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Abstract. We compare sparse and dense representations of predictive models in macroe-

conomics, microeconomics and finance. To deal with a large number of possible predictors,

we specify a “spike-and-slab” prior that allows for both variable selection and shrinkage.

The posterior distribution does not typically concentrate on a single sparse or dense

model, but on a wide set of models. A clearer pattern of sparsity can only emerge when

models of very low dimension are strongly favored a priori.

1. Introduction

The recent availability of large datasets, combined with advances in the fields of statistics,

machine learning and econometrics, have generated interest in predictive models with many

possible predictors. In these cases, standard techniques such as ordinary least squares,

maximum likelihood, or Bayesian inference with uninformative priors perform poorly, since

the proliferation of regressors magnifies estimation uncertainty and produces inaccurate

out-of-sample predictions. As a consequence, inference methods aimed at dealing with the

curse of dimensionality have become increasingly popular.

In very general terms, these methodologies can be divided in two broad classes. Dense-

modeling techniques recognize that all possible explanatory variables might be important

for prediction, although their individual impact might be small. Factor analysis or ridge

regressions are standard examples of dense statistical modeling (Pearson, 1901, Spearman,

1904, Lawley and Maxwell, 1963, Tikhonov, 1963, Hoerl and Kennard, 1970, Leamer, 1973;

see also Stock and Watson, 2002a,b and De Mol et al., 2008 for big data applications of these

techniques in economics). At the opposite side of the spectrum, sparse-modeling techniques

focus on selecting a small set of explanatory variables with the highest predictive power,
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out of a much larger pool of regressors. For instance, the popular lasso belongs to this class

of estimators that produce sparse representations of predictive models (Tibshirani, 1996,

Hastie et al., 2015; see also Belloni et al., 2011 for a recent survey and examples of big data

applications of these methodologies in economics).

In this paper, we ask whether sparse modeling is a good approach to predictive problems

in economics, compared to dense modeling. Observe that standard variable-selection tech-

niques are guaranteed to consistently recover the pattern of sparsity only if the true model

is actually sparse, or approximately so. Therefore, lasso-based methods cannot be used to

answer the question whether sparsity leads to good predictions because sparsity is essen-

tially assumed. Moreover, if the true data-generating process is dense, it is unclear what

sparse estimators deliver. They might select a small set of explanatory variables simply

because sparsity provides a way of reducing estimation uncertainty, overcoming the curse

of dimensionality and improving prediction accuracy, and not because the true model is

actually sparse.

Instead, we propose to study the suitability of sparse predictive models in a framework

that allows for sparsity, but does not assume it. We specify a so-called “spike-and-slab” prior

for the coefficients of a linear predictive model, in the spirit of Mitchell and Beauchamp

(1988). This prior states that regression coefficients can be non-zero with a certain proba-

bility q. We refer to this hyperparameter as the probability of inclusion. When a coefficient

is not zero, it is modeled as a draw from a Gaussian distribution. The variance of this den-

sity is scaled by the hyperparameter �

2, which thus controls the degree of shrinkage when

a predictor is included. The higher �

2, the higher the prior variance, the less shrinkage is

performed. In sum, our model has two key ingredients. First, it shrinks the non-zero coeffi-

cients towards zero, to reduce estimation uncertainty and give a chance to large-dimensional

models. Second, it treats shrinkage and variable selection separately, as they are controlled

by different hyperparameters, �2 and q. These hyperparameters are treated as unknown

and we conduct inference on them.

We estimate our model on six datasets that have been used in the literature for macroe-

conomic, finance and microeconomic predictions with large information. In our macroeco-

nomic applications, we investigate the predictability of economic activity in the US, and the

determinants of economic growth in a cross-section of countries. In finance, we study the

predictability of the US equity premium, and the factors that explain the cross-sectional
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variation of US stock returns. Finally, in our microeconomic analyses, we investigate the

factors behind the decline in the crime rate in a cross-section of US states, and the deter-

minants of rulings in the matter of government takings of private property in US judicial

circuits.

