that the positive (negative) relationship between the dp dividend yield and h 
and h–∆d holds for the German stock market. Also, as indicated by theoretical considerations 
outlined earlier, the relation between dp and ∆d is negative. However, what matters for our 
empirical analysis, is that the overall relationships in the charts show a clear positive or nega-
tive relation - rather than a vertical or horizontal one. Figure 2 shows the variables under re-
view over time.  

(Figure 1 about here) 

(Figure 2 about here) 

As a first step, we estimated the long-run relations between various stock market performance 
measures (measured over holding periods (K) ranging from one month to four years) and the 
dividend yield. The results in Table 1 represent baseline estimations, which will serve as 
benchmarks against which the results gained from the autoregressive distributed lag procedure 
will be evaluated later on in this paper.4 As can be seen, the R-squared systematically in-
creases with the forecast horizon. The same is valid for the Newey-West adjusted empirical 
realisations of the t-values for the dependent variable h–∆d. However, in the cases of x = h 
and x = ∆d the t-values reach their maximum after three and two years, respectively. The 
slope coefficients reveal a positive sign with x = h and x = h–∆d and a negative one in the case 
of x = ∆d. They tend to reach their maximum in absolute values after 3 months and decrease 
afterwards. 

(Table 1 about here) 

Although there are serious doubts about the statistical reliability of long-horizon regressions, 
these results seem to suggest that future stock returns, and especially future dividend growth, 
might contain predictable components that are reflected in the current dividend yield. On a 
purely statistical basis, the finding that the ability of the dividend yield to forecast future stock 
returns increases with the return horizon is widely attributed to the central fact that it is a 
rather persistent variable (Cochrane, 2001, pp. 391; Hodrick, 1992). Economically, the find-
ing might indicate that market agents can forecast medium- and-long-term prospects of the 
economy much easier that short-term fluctuations. A relatively stable monetary framework, 
that is, for instance, a stable reaction and objective function of the central bank and relatively 
few serious financial market shocks might be held responsible for this outcome. Finally, it 
should be noted that the predictability of future stock returns does not contradict the efficient 
market hypothesis, which postulates only that abnormal returns are unpredictable, not that ac-
tual returns are unpredictable.  

The rather low realisations of DW-statistics indicate serial autocorrelation in the residuals. We 
corrected for serial correlation and potential heteroskedasticity by using alternative t-statistics 
proposed by Newey and West (1987) to compensate the data-overlap for the forecasts beyond 
one month (this leads to serial correlation of the error terms, even under the null hypothesis of 
no stock return predictability through the dividend yield5). By this, we also cope with the need 
to use asymptotic theory to generate standard errors. This need emerges from the fact that the 

                                                 
4 We also experimented with different truncation lags, but the results did not change materially. 
5 In this case, errors are correlated with the K-1 previous error terms.  
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dividend yield as the regressor is a predetermined value and is not exogenous (Campbell, Lo, 
and Shiller, 1997, pp. 334-336).  

As in Domanski and Kremer (1998), we have dispensed with testing the order of integration 
of the dividend yield and the stock return at this stage of analysis. By doing so, one might in-
terpret the results as providing preliminary evidence that future stock returns, and especially 
future dividend growth, contain predictable components with are reflected in the current divi-
dend yield. However, it cannot be ruled out that the variables under consideration represent 
non-stationary series. If this is the case, cointegration theory prevents inferences to be made 
from the t-values of the coefficient estimates. Therefore, it is of interest to analyse if these re-
sults hold up robust when using the approach of Pesaran, Shin and Smith (1996) and Pesaran 
and Shin (1999), respectively.  

3.1. Testing for Cointegration: The Pesaran, Shin and Smith ARDL Approach 

3.1.1. Theoretical Background 

As mentioned above, an important problem inherent in the residual-based tests and in some 
system-based tests for cointegration is the precondition that it must known with certainty that 
the underlying regressors in the model are I(1). However, given the low power of unit root 
tests, there will always remain a certain degree of uncertainty with respect to the order of in-
tegration of the underlying variables. For this reason, we now make use of the approach pro-
posed by Pesaran, Shin and Smith (1996) to test for the existence of a linear long-run relation-
ship, when the orders of integration of the underlying regressors are not known with certainty. 
The test is the standard Wald or F statistic for testing the significance of the lagged levels of 
the variables in a first-difference regression. The involved regression is an error-correction 
form of an autoregressive distributed lag (ARDL) model in the variables of interest. 

More specifically, in the case of an unrestricted ECM, regressions of y on a vector of x’s, the 
procedure first requires estimating the following model derived by Pesaran, Shin and Smith 
(1996, pp. 2 ff.): 

(8)  
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with φ and δ as the long-run multipliers, Ψ and ϕ as short-run dynamic coefficients, (p,q) as 
the order of the underlying ARDL-model (p refers to y, q refers to x), t as a deterministic time 
trend, k as the number of 'forcing variables', and ξ uncorrelated with the ∆xt and the lagged 
values of xt and yt. 

As a second step, one has to compute the usual F-statistic for testing the joint significance of 
φ = δ1 = δ2 = ... = δk = 0. However, the asymptotic distributions of the standard Wald or F 
statistic for testing the significance of the lagged levels of the variables are non-standard un-
der the null hypothesis that no long-run relationship exists between the levels of the included 
variables. Pesaran, Shin and Smith (1996) provide two sets of asymptotic critical values; one 
set assuming that all the regressors are I(1); and another set assuming that they are all I(0). 
These two sets of critical values provide a band covering all possible classifications of the re-
gressors into I(0), I(1), or even mutually cointegrated. 
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A third step is required in order to use the appropriate bounds testing procedure. The test pro-
posed by Pesaran, Shin and Smith (1996) is consistent with this. For a sequence of local alter-
natives, it has a non-central χ2-distribution asymptotically. This is valid irrespective of 
whether the underlying regressors are I(0), I(1) or mutually cointegrated. The recommended 
procedure based on the F-statistic is as follows. The F-statistic computed in the second step is 
compared with the upper and lower 90, 95 or 99 percent critical value bounds (FU and FL). As 
a result, three cases can emerge. If F > FU, one has to reject φ = δ1 = δ2 = ... = δk = 0 and con-
clude that there is a long-term relationship between y and the vector of x's. However, if F < 
FL, one cannot reject either φ = δ1 = δ2 = ... = δk = 0 or the hypothesis that a long-run relation-
ship does not exist. Finally, if FL < F < FU, the inference has to be regarded as inconclusive. 
The order of integration of the underlying variables has to be investigated more deeply.  

In order to select the so-called ‘forcing variables’, the above procedure should be repeated for 
ARDL regressions of each element of the vector of x's on the remaining relevant variables 
(including y). For example, in the case of k = 2, the repetition should concern the ARDL re-
gressions of x1t on (yt, x2t) and x2t on (yt, x1t). If the linear relationship between the relevant 
variables is not 'spurious' can no longer be rejected, one can estimate coefficients of the long-
run relationship by means of the ARDL-procedure. This estimation procedure is discussed in 
section 4. 

