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Abstract

As financial return series comprise relevant information about risk and depen-
dence, historical return series describe the underlying information for applied
portfolio management. Although market quotes are measured periodically,
the data contains information on short-run as well as long-run trends of the
underlying return series. A simulation study and an analysis of daily mar-
ket prices reveal the relevance of short-run information for applied portfolio

management.
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1 Introduction

Historical market prices describe the underlying information of financial risk man-
agement. Although, financial data is tracked periodically i.e. daily, weekly or
monthly, historical market prices comprise information on both short- and long-
run seasonalities of the underlying return series. This paper decomposes financial
return series into different seasonalities and provides an assessment of the relevance
of particular seasonalities for daily portfolio management.

In order to decompose financial return series into its underlying trends, Percival
and Walden (2000) and Gengay et al. (2001) introduced wavelet decomposition to
financial return series and triggered a growing field of literature which deals with
decomposition of financial return series into short-run and long-run seasonalities.

In this context, Gengay et al. (2003) and Gengay et al. (2005) apply the Capital
Asset pricing model (CAPM) to decomposed return series of international stock
indices and illustrate that systematic risk increases for long-run seasonalities. Rua
and Nunes (2012) confirm this finding for emerging markets whereas Gallegati (2012)
decomposes return series of stock market indices of G7 countries, Brazil and Hong
Kong to assess changing correlation regimes between decomposed return series. As
a result, dependence schemes between decomposed return series are described by
different patterns, especially dependence between long-run seasonalities appears to
be stronger than suggested by the original data. Reboredo and Rivera-Castro (2014)
assess dependence between decomposed European and US stock and oil prices and
find evidence of increased dependence between long-run seasonalities after 2008.
Dewandaru et al. (2015) analyze dependence between Asian stocks, Andries et
al. (2014) between intersest rates, stock prices and exchange rates and Berger and
Salah Uddin (2016) dependence between commodities, and Tan et al. (2014) analyze
dependence between US and Asian equity markets.

As dependence between assets presents a crucial information in the context of

periodical portfolio allocations, financial portfolios are impacted by misspecified



dependence parameters (see Fantazzini 2009). Moreover, according to Ane and
Kharoubi (2003), misspecified dependence structure accounts for (up to) 20% of the
overall portfolio risk.

In this vein, the wavelet decomposition of financial return series implies a de-
composition of variance and covariance of the underlying return series, namely the
relevant information for applied portfolio management. Consequently, the decom-
position of return series leads to a decomposition of both the risk of an asset (con-
ditional variance) and diversification effects between assets (covariance) whereas
information on different seasonalities (i.e. short run, middle run and long run in-
formation) directly impact portfolio allocations. Furthermore, wavelet analysis does
not only allow for a decomposition but also for a reconstruction of a decomposed
financial return series and as presented by Berger and Gengay (2016), return series
can be reconstructed by excluding particular seasonalities.

Triggered by the ongoing discussion on dependence structure between decom-
posed return series, we introduce decomposed information on long-run and short-run
seasonalities to periodical portfolio management and evaluate the relevance of dif-
ferent seasonalities within an out-of-sample analysis. Doing so allows us to evaluate
the relevance of changing dependence schemes between decomposed financial time
series for applied portfolio management.

Therefore, we draw on Berger and Gengcay (2016) and apply wavelet filter to
decompose return series into different components and reconstruct the return series,
which enables us to exclusively take particular trends into account. That is, we
reconstruct filtered return series by taking either short-run, middle-run or long-run
seasonalities into account. Furthermore, we apply the reconstructed versions of the
original return series to build portfolio allocations and assess their out-of-sample
performance. The assessment will be twofold:

First we set up a simulation analysis, and simulate return series which are de-

scribed by different patterns of long-memory effects to assess the relevance of short



and long-memory of a return series on portfolio allocations. By investigating recon-
structed return series which take either short-run or long-run memory into account,
we shed light on the relevant information for applied portfolio management in the
absence of incomplete information on the underlying market conditions.

Second we assess the out-of-sample performance of global mean variance efficient
portfolios which are based on reconstructed return series and compare the perfor-
mance with the mean-variance efficient portfolio allocations based on un-decomposed
daily data. To take account for different market sizes and regimes, we assess stocks
that are listed at leading indices of both developed and emerging stock markets. The
results indicate that middle-run and long-run information can be excluded from the
original time series without impacting the out-of-sample performance of daily port-
folio management.