Our Bayesian inferential method delivers three main results. First, we characterize the

marginal posterior distribution of the probability q of inclusion for each predictor. Only

in one case, the first microeconomic application, this posterior is concentrated around very

low values of q. In all other applications, larger values of q are more likely, suggesting

that including more than a handful of predictors is preferable in order to achieve a good

forecasting accuracy. Second, the joint posterior distribution of q and �

2 typically exhibits a

clear negative correlation: the higher the probability of including each predictor, the higher

the likelihood of needing more shrinkage. This intuitive finding explains why larger-scale

models forecast well in our framework.

Third, while the appropriate degree of shrinkage and model size are quite well identi-

fied, the data are much less informative about the specific set of predictors that should

be included in the model. Put differently, model uncertainty is pervasive, and the best

prediction accuracy is not achieved by a single model, but by averaging many models with

rather different sets of predictors. As a consequence, it is difficult to characterize the re-

sulting representation as sparse, which explains the reference to the “illusion of sparsity”

in our title. According to our results, a clearer pattern of sparsity can only emerge when

the researcher has a strong a-priori bias in favor of predictive models with a small number

of regressors. In sum, these results should resonate as a warning against the use of sparse

predictive models without critical judgement.

On a separate note, an important last point to emphasize is that the definition of sparsity

is not invariant to transformations of the regressors. For example, consider a model in which

only the first principal component of the explanatory variables matters for prediction. Such

a model is sparse in the rotated space of the predictors corresponding to the principal

components. It is instead dense in the untransformed, or “natural” space of the original

regressors, since the first principal component combines all of them. This paper studies the

issue of sparsity versus density in this natural space of the untransformed regressors. There

are a number of reasons that motivate this focus. The first one is comparability with the

literature on lasso and variable selection, which typically assumes the existence of a sparse
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representation in terms of the original predictors. Second, analyzing sparsity patterns in this

natural space is usually considered more interesting from an economic perspective because

it is easier, and thus more tempting, to attach economic interpretations to models with few

untransformed predictors. Third, for any model, it is always possible to construct a rotated

space of the predictors a posteriori, with respect to which the representation is sparse.

Therefore, the question of sparsity versus density is meaningful only with respect to spaces

that are chosen a priori—such as that of the original regressors or of a priori transformations

of them—and do not depend on the response variable and the design matrix.

The rest of the paper is organized as follows. Section 2 describes the details of our

prediction model. Section 3 and 4 illustrate the six economic applications and the main

estimation results.

2. Model

We consider the following linear model to predict a response variable y

t

,
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is an i.i.d. Gaussian error term with zero mean and variance equal to �
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are two vectors of regressors of dimensions l and k respectively, with typically k � l,

and whose variance has been normalized to one. Without loss of generality, the vector u

t

represents the set of explanatory variables that a researcher always wants to include in the

model, for instance a constant term. Therefore, the corresponding regression coefficients �

are never identically zero. Instead, the variables in x

t

represent possibly, but not necessarily

useful predictors of y
t

, since some elements of � might be zero. When this is the case, we

say that (2.1) admits a sparse representation.

To capture these ideas, and address the question of whether sparse representations of

economic predictive models fit the data well, we specify the following prior distribution for
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The priors for the low dimensional parameters � and �

2 are rather standard, and designed

to be uninformative. Instead, the elements of the vector � are either zero, with probability

1 � q, or normally distributed with the same variance, given the standardization of the

regressors. The hyperparameter �

2 plays a crucial role since it controls the variance of

this Gaussian density, and thus the degree of shrinkage when a regressor is included in the

model. Without the possibility of shrinkage, the only way to improve prediction accuracy

and avoid overfitting in large-dimensional models would be through variable selection. As

a consequence, sparsity would emerge almost by construction.1

A similar way to describe our prior for � would be to say that �
i

|�2
, �, q ⇠ N

�
0,�2

�

2
⌫

i

�

for i = 1, ..., k, with ⌫

i

⇠ Bernoulli (q). This formulation is useful because it highlights the

relation between our model and some alternative specifications adopted in the literature on

dimension reduction and sparse-signal detection. For example, the Bayesian ridge regression

corresponds to simply setting q = 1. The Bayesian lasso and horseshoe methods can instead

be obtained by replacing the Bernoulli distribution for ⌫

i

with an exponential or a half-

Cauchy density respectively (Park and Casella, 2008 and Carvalho et al., 2010). None of

these alternative priors, however, admit a truly sparse representation of (2.1) with positive

probability.