3.1.2. Application to German Stock Market Data 

Since the choice of the orders of the lagged differenced variables in the unrestricted ECM 
specification can have a significant effect on the test results, models in the log of stock market 
returns and the logs of the other mentioned stock market relevant variables are estimated for 
the orders p = q = 1,  4,  12. Finally, in the absence of a priori information about the direction 
of the long-run relationship between h, ∆d or h–∆d and the other stock market variables, we 
estimate unrestricted ECM regressions of h (y) on the vector of stock market variables (x) as 
well as the reverse regressions of x on y. More specifically, in the case of the unrestricted 
ECM regressions of y on x, we re-estimate model (1) using monthly observations over a 
maximum sample from 1974(8) to 2003(9). In view of the monthly nature of observations we 
set the maximum orders to 12, (i.e. we estimate eq. (1) for the order of p = q1 = q2 = 12 over 
the same sample period 1974(8) to 2003(9)). It is important to note already at this early stage 
of investigation that we have to choose p and q quite liberally in order to endogenise the log 
of stock market returns (detailed proofs can be found in Pesaran and Shin (1999) and Pesaran, 
Shin and Smith (1996)). In addition, due to the seasonality in the data, first differences in the 
variables at order 12 are used.6 

Like in any long-horizon analyses, we are aware of risks that some events such as, for in-
stance, the German reunification, the introduction of the euro area on 1 January 1999, the in-
ternational financial market crisis 1997-98 and, more recently, the international stock market 
crash around 2000-01, might have dramatically changed the pricing action in stock markets. 
We decided to rely more on estimates, which take German reunification explicitly into ac-

                                                 
6 Unfortunately, this option is not available under Microfit 4.0 for the ARDL-estimation in the second part of 

this paper. Thus, seasonality has to be captured by implementing a sufficient number of lags of the endoge-
nous variable on the RHS of the ARDL-equation. 
However, the inclusion of deterministic seasonal dummies leaves inference concerning the relevant test-
statistic unaffected. See Davidson and McKinnon (1993), p. 705. If we include seasonal dummies the results 
do not change substantially. 
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count by means of a point dummy D901. This dummy implies a permanent change in the re-
lation between the stock market return and the other stock market relevant variables. We dis-
tinguish between three different definitions of stock returns (cases x = h, x = ∆d, and x = h–
∆d). Our models are structured as follows:  

• Model 1: the holding period return, h, the dividend yield, dp, and a constant are included in 
the long-term relation. 

• Model 2: the dividend growth, ∆d, the dividend yield, dp, and a constant are included in the 
long-term.  

• Model 3: the holding period return minus dividend growth, h–∆d, the dividend yield, dp, 
and a constant included in the long-term. 

These specifications allow the dividend yield to slow down the adjustment to a new stock 
market equilibrium in the wake of a shock.7 The three models represent the core implication 
derived above, namely that in the long run, the dividend yield is in long-term equilibrium with 
the average stock market return. Thus, the modelling approach is strictly guided by theory. 
The following estimations, like all other computations in this paper, have been carried out us-
ing the program Microfit 4.0 (see Pesaran and Pesaran (1997)). We now let the data tell us 
which of the above models case fits the German stock market data best. Tables 1a to 1c dis-
play the empirical realisations of the F-statistics for testing the existence of a long-run rela-
tionship between stock market return measures and the dividend yield. In all cases, the under-
lying equations pass the usual diagnostic tests for serial correlation of the residuals, for func-
tional form misspecification and for non-normal and/or heteroskedastic disturbances. 

The 90, 95 and 99 percent lower and upper critical values bounds of the F-test statistic that are 
dependent on the number of regressors and dependent on whether a linear trend is included or 
not, are originally given in Table B in Pesaran, Shin and Smith (1996) and usefully summa-
rized in Pesaran and Pesaran (1997) (see Annex C, Statistical Tables, Table F). The critical 
value bounds for the application without trend are given in the middle panel of this Table F at 
the 90 percent level by 4.042 to 4.788, at the 95 percent level by 4.934 to 5.764 and at the 99 
percent level by 7.057 to 7.815. For the application with a linear trend the respective upper 
bound critical values can be found in the lower panel of Table F: 5.649 to 6.335 (at the 90 
percent level), 6.606 to 7.423 (at the 95 percent level) and 9,063 to 9.786 (at the 99 percent 
level). We took the upper bound critical values from these intervals and tabulate them in Ta-
bles 1a to 1c as the relevant conservative benchmarks to check the significance of the cointe-
gration relationships. We also experimented with the inclusion of a dummy which approxi-
mated the international stock market turbulences and took the value 1 as from 2000(1) and 0 
otherwise. We finally decided to put it into the test equation including a deterministic trend in 
order to grasp inter alia, the U-turn shape of the dividend yield curve for Germany with the 
trough in January 2000.  

According to the empirical F-values in Tables 2a to 2c, we find that the null hypothesis of no 
long-run relationship in the case of unrestricted ECM regressions of the log of stock returns 
on the dividend yield and other open economy stock market variables is rejected in 18 cases 
at α = 0,05 and in most of the cases even at the 1 percent level. 10 of these cases emerge if a 

                                                 
7  In principle, a more sophisticated specification our hypothesis could have made the impact of dividend yield 

dependent on the sign of the error-correction term (negative, if the latter is positive and vice versa) via e.g. 
the sign function. However, this way of modelling is certainly beyond the scope of this paper.  
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deterministic trend is excluded. However, the null hypothesis of no cointegration tends not to 
be rejected if the moving average of the relevant variables is below 12 months (the only ex-
ception is h1 with trend) or if it is higher than 24 months (except ∆d36 and ∆d48 without 
trend). 

(Table 2a. about here) 

(Table 2b. about here) 

(Table 2c. about here) 

Overall, these results suggest strong evidence in favour of the existence of a long-run rela-
tionship between the (future) stock market return and the dividend yield and the constant, at 
least if the relevant variables are moving averages over 12 or 24 months. But in view of the 
high levels of cross-sectional and temporal aggregation, it is not possible to know a priori 
whether the dividend yield is the 'long-run forcing' variable for the average future stock mar-
ket return performance. Therefore, we considered all possible regressions and substitute the 
change in the stock market return measures as the dependent variable in equation (8) by the 
change in the dividend yield, in order to test whether this relationship is spurious in the sense 
that we do not capture the 'correct direction of causation'. For instance, we have to ensure that 
the future stock market return is not among the forcing variables. The results of the reversed 
test equations are displayed in the final column of Tables 2a to 2c. In the case of x = ∆d and 
for a wide range of moving averages (12 to 48 months), we find that the direction of this rela-
tion is most likely to be from the dividend yield to future stock market returns, so that the 
variable dp can be considered as the 'long-run forcing' variable for the explanation of the vari-
able ∆d. As a consequence, in this case the parameters of the long-run relationship can now be 
estimated using the ARDL procedure discussed in Pesaran and Shin (1999). However, in the 
cases of x = h and x = h–∆d where the variables are 12-month moving averages, our bounds 
procedure reveals that the dividend yield and the stock returns are ‘forcing variables’ for each 
other (i.e. that there seems to be a two-way causation between them). However, in the cases of 
x = h and x = h–∆d where the variables are 24-month averages, future stock returns even ap-
pear to be the forcing variable’ for the dividend yield. Therefore, in the following section 
[??can you specify which section??], we will concentrate on the case x = ∆d. 

However, before this is done, some complementary tests for cointegration on the basis of 
models 1 and 2 in an earlier version of the paper should be conducted. When using cointegra-
tion analysis in the Johansen-framework (Johansen (1991, 1995)), we would first need to es-
tablish that all the underlying variables are I(1). However, such pre-testing results may ad-
versely affect the test results based on cointegration techniques (Cavanaugh et al. (1995), 
Pesaran (1997)). This insight already motivated us to use the Pesaran, Shin and Smith (1996) 
approach and not to display the results here. In general, the results of these traditional cointe-
gration exercises suggest cointegration relationships. However, even more important in the 
light of the current debate in the literature on the sources of dividend yield (reaction func-
tions), cointegration is indicated if exogeneity is imposed (solely) on the dividend yield vari-
able. 