The remainder is structured as follows. Section 2 describes the relevant method-
ology and the simulation study is presented in Section 3. Results regarding the

empirical portfolio analysis are given in section 4 and section 5 concludes.



2 Methodology

In this section, we present methodological approach of wavelet filtering that enables
us to decompose and reconstruct the underlying return series. As well, we introduce
the portfolio allocation algorithm which will be applied to the reconstructed return

series and relevant quality criteria of our analysis.

2.1 Maximal overlap discrete wavelet transform

In this section, we introduce the maximal overlap discrete wavelet transform (MODWT)
as described by Gengay et al. (2001) and Percival and Walden (2000)'. MODWT
approach describes an expansion of the classical approach of discrete wavelet trans-
formation (DWT) (see Zhu et al. 2014). As the amount of observations remains

2 and is characterized by shift invariance,

constant at each level of decomposition
MODWT approach is predestined for a rolling window out-of-sample analysis.

As presented by Gengay et al. (2001), the choice of wavelet filter is directly
linked to a scaling filter and describes the core of wavelet decomposition.

Let h;; be the DWT wavelet filter with [ = 1, ..., L describing the length of the
filter and j = 1, ..., J the level of decomposition, then the corresponding scaling filter
is determined by g;; .3

Further, as the MODWT filter describes an expansion of the DW'T concept, the

MODWT wavelet and scaling filter are directly obtained from DWT filters by:
hi = hji/22, (1)

and

Gia = 951/2"". (2)

'In contradiction to Fourier Analysis, the decomposition of a return series via wavelet approach
events can still be localized throughout the decompositions.

2Due to boundary conditions, only the observations at the beginning of each series get reduced.

3The respective scaling (low pass) filter g;;, depends on h;; by Quadratic mirror filtering and
is given by g = —1'hy.



In this vein, as the underlying data of this study is described by daily return
series, 7 = {ry, t = 0,1,2,...., N — 1}, to decompose the series into J frequencies,
wavelet coefficients of level j are achieved by the convolution of » and the MODWT
filters (see Percival and Walden 2000) :

Wit =" hjiTt—1 mod N, (3)
=0
and
N L-1
Vie = 5Tt~ mod N- (4)

N
Il
=)

with L; = (22 — 1)(L — 1) + 1. According to the presented MODWT, wavelet
coefficients at all scales are characterized by the same amount of observations as the

original return series r and can be expressed in matrix notation :

and

!

Vi = r. (6)

As we aim to utilize MODWT for an out-of-sample portfolio application, we are
interested in the maximum number of the boundary-free coefficients. Therefore,
we use the Haar filter which has the smallest number of coefficients leading to
hio = %, ill,l = —% and g0 = %, gi11 = % for j = 1.

Due to the fact, that our study aims at the exclusion of particular seasonalities
from the original return series, we make use of the properties of wavelet analysis
that allow for a reconstruction of the decomposed series. Thus, based on the DWT
specific concept of multi-resolution analysis (MRA), the underlying original return

series can be reconstructed by simply summing up all coefficients and the smoothed



version of decomposition step J:

r:ifﬁ/ﬁﬁ?%:iﬁﬁ&. (7)
i=1 J=1

In this setup lN?j = @]TW] describes the detail coefficients and S J = @J-T‘N/J the cor-
responding smoothed version of the return series. Further, 5]- deals as the local
details of the trend at level j and captures the short term dynamics (low levels)
of the original return series whereas long-term fluctuations are described by high
levels. Consequently, Sy is defined as the smoothed version of the time series.

Based on the introduced setup, which allows for a decomposition and recon-
struction of the underlying return series, we follow Berger and Gengay (2016) and
reconstruct decomposed return series by excluding particular levels of decomposi-
tion.

Hence, after a return series is decomposed into J scales, we reconstruct the
series by excluding the highest scales that comprise the long-run information of the
underlying return series. More concretely, in our analysis, we decompose every series

eight times and discuss three different reconstructed versions of the original return

series*:
3 o~
rsg = Dj, (8)
=
5 —~
rvur = Y Dj, 9)
=4
8 —~—
LR = Z Dj. (10)
=6

Consequently, based on eight decomposition levels of the original return series, we
achieve the reconstructed return series that exclusively comprises short-run infor-
mation (rgg) , by summing up the relevant detail coefficients 51, 52, 53. ryvr the
middle-run trend and ry g the long-run trend are constructed in the same way. For

a thorough introduction to MODWT in the context of financial data we refer to

4We refer to Table 1 for an economic discussion of the applied setup.
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Gengay et al. (2001) and for an intuitive economic introduction to wavelet wavelet

analysis we refer to Crowley (2007).

