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Abstract

Liquidity risk is the risk that an asset cannot always be sold without causing a
fall in its price because of a lack of demand for this asset. Many empirical studies
examining liquidity premia have focused on government bonds. Therefore, it might
be of special interest to examine yield differentials between liquid and illiquid German
covered bonds using techniques of time series analysis. We examine the yields of
traditional Pfandbriefe and Jumbo Pfandbriefe with different maturities. In terms of
credit risk the spread between the yields of these two types of covered bonds should be
zero. Moreover, assuming that the liquidity risk premium is a stationary variable the
yields of Pfandbriefe and Jumbo Pfandbriefe (which seem to be integrated of order one)
should be cointegrated. We examine this by using methodology proposed in the related
field of fractional integrated models. Due to the financial crisis, it also seems to be
appropriated to consider structural change. Our results indicate fractional cointegrated
yields before and after the crisis. However, during the crisis the degree of integration
of the spread increases strongly.
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1. Introduction

Liquidity risk is defined as the risk that an asset cannot always be sold without causing
a strong fall in its price because of a lack of demand for this asset. The liquidity premium
compensates investors for bearing liquidity risk. Many empirical studies examining liquidity
premia have focused on government bonds. In fact, there are numerous relevant papers.
Boudoukh and Whitelaw| (1993), for instance, have examined price differentials among liquid
and illiquid Japanese government bonds. More recently, |Sibbertsen, Wegener, and Basse
(2014) have, for example, suggested that the existence of liquidity premia to compensate
investors for the lower liquidity of the Italian and Spanish government bond markets relative
to the German government bond market could help to explain their empirical findings that
show deviations from the uncovered interest rate parity condition.

In order to gain additional insights with regard to interest rates and liquidity premia it
could be of interest to analyze data from the German covered bond market, that incorporates
two types of bonds with differences regarding their liquidity. Examining European covered
bonds in more detail is also of interest from the perspective of monetary policymakers because
the European Central Bank started its Covered Bond Purchasing Programme in 2009 as a
kind of spearhead of the measures to engage in the then new practice of quantitative easing.
Moreover, the financial crisis seems to have caused a kind of re-pricing of liquidity risk in
the European covered bond market.

Practitioners seem to have two very different interpretations of what happened in the
European covered bond market. It is generally accepted that the problems of the European
covered bond market are closely related to the Subprime Mortgage Crisis but already started
before house prices in the U.S. peaked. One more traditional explanation is that the global
financial crisis that was caused by the exposure of international banks to the U.S. real estate
market (mainly through mortgage backed securities) created some problems and resulted in
a liquidity crisis. Taking this perspective the liquidity premium between the yields of the
two types of German covered bonds should first have increased; then the Covered Bond Pur-
chasing Programme ought to have lowered spreads in 2009 again. However, some investors
seem to believe that with regard to liquidity Jumbo Pfandbriefe are not really a close sub-
stitute to German government bonds. According to this point of view Jumbo Pfandbriefe
should have been priced more like traditional Pfandbriefe in the crisis and the Covered Bond
Purchasing Programme of the European Central Bank should mainly have profited the more
liquid bonds bought by the central bank. Thus, according to this hypothesis the spread
between Jumbo and the less liquid traditional Pfandbrief bonds might even have increased

with the purchases of covered bonds by the European Central Bank. Therefore, it might be



of special interest to examine yield differentials between liquid and illiquid German covered
bonds using techniques of time series analysis.

The paper is structured as follows: The next section describes the features of covered
bonds and their particular importance for the global bond markets. The third part introduces
the term of liquidity risk. Section [4] describes the data and provides a first insight about
their time series properties. Section [5| introduces a methodology to estimate a fractional
cointegrated system. The following section presents the results of an application of covered

bond yields. Section [f] concludes.

2. Covered Bonds

Covered bonds are one of the most important segments of the global bond market. These
fixed income securities are fully collateralized bonds issued by authorized banks and are
backed by a pool of assets that in general consists of mortgage loans or public sector loans.
There are some country specific differences with regard to the assets that are eligible to back
covered bonds. Meanwhile, German covered bonds (so-called Pfandbriefe), for example, may
also be secured by ship and aircraft loans. In marked contrast to asset-backed securities the
assets backing covered bonds remain on the balance sheet of the issuer. Only in the case
of an insolvency of the issuing bank the assets belonging to the cover pool are separated
from the balance sheet of the insolvent bank to meet the claims of the bondholders (e.g.,
Tolckmitt and Walburg, [2002; [Lorenz, 20006).