Our prior on � belongs to the so-called “spike-and-slab” class, initially proposed by

Mitchell and Beauchamp (1988) to perform variable selection and find sparse represen-

tations of linear regression models. Differently from them, however, the “slab” part of our

prior is not a uniform density but a Gaussian, as in George and McCulloch (1993, 1997),

and Ishwaran and Rao (2005). In addition, relative to most variants of the spike-and-slab

prior adopted in the literature on variable selection, we treat the hyperparameters q and �

2

as unknown and evaluate their posterior distribution, along the lines of George and Foster

1Observe that shrinking homogenously the effect of the included regressors implies a degree of shrinakge on
the impact of their principal components that is inversely proportional to their explained variance (Hastie
et al., 2001,De Mol et al., 2008). Therefore, if the predictors in (2.1) happen to comove strongly, our prior
will be relatively disperse on the effect on y of the few important principal components of the x’s, and
tighter on the impact of the unimportant ones. In this sense, this prior encompasses not only sparse and
dense representations of (2.1), but also cases when y depends on a few common factors of the x’s. The
g-prior originally proposed by Zellner (1986) does not have this appealing property.
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(2000) and Liang et al. (2008). They are crucial objects of interest for our analysis of

sparsity patterns.

To specify a hyperprior on q and �

2, we define the mapping R

2
�
�

2
, q

�
⌘ qk�

2
var(x)

qk�

2
var(x)+1

and place the following independent priors on q and R

2:

q ⇠ Beta (a, b)

R

2 ⇠ Beta (A,B) .

The marginal prior for q is a Beta distribution, with support [0, 1], and shape coefficients

a and b. In most of our empirical applications, we will work with a = b = 1, which

corresponds to a uniform prior. We will also experiment with prior densities skewed to

the right, which assign a much higher probability to models with low values of q and a

limited number of regressors. Turning to �

2, it is difficult to elicit a prior directly on

this hyperparameter. The function R

2
�
�

2
, q

�
, instead, has an intuitive interpretation as

var

⇣
x

0
t

�|�2, q,�2
⌘
/var

⇣
x

0
t

� + "

t

|�2, q,�2
⌘
, i.e. as the share of the variance of y

t

due to

the x

0
t

� term relative to the error. We model this ratio as a Beta distribution with shape

coefficients A and B, and base our inference on the uninformative case with A = B = 1.

The appeal of this hyperprior is that it can be used for models of possibly very different

size, because it has the interpretation of a prior on the R

2 of the regression. Another

attractive feature is that it implies a negative prior correlation between q and �

2, and is thus

agnostic about whether the curse of dimensionality should be dealt with variable selection

or shrinkage. We will return to this point in section 4, when discussing our posterior results.

3. Economic Applications

We estimate the previous model on six popular “big datasets” that have been used for

predictive analyses in macroeconomics, finance and microeconomics. In our macroeconomic

applications, we investigate the predictability of economic activity in the US (macro 1) and

the determinants of economic growth in a cross-section of countries (macro 2). In finance,

we study the predictability of the US equity premium (finance 1) and the factors that

explain the cross-sectional variation in expected US stock returns (finance 2). Finally, in

our microeconomic applications, we investigate the effects of legalized abortion on crime

in a cross-section of US states (micro 1) and the determinants of rulings in the matter of
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Table 1. Description of the datasets.