2.2 Portfolio allocation

Based on historical financial return series, as well as its filtered versions (see equa-
tions (8)-(9)), we introduce the competing versions of the original return series
(comprising short run, middle run and long run respectively), to applied portfolio
management.

Due to the focus on the return series, we apply the covariance matrices of the
reconstructed return series to the widely accepted Markowitz portfolio optimiza-
tion setup (see Markowitz 1952) and assess the global minimum-variance allocation,

whereas we restrict our analysis to the absence of short sellings:
min w! How, s.t. 15w, = 1. (11)
wt

In this setup, only the estimate of the covariance matrix (H;) of the underlying
series (either original or reconstructed) impacts portfolio allocations. As this strat-
egy ignores expected returns, differences between portfolio allocations are directly
linked to differences in the underlying covariance matrices®.

In order to discuss the relevance of the underlying covariance matrices which con-
tain information on different memories, we assess the out-of-sample performance of
the global mean variance efficient portfolio allocation by several backtesting criteria.

Analogous to the study of De Miguel et al. (2009), we also evaluate the out-of-
sample returns by different performance metrics.

In order to compare portfolio allocations which aim at minimizing particular

trends, portfolio allocations we define allocations based on un-decomposed data as

the benchmark and assess the information ratio of strategy k against a benchmark b

SBerger (2016) initiated the application of decomposed return series to applied portfolio man-
agament.



strategy. As presented by Grinold and Kahn (2000) an adequate information ratio

is given as follows:

1 _ A
IR, — nz(fk Tb) _ 2 (12)

OTE OTE

Here, r, and 7, describe the vector of portfolio returns for strategy £ and b re-
spectively and 67 describes the standard deviation of the tracking error (TE), i.e.
portfolio return relative to benchmark returns (see .
To assess the risk adjusted out-of-sample returns, we build the out-of-sample
Sharpe ratio of strategy k
SR, = @ (13)
Tk
Here, fi, describes the out-of-sample returns generated by strategy k divided by their
sample standard deviation ;. To add to the Sharpe ratio performance, especially
in case of negative average returns, we assess two alternative measures which add

to the information provided the Sharpe ratio. As introduced by Sortino (1991), we

assess the Sortino ratio as a natural extension of the Sharpe ratio:

SoR, — Hi . (14)
VESL, (min(ry, 0))?

Additionally, as described by Shadwick and Keating (2002), we take account for the

Q-ratio, to capture the information in the higher moments of return distribution:

ORk:fo

1— F(rk))drk

(
foo F(rk)drk (15)

As we deal with daily prices, we set the threshold to 0 which leads us to distinguish

between upside and downside potential.

6Please note, that the information ratio and the Sharpe ratio of an Asset versus a riskless
benchmark are equivalent.



3 Simulation analysis

To assess the impact of long-run seasonalities on portfolio allocations, we set up a
simulation analysis that allows us to control for the existence of long-memory effects
of the underlying return series. Therefore, we simulate daily return series which are
characterized by different memory regimes (short run, middle run and long run) to
assess the performance of portfolio allocations that take particular seasonalities into

account.

3.1 Setup of the analysis

In order to mimic the conditional volatility patterns of daily return series, we assume
a process that is described by time varying conditional volatility. For that reason, we
apply an extension of the widely accepted GARCH approach (Bollerslev (1986)) to
simulate daily return series of realistic length. Specifically, we control for memory
effects by applying the FIGARCH(1,d,1) approach as presented by (Baille et al.

(1996)) to generate conditional volatility processes wich are given as follows:

of =Q+ (1= B(L) = o(L)(1 = L))y + oy, (16)

Here, ) describes a constant, r;,_; the return from the previous period. The
parameter d controls for the memory of the process and allows the autocorrelation
of the process to decay at a hyperbolic rate wheras ¢(L) and (L) describe the lag
polynomials. According to Baillie and Morana (2009).