Covered bonds are usually seen as an important source of funding for the European
banking industry. This is especially true for German banks, where covered bonds have a
long tradition. In fact, the Pfandbrief can look back upon a history of more than 200 years
(e.g., Hagen, 2003; |Lorenz, 2006). Therefore, it is hardly surprising that the market for
Pfandbriefe is by far the most important segment of the European covered bond market.

There are different types of German covered bonds. Most importantly, there are so-called
traditional Pfandbriefe and Jumbo Pfandbriefe. While both types of bonds are governed
by the same requirements with regard to credit risk, traditional Pfandbriefe are issued in
smaller sizes. Therefore, the market for these securities is regarded to be less liquid than
Jumbo Pfandbriefe. The first Jumbo Pfandbrief was issued in 1995 (e.g., Hagen, [2003).
This special type of covered bond with a minimum issuing volume of 1 billion EUR was
created to provide a more liquid financial instrument for institutional investors. Besides the
regulations with regard to issue size, there are additional minimum standards for a Jumbo
Pfandbrief in order to increase market liquidity. They must, for example, be placed by a

syndicate consisting of at least five banks. These banks act as market makers. Given that



both traditional and Jumbo Pfandbriefe are very secure investments, yield spreads between
these two types of German covered bonds usually are interpreted as pure liquidity premia

by market participants.

3. Liquidity Risk

Liquidity is an important concept in financial economics and measures how easy financial
assets can be converted into cash. It is hard to find a generally accepted definition of liquidity.
Goldreich, Hanke, and Nath| (2005), for example, have noted that the term liquidity is
often used to describe the narrowness of the bid-ask spread; however, they have also argued
that there are broader definitions (e.g., trading volume, market depth or other measures of
market activity). Boudoukh and Whitelaw| (1993) have argued convincingly that the value
of liquidity results from the uncertainty about future trading needs of current investors.
Assuming that all bondholders are buy-and-hold investors, liquidity obviously would not
matter when there is no need to engage in additional bond market transactions after the
fixed income securities have been purchased. Investors would simply hold the bonds until
maturity — in other words for one period (which, of course, is not necessarily one year).

We start with a generalized theory on bond yield spreads. The risk adjusted bond yield
of bond A reads ip! (i = ip/ + RP,) and i? is the bond yield of bond B. RP; is a time

dependent risk premium. We assume parity of ip; and i® (see Fratzscher, 2002)
il =i (1)
and i > 42 to imply a positive risk premium RP,
it —i? = RP,. (2)

In principle, the risk premium might consists out of several kinds of risk like credit risk

(C'R;), political risk (PRy), redenomination risk (RR;) and even more risk factors.

RP, = LP,+ CR,+ PR+ RR, + ... (3)

=0

Here, we focus on the liquidity premium L P; because of the characteristic that both types of
bonds are identical with one exception — their liquidity. Investors might be hit by liquidity
shocks that force bondholders to sell assets (see (Goldreich, Hanke, and Nath|, 2005). Lucas
(1990) has argued that these liquidity shocks have the capacity to induce sudden large drops



in the prices of bonds and other illiquid securities.
Following (Goldreich, Hanke, and Nath| (2005) the liquidity premium reads

it —iP =X x (c* =P (4)

while ) is the probability of a liquidity shock that causes flight-to-liquidity effects and c¢*
and c? are trading costs for both types of bonds. In addition we assume that ¢4 and c¢? are
linear functions of the interest rate level iZ and the risk aversion RA;. Thus, the liquidity

premium might have the form
it —if = Ax (¢ (i, RA) — P (i, RA)) (5)

which implies a non-constant but stationary spread.
Since we assume that both hand sides of equation [5| contain iZ the resulting cointegrating
vector would read (1,—/) with 8 # 1. We estimate this cointegrated system and present

the results in Section A

4. Data and Initial Analysis

We examine the yields of traditional Pfandbriefe and Jumbo Pfandbriefe with the matu-
rities of five, seven and ten years. Our sample starts at 01-01-1999 and ends at 12-30-2011.
Therefore we investigate 679 weekly observations taken from Bloomberg Database.

If the spread is not interest rate sensitive, the yields of Pfandbriefe and Jumbo Pfandbriefe
should be cointegrated with the vector § = (1,—1) as discussed in Section Two I(1)
variables are said to be cointegrated if they share a common stochastic trend. Thus, first of
all, we use the approach suggested by Ng and Perron| (2001) to test for 7(1) behavior of the
yields.