In addition, the estimation of the long-run coefficients and the associated error-correction models 
for the German stock market has been interpreted as an important completion of the analysis by 
Domanski and Kremers (1998, pp. 29), who limit their analysis of the impact of dividend yield 
on stock markets to a battery of estimations of single equations, in levels based on monthly data. 
As a result, we explicitly take into account the existence of a long-term stock market relationship 
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and the short-term deviations from it as a driving force of short-term movements in future stock 
returns. By this, we allow the dividend yield to have short-term and long-term (and by this again, 
additional short-term) impacts on the future stock return. 

4. Applying the ARDL-Approach to Cointegration Analysis 

4.1. Theoretical Background 

4.1.1. Estimating Long-Term Coefficients 

We start with the problem of estimation and hypothesis testing in the context of the following 
ARDL(p,q)-model: 

(9)  y t y x ut i
i

p

t i i
i

q

t i t= + + ∑ + ∑ +
=

−
=

−α α φ β0 1
1 0

, 

with serially uncorrelated residuals ut. We will make use of the possibility to model an addi-
tional vector of deterministic variables such as dummies, or some exogenous variables with 
fixed lags.8 In addition, we assume the existence of a long-run relationship between the levels 
of yt and xt in the light of the above testing procedures. In order to handle the above model 
correctly, we have to distinguish between two cases: 

case 1) xt and ut are uncorrelated, 

case 2) xt and ut are correlated, and xt is characterised by the following finite order AR(s) 
process: 

(10)  x x vt i
i

s

t i t= +
=

−∑ρ
1

. 

This AR-process could also consist of lagged values of ∆yt, but not of the levels or lagged 
values of yt (Pesaran and Shin (1999), p. 14). 

Under case 1, one can end up with the long-run relationship between y and x by first estimat-
ing the parameters of the ARDL model by OLS and then estimating the parameters of the 
cointegrating relationship y t x vt t t= + + +α δ θ  by: 

(11)  $
$

$ ... $α
α
φ φ

=
− −

0

11 p

, $
$

$ ... $δ
α
φ φ

=
− −

1

11 p

, $
$ $ ... $

$ $ ... $
θ

β β β

φ φ φ
=

+ + +

− − −
0 1

1 21
q

p

. 

The standard errors of these estimates can in principle be obtained by the so-called 'delta-
method' in the usual fashion (Pesaran and Pesaran (1997), p. 404; Pesaran and Shin (1999), 
pp. 16 f.; and Serfling (1980)).9 However, we prefer computational convenience to calculate 
their asymptotic standard errors using the so-called 'Bewley's Regression' (Bewley (1979)). 
Both procedures lead to numerically identical estimates of standard errors of the estimates 
(Bårdsen (1989)). We estimate the regression: 

(12)  y t x d y c x vt t i t i
i

p

i t i
i

q

t= + + + ∑ + ∑ +−
=

−

−
=

−
α δ θ ∆ ∆

0

1

0

1
 

                                                 
8 We leave this vector out in our representation of equation (9) for reasons of simplicity. 
9 The relevant option is option 5 in the 'Post Regression Menu'. This allows one to estimate non-linear func-

tions of the parameters in one's regression model. 
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by the instrumental variable method referring to 1, t, xt, ∆xt, ..., ∆xt-q+1, yt-1, yt-2, ..., and yt-p as 
the relevant instruments. Taking the above choice of instruments into account, it again be-
comes obvious how important it is to choose p and q quite liberally. The final result consists 
of instrumental variable estimates of α, δ and θ.  

Under case 2 (xt and ut in eq. (9) are correlated) the ARDL procedure and the use of OLS is 
still valid in the end. However, it requires the estimation of an augmented version of the 
original model, if s (the order of the xt process in eq. (10)) is larger than q. Let m be equiva-
lent to max (s,q). In this case, the appropriate ARDL model to be used for estimation of the 
cointegrating regression deviates from eq. (9) and results as follows: 

(13)  y t y x ut i t i
i

p

i
i

m

t i t= + ⋅ + ∑ + ∑ +−
= =

−α α φ β0 1
1 0

. 

In other words, the ARDL approach necessitates putting in enough lags of the 'forcing vari-
ables' in order to endogenise yt (here: the German stock returns), before estimation and infer-
ence are carried out. By this, one can simultaneously correct for the problem of endogenous 
regressors (our case 2) and for residual autocorrelation (Pesaran and Shin (1999), p. 16). The 
estimation of the long-run cointegrating parameters can now be calculated in the same way as 
for case 1. The main reason for the presence of additional lagged changes in yt and the lagged 
changes in xt (which are introduced to deal with the residual serial correlation problem) as ad-
ditional I(0) variables is they do not affect the asymptotic properties of the OLS estimates of 
the long-run coefficients (Pesaran and Shin (1999), pp. 14 ff.).10 However, there exist two de-
cisive differences between the ARDL models depicted by eqs. (9) and (13). These differences 
refer, first, to the order of lagged ∆xt's and, second, to the interpretation of their coefficients. 

In summary, we make use of two important facts resulting from appropriate augmentation of 
the order of the ARDL-model. First, the OLS estimators of the short-run parameters are T -
consistent with the asymptotically singular covariance matrix. Second, the ARDL-based esti-
mators of the long-run coefficients are super-consistent. Thus, valid inferences on the long-
term parameters can be made using standard normal asymptotic theory (Pesaran and Shin 
1999). We prefer this approach since it has the additional advantage of yielding consistent es-
timates of the long-run coefficients that are asymptotically normal, irrespective of whether the 
underlying regressors are I(0) or I(1), (Pesaran and Shin (1999), p. 17). However, what is 
most important to us is that the ARDL procedure is valid even if there is some doubt about the 
unit-root properties of some of the variables y and x (as e.g. the dividend yields and the stock 
returns). Following Pesaran and Shin (1999), in the case where xt and ut are uncorrelated, the 
ARDL procedure (in contrast to other procedures often proposed in the literature for estima-
tion of cointegrating relations) works irrespective of whether x and y are I(1) or are near I(1) 
processes. 

When estimating the long-run relationship, one of the most important issues is the choice of 
the order of the distributed lag function on yt and the 'forcing variables' xt for the unrestricted 
ECM model. One possibility would be to carry out the two-step ARDL estimation approach 
advanced by Pesaran and Shin (1999), in which the lag orders p and q are selected at first by 
the Akaike (AIC) or the Schwarz information criteria (SIC), (or as a substitute by the Hannan-
Quinn criterion (HQC, Hannan and Quinn (1979)) or by Theil's (1971) R-Bar Squared crite-

                                                 
10  However, the estimation of the short-run effects still requires an explicit modelling of the contemporaneous 

dependence between ut and vt. Cf. Pesaran, Shin (1998), p. 2 and 15. 
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rion).11 The excellent Monte Carlo results for small samples gained by Pesaran and Shin 
(1999) compared with the Fully-Modified OLS estimation procedure by Phillips and Hansen 
(1990) speak strongly in favour of this two-step estimation procedure. 

Setting the maximum orders for p and the q’s to 12 (with an eye on the monthly nature of our 
data), we compare the maximised values of the log-likelihood functions of the different 
(m+1)k+1 (with m: maximum lag and k: number of 'forcing variables') ARDL models. Most 
importantly, all the models have to be estimated based on the same sample period, namely 
(m+1, m+2, ... , n) (Belke (2000)). We select the final model by finding the values of p and q 
that maximise the absolute values of the above mentioned selection criteria. Then the selected 
model is estimated by the OLS procedure described above. These estimates will be referred to 
as AIC-ARDL and SIC-ARDL in this paper. 