As presented by Gengay et al. (2001), FIGARCH(1,d, 1) processes with d €
[0,0.5] are predestined to mimic conditional financial return variance with different
memory schemes, whereas the memory of the conditional volatility increases with d.
Because of that, we apply different parameterizations of d = 0.05,0.15,0.35 and 0.45
to discuss four different memory schemes, namely the transition from short memory

(d=0.05) to long-term memory (d=0.45). Additionally, to control for the memory
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of the simulated return series, and assume a constant mean return.”

As we focus on portfolio allocations based on simulated return series, we assess
multiple simulated return series simultaneously and introduce realistic dependence
schemes between the simulated univariate return series. In line with stylized facts
about the dependence of financial return series, i.e. dependence varies over time, we
introduce time varying dependence via dynamic conditional correlation approach,
as introduced by Engle (2002).

For this reason, as presented by Engle (2009), based on multiple simulated FI-
GARCH(1,d,1) series, we implement the assigned dynamic correlation (DCC) struc-
ture between series 7 and series j following iterative multi-period process. Let R
be the sample correlation and apcc and Spoc the DCC parameters. Based on
this step, we proceed iteratively, so to say, conditionally on period ¢, we model the

dependence structure between asset ¢ and j for ¢ + 1:
Qi1 = (1 — apce — Bpee) * R+ apce * (7€) + Bpec(Qr) (17)

Riy1 = diag {Q:{Q} Qt+1dm9{ t_+11/2} ) (18>
(e €h1) = (€ipr1 €jer1) %/ Rega. (19)

In this setup Spcc represents the persistency of the process.

Here parameters apcc and Spoc control for the news impact and persistence
of the process. As described in Engle (2009), financial return series are typically
described by a parameterization of a = 0.05 and 3 = 0.90.8 As a target correlation,
we mimic stocks which are listed at the same index and assume slightly positive
correlated assets and assess a portfolio that consists of five simulated stocks which

are characterized by a correlation matrix as follows:

It is to note, that the application of an AR process impacts the memory of the underlying
return series and makes it difficult to control for the memory of the underlying return series.
Moreover, we discuss both positive and negative average returns.

8A detailed description on the simulation of time varying conditional correlation is given by
Berger (2016).
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Based on the simulated return series, we decompose each series into three differ-
ent trends, as described by equations (7) - (10) in section 2.1 . Then, we estimate
the mean-var efficient portfolio allocations (equation (11)) based on the decomposed
and the original return series and analyze the out-of-sample performance of each al-

location strategy via rolling window analysis.

The setup of the simulation study can be summarized as follows:

1) We generate five return series comprising 1500 observations via FIGARCH(1,d,1)

approach.
2) We introduce time varying conditional correlation via DCC approach.
3) We decompose each return series via MODWT approach.

4) We reconstruct the decomposed return series and achieve r&n, ri% and r§m

and the simulated return series 7™ and assess 500 -1500.
5) We apply rolling window approach: 1+t:500+t.
6) We apply Markowitz approach.
7) We assess the out-of-sample performance.

For each parameterization of d we repeat the simulation 1.000 times to assess the

robustness of the results.
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3.2 Results of the analysis

As the presented results are valid for each simulation-run, in the remainder of this

section, we present the analysis of one simulation-run for each memory scenario.?!°

[Insert Table 2 about here.]

Table 2 presents the results of the conducted simulation analysis. That is, for
four different scenarios of time series memory (d = 0.05, d = 0.15,d = 0.35 and
d = 0.45), we assess the performance of portfolio allocations that minimize the
covariance matrix of reconstructed return series which exclusively take short-run
information (SR), middle-run information (MR) or long-run information (LR) into
account. As a benchmark, we assess portfolio allocations based on the original
(undecomposed) simulated return series (Original). The presented results, describe
the out-of-sample performance for 1000 days.

Obviously, absolute average returns increase when the simulated return series are
characterized by longer memory (d = 0.05: —0.0364% and —0.2313% for d = 0.45).

Although different memory scenarios lead to different average returns, our re-
sults provide evidence for the importance of short-run information. Comparing the
out-of-sample performance of portfolios which minimize the covariance matrix of
the original simulated return series against the portfolios that minimize the recon-
structed return series indicates that the SR out-of-sample returns are closer to the
original return than M R and LR.