(Insert Table [1] here)

Table [1] shows the test statistics of the unit root test. Comparing the critical values of
-1.98 (intercept) and -2.91 (intercept and trend) with the test statistics indicates that the
null hypothesis of a unit root for the six time series cannot be rejected.

However, a look at figure 1| causes reasonable doubt that the assumption about the spread
is fulfilled.

(Insert figure [1| here)



The autocorrelation functions of the spreads decline very slowly which is an indication
of I(d) behavior with d > 0. There are a number of possible reasons — the most common

sources for this finding are:

the spread contains non-linearity or long memory
there is a structural break in £

there is a structural break in the persistence of the spread

Ll

a mixture of these points

To start our analysis we employ a modified GPH estimator to investigate the order of
integration of the yield differentials in more detail. This modification by Phillips and Mag-
dalinos| (2007)) has been shown to have better power properties than the original suggested
by \Geweke and Porter-Hudak| (1983)).

(Insert Table [2] here)

Also this procedure suggests I(d) behavior with 0 < d < 1 of the spread as reported in
Table [2 For a cointegrating vector of § = (1, —1) (no interest rate sensitivity), this might
be an indication that the yields of the traditional Pfandbrief and the Jumbo Pfandbrief are
fractionally cointegrated. Shimotsul (2012) highlights two examples of bivariate fractionally
cointegrated systems: The first refers to the case with two time series x; and ; which have
the same memory parameter d, < 1 and the equilibrium error u; is integrated of order
d, with d, < d, for t = 1,2,...T. See e.g. |Bandi and Perron (2006]), |Christensen and
Nielsen| (2006) and |Nielsen and Frederiksen (2011) for empirical applications of fractional
cointegration matching the foregone case.

The second example refers to the case where x; and y; (concerning our application y;
is the yield of bond A i and x; is the yield of bond B) are I(d,) with d, = 1 and wuy is
integrated with 0 < d,, < 1. This one seems to match our case: The yields are individually
I(1) and the equilibrium error for f = (1,—1) is integrated of order 0.45 < d, < 0.75.
Moreover, using the procedure by Phillips and Magdalinos (2007) to test against d, = 0 and
against d, = 1 indicates evidence that z; and y; are I (I)EI

Furthermore, we are particularly interested in whether d, remains constant over time.
Thus, we use the methodology proposed by [Sibbertsen and Kruse| (2009)) to test the hypoth-
esis

dy =dyq fort =1,.. [7T]
Ho : du = du,07 YVt vs. H1 . 7 . (6)
dy =dys fort =T +1,..,T

IResults are not reported in order to conserve space and are available on request from the authors.



Here, [7T] denotes the biggest integer smaller than 77 with 7 as the relative breakpoint
estimator and 7" as the number of observations. The test by Sibbertsen and Kruse| (2009)
modifies the procedure proposed by [Leybourne, Taylor, and Kim/ (2007) to test against a
break in persistence under long-range dependencies of univariate time series. They restricted
0<dy< % under Hy and 0 < d; < % and % < dy < % under the alternative. Moreover,
dy and ds can be exchanged, so a break from stationary to non-stationary long-memory and
vice versa can be investigated. Thus, we test against a break in the persistence in the spread
of traditional and Jumbo Pfandbriefe using the estimated d under the null hypothesis by the
modified GPH estimator. In this case there is clear evidence for a break between 2006 and

2007 for all maturities. Table Bl shows the results of this test.
(Insert table [3| here)

However, the European Central Bank established the Covered Bond Purchase Programme in
order to stabilize the covered bond market in Europe. This intervention might have caused
decreasing persistence in 2009. Thus, we test against a break in d, after the first break.
Table |4] shows the results and figure [2] shows the chart of the simple spreads with marked
breaks. Thus, it seems that, coincident with the financial crisis, the persistence of the spread
increased strongly. This might cause spurious results in order to explain the behavior of the

covered bond spreads using regression models (see, for example, Prokopczuk, Siewert, and
Vonhoff (2013)).

(Insert figure [2| here)
(Insert table [4] here)

Furthermore, additional breaks or smooth trends might cause spurious long memory
before the first breakpoint and after the second break. For this reason we test against a
further break in the persistence as proposed above and in addition we use the test by Qu
(2011). The procedure by |Qul (2011) tests the null hypothesis of stationary long memory
against short memory with level shifts or smooth trends. This test evaluates the derivative
of the local Whittle likelihood at the first [kr] Fourier frequencies xk with r € [e, 1]. Here, we
consider a bandwidth from 7°% to T%7 and we apply this procedure until the first break
in d, for all maturities with e = 0.02. Regarding the ten years spread we estimate d,, > 0.5.