Before applying the two-step procedure to our German stock market data, the model selection 
criteria are explained briefly. If one denotes the maximised values of the log-likelihood func-
tions of different ARDL (p,q) models by LL (p,q), then 

(14) AIC (p,q) = LL(p,q) - (p+q+1+k), and 

(15) SIC (p,q) = LL(p,q) - 1/2*(p+q+1+k)*logN, 

with N = sample size and k = number of exogenous/deterministic regressors in the ARDL 
model.12 The AIC-ARDL and the SIC-ARDL estimates perform very similar in small samples 
as shown by Pesaran and Shin (1999). However, the SIC reveals an even slightly better per-
formance in most of the experiments. This may be a reflection of the fact that the SIC, like the 
HQC, are consistent in the sense that for sufficiently large samples they choose the correct 
model (Belke (2000)). However, the assumption is that the true model is among the models 
under consideration. Consistency is not valid for the AIC or the R-Bar Squared criterion. 
However, this does not necessarily mean a disadvantage for our purposes, because one can 
never be sure that the 'true' model does in fact belong to the models actually investigated. 
Moreover, the SIC tends to select a more parsimonious specification than, for example, the 
AIC. However, the fact that a quite liberal specification might be very important for the rea-
sons described above, again speaks in favour of the AIC.13 

4.1.2. Estimating the Coefficients of the Error-Correction Model 

The derivation of the error-correction model from the ARDL equation (9) can best be under-
stood by rewriting this equation in vector representation: 

(16) φ β δ( , ) ( , ) 'L p y L q x w ut i i it
i

k

t t= + +
=
∑

1

, 

with 

  φ φ φ φ( , ) ...L p L L Lp
p= − − − −1 1 2

2  

                                                 
11  However, one drawback in practical work is that one has to set the maximum lag orders p and q a priori al-

though the 'true' orders of the ARDL (p,m) model are not known a priori. Cf. Pesaran, Shin (1998), pp. 3 and 
16. 

12 In the case of the ARDL model shown in eq. (9) with an intercept and a deterministic trend, k amounts to 2. 
13 For a further description and discussion of the model selection criteria cf. Lütkepohl (1991), section 4.3, and 

Pesaran and Pesaran (1997), pp. 352 ff. 
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  β β βi i i i iq
qL q L L L

i

i( , ) ...= − − − −β1 1 2
2 , for i = 1, 2, .., k. 

L represents the usual lag operator (Lyt = yt-1). The variable wt represents a s x 1 vector of de-
terministic variables such as an intercept, seasonal dummies, time trends, or exogenous vari-
ables with fixed lags. In section 4.1.1., it was shown in a bit more generalised fashion (see eq. 
(11)), that the long-run response of yt to a unit change in xit can be estimated as: 

(17) $
$ $ ... $

$ $ ... $
$

$

θ
β β β

φ φ φi
i i iq

p

i=
+ + +

− − −
0 1

1 21
. 

Similarly, the long-run response of yt to a unit change in the deterministic exogenous variable 
wt with fixed lags is given by a transformation of the OLS estimate of δ in eq. (16) for the 
chosen ARDL model: 

(18) $
$( $ , $ , $ ,..., $ )

$ $ ... $
$

ψ
δ

φ φ φ
=

− − −
p q q q k

p

1 2

1 21
. 

If one substitutes 

y y yt s t t j
j

s

− − −
=

−

= −∑1
1

1

∆  (s = 1, 2, ... , p) and 

x x xi t s i t i t j
j

s

, , ,− − −
=

−

= −∑1
1

1

∆  (s = 1, 2, ... , qi) 

into (16) and then rearranges the different terms appropriately, one gets the error-correction 
model corresponding to the above ARDL equation: 

(19) ∆ ∆ ∆ ∆ ∆y p EC x w y x ut t i it
i

k

t j t j
j

p

ij i t j
j

q

i

k

t

i

= − + + − − +−
=

−
=

−

−
=

−

=
∑ ∑ ∑∑φ β δ φ β( , $ ) ' *

$
*

,

$

1 1 0
1 1

1

1

1

1

, 

with the error-correction term: 

(20) EC y x wt t i it
i

k

t= − −
=
∑ $ $ 'θ ψ

1

. 

The error-correction parameter that measures the quantitative importance of the error-
correction term, is represented by: 

(21) − = − − − − −φ φ φ φ( , $ ) ( $ $ ... $ )$1 1 1 2p p . 

The other coefficients φ j
*  and β ij

*  refer to the short-term dynamics of the model under consid-
eration. They are in the case of the lagged differences of the dependent variable determined 
by: 

(22)  

$ ...
$ ...

$

*
$ $

*
$ $

$
*

$

φ φ φ φ φ

φ φ φ φ

φ φ

1 1 3 2

2 1 3

1

= + + + +

= + + +

=

−

−

−

p p

p p

p p
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and in the case of the changes in the 'long-run forcing' variables respectively by 

(23)  

β β β β β

β β β β

β β

i i q i q i i

i i q i q i

i q i q

i i

i i

i i

1 1 3 2

2 1 3

1

*
, $ , $ , ,

*
, $ , $ ,

, $
*

, $

...

...

= + + + +

= + + +

=

−

−

−

. 

The remaining cointegration parameters $θi  and $ψ  are estimated using the equations (17) and 
(18).  

Based on the above relations, we finally derive the estimated parameters of the ECM de-
scribed in eq. (19) from the estimated coefficients of the underlying ARDL model. The esti-
mated standard errors of these estimates allow for non-zero co-variances between the esti-
mates of the short-run and the long-run coefficients. 

4.2. Application to German Stock Market Data 

The estimation of the long run parameters and the associated error-correction model for the 
unrestricted ECM regression of the stock market returns, cases x = h, x = ∆d, and x = h–∆d 
(which we abbreviate in the following as h, d, or hd), on the dividend yield dp is now carried 
out using the two-step ARDL estimation approach proposed by Pesaran and Shin (1999). 

4.2.1. Estimating the Orders of the Distributed Lag Functions 

As emphasised already, the most important issue is the choice of the order of the distributed 
lag function on yt and the 'forcing variables' xt for the unrestricted ECM model when estimat-
ing the long-run relationship. We prefer to carry out the two-step ARDL estimation approach 
by Pesaran and Shin (1999) and apply it to our model 2 (x=d, without trend), where firstly the 
lag orders p and q are selected by the Akaike or the Schwarz information criteria, the Hannan-
Quinn or the R-Bar Squared criterion. The selected model has been estimated by the OLS 
procedure. Setting the maximum orders for p and the q's to 12 (since we use monthly data), 
we compare the maximised values of the log-likelihood functions of the (m+1)k+1 (with m: 
maximum lag and k: number of 'forcing variables') different ARDL models. Table 3 shows 
the selected lag order and the corresponding maximising empirical values of the model selec-
tion criteria, AIC and SIC (the values of the other two criteria are available on request), for 
each variants of the model (MA = 12, 24, 36, 48 months). The sequence of the lag orders (p, 
q1, q2 ...) always corresponds to the sequence of the variables in both models. Both selection 
criteria point at Model 2 (MA 12 months) without trend, as the best fitting model. 

(Table 3 about here) 

 

4.2.2. Estimating Long-Run Relationships 

The estimation results for the long-run relationship between German stock market returns and 
different stock market variables are displayed in Tables 4a to 5b. Applying the ARDL ap-
proach, we only focus on specifications without a deterministic trend in the cointegration vec-
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tor.14 The values in brackets represent the standard errors of the parameter estimates. The as-
sociated estimated error correction regressions are obtained later. 

(Table 4a. about here) 

(Table 4b. about here) 

(Table 5a. about here) 

(Table 5b. about here) 

The long-run coefficients based on the selected ARDL models estimated over the maximum pe-
riod 1974.8 to 2003.9 are listed in Tables 4a to 5b. The results throughout the Tables 4a to 5b 
show that the long-run elasticity of dividend growth with respect to the dividend yield is nega-
tive/positive, which is in line with theoretical reasoning.15 The specifications according to the 
SIC-, and AIC- model selection criteria yield very similar point estimates. However, the lag or-
der specifications differ dependent on the choice of the number of months in the moving average 
specification. In addition, the estimated standard errors vary depending on the specific model se-
lection criterion and on the order of the selected ARDL model.  