For instance, if the simulated return series is characterized by less memory
(d=0.05), the average out-of-sample portfolio returns based on the original return
series are —0.0364% and SR —0.0363% whereas M R and LR lead to —0.0367%

and —0.0353% respectively. This tendency remains stable for different memory-

9For sake of page constraints, average statistics for all 1.000 simulations for each scenario are
available upon request.

10As the presented results are robust against simulated up and downward-trends, we present
the results for simulated return series which are characterized by negative average returns.
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scenarios, indicating that information on the short-run memory of a return series
provide the relevant information for portfolio allocations.

The applied information ratio (IR,,,) allows for a comparison of the portfo-
lio strategies against the applied benchmark (Original). In this particular simu-
lation setup, lower info ratios are preferred against higher values, indicating that
the assessed strategy does not deviate from the out-of-sample returns based on
un-decomposed return series. The results suggest, that SR leads to out-of-sample
returns which are closest to the benchmark, whereas MR and LR result in larger
deviations from the benchmark and to more volatile out-of-sample returns. This
finding indicates that the relevant information for daily portfolio management can
be described by decomposed short-run trends. Moreover, the results of the presented
simulation study demonstrate, that the long-run information can be excluded from
the underlying return series without impacting portfolio allocations.

Although simulated return series are characterized by long-memory schemes (d =
0.45), minimizing the covariance matrix of the reconstructed return series which
exclusively comprises information on the short-run trends of the original series leads

to similar out-of-sample performance, according to its benchmark.
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4 Empirical Study

4.1 Data

The data set of the empirical study comprises different stocks which are listed at
leading indices of nine different countries. In order to indicate robustness of the
empirical results, we analyze different currency denominations and focus on both
developed and emerging markets. We discuss assets which are listed at the leading
North American, German and British stock markets as representatives of developed
markets. Additionally, we assess Canadian and Australian stocks as representatives
for smaller indexes. To analyze emerging markets, we stick to the definition of O’Neil
(2001) and assess stocks which are listed at the leading indices of the so called BRIC
states. That is, we assess shares which are listed at the Brazilian, Russian, Indian
and Chinese stock exchanges. For all countries we assess daily market quotes and
analyze more than 11 years of data ranging from 2.1.2006-20.5.2016.11 By splitting
our sample into sub-samples, we are able to take account for the market turmoil

beginning at 2007 .

[Insert Table 3 about here.]

Table 3 presents an overview of the applied data. For all countries, we analyze all
stocks which are listed at the leading stock index of the respective country. More-
over, we exclude all stocks which were listed or de-listed after 2006 from our analysis

to ensure a consistent sample size for the assessment of different sub-samples.

[Insert Table 4 about here.]

" This period refers to the limits of the assessed out-of-sample period and comprises up to
2675 daily market quotes. Due to data intensive rolling window and wavelet analysis, the assessed
market prices range from 6.8.2003 up to 20.5.2016 (up to 3305 observations). Due to country
specific bank holidays, the amount of observations differs marginally by each country.
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Table 4 presents the averaged descriptive statistics of the analyzed assets for each
stock index. Obviously, the assessed stocks which are listed at indices of developed
markets are characterized by lower risk (o ranges between 0.007 and 0.008) and
extreme negative losses in comparison to positive gains (skew ranges between -
0.039 and -0.796) in comparison to stocks which are listed at indices of emerging
markets which are characterized by higher risk and a longer right tail (o ranges
between 0.010 and 0.016; skew ranges between 0.029 and 1.687). According to the
presented averaged descriptive statistics, the investigated stocks of small markets are
characterized by similar risk like developed markets (o ranges between 0.007 and
0.009) but by positive skewness like emerging markets (skew ranges between 0.212
and 0.365) and describe an interesting compromise between stocks of developed and

emerging markets.!2.

4.2 Empirical Results

Analogous to the presented simulation analysis, we assess reconstructed return se-
ries and we start the empirical analysis by assessing the out-of-sample performance
of the portfolios that comprise stocks of developed markets. The results of the out-
of-sample performance of the global minimum variance portfolios in the time from

2006 until 2010 are presented in Table 5.

[Insert Table 5 about here.]