Thus, the results in this case might be questionable for a bandwidth between 705 and 7075,

(Insert table [p| and table [6] here)



Neither the test by Sibbertsen and Kruse (2009) (results are not reported in order to
conserve space) nor the results of the procedure by |Qu| (2011)) (results are reported in table
5) indicate doubts that the behavior of the particular spreads until the breaks between
2006 and 2007 might be caused by spurious long memory at a confidence level of a = 0.1.
Additionally, we apply the test by |Qul (2011)) to the spreads after the second break. As
reported in table [6, we do not find any indications about long range dependencies caused by
level shifts or smooth trends on a confidence level of a = 0.1 regarding the seven and ten year
spread. We do not consider the five year spread because we do not find decreasing persistence
in this case. Motivated by these results, we estimate a fractionally cointegrated system for
subsamples to control for breaks in d, and for the full sample in order to investigate the

cointegrating vector 5 in the following section.

5. Estimating a Fractionally Cointegrated System for
Covered Bond Yields

5.1.  Methodology

Shimotsu| (2012, pg. 266) noted, that if the standard 7(0)/I(1) cointegration techniques
are applied to fractionally cointegrated time series, ”it leads to either (i) a false rejection of
the existence of an equilibrium relationship, or (ii) misspecification of the degree of persis-
tence of the stochastic trend and/or the equilibrium error.” Thus, considering the results of
Section [4}, it seems to be appropriate to employ fractional cointegration methods.

A lot of studies examined estimation techniques of fractional cointegrated systems (e.g.
Velasco|, 2003; Robinson|, 2008; Nielsen and Frederiksen, 2011)). Robinson (2008]) showed
that the local Whittle estimator is consistent and has an asymptotic Gaussian distribution
if 0 < d, < d, < 0.5. |Shimotsu| (2012)) used a tapered version of this estimator on the first
stage and the exact local Whittle approach proposed by [Shimotsu and Phillips (2005)) on
the second stage. This two-step estimation procedure accommodates the stationary and the
nonstationary case of x; and wu,, respectively. The estimator of the memory parameters is
asymptotic normally distributed in both cases. Moreover, |Shimotsu (2012)) noted, that the
distribution and the convergence rate of § depends on the difference between d, and d,.
Thus for d, — d, < 0.5, 8 is asymptotic normally distributed.

We use the procedure proposed by Shimotsul (2012) to estimate 3= (1,—-p), d, and d,



of the bivariate fractionally cointegrated system

(1- L)d" (g — Bry) = €1y,
(]_ — L)dzxt = 827t

(7)

witht =1,2,...,T, 8 # 0, and €14, €2, are stationary with zero mean. However, we use the
estimator by Shimotsu| (2010) on the second stage to deal with an unknown mean. [Shimotsu

(2012) noted that the asymptotic distribution remains the same.

5.2.  Empirical Results

First of all, we estimate the cointegrated system as proposed in equation [7] for the whole
sample T'= 679 and bonds with the maturity of 5, 7 and 10 years. We consider bandwidths
m = T¢ and ¢ = 0.55,0.60,0.65,0.70,0.75. The results are reported in table . Here and
in the following, p is the correlation between €1, and €5;. For p # 0 the most estimation
procedures of fractional cointegrated systems fail. However, the procedure by [Shimotsu

(2012) overcomes this problem.
(Insert table [7] here)

The hypothesis of d, = 1 cannot be rejected on a confidence level of @ = 0.05 for most
m and all maturities. This finding is consistent with the results of the test proposed by [Ng
and Perron (2001)) reported in table |1l Furthermore, Hy : f = 1 cannot be rejected in most
cases and o = 0.05. However, for 5 and 10 years maturity and m = 0.55, d, — d, > 0.5
applies, thus the asymptotic distribution theory for 3 is not available. For this reason we use
a subsampling method with subsamples of size b = 200. Also in this case, Hy : § = 1 cannot
be rejected. Depending on m, d,, is between 0.5 and 0.8 and even the upper bounds of the
confidence intervals are smaller than 1. All these findings indicate fractional cointegration
with {dy,d,, 5} = {[0.5,0.8]),1,(1,—1)}. To investigate the behavior before and after the
breaks in d,, we estimate the cointegrated system as proposed in equation [7] for subsamples
based on the results of the test by [Sibbertsen and Kruse (2009) as described in Section [4
Considering the time before the particular break date, the results are reported in table [§]

(Insert table (8] here)

The estimation results indicate that the system is fractionally cointegrated with {d,,, d., 8}
{]0.2,0.7]),1, (1, —1)}. Most surprisingly, d,, is still significantly different from zero. However,

the degree of integration is smaller than for the whole sample. In most cases d, — d, > 0.5



applies, thus we also use the subsampling method as described above with b = 100. Further-
more, we estimate a fractionally cointegrated system after the breakpoints to quantify the

change of the parameters. Table [9 shows the results.