4.2.3. Estimating Final Error-Correction Models and Model Selection 

After determining the lag order and the long-run coefficients for each ARDL model, we can 
derive the estimates for the error correction models (as explained in section 4.1.2). One fur-
ther issue that needs to be addressed before the best specification can be selected is: what cri-
terion should one make the final selection? We started with the four possible criteria (intro-
duced in section 4.1.1.), but made our final choice based on two of them, namely on the 
Akaike - and the Schwarz information criterion, AIC and SIC. 

In order to select the best performing ARDL-model, the significance of the resulting ECM-
parameters or, alternatively in cases of identical samples, the empirical values of the two in-
formation criteria are compared. The advantage of the AIC lies in its property to generally 
lead to a higher order of ARDL model than the SIC. This tendency leads in turn, to smaller 
estimated standard errors and a higher chance of white-noise property of the residuals.16 
However, the SIC is again chosen as the alternative to the AIC because it asymptotically de-
termines the true model under certain preconditions (Belke (2000)). Table 2 shows the em-
pirical realisations of both information criteria. These values are already maximised in the 
sense that they refer to ARDL-models whose orders have already been selected by the respec-
tive information criterion. As already stated, we selected the model displayed in Table 3a - 
(Model 2, x = d, without trend, MA = 12 months). 

In Table 5, the values in brackets are the t-values of the error-correction parameter estimates 
based on the selected model. Taking a closer look at the estimated error correction parameter 
(estimated error-correction model, Table 6), the main result is that the error correction coeffi-

                                                 
14  Recall that cointegration was established by our cointegration tests in section 3.1 preponderantly if a deter-

ministic trend is excluded.  
15 As it is well-known from cointegration theory, we should not draw any inference from the t-values of the co-

efficient estimates. However, for instance Domanski and Kremer (1998) clearly violate this key guideline 
when interpreting the estimation results of their table 1 on pp. 30. 

16 It has already been mentioned that a less parsimonious specification is preferred on theoretical grounds. 
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cient is highly significant as compared with the usual t-distribution.17 The estimated error-
correction parameter has the correct negative sign. Its size, estimated at a magnitude of 
around -0.06 to -0.12, suggests a moderate speed of convergence to equilibrium. The most 
conservative critical t-values (leading to the lowest chance of rejection of the non-
cointegration hypothesis) for the ECM parameter estimates can be taken from Banerjee, 
Dolado and Mestre (1992), Appendix Table 4. For the selected model we choose the critical 
value for one exogenous regressor, ECM with a constant and no deterministic trend and 
around 300 observations (α = 0.05), as falling between a range from 3.27 (100 obs.) to 3.23 
(500 obs.). Even in this extreme case, two of the three estimated error-correction parameters 
are significant at α = 0.05. 

(Table 6 about here) 

At first glance, the R-squared appear to be rather low and corresponds with values observed 
by Domanski and Kremer (1998). However, this pattern is not exceptional for an ECM mod-
elled for financial market variables. The models fit very well on average, explaining almost 7 
percent of the variations in future stock market returns (changes in the (logs of) h, ∆d, or h–
∆d). This is even valid when the fit is measured by the R-Bar-Squared. In all cases, the under-
lying ARDL equations also pass the diagnostic tests for the serial correlation of residuals, for 
functional form misspecification and for non-normal and homoskedastic disturbances. Be-
yond the highly significant ECM parameter, some but not all of the estimated coefficients of 
the selected ECMs are also significant (the reported standard errors allow for the sampling 
variations in the estimated long-run coefficients) and are of a similar magnitude across the 
different specifications selected by the two criteria.18 

Tables 7 and 8 contain the detailed results for the selected error-correction model, giving 
some intuition on the order of magnitude of the detected impact of dividend yield on stock 
market returns. The dividend yield is in both selected cases (ARDL (1,0) and ARDL (3,5)) 
significant and reveals the correct negative sign. 

(Table 7 about here) 

(Table 8 about here) 

Overall, the results which support short- and long-term impacts of the dividend yield on fu-
ture German stock returns appear to be supported from another angle: on the basis of a fully 
specified stock market model, of monthly data (which seem to be appropriate to capture the 
short-term dynamics), of an econometric procedure whose reliability is not dependent on the 
order of integration of the included variables and which additionally takes into account devia-
tions from equilibrium long-term relationships between stock market variables as 'driving 
forces' of the short-term dynamics in future German stock returns. As outlined earlier, the co-
efficient of dp is positive in the case of the dependent variables h and h–∆d, and negative if 
∆d is the dependent variable, as suggested by theoretical reasoning. However, it has to be kept 

                                                 
17 Under the assumption that the vector of cointegrating parameters is given the distribution of the t-statistics 

can be approximated in many cases by the standard normal distribution. This would also legitimise the use of 
the student-t-distribution for a judgment on the significance of the error-correction parameter. See Banerjee 
et al. (1993), pp. 230 ff., and Kremers, Ericsson and Dolado (1992), pp. 328 ff. 

18  Our ARDL procedure does not allow to skip the seemingly insignificant variables, since they contribute to 
the fit according to the empirical realisations of the information criteria. 



 -16-

in mind that significant error-correction parameter estimates could be gained only for a small 
share of possible specifications. 

5. Dynamic Forecasts for the Growth Rate of German Stock Returns 
Based on an Assessment of the Future Course of Dividend Yield 

The selected error-correction models can also be used in forecasting the growth rate of Ger-
man stock returns, conditional on the dividend yield variables including a constant but no 
trend. We dynamically forecast the growth rate of German stock returns over the period 
2001M10 to 2002M9 (12-months in-sample forecasts). For this purpose, our estimation will 
dispense with the last year in the sample and we now have to re-estimate the specification 
given in Table 7 for the shorter sample. We will start with a forecast based on our preferred 
model 2 without trend selected by the SIC criterion and displayed in Table 4a (x = d and MA 
= 12 months). As Table 9a reveals, the root mean squares of forecast error (approx. 8.14 per 
cent per month) does not compare favourably with the value of the same criterion computed 
over the estimation period which is less than half its value. Moreover, the model fails to fore-
cast the extent of the future stock return growth in each forecasted month. Nevertheless, the 
model does not fail to forecast the sign except in two cases (i.e., March and April 2002). The 
plot of the dynamic forecast for the growth rate of future German stock returns in Figure 1a 
reveals that the forecasts are very close to the actual values for the estimation period, but not 
for the forecast period. All in all, the mixed results of the forecast do not totally corroborate 
the choice of this model. 

Using the same model, Table 9b displays the dynamic in-sample 3-month ahead forecasts of 
German stock returns based on the dividend yield. The root mean squares of forecast errors of 
around 3.53 percent per quarter is, in contrast to the 12-month ahead forecast, comparable to 
the value of the same criterion computed over the estimation period. Additionally, the model 
does not miss the sign of future stock return growth in each forecasted month. Our main im-
pression is corroborated by the plot of the dynamic forecasts for the growth rate of German 
stock returns in Figures 1a and 1b. Summarising, the results of the forecasts corroborate our 
choice of our model chosen by the SIC only if forecasts are made over a short horizon. 

(Table 9a. about here) 

(Table 9b. about here) 

(Figure 3a. about here) 

(Figure 3b. about here) 

Finally we also enacted the same exercise for our other final model selected by the AIC crite-
rion (Model 2 with x = ∆d and MA = 12 months). Here, we also differentiated between a 12-
month and a 3-month in-sample forecast. The results are displayed in Tables 10a and 10b and in 
Figures 4a and 4b, respectively. Although the lag structure of the model chosen by the AIC is 
different, the results display a pattern similar to those for the model chosen by the SIC criterion. 