Table 5 provides the descriptive statistics and the performance metrics of the daily
out-of-sample portfolio returns from 2006 until 2010. The results for the period
between 2010 until 2016 and the crisis-period from 2007 until 2009 are presented
in Table 6 and Table 7 respectively. The out-of-sample performance of the global

mean-var-efficient minimum variance portfolios based on particular trends indicate,

12 As our analysis comprises 265 stocks, a detailed list of descriptive statistics for each individual
asset is available upon request to the authors
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that the decomposition of return series into different trends impacts the portfolio
performance. Both the exclusive focus on middle-run and long-run trends does not
lead to an improved portfolio performance in comparison to portfolios that take
the complete information, which is provided by the original return series, into ac-
count. For instance, mean-var efficient portfolio allocations which comprise stocks
that are listed at the Dow Jones index (DJI 30) lead to an average return of 0.0148%
and a Sharpe ratio of 0.0136 whereas middle-run and long-run trends lead to lower
average returns (middle run: 0.0021%; long run: 0.0013%) and lower Sharpe ra-
tios (middle run: 0.0018; long run: 0.0011). In contradiction to that, an exclusive
focus on short-run trends leads to marginally improved performance metrics (aver-
age out-of-sample return: 0.0167%; Sharpe ratio 0.0153). Generally, the presented
figures suggest that daily rebalanced portfolio allocations that aim at minimizing
middle-and long-run trends of the assessed series, do not improve the out-of-sample
performance in terms of the applied portfolio metrics. Turning to the assessment of
short-run trends, the results indicate that the application of decomposed short-run
trends lead to an improvement in terms of the applied quality criteria. In compar-
ison to the out-of-sample performance of portfolios that minimize the conditional
covariance matrix of daily data, the particular focus on short-run trends leads to
higher average returns, larger Sharpe and sortino ratios for the assessed stocks of

all 9 countries.

[Insert Table 6 about here.]

Table 6 provides the results for the time from 2010 until 2016. Although both mar-
ket times are characterized by different market regimes, i.e. the time from 2006 until
2010 includes the outbreak and the recovery of financial crisis whereas the period
between 2010 until 2016 is described by market upturns as a result of historically low

interest rates, the findings for the period between 2006 until 2010 hold for the period
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2010 until 2016. Again, by explicitly focusing on the short-run information of the
underlying daily return series, the assessed performance metrics can be improved.
Long-run information do not lead to an improvement of the applied quality criteria.
For both subsamples, extracting the short-run information from daily return series
leads to an improvement of the applied metrics, indicating that the relevant infor-
mation for applied portfolio management is adequately described by daily short-run

fluctuations.

[Insert Table 7 about here.]

With particular focus on the turmoil market times between June 2007 and June
2009, see Table 7, portfolios that exclusively take the covariance matrix of short-
run trends into account lead to smaller negative returns (e.g. DJI 30: -0.0066%
daily data and -0.0039% short run; TSX 60: -0.0206% daily data and -0.0196%
short run; RTS: -0.0572% daily data and -0.0501% short run) than the ordinary
portfolios. Again, the results indicate that the short-run trends incorporate the
relevant information for daily portfolio management, when markets are characterized
by larger volatility and collective market downturns. In this vein, the maximum
drawdown in turmoil market times gets marginally reduced when decomposed return
series that exclusively describe the short-run trends are applied.

However, the presented results indicate, that the relevant information for daily
portfolio management is adequately described by the extracted short-run informa-
tion of the respective daily return series. Therefore, exclusively focusing on the
short-run information of the assessed financial return series leads to slightly im-
proved results with respect to the assessed quality criteria. Although recent studies
mainly point at stronger dependence regimes between the long-run seasonalities of
stock returns (see Gallegati 2012, Rua and Nunes 2014, Tan et al. 2014 amongst

others), our results indicate that the information on different long-run seasonalities

18



is of limited use for applied portfolio management.

Consequently, as both middle- and long-run trends do not contribute an improved
portfolio performance, our results identify the extracted information on short-run
fluctuations of the underlying return series as the relevant information for daily
portfolio management. As portfolio allocations which aim at minimizing short-
run seasonalities and classical portfolio allocations lead to comparable results, the
empirical findings are in line with the results of the simulation analysis and provide
evidence for the relevance of the short-run trends in the context of applied portfolio
management. Due to the applied different stock indices and sample periods, our

results are robust against different volatility and market regimes.
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5 Conclusion

Triggered by the growing literature on changing dependence schemes between de-
composed return series, a simulation study and a thorough empirical assessment
unveal the relevance of short-run trends for applied portfolio management.