(Insert table [J] here)

It is obvious that d, has increased for all bandwidths and all bonds and d, and ( have
remained constant since 2006 and 2007, respectively.

For f = (1,—1) and in the case of the seven year spread the test shows decreasing
persistence in 2009 for the bandwidth of 7%7. This also holds for the ten year spread and
all considered bandwidths. Thus, we consider the time from 2006 and 2007, respectively
until 2009 and from 2009 to 2011. So we use 166 (87) observations regarding the the seven
year spread (ten year spread) before and 106 (144) after the particular break points. Table

shows the results of the estimated fractionally cointegrated system.

(Insert table [L0| here)

The finding that d, has increased significantly since 2006 and 2007 is confirmed. This is
consistent with the results reported by |Sibbertsen et al.| (2014)) who have examined European
government bond yields. Their results can be explained by higher credit risk and possibly
even with redenomination risk (a special version of exchange rate risk). |Sibbertsen et al.
(2014) also have argued that liquidity might matter. With regard to the examined time
series, increased risk premia due to changes to credit risk and redenomination risk obviously
are of no relevance. However, the reported findings can definitely be explained by higher
absolute or relative trading costs cg — ¢4 and thus, a higher liquidity premium.

The hypothesis that § = (1, —1) and d, = 1 cannot be rejected in most cases — which
indicates no interest rate sensitivity of the risk premium. However, confidence intervals have
become broader. This might be caused by small sample sizes. Furthermore, we estimate
{dy.d;, B} after 2009. The results are reported in table [11]

(Insert table (11| here)

It is obvious that d, decreased and the hypothesis of d, = 1 cannot be rejected. However,
due to broader differences between d, and d, the asymptotic distribution theory for S is not

available. Nonetheless, we waive the subsampling method due to small sample sizes.

(Insert figure [3| here)



To briefly resume our results, we found fractional cointegration between Pfandbriefe and
Jumbo Pfandbriefe with {d,, 1, (1,—1)}. We further tested against structural breaks in d,,
and found that the relations between the two covered bonds have changed over time. These
results might be caused by the financial crisis. Surprisingly, when d, was low or decreased,
which could be a characteristic of moderate economic times, it was still not zero. Figure

shows the autocorrelation functions of the spreads in the particular regimes.

6. Conclusion

We examined the relationship between yields of traditional Pfandbriefe and Jumbo Pfand-
briefe using techniques of time series analysis. Both seem to be I(1). Accepting that the
two types of covered bonds only differ with regard to liquidity risk and assuming that the
liquidity risk premium is a stationary variable, the bond yields — as long as the liquidity
premium is not interest rate sensitive — should be cointegrated with 8 = (1, —1). The latter
cannot be rejected while the simple cointegration framework does not take account for the
properties of the considered system. Thus, we used the procedure suggested by [Shimotsu
(2012) to allow for fractional cointegration. We estimated fractionally cointegrated systems
with ([0.5,0.8],1, (1, —1)), therefore the assumption of a stationary liquidity premium could
not be confirmed. This result might be spurious due to structural changes in the persis-
tence indicated by the test proposed by [Sibbertsen and Kruse (2009). We found increasing
persistence for all maturities which coincides with the financial crisis. Regarding seven and
ten years bonds, we further examined a second breakpoint with decreasing d,. Altogether,
we considered three regimes: A quite low persistence of the spread before, a high d, in the
crisis and a low d,, after the crisis. In the first and third regime, d, was not equal to zero
but stationary. We used the procedure by |Qul (2011) to test against spurious long memory
and found true long memory within these regimes. The hypothesis of § = (1, —1) cannot
be rejected for all three subsamples. These results can be explained by a higher liquidity
premium. First of all, the trading costs, represented by (cp — ca) respectively, might have
increased dramatically, thus the process of convergence of both yields has changed. Further-
more, flight-to-liquidity effects, represented by A, might have caused a higher d,. Finally,
the investors might have become more risk averse. A mixture of the last two points might
be particularly plausible, considering the timing of the breakpoints.