(Table 10a. about here) 

(Table 10b. about here) 

(Figure 4a. about here) 

(Figure 4b. about here) 
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6. Conclusions and Implications for the Debate 
on the Impacts of Dividend Yield on Asset Prices 

For a few specifications, we find that the dividend yield has a statistically significant positive 
impact on the future stock returns in Germany: “low” stock prices relative to dividends fore-
cast higher subsequent returns. In these cases, and in line with previous findings and theoreti-
cal considerations, we find that the power of dividend yields to forecast future stock expected 
returns increases with the return horizon. In the first part of the paper we conclude that the re-
lationship between dividend yield and the future stock returns is one-way from the first to the 
latter if stock market returns are measured by the annualised one-month dividend growth rates 
in percent. Hence, (only) in this case the dividend yield variable can best be characterised as a 
so-called “forcing variable” of future stock returns. For other measures of the dividend yield 
used by us, we either find either a significant co-movement with causality going into both di-
rections or no cointegration, depending on the lag structure. 

Our results based on the ARDL approach corroborate findings by Domanski and Kremer 
(1998), who are able to detect a significant positive relationship between the magnitude of fu-
ture stock returns and the level of the dividend yields in Germany. As indicated by the signifi-
cant positive impact of the dividend yield in the I(0) part and the I(1) part of our estimated er-
ror-correction models, we find that even short-run increases in the dividend yield could have 
a temporary impact on future stock returns (i.e., the annualised one-month dividend growth) 
in addition to permanent ones. The latter finding had already been theoretically suggested by 
earlier studies of Fama and French (1988), Campbell, Lo and Shiller (1997) and Domanski 
and Kremer (1998). However, significant error-correction parameter estimates could be 
gained only for a small share of all possible specifications. Moreover, it proved to be ex-
tremely difficult to identify an empirical model with good forecast properties, at least for the 
longer term, i.e. 12 months. Therefore, it is not conclusive at this stage of analysis that divi-
dend yields are generally useful for forecasting stock market returns.  

We realise that the results are preliminary, not least because the questions posed in this paper 
have not been tackled based on the highly suitable autoregressive distributed lag approach à la 
Pesaran in the literature so far. However, the limited number of observations is no reason to 
be overly cautious any more. The procedure used in this article is robust with respect to small 
samples and the uncertainty of the order of integration of the included variables. Our approach 
was applied only to Germany, since replicating it for many others like the US would simply 
have taken too much space. We leave this task for future research. Moreover, empirical work 
could follow in the sense that it could try to exploit the progress in economic theory by im-
posing it as a restriction on the empirical models in order to exactly identify long-run relations 
(Pesaran, 1997). However, because of scarcity of knowledge in this area, there will still be a 
long way to go. 
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Data 
All stock market data for Germany was taken from the Thomson Financials data base. The in-
dices used cover around 80% of the stock market capitalization in Germany.  

The following stock market return measures were calculated:  

dp = natural logarithm of the dividend yield; 

h = holding stock market returns (capital gains plus dividend returns, presented by the total 
stock market performance index), expressed as the annualised one-month continuously 
compounded stock return in percent; 

∆d = dividend growth, expressed as the annualised one-month continuously compounded 
stock return in percent and 

h–∆d = holding period return minus dividend growth.  

In the text, a number behind a variables indicates the time horizon under review. For instance, 
h36 would indicate the holding period return over the coming 36-months. In the case of dp, a 
number would indicate the time horizon which is forecast by using the dividend yield. 
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Figure 1. – Stock returns and the dividend yield, scatter diagram 
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(c) Holding period yield minus divi-
dend growth against dividend yield 
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Figure 2. – Stock returns and the dividend yield over time, line diagram 
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(c) Holding period yield minus divi-
dend growth against dividend yield 
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Data source: Thomson Financials; own calculations. – Time period: 1974.8 to 2003.9. Time horizon 12-month 
for all variables.  
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Figure 3a. – Dynamic in-sample 12-month ahead forecasts of the level of German stock re-
turns based on the dividend yield (model 2 selected by SIC for x = d and MA = 12 months) 
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Figure 3b. – Dynamic in-sample 3-month ahead forecasts of the level of German stock returns 
based on the dividend yield (model 2 selected by SIC for x = d and MA = 12 months) 
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Figure 4a. – Dynamic 12-months ahead in-sample forecasts of the level of German stock re-
turns based on the dividend yield (Model 2 selected by AIC for x = ∆d and MA = 12 months) 
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Figure 4b. – Dynamic 3-months ahead in-sample forecasts of the level of German stock 
returns based on the dividend yield (Model 2 selected by AIC for x = d and MA = 12 
months) 
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Table 1. – Long-horizon regressions of stock market measures on the log dividend yield and a 
constant for Germany 

     x = h 

Forecast horizon K 1 3 12 24 36 48 

R2(K) 0.002 0.09 0.019 0.043 0.068 0.065 

β(K) 7.943 9.556 7.361 7.704 7.512 5.786 

t-value Newey West 0.833 1.100 1.280 1.622 1.763 1.660 

 x = ∆d 

R2(K) 0.039 0.108 0.269 0.259 0.236 0.280 

β(K) -16.335 -16.470 -14.533 -11.388 -9.423 -9.293 

t-value Newey West -3.346 -3.752 -5.569 -4.848 -3.949 -4.437 

 x = h–∆d 

R2(K) 0.016 0.054 0.184 0.353 0.471 0.546 

β(K) 24.279 26.030 21.894 19.092 16.935 15.080 

t-value Newey West 2.370 2.869 4.123 5.748 6.342 7.010 

Estimation period: August 1974 to September 2003, monthly data. h is the annualised one-month continuously 
compounded stock return in percent. ∆d and ∆p represent the annualised one-month continuously compounded 
dividend and profit growth rate, respectively. α(H) is the constant of the regression (not shown). β(H) is the 
slope coefficient of the regression. Regression is estimated on the basis of OLS. HHt ,+ε  is the error term which 
is autocorrelated owing to data overlap for H > 1 under the null hypothesis of no predictability. Standard errors 
and t-values are corrected for serial correlation and heteroskedasticity in the equation using the New and West 
(1987), that is general covariance estimators that are consistent in the presence of both heteroskedasticity and 
autocorrelation of unknown form are used. The truncation lag, the parameter representing the number of auto-
correlations used in evaluating the dynamics of the OLS residuals, has been chosen as 5. 

Data source: Thomson Financials; own calculations. 
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Table 2a. – F-statistics for testing the existence of a long-run relationship between 
the stock market return and the dividend yield (model 1: x = h) 

 Based on regressions with the 
change of stock returns d(h) as 

dependent variable  

Based on regressions with the 
change of the dividend yield 
d(dp) as dependent variable 

MA-order of h Without trend With trend Without trend With trend 

h1 0.375 6.432 0.042 0.086 

h3 0.379 5.009 0.287 0.319 

h12 6.452 10.379 29.380 40.973 

h24 1.490 4.961 12.587 13.130 

h36 1.446 1.930 4.727 5.282 

h48 1.166 1.723 2.162 2.688 

FC(0.1) 4.788 6.335 4.788 6.335 

FC(0.05) 5.764 7.423 5.764 7.423 

FC(0.01) 7.815 9.786 7.815 9.786 
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Table 2b. – F-statistics for testing the existence of a long-run relationship between 
the stock market return and the dividend yield (model 2: x = ∆d) 

 Based on regressions with the 
change of stock returns d(∆d) as 

dependent variable  

Based on regressions with the 
change of the dividend yield 
d(dp) as dependent variable 