Dependent variable Possible predictors Sample

Macro 1 Monthly growth rate
of US industrial
production

130 lagged macroeconomic
indicators

659 monthly time-series observations,
from February 1960 to December 2014

Macro 2 Average growth rate
of GDP over the
sample 1960-1985

60 socio-economic, institutional
and geographical
characteristics, measured at
pre-60s value

90 cross-sectional country observations

Finance 1 US equity premium
(S&P 500)

16 lagged financial and
macroeconomic indicators

58 annual time-series observations, from
1948 to 2015

Finance 2 Stock returns of US
firms

144 dummies classifying stock
as very low, low, high or very
high in terms of 36 lagged
characteristics

1400k panel observations for an average of
2250 stocks over a span of 624 months,
from July 1963 to June 2015

Micro 1 Per-capita crime
(murder) rates

Effective abortion rate and 284
controls including possible
covariate of crime and their
transformations

576 panel observations for 48 US states
over a span of 144 months, from January
1986 to December 1997

Micro 2 Number of
pro-plaintiff eminent
domain decisions in
a specific circuit and
in a specific year

Characteristics of judicial
panels capturing aspects
related to gender, race, religion,
political affiliation, education
and professional history of the
judges, together with some
interactions among the latter,
for a total of 138 regressors

312 panel circuit/year observations, from
1975 to 2008

government takings of private property in US judicial circuits (micro 2). Table 1 summarizes

the data used in the analysis. A more detailed description is provided in the text below.

3.1. Macro 1: Macroeconomic forecasting using many predictors. In this appli-

cation, we study the importance of large information to forecast US economic activity, an

issue investigated by a large body of time-series research in the last decade. We use a

popular large dataset originally developed for macroeconomic predictions with principal

components by Stock and Watson (2002a,b), and extensively used to assess the forecasting

performance of alternative big-data methodologies. The variable to predict is the monthly

growth rate of US industrial production, and the dataset consists of 130 possible predic-

tors, including a variety of macroeconomic monthly indicators, such as measures of output,
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income, consumption, orders, surveys, labor market variables, house prices, consumer and

producer prices, money, credit and asset prices. The sample ranges from February 1960 to

December 2014, and all the data have been transformed to obtain stationarity, as in the

work of Stock and Watson. The version of the dataset that we use is available at FRED-MD,

and is regularly updated through the Federal Reserve Economic Data (FRED), a database

maintained by the Research division of the Federal Reserve Bank of St. Louis (McCracken

and Ng, 2016).

3.2. Macro 2: The determinants of economic growth in a cross-section of coun-

tries. The seminal paper by Barro (1991) initiated a debate on the cross-country determi-

nants of long-term economic growth. Since then, the literature has proposed a wide range

of possible predictors of long-term growth, most of which have been collected in the dataset

constructed by Barro and Lee (1994). As in Belloni et al. (2011), we use this dataset to

explain the average growth rate of GDP between 1960 and 1985 across countries. The

database includes data for 90 countries and 60 potential predictors, corresponding to the

pre-1960 value of several measures of socio-economic, institutional and geographical char-

acteristics. The logarithm of a country’s GDP in 1960 is always included as a regressor in

the model.2

3.3. Finance 1: Equity premium prediction. Following a large body of empirical work,

in our first finance application we study the predictability of US aggregate stock returns,

using the database described in Welch and Goyal (2008). More specifically, the dependent

variable is the US equity premium, defined as the difference between the return on the S&P

500 index and the 1-month Treasury bill rate. As possible predictors, the dataset includes

sixteen lagged variables deemed as relevant in previous studies, such as stock characteristics

(the dividend-price ratio, the dividend yield, the earning-price ratio, the dividend-payout

ratio, the stock variance, the book-to-market ratio for the Dow Jones Industrial Average,

the net equity expansion and the percent equity issuing), interest rate related measures (the

Treasury bill, the long-term yield, the long-term return, the term spread, the default-yield

spread and the defaults-return spread) and some macroeconomic indicators (inflation and

the investment to capital ratio). The data are aggregated annually, from 1948 to 2015.3