The empirical evidence reported here clearly supports the point of view that the global
financial crisis caused a traditional liquidity crisis that also affected the German covered bond
market. Consequently, the persistence of the spreads decreased again after the European

Central Bank started to buy covered bonds. Our empirical findings might be explained

10



by the yield time series for traditional Pfandbriefe that we do examine. This time series
is calculated from bond prices and mainly seems to be based on data from rather liquid
traditional Pfandbrief bonds.
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Appendix

Tables
Table 1: Ng Perron Test for unit roots
Akaike Schwarz
Intercept Intercept and Trend Intercept Intercept and Trend
Pfandbrief 5Y -1.00107 -1.31612 -1.00107 -1.31612
Pfandbrief 7Y -1.10745 -1.46411 -1.10745 -1.46411
Pfandbrief 10Y -1.13057 -1.48812 -1.13057 -1.48812
Jumbo Pfandbrief 5Y -1.01021 -1.29734 -1.01021 -1.29734
Jumbo Pfandbrief 7Y -1.10774 -1.41607 -1.10774 -1.41607
Jumbo Pfandbrief 10Y -1.17924 -1.58644 -1.17924 -1.58644
Table 2: Modified GPH

Maturity Bandwidth d StdErr  t(Hp:d=0) P> |t| t(Hyo:d=1) P>

0.50 0.5124997 0.0981141 5.2235 0.000 -3.8763 0.000

5 Years 0.60 0.6784042 0.0783983 8.6533 0.000 -3.5461 0.000

0.70 0.6253090 0.0563143 11.1039 0.000 -5.7249 0.000

0.80 0.6911256 0.0446706 15.4716 0.000 -6.5335 0.000

0.50 0.4961688 0.1413929 3.5091 0.002 -4.0062 0.000

7 Years 0.60 0.6914198  0.0874687 7.9048 0.000 -3.4026 0.001

0.70 0.7059399  0.0589845 11.9682 0.000 -4.4929 0.000

0.80 0.6793011 0.0491622 13.8176 0.000 -6.7836 0.000

0.50 0.6960751  0.1865023 3.7323 0.001 -2.4166 0.016

10 Years 0.60 0.7190957 0.1107111 6.4952 0.000 -3.0974 0.002

0.70 0.7117394  0.0713346 9.9775 0.000 -4.4043 0.000

0.80 0.7303082  0.0568460 12.8471 0.000 -5.7047 0.000
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Table 3: Results of the test against changing persistence (1)

Maturity Bandwidth Test Statistic CV low CV up Test Decision Break Date
5 Years 0.5 0.271 0.579 1.704 Increasing Persistence  2006-02-17
0.8 0.270 0.631 1.588 Increasing Persistence = 2006-02-17
7 Years 0.5 0.348 0.508 1.963 Increasing Persistence  2006-10-13
0.8 0.348 0.620 1.609 Increasing Persistence  2006-10-13
10 Years 0.5 0.513 0.620 1.61 Increasing Persistence  2007-07-27
0.8 0.513 0.641 1.569 Increasing Persistence  2007-07-27
Table 4: Results of the test against changing persistence (1)
Maturity Bandwidth Test Statistic CV low CV up Test Decision Break Date
5 Years 0.5 0.894 0.579 1.704 Cannot reject Hy
0.8 0.894 0.599 1.652 Cannot reject Hy
7 Years 0.5 1.637 0.459 2.202 Cannot reject Hy
0.8 1.637 0.620 1.608 Decreasing Persistence ~ 2009-12-18
10 Years 0.5 2.336 0.825 1.276  Decreasing Persistence ~ 2009-03-20
0.8 2.336 0.641 1.569 Decreasing Persistence  2009-03-20

Table 5: Results of Qu’s Test (1)

Table 6: Results of Qu’s Test (2)