MA-order of 
∆d 

Without trend With trend Without trend With trend 

∆d1 0.345 0.255 0.058 0.067 

∆d3 2.746 3.347 0.024 0.210 

∆d12 217.707 10.383 0.142 0.610 

∆d24 39.919 2.515 0.606 2.022 

∆d36 44.835 3.400 0.638 5.160 

∆d48 48.312 1.965 0.740 4.150 

WC(0.1) 4.788 6.335 4.788 6.335 

WC(0.05) 5.764 7.423 5.764 7.423 

WC(0.01) 7.815 9.786 7.815 9.786 
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Table 2c. – F-statistics for testing the existence of a long-run relationship between 
the stock market return and the dividend yield (model 3: x=h–∆d) 

 Based on regressions with the 
change of stock returns d(h–∆d) 

as dependent variable  

Based on regressions with the 
change of the dividend yield 
d(dp) as dependent variable 

 Without trend With trend Without trend With trend 

(h–∆d)1 0.754 3.297 0.079 0.759 

(h–∆d)3 1.269 2.950 0.033 0.324 

(h–∆d)12 30.585 30.983 18.206 20.318 

(h–∆d)24 1.112 2.606 16.209 18.891 

(h–∆d)36 1.619 0.853 0.753 0.695 

(h–∆d)48 0.620 0.383 0.101 0.070 

WC(0.1) 4.788 6.335 4.788 6.335 

WC(0.05) 5.764 7.423 5.764 7.423 

WC(0.01) 7.815 9.786 7.815 9.786 

Notes: Maximum sample: 1974.8 to 2003.9. Lag orders: p = q1 = q2 = 12. We implemented a 
dummy which is coded as 1 from 2000(1) on, otherwise 0, into those regressions which also 
include a deterministic trend. 
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Table 3. – Empirical values of model selection criteria 

ECM SIC-value of 
SIC - ARDL  

AIC-value of 
AIC - ARDL  

Model 2 (MA 12 months)

without trend 

-881.7076 

ARDL (1,0) 

-872.8644 

ARDL (3,5) 

Model 2 (MA 24 months)

without trend 

-624.4295 

ARDL (1,0) 

-617.5638 

ARDL (7,0) 

Model 2 (MA 36 months)

without trend 

-477.5989 

ARDL (1,0) 

-468.7692 

ARDL (12,0) 

Model 2 (MA 48 months)

without trend 

-391.9962 

ARDL (1,0) 

-384.2233 

ARDL (3,0) 

Sample: For MA=12 months: 1975M8 to 2002M9. For MA=24 months: 1975M8 to 2001M9.  
For MA=36 months: 1975M8 to 2000M9. For MA=48 months: 1975M8 to 1999M9. 
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Table 4a. – Estimated long-run coefficients using the ARDL approach  
(model 2, x = d, without trend, MA = 12 months) 

 SIC - ARDL (1,0) AIC - ARDL (3,5) 

Intercept 14.1207 
(7.8346) 

12.8791 
(6.6367) 

Dividend yield -7.3630 
(8.7523) 

-6.4375 
(7.3780) 

Sample: 1975.8 to 2002.9. Values in brackets are the standard errors of the parameter estimates. 
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Table 4b. – Estimated long-run coefficients using the ARDL approach 
(model 2, x = d, without trend, MA = 24 months) 

 SIC - ARDL (1,0) AIC - ARDL (7,0) 

Intercept 281.5509 
(1675.9) 

-32.0534 
(93.9957) 

Dividend yield -307.7547 
(1884.1)  

44.7870 
(105.4863)  

Sample: 1975.8 to 2001.9. Values in brackets are the standard errors of the parameter estimates. 
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Table 5a. – Estimated long-run coefficients using the ARDL approach 
(model 2, x = d, without trend, MA = 36 months) 

 SIC - ARDL (1,0) AIC - ARDL (10,0) 

Intercept 75.0618 
(69.4743) 

-.38877 
(18.4145) 

Dividend yield -76.4702 
(79.4155) 

10.3068 
(20.9638) 

Sample: 1975.8 to 2000.9. Values in brackets are the standard errors of the parameter estimates. 
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Table 5b. – Estimated long-run coefficients using the ARDL approach 
(Model 2, x = d, without trend, MA = 48 months) 

 SIC - ARDL (1,0) AIC - ARDL (3,0) 

Intercept 53.6893 
(28.2457) 

83.8705 
(112.1945) 

Dividend yield -50.3357 
(31.3694) 

-84.0636 
(125.1270) 

Sample: 1975.8 to 1999.9. Values in brackets are the standard errors of the parameter estimates. 
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Table 6. – Error correction parameter estimates 

ECM ARDL (1,0) R 2  ARDL (3,5) R 2  ARDL (12,12) R 2  

Model 
Table 3a 

-.064278 
(-2.9427) 

.022828 -.077150 
(-3.3534) 

.061555. -.12009 
(-3.9385) 

.069402 

Sample: 1975M8 to 2002M9. Model specifications as denoted in Table 3a; t-values of EC term in brackets.  
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Table 7. – Error correction representation of selected ARDL model 2 (ECM without trend): 
  ARDL (1,0) model selected based on Schwarz Bayesian Criterion (SIC) 
******************************************************************************* 

 Dependent variable is dD12                                                     

 326 observations used for estimation from 1975M8  to 2002M9                    

******************************************************************************* 

 Regressor              Coefficient       Standard Error         T-Ratio[Prob]  

 dDP12                     -.47328             .63151            -.74944[.454]  

 dINPT                      .90766             .66289             1.3692[.172]  

 ecm(-1)                  -.064278            .021844            -2.9427[.003]  
******************************************************************************* 

 List of additional temporary variables created:                                

 dD12 = D12-D12(-1)                                                             

 dDP12 = DP12-DP12(-1)                                                          

 dINPT = INPT-INPT(-1)                                                          

 ecm = D12 +   7.3630*DP12  -14.1207*INPT                                       

******************************************************************************* 

 R-Squared                    .028841   R-Bar-Squared                  .022828  

 S.E. of Regression            3.5384   F-stat.    F(  2, 323)    4.7962[.009]  

 Mean of Dependent Variable -.0074529   S.D. of Dependent Variable      3.5795  

 Residual Sum of Squares       4044.1   Equation Log-likelihood      -873.0273  

 Akaike Info. Criterion     -876.0273   Schwarz Bayesian Criterion   -881.7076  

 DW-statistic                  2.1331                                           

******************************************************************************* 

 R-Squared and R-Bar-Squared measures refer to the dependent variable           

 dD12 and in cases where the error correction model is highly                   

 restricted, these measures could become negative.                             
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Table 8. – Error correction representation of selected ARDL model 2 (ECM without trend): 
ARDL (3,5) model selected based on Akaike Information Criterion (AIC) 

******************************************************************************* 

 Dependent variable is dD12                                                     

 326 observations used for estimation from 1975M8  to 2002M9                    

******************************************************************************* 

 Regressor              Coefficient       Standard Error         T-Ratio[Prob]  

 dD121                    -.059012            .056414            -1.0461[.296]  

 dD122                     .085184            .055962             1.5222[.129]  

 dDP12                     -9.4090             3.6077            -2.6081[.010]  

 dDP121                    -2.5191             3.6441            -.69128[.490]  

 dDP122                    -1.8994             3.6461            -.52095[.603]  

 dDP123                     .31673             3.6436            .086930[.931]  

 dDP124                   -11.3108             3.6588            -3.0914[.002]  

 dINPT                      .99362             .67690             1.4679[.143]  

 ecm(-1)                  -.077150            .023007            -3.3534[.001]  
******************************************************************************* 