The presented simulation study indicates, that particular information of long-run
seasonalities are of minor relevance for daily portfolio management. Although the
underlying data is characterized by long-memory processes, excluding the informa-
tion of the underlying long-run seasonalities does not impact the presented portfolio
allocations. Moreover, the empirical assessment of different portfolios that comprise
stocks which are listed at both developed and emerging markets provides evidence
that extracting short-run trends from daily return series describes the crucial infor-
mation for portfolio management.

Therefore, our results provide novel insights into the relevant information for ap-
plied portfolio management and further research should focus on the assessment of
stylized properties of the short-run trends. Moreover, alternative investment strate-
gies which take structural breaks and jumps within the short-run scales into account
or the assessment portfolio Value-at-Risk as a direct function of decomposed covari-
ance matrices present promising expansions of the presented analysis and should be

investigated.
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6 Tables

Definition  Horizon Detail
Short Run 2-4 days D1
Short Run 4-8 days D2
Short Run 8-16 days D3

Middle Run  16-32 days D4
Middle Run  32-64 days D5
Long Run 64-128 days D6
Long Run 128-256 days D7
Long Run 256-512 days D8

Table 1: Economic interpretation of decomposed daily return series.

Original SR MR LR

d=0.05

Tsim -0,0364% -0,0363% -0,0367% -0,0353%
min -0,5354% -0,5346% -0,5346% -0,5502%
max 0,3342% 0,3336% 0,3272% 0,3381%
Tsim 0,0009 0,0009 0,0009 0,0009
IRmo 0,0436 -0,0349 0,0261
TEmv 0,0000 0,0001 0,0004
d=0.15

Tsim -0,0661% -0,0661% -0,0661% -0,0700%
min -0,9148% -0,9198% -0,9062% -1,0400%
max 0,7920% 0,7895% 0,7892% 0,9321%
Tsim 0,0022 0,0022 0,0022 0,0025
IRmo 0,0024 0,0040 -0,0354
TEmv 0,0001 0,0002 0,0011
d=0.35

Tsim -0,1498% -0,1503% -0,1489% -0,1447%
min -1,4204% -1,3997% -1,4859% -1,6412%
max 1,0535% 1,0598% 1,0926% 1,4492%
Tsim 0,0028 0,0028 0,0029 0,0034
IRmo -0,0527 0,0317 0,0330
TEme 0,0001 0,0003 0,0015
d=0.45

Tsim -0,2313% -0,2316% -0,2379% -0,2368%
min -10,0287%  -10,0287%  -10,0287%  -10,7048%
max 10,3812% 10,3815% 10,4105% 11,6836%
Tsim 0,0202 0,0203 0,0203 0,0213
IRmy -0,0073 -0,0851 -0,0222
TEmv 0,0004 0,0008 0,0025

Table 2: This table describes the out-of-sample results of the applied simulation
study. 7, describes the average out-of-sample return of the mean-var efficient
portfolio, min and max describe the respective minimum and maximum out-of-
sample returns and oy, gives the standard deviation. IR,,, describes the sum of
deviations from the applied benchmark strategy and T'F,,, describes the ratio of
overage deviation from the benchmark devided by oy;,. Here, the benchmark is
defined as the portfolio based on un-decomposed data (Original).
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Data

Developed Markets Index Period Frequency  # Assets
United States of America DJI 30 2006-2016 daily 28
Great Britain FTSE 30 2006-2016 daily 27
Germany DAX 30 2006-2016 daily 29
Small Markets

Canada TSX 60 2006-2016 daily 54
Australia ASX 2006-2016 daily 19
Emerging Markets (BRIC)

Brazil Bovespa 2006-2016 daily 32
Russia RTS Index 2006-2016 daily 15
India BSE Sensex  2006-2016 daily 25
China SSE Index 2006-2016 daily 36

Table 3: This table presents an overview of the underlying assets which are assessed
in the empirical analysis. Due to the fact, that we exclude assets which were listed
or de-listed in the investigated period from 2006-2016, not all assets from each index
are analyzed.