Spread 7070 7075 Spread ~ T0-%5 060 070 p0.75
5 Years 0.84  0.77

7 Years 0.65 0.61 7 Years 0.68 045 0.38 0.60
10 Years (1.31) (1.36) 10 Years 0.34 037 043 0.25
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Table 7: Estimated fractional cointegrated system (1)

m T0.55 70.60 T0.65 T0.70 T0.75
5 Years
dy 0.6194 0.7154 0.6862 0.7034 0.6725
[0.461 0.777] [0.583 0.848] [0.570 0.802] [0.605 0.802] [0.589 0.756]
dy 1.1290 1.0942 1.1075 1.1030 1.0925
[0.971 1.287] [0.962 1.227] [0.992 1.224] [1.004 1.202] [1.009 1.176]
153 1.0190 1.0409 1.0201 1.0193 1.0190
[0.998 1.074]* [1.006 1.076] [0.993 1.047] [0.989 1.049] [0.994 1.044]
p -0.3022 -0.3774 -0.2326 -0.2274 -0.2174
7 Years
dy, 0.6715 0.7943 0.7668 0.7580 0.6832
[0.514 0.829] [0.660 0.929] [0.650 0.884] [0.660 0.857] [0.600 0.767]
dy 1.0697 1.0458 1.0737 1.0872 1.0748
[0.912 1.227] [0.911 1.180] [0.956 1.191] [0.988 1.187] [0.991 1.159]
B 1.0173 1.0296 0.9996 1.0051 1.0080
[0.984 1.051] [0.965 1.095] [0.952 1.047] [0.964 1.046] [0.979 1.037]
0 -0.3453 -0.3301 -0.1641 -0.1705 -0.1985
10 Years
dy 0.4930 0.6746 0.6080 0.6227 0.6620
[0.331 0.654] [0.539 0.810] [0.491 0.725] [0.524 0.721] [0.579 0.745]
dy 1.0628 1.0245 1.0512 1.0666 1.0590
[0.902 1.224] [0.889 1.160] [0.934 1.168] [0.968 1.165] [0.976 1.142]
153 1.0198 1.0395 1.0253 1.0308 1.0411
[1.008 1.135]* [0.991 1.088] [0.998 1.052] [1.004 1.057] [1.005 1.077]
p -0.2051 -0.2757 -0.1873 -0.2206 -0.2580
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Table 8: Estimated fractional cointegrated system (2)

m 70.55 7060 T0.65 70.70 T0.75
5 Years
dy 0.2117 0.2918 0.3119 0.3325 0.3376
[0.026 0.397] [0.129 0.455] [0.172 0.452] [0.212 0.453] [0.234 0.442]
dy 1.1518 1.0689 1.1772 1.1771 1.1102
[0.967 1.337] [0.906 1.232] [1.038 1.317] [1.057 1.298] [1.006 1.214]
153 0.9991 1.0003 0.9997 0.9999 1.0007
[0.997 1.007]* [0.997 1.009]* [0.999 1.006]* [1.000 1.007]* [1.000 1.009]*
p -0.3483 -0.2832 -0.2796 -0.2443 -0.2626
7 Years
dy, 0.2529 0.3512 0.4592 0.4142 0.4233
[0.068 0.438] [0.190 0.512] [0.321 0.597] [0.295 0.534] [0.321 0.525]
dy 1.0633 1.0381 0.9978 1.1878 1.0729
[0.879 1.248] [0.877 1.199] [1.013 1.289] [1.068 1.307] [0.971 1.175]
B 1.0015 1.0001 0.9978 0.9973 1.0002
[1.001 1.010]* [0.997 1.011]* [0.997 1.006]* [0.998 1.008]* [0.997 1.008]*
0 -0.2243 -0.2049 -0.1918 -0.1019 -0.1922
10 Years
dy 0.3900 0.6939 0.7045 0.6850 0.6686
[0.207 0.573] [0.536 0.852] [0.570 0.839] [0.571 0.799] [0.571 0.766]
dy 1.0410 1.1891 1.0838 1.1669 1.0942
[0.858 1.224] [1.032 1.347] [0.949 1.218] [1.053 1.281] [0.997 1.192]
153 0.9938 0.9905 0.9969 0.9966 1.0059
[0.988 1.022]* [0.986 0.995] [0.969 1.025] [0.987 1.007] [0.985 1.027]
p -0.1945 -0.1801 -0.1958 -0.2529 -0.2564
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Table 9: Estimated fractional cointegrated system (3)

m T0.55 70.60 T0.65 70.70 T0.75
5 Years

dy 0.8294 0.7222 0.7251 0.7377 0.7083

[0.640 1.019] [0.549 0.895] [0.575 0.875] [0.606 0.869] [0.595 0.821]

dy 1.1449 1.1483 1.0723 1.0548 1.0730

[0.955 1.334] [0.975 1.321] [0.922 1.222] [0.923 1.186] [0.960 1.186]