 List of additional temporary variables created:                                

 dD12 = D12-D12(-1)                                                             

 dD121 = D12(-1)-D12(-2)                                                        

 dD122 = D12(-2)-D12(-3)                                                        

 dDP12 = DP12-DP12(-1)                                                          

 dDP121 = DP12(-1)-DP12(-2)                                                     

 dDP122 = DP12(-2)-DP12(-3)                                                     

 dDP123 = DP12(-3)-DP12(-4)                                                     

 dDP124 = DP12(-4)-DP12(-5)                                                     

 dINPT = INPT-INPT(-1)                                                          

 ecm = D12 +   6.4375*DP12  -12.8791*INPT                                       

******************************************************************************* 

 R-Squared                    .087543   R-Bar-Squared                  .061555  

 S.E. of Regression            3.4676   F-stat.    F(  8, 317)    3.7897[.000]  

 Mean of Dependent Variable -.0074529   S.D. of Dependent Variable      3.5795  

 Residual Sum of Squares       3799.7   Equation Log-likelihood      -862.8644  

 Akaike Info. Criterion     -872.8644   Schwarz Bayesian Criterion   -891.7989  

 DW-statistic                  2.0100                                                       
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Table 9a. – Dynamic in-sample 12-month ahead forecasts of the level of German stock returns 
based on the dividend yield (model 2 selected by SIC for x =d and MA = 12 months) 

******************************************************************************* 

 Based on 314 observations from 1975M8  to 2001M9 .                             

 ARDL(1,0) selected using Schwarz Bayesian Criterion.                           

 Dependent variable in the ARDL model is D12 included with a lag of 1.          

 List of other regressors in the ARDL model:                                    

 DP12            INPT                                                           

******************************************************************************* 

 Observation             Actual             Prediction             Error        

  2001M10                -13.8791              -10.4584              -3.4208    

  2001M11                -10.4747               -9.1794              -1.2952    

  2001M12                 -6.6052               -7.9964               1.3912    

  2002M1                 -13.9974               -6.8539              -7.1436    

  2002M2                 -10.8478               -5.8113              -5.0365    

  2002M3                   5.9525               -4.7927              10.7453    

  2002M4                   2.8459               -3.8427               6.6885    

  2002M5                  -.10917               -2.9708               2.8616    

  2002M6                 -11.0711               -2.2081              -8.8629    

  2002M7                 -14.8009               -1.5403             -13.2606    

  2002M8                 -12.6037               -.90205             -11.7017    

  2002M9                 -12.4071               -.38543             -12.0217    

******************************************************************************* 

                                                                                

             Summary Statistics for Residuals and Forecast Errors               

******************************************************************************* 

                      Estimation Period            Forecast Period              

                     1975M8  to 2001M9            2001M10 to 2002M9             

******************************************************************************* 

 Mean                         -.0000                     -3.4214                

 Mean Absolute                1.9827                      7.0358                

 Mean Sum Squares            11.2325                     66.3285                

 Root Mean Sum Squares        3.3515                      8.1442                
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Table 9b. – Dynamic in-sample 3-month ahead forecasts of the level of German stock returns 
based on the dividend yield (model 2 selected by SIC for x =d and MA = 12 months) 

Dynamic forecasts for the level of D12                      

******************************************************************************* 

 Based on 323 observations from 1975M8  to 2002M6 .                             

 ARDL(1,0).                                                                     

 Dependent variable in the ARDL model is D12 included with a lag of 1.          

 List of other regressors in the ARDL model:                                    

 DP12            INPT                                                           

******************************************************************************* 

 Observation             Actual             Prediction             Error        

  2002M7                 -14.8009               -9.7841              -5.0168    

  2002M8                 -12.6037               -8.5694              -4.0344    

  2002M9                 -12.4071               -7.5338              -4.8733    

******************************************************************************* 

                                                                                

             Summary Statistics for Residuals and Forecast Errors               

******************************************************************************* 

                      Estimation Period            Forecast Period              

                     1975M8  to 2002M6            2002M7  to 2002M9             

******************************************************************************* 

 Mean                          .0000                     -4.6415                

 Mean Absolute                2.0936                      4.6415                

 Mean Sum Squares            12.4388                     21.7310                

 Root Mean Sum Squares        3.5269                      4.6617                
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Table 10a. – Dynamic 12-months ahead in-sample forecasts of the level of German stock re-
turns based on the dividend yield (Model 2 selected by AIC for x = ∆d and MA = 12 months) 
******************************************************************************* 

 Based on 314 observations from 1975M8  to 2001M9 .                             

 ARDL(6,7) selected using Akaike Information Criterion.                         

 Dependent variable in the ARDL model is D12 included with a lag of 6.          

 List of other regressors in the ARDL model:                                    

 DP12            DP12(-1)        DP12(-2)        DP12(-3)        DP12(-4)       

 DP12(-5)        DP12(-6)        DP12(-7)        INPT                           

******************************************************************************* 

 Observation             Actual             Prediction             Error        

  2001M10                -13.8791               -8.0222              -5.8569    

  2001M11                -10.4747               -7.2481              -3.2265    

  2001M12                 -6.6052               -7.8574               1.2522    

  2002M1                 -13.9974               -7.7671              -6.2303    

  2002M2                 -10.8478               -4.9877              -5.8601    

  2002M3                   5.9525               -5.7072              11.6597    

  2002M4                   2.8459               -1.4678               4.3137    

  2002M5                  -.10917                .47107              -.58024    

  2002M6                 -11.0711                .99067             -12.0617    

  2002M7                 -14.8009                3.4534             -18.2544    

  2002M8                 -12.6037                3.5014             -16.1051    

  2002M9                 -12.4071                4.0621             -16.4692    

******************************************************************************* 

                                                                                

             Summary Statistics for Residuals and Forecast Errors               

******************************************************************************* 

                      Estimation Period            Forecast Period              

                     1975M8  to 2001M9            2001M10 to 2002M9             

******************************************************************************* 

 Mean                         -.0000                     -5.6182                

 Mean Absolute                2.0586                      8.4892                

 Mean Sum Squares            10.0881                    106.9708                

 Root Mean Sum Squares        3.1762                     10.3427                

******************************************************************************* 
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Table 10b. – Dynamic 3-months ahead in-sample forecasts of the level of German stock re-
turns based on the dividend yield (model 2 selected by AIC for x = d and MA = 12 months) 

Dynamic forecasts for the level of D12                      

******************************************************************************* 

 Based on 323 observations from 1975M8  to 2002M6 .                             

 ARDL(6,7).                                                                     

 Dependent variable in the ARDL model is D12 included with a lag of 6.          

 List of other regressors in the ARDL model:                                    

 DP12            DP12(-1)        DP12(-2)        DP12(-3)        DP12(-4)       

 DP12(-5)        DP12(-6)        DP12(-7)        INPT                           

******************************************************************************* 

 Observation             Actual             Prediction             Error        

  2002M7                 -14.8009               -5.7937              -9.0072    

  2002M8                 -12.6037               -4.8943              -7.7095    

  2002M9                 -12.4071               -5.8713              -6.5358    

******************************************************************************* 

                                                                                

             Summary Statistics for Residuals and Forecast Errors               

******************************************************************************* 

                      Estimation Period            Forecast Period              

                     1975M8  to 2002M6            2002M7  to 2002M9             

******************************************************************************* 

 Mean                         -.0000                     -7.7508                

 Mean Absolute                2.1695                      7.7508                

 Mean Sum Squares            11.3837                     61.0942                

 Root Mean Sum Squares        3.3740                      7.8163                

******************************************************************************* 
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Figure 4a. – Dynamic 12-months ahead in-sample forecasts of the level of German stock re-
turns based on the dividend yield (Model 2 selected by AIC for x = ∆d and MA = 12 months) 
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Figure 4b. – Dynamic 3-months ahead in-sample forecasts of the level of German stock 
returns based on the dividend yield (Model 2 selected by AIC for x = d and MA = 12 
months) 
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