2We have downloaded the dataset from the replication material of Belloni et al. (2011), who consider exactly
the same application.
3We use an updated version of the database downloaded from the webpage of Amit Goyal.

https://research.stlouisfed.org/econ/mccracken/fred-databases/
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3.4. Finance 2: Explaining the cross section of expected returns. Despite the

simple characterization of equity returns provided by the workhorse CAPM model, the

empirical finance literature has discovered many factors that can explain the cross-section

of expected asset returns. The recent survey of Harvey et al. (2016) identifies about 300

of these factors. Following this tradition, in this application we study the predictability

of the cross-section of US stock returns, based on the dataset of Freyberger et al. (2017).4

Our dependent variable is the monthly stock return of firms incorporated in the US and

trading on NYSE, Amex and Nasdaq, from July 1963 to June 2015, which results in about

1,400k observations. The set of potential regressors are constructed using (the lagged value

of) 36 firms and stocks characteristics, such as market capitalization, the return on assets

and equity, the book-to-market ratio, the price-dividend ratio, etc... Inspired by Freyberger

et al. (2017), for each of these characteristics we create four dummy variables that take the

value of one if the firm belongs to the first, second, fourth or fifth quintile of the distribution

within each month, respectively.5 This results into 144 possible regressors.

3.5. Micro 1: Understanding the decline in crime rates in US states in the 1990s.

Using US state-level data, Donohue and Levitt (2001) find a strong relationship between

the legalization of abortion following the Roe vs Wade trial in 1973, and the subsequent

decrease in crime rates. Their dependent variable is the change in log per-capita murder

rates between 1985 and the 1997 across US states. This variable is regressed on a measure

of the effective abortion rate (which is always included as a predictor) and a set of controls.

The latter capture other possible factors contributing to the behavior of crime rates, such as

the number of police officers per 1000 residents, the number of prisoners per 1000 residents,

personal income per capita, the unemployment rate, the level of public assistance payments

to families with dependent children, beer consumption per capita, and a variable capturing

the shall-issue concealed carry laws. In addition, as in Belloni et al. (2014), we expand

the set of original controls of Donohue and Levitt (2001), by including these variables in

levels, in differences, in squared-differences, their cross-products, their initial conditions and

4We thank Joachim Freyberger, Andreas Neuhierl and Michael Weber for sharing the database used in their
paper.
5The dummy variable equal to one if the firm belongs to the third quintile is excluded for collinearity
reasons.
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their interaction with linear and squared time trends. This extended database includes 284

variables, each with 576 observations relating to 48 states for 12 years.6

3.6. Micro 2: The determinants of government takings of private property in US

judicial circuits. Chen and Yeh (2012) investigate the economic impact of eminent domain

in the US, i.e. the right of the government to expropriate private property for public use.

To address the possible endogeneity problem, they propose to instrument judicial decisions

on eminent domain using the characteristics of randomly assigned appellate courts judges.

For example, it is observed that circuit/years with a higher proportion of black judges

are associated with more pro-government decisions in eminent domain cases. We follow

Belloni et al. (2012) and estimate the first stage of this instrumental-variable model, by

regressing the number of pro-plaintiff appellate decisions in takings law rulings from 1975

to 2008 across circuits on a set of characteristics of the judicial panels such as gender,

race, religion, political affiliation, education and professional history of the judges. As in

Belloni et al. (2012), we augment the original set of instruments with many interaction

variables, resulting into 138 regressors. The sample size (circuit/year units) consists of 312

observations.7

4. Exploring the Posterior

In this section, we discuss some properties of the posterior distribution of our model,

when estimated using the algorithm detailed in appendix A and the six datasets illustrated

in the previous section. The results we report are based on a uniform prior on q and R

2,

the probability of inclusion and the share of the variance of y
t

explained by the predictors.

We will also experiment with an informative prior centered on low values of q.