153 1.0941 1.0355 1.0439 1.0374 1.0367

[0.988 1.200] [0.980 1.092] [0.960 1.127] [0.947 1.128] [0.966 1.108]

p -0.5019 -0.2452 -0.2750 -0.2497 -0.2407
7 Years

dy, 0.9555 0.8422 0.8038 0.7275 0.6786

[0.804 1.108] [0.657 1.028] [0.646 0.962] [0.590 0.865] [0.559 0.798]

dy 0.9529 1.0875 1.041 1.0321 1.0532

[0.801 1.105] [0.902 1.273] [0.883 1.199] [0.895 1.169] [0.933 1.173]

B -9.3965 0.9723 1.0059 1.0122 1.0064

[-30.158 11.365) [0.829 1.116] [0.868 1.144] [0.916 1.108] [0.938 1.075)

0 0.9997 -0.0986 -0.1850 -0.2204 -0.1900
10 Years

dy 0.5612 0.5105 0.5842 0.6195 0.6551

[0.348 0.775] [0.320 0.701] [0.421 0.748] [0.478 0.761] [0.529 0.782]

dy 1.0322 1.0978 0.9912 1.0035 1.0484

[0.819 1.246] [0.907 1.288] [0.828 1.155] [0.862 1.145] [0.922 1.175)

153 1.0997 1.0636 1.0925 1.1055 1.0783

[1.060 1.139] [1.030 6.021]* [1.016 1.169] [1.022 1.189] [0.999 1.157]

p -0.4000 -0.1836 -0.3144 -0.3439 -0.2024
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Table 10: Estimated fractional cointegrated system (4)

m T0.55 T0.60 T0.65 T0.70 T0.75
7 Years
dy, 0.7549 0.8318 0.7216 0.6791 0.7106
(0.838 1.105]  [0.620 1.044]  [0.539 0.904] [0.513 0.845] [0.566 0.855]
dy 1.0940 1.0790 1.0615 1.1152 1.1085
(0.850 1.338]  [0.867 1.291] [0.879 1.244] [0.949 1.281]  [0.964 1.253)
B8 0.9711 1.0013 1.0328 0.9861 1.0018
0.838 0.836]  [0.809 1.194] [0.914 1.152] [0.918 1.054] [0.917 1.087]
P -0.2046 -0.2348 -0.3491 -0.1271 -0.1372
10 Years
dy, 0.9453 1.0253 0.6709 0.6944 0.8949
0.716 1.174]  [0.837 1.213]  [0.451 0.891] [0.498 0.891]  [0.734 1.056]
dy 1.0609 1.0350 1.0007 0.9676 1.0393
(0.832 1.290]  [0.847 1.223] [0.781 1.221] [0.771 1.164]  [0.879 1.200]
I} 1.9938 16.8853 1.2000 1.2429 1.5414
0.090 2.998]  [6.029 27.742]  [0.981 1.419] [0.978 1.507] [0.984 2.099]
p -0.9139 -0.9997 -0.4429 -0.4949 -0.7297
Table 11: Estimated fractional cointegrated system (5)
m TO.55 TO.GO T0.65 T0.70 T0.75
7 Years
dy, -0.1180 0.0256 0.2958 0.3176 0.4991
[0.375 0.139] [-0.212 0.263] [0.075 0.517] [0.123 0.512] [0.327 0.672]
dy 1.2107 1.1638 1.0320 1.0849 1.1310
0.954 1.468]  [0.927 1.401] [0.811 1.253] [0.891 1.279]  [0.958 1.304]
I} 1.0013 0.9930 0.9913 0.9848 0.9800
-1 -1 - -I* [--1* -1
p 0.4318 0.2762 -0.0928 0.0264 -0.0118
10 Years
dy 0.1254 0.1537 0.3223 0.4691 0.5782
[0.127 0.378]  [-0.073 0.381] [0.127 0.518] [0.296 0.643] [0.425 0.732]
dy 1.1051 1.2546 0.9927 1.0660 1.1138
[0.853 1.358]  [1.028 1.481] [0.797 1.188] [0.893 1.240] [0.960 1.267]
B 1.0581 1.0552 1.0581 1.0591 1.0550
-1 -1 [--1* --1* -1
p -0.1592 -0.0561 -0.1814 -0.1591 -0.1428
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Figures

Fig. 1. Autocorrelation functions of the 5, 7, and 10 years spread.
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Fig. 2. Spreads of the traditional Pfandbriefe and Jumbo Pfandbriefe. The lines indicate
the estimated breakpoints.
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Fig. 3. Autocorrelation functions of the subsamples

of the 5, 7, and 10 years spread.
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