Descriptive Statistics

Developed Markets o o min max skew kurt
DJI 30 0.000 0.007 -0.059 0.062 -0.039 11.369
FTSE 30 0.000 0.008 -0.099 0.067 -0.796 22.917
DAX 30 0.000 0.008 -0.072 0.066 -0.119 8.702
Small Markets

TSX 60 0.000 0.009 -0.083 0.088 0.212 21.176
ASX 0.000 0.007 -0.057 0.072 0.365 11.250

Emerging Markets

Bovespa 0.000 0.011 -0.072 0.109 1.687  49.187
RTS Index 0.000 0.011 -0.119 0.123 0.029  21.494
BSE Sensex 0.000 0.010 -0.076 0.077 0.018 6.684
SSE Index 0.000 0.016 -0.079 0.071 0.776  55.936

Table 4: This table presents the average descriptive statistics of the assessed assets.
i and o describe the sample average log returns and the average standard deviation
for asset which is listed in the respective market. min and max describe the average
minimum and maximum for each asset and skew and kurt the average skewness and
kurtosis of each asset.
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DJI 30 FTSE 30 DAX 30
2006-2010 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
T 0,0148% 0,0167% 0,0021% 0,0013% 0,0098% 0,0122% 0,0088% -0,0178% -0,0230% -0,0221% -0,0344% -0,0095%
min -7,7854% -7,6324% -7,6949% -7,8221% -8,1488% -8,0408% -8,7883% -10,3711% -7,2481% -7,5901% -8,4755% -7,6912%
max 9,7203% 9,8513% 10,0642% 10,3124% 9,6387% 9,7875% 8,9639% 8,6938% 7,9862% 8,2566% 7,9934% 9,3030%
52 0,0001 0,0001 0,0001 0,0002 0,0001 0,0001 0,0001 0,0002 0,0001 0,0001 0,0001 0,0001
SRyy 0,0136 0,0153 0,0018 0,0011 0,0084 0,0104 0,0073 X X X X X
ORMp v 1,0452 1,0509 1,0057 1,0035 1,0259 1,0322 1,0221 0,9583 0,9448 0,9475 0,9200 0,9775
SoR )y 0,0193 0,0217 0,0025 0,0015 0,0118 0,0146 0,0101 -0,0187 -0,0255 -0,0241 -0,0371 -0,0108
max dd 0,3839 0,3755 0,4524 0,4279 0,4083 0,4007 0,4073 0,5358 0,6145 0,6156 0,6254 0,5259
IRy /N 0,0050 0,0072 -0,0112 -0,0123 0,0382 0,0410 0,0389 0,0101 -0,0221 -0,0211 -0,0326 -0,0071
tracking, )y 0,0085 0,0085 0,0076 0,0075 0,0097 0,0096 0,0093 0,0094 0,0091 0,0091 0,0097 0,0094
IRma 0,0553 -0,0469 -0,0318 0,0516 -0,0027 -0,0466 0,0152 -0,0350 0,0271
TEymy 0,0003 0,0027 0,0043 0,0005 0,0037 0,0059 0,0006 0,0032 0,0050

TSX 60 ASX 30 Bovespa
2006-2010 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
T 0,0004% 0,0019% 0,0086% 0,0036% -0,0172% -0,0149% -0,0251% -0,0289% 0,0460% 0,0486% 0,0462% 0,0470%
min -5,1438% -5,1241% -6,6166% -6,3838% -7,5756% -7,6570% -7,5265% -6,4131% -7,0026% -6,8893% -8,1648% -9,2738%
max 4,9433% 5,0497% 5,6951% 5,9811% 4,4451% 4,3195% 5,8802% 5,4767% 73,4432% 73,4432% 73,4432% 70,1435%
52 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0002 0,0002 0,0006 0,0006 0,0007 0,0007
SRyy 0,0004 0,0022 0,0091 0,0035 X X X X 0,0183 0,0193 0,0179 0,0179
ORNy 1,0013 1,0066 1,0279 1,0108 0,9586 0,9641 0,9436 0,9384 1,1592 1,1678 1,1413 1,1139
SoR )y 0,0006 0,0029 0,0122 0,0047 -0,0200 -0,0173 -0,0276 -0,0304 0,0578 0,0612 0,0524 0,0437
max dd 0,3925 0,3902 0,3269 0,4059 0,4928 0,4830 0,5271 0,6088 0,4957 0,4930 0,5370 0,6355
IRy /