4.1. Positive correlation between probability of inclusion and degree of shrink-

age. Our inference method allows us to characterize the joint distribution of the hyperpa-

rameters q and �

2, i.e. the probability of inclusion and the prior variance of the coefficients

of the included predictors. The left panels of figures 4.1 and 4.2 summarize the shape of

the prior of these two hyperparameters in our six empirical applications, with lighter areas

6We downloaded the data from the replication material of Belloni et al. (2014), who consider exactly the
same application.
7We have downloaded the dataset from the replication material of Belloni et al. (2012), who consider exactly
the same application.
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corresponding to higher density regions.8 We present the joint density of q and log (�),

instead of q and �

2, to interpret the horizontal axis more easily in terms of percent devia-

tions. As we noted in section 2, our flat prior on q and R

2 implies a negative correlation

between q and log(�), reflecting the sensible prior belief that probability of inclusion and

shrinkage are complements.

The right panels of figures 4.1 and 4.2 show the posteriors of q and log (�). These

densities are typically much more concentrated than the corresponding prior, exhibiting an

even sharper negative correlation: the lower (higher) the probability of including a predictor

and the overall model size, the higher (lower) the prior variance of the coefficients of the

predictors included in the model. In other words, larger-scale models need more shrinkage

to fit the data well, while models with a low degree of shrinkage require the selection of a

smaller number of explanatory variables.

While this result should not be particularly surprising, its important implication is that

dense modeling approaches might overstate the degree of shrinkage needed to achieve good

fit. Similarly, variable selection techniques that do not explicitly allow for shrinkage might

artificially recover sparse representations of a model, simply as a device to reduce estimation

error. Our findings indicate that these extreme strategies might perhaps be appropriate

only for our micro-1 application, given that its posterior in figure 4.2 is tightly concentrated

around extremely low values of q. More generally, however, our results suggest that the best

prediction models are those that optimally combine probability of inclusion and shrinkage.

4.2. Probability of inclusion and out-of-sample predictive accuracy. What is then

the appropriate probability of inclusion, considering that models with different sizes require

differential shrinkage? To answer this question, figure 4.3 plots the marginal posterior of

q, obtained by integrating out �

2 from the joint posterior distribution of figures 4.1 and

4.2. Notice that the densities in figure 4.3 behave quite differently across applications. For

example, the finance-1 data seem to contain little information about model size, since the

posterior of q does not deviate much from its uniform prior. The macro-2 application favors

more strongly models including the full set of predictors. At the opposite extreme, micro 1

is the only application in which the highest posterior density is concentrated on low values

of q, suggesting that the model might be sparse. Macro 1, finance 2 and micro 2, instead,

8The darkness of these plots is also adjusted to correctly capture the relative scale of prior and corresponding
posterior.
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Figure 4.1. Joint prior and posterior densities of q and log (�) in the macro
1, macro 2 and finance 1 applications (best viewed in color).

represent intermediate cases, in which the posterior of q is nicely shaped and peaks at an

interior point of the [0, 1] interval.

What are the implications of the results of figure 4.3 in terms of goodness of fit? For

example, in our macro-1 application, the posterior mode of q is around 0.25. Would working
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Figure 4.2. Joint prior and posterior densities of q and log (�) in the fi-
nance 2, micro 1 and micro 2 applications (best viewed in color).

with a dense model (q = 1) lead to a substantial deterioration of fit, compared to a model

with q ⇡ 0.25? The easiest way to address these questions is to interpret the marginal

posterior of q as a measure of out-of-sample predictive accuracy. Observe that, under a flat

prior on q, its posterior is proportional to the likelihood,

(4.1) p (q|y) / p (y|q) =
TY

t=1

p

�
y

t

|yt�1
, q

�
,
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Figure 4.3. Posterior density of q.

where the equality follows from the usual decomposition of a joint density into the product

of marginal and conditional densities, and we are omitting the regressors u and x from the

conditioning sets to streamline the notation. Expression (4.1) makes clear that the posterior

of q is proportional to a product of predictive scores: it corresponds to the probability

density that models with different values of q generate zero out-of-sample prediction errors.

As a consequence, the choice of models with high p (q|y) can be interpreted as a model

selection strategy based on cross validation.

To quantify the variation in predictive accuracy across models with different q’s, figure

4.4 plots the function 1
T

[log p (y|q)� log p (y|q⇤)] in our six economic applications. This

expression corresponds to the average log-predictive score relative to the model with the best
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Figure 4.4. Average log-predictive score relative to best fitting model.

fitting q. For instance, in our macro-2 application, the best predictive model is the dense

one, and the top-right panel of figure 4.4 summarizes the average percentage deterioration

in the log-predictive score when q declines. As for macro 1, values close to the actual

realizations of y are on average 2/3 of a percent more likely according to a model with

q ⇡ 0.25 relative to one with q = 1. Low values of q lead to a similar deterioration in

forecasting accuracy. For example, a model with q t 0.05 has approximately the same

average log-predictive score of the fully dense model with q = 1. When cumulated across

the 659 observations, these differences in predictive accuracy can become substantial. The

remaining panels in figure 4.4 can be interpreted in a similar way.
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4.3. Patterns of sparsity. Given these results, we now ask more explicitly to what extent

sparse predictive models are appropriate in each of our six applications. The answer to this

question turns out to be a bit subtler than one might think based on the information

contained in figures 4.3 and 4.4. We will see that a clear pattern of sparsity emerges

only in our micro-1 application. Instead, perhaps surprisingly, our posterior results do not

support a characterization of the best-fitting predictive models as sparse, not even when

the posterior density of q is concentrated around values smaller than 1, as in the macro-1,

finance-2 and micro-2 case.

To illustrate this point, figure 4.5 plots the posterior probabilities of inclusion of each

predictor. In the “heat maps” of this figure, each vertical stripe corresponds to a possible

predictor, and darker shades denote higher probabilities of inclusion. Notice that the prob-

ability of inclusion of a single regressor might deviate considerably from q, although the

average probability of inclusion across regressors should be consistent with the posterior of

q.

The most straightforward subplot to interpret is the one corresponding to the micro-1

application. This is a truly sparse model, in which the 39th regressor is selected 65 percent

of the times. The 46th regressor is also sometimes selected, about 10 percent of the times,

although this is more difficult to see from the plot. All other predictors are included in the

model much more rarely.

The most important message of figure 4.5, however, is that the remaining five applications

do not exhibit a distinct pattern of sparsity, in the sense that none of the predictors appear to

be systematically excluded. This finding was probably expected for macro 2 and finance 1,

since the posterior of q peaks around very high values in these two applications. The absence

of clear sparsity patterns, however, should be more surprising when the posterior of q has

most of its mass on lower values. For example, let us consider the case of macro 1, in which

the best fitting models are those with q around 0.25, according to figure 4.3. This value of

q, however, does not necessarily imply that the most accurate model includes 32 specific

predictors (25 percent of the 130 possible regressors) and excludes all the others. If this was

the case, the first panel of figure 4.5 would show many near-white stripes corresponding

to the predictors that are systematically excluded. Instead, there seems to be a lot of

uncertainty about whether certain predictors should be included in the model, which results

into their selection only in a subset of the posterior draws. Put differently, model uncertainty
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Figure 4.5. Heat map of the probabilities of inclusion of each predictor
(best viewed in color).

is pervasive and the best prediction is obtained as a weighted average of several models, each

including between 20 and 50 regressors, but not necessarily the same ones across models.

These results explain the empirical success of Bayesian model averaging techniques, such

as those of Wright (2009), Faust et al. (2013), Fernandez et al. (2001), Sala-I-Martin et al.

(2004), Cremers (2002) and Avramov (2002).

4.4. Patterns of sparsity with an informative prior on model size. The previous

subsections suggest that the data are quite informative about the choice of shrinkage and

model size, but the specific set of predictors to include in the model is generally not well

identified. As a consequence, our posterior results are typically not compatible with the
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existence of a clear sparse representation of the predictive model, if the analysis is based

on an agnostic prior on model size. This section shows that clearer patterns of sparsity can

emerge when the researcher has a strong a-priori bias in favor of predictive models with a

small number of regressors.

To demonstrate this point, we replace our uniform hyperprior on q with a Beta (1, k).

This particular formulation is appealing because it implies an approximately exponential

density for the number of included predictors. Specifically, the probability that a model of

size qk is smaller than a given number s converges to 1�e

�s when the number of predictors

k is large, as in our applications. The resulting hyperprior is heavily skewed to the right,

attributing a probability of five percent to models with more than three predictors, and less

than one percent to models with five or more predictors.9

The posterior probabilities of inclusion obtained with this tight hyperprior are reported

in figure 4.6. Relative to our baseline, these heat maps exhibits more white areas, revealing

clearer patterns of sparsity in all six applications. For example, in the case of macro 1,

there are now three distinct groups of predictors, those that always belong to the model,

those included with positive probability and those never selected. A similar interpretation

applies to the other applications, with the exception of finance 2, in which systematically

excluded regressors are still rare.

We inspect the mechanism underlying these results by analyzing in greater detail the

estimates obtained with the flat and tight hyperprior in the macro-1 case. The intuition is

similar in the other applications. The heat map in the top-left panel of figure 4.7 visualizes

the probability of inclusion of each predictor, conditional on a specific value of the overall

probability of inclusion q. The top-right panel plots instead the posterior of q, along with

our baseline uniform prior. Observe that high-density values of q are mostly associated with

non-white regions in the heat map, confirming the main takeaway of section 4.3 about the

absence of clear sparsity patterns. However, a few stripes are very dark from top to bottom,

indicating that the corresponding regressors are always included in the model, regardless of

model size. When q is very low, these predictors are the only ones to be selected. Therefore,

if the posterior of q were concentrated on these very low values, contrary to our findings,

the results would be more consistent with the presence of sparsity.

9This type of dogmatic priors is used by Castillo et al. (2015) to establish sparsistency, i.e. the ability to
select the correct sparse model if it exists.
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Figure 4.6. Heat map of the probabilities of inclusion of each predictor
with a tight prior on q (best viewed in color).

The bottom-right panel of figure 4.7 presents the posterior density of q when the model is

estimated with the tight Beta (1, k) hyperprior depicted by the solid line. Not surprisingly,

such a dogmatic prior generates a posterior concentrated on much smaller values of q, with

essentially zero mass on values larger than 0.15. As a consequence, the corresponding heat

map is mostly empty, except in the region of very low q’s, where the heat map is nearly

identical to that obtained with the flat hyperprior. Hence, in practice, the tight hyperprior

effectively implements a censoring of the heat map, and simply restricts the inference to a

region characterized by a higher degree of sparsity.
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Figure 4.7. Heat map of the probabilities of inclusion of each predictor,
given q (left panels), and prior and posterior densities of q (right panels),
with a flat and tight prior on q in the macro-1 application (best viewed in
color).

Summing up, strong prior beliefs favoring low dimensional models appear to be necessary

to compensate for the lower fit of these models documented in section 4.2, and thus to

support sparse representations. This is why we conclude that the idea that the data are

informative enough to identify sparse predictive models might just be an illusion in most

cases.
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Appendix A. Algorithm for Posterior Inference

To estimate the model, it is useful to rewrite it using a set of latent variables z =

[z1, ..., z
k

]0 that are equal to 1 when the corresponding regressor is included in the model

and its coefficient is non-zero. Let us denote by Y = [y1, ..., yT ]
0, U = [u1, ..., uT ]

0 and

X = [x1, ..., xT ]
0, where T is the number of observations. The posterior of the unknown

objects of the model is given by
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where ⌧ (z) ⌘
P

k

i=1 zi. We can sample from this distribution by discretizing the

[0, 1] support of R

2 and q. More specifically, for both R

2 and q we define a grid

with increments of 0.01, and finer increments of 0.001 near the boundaries of the

support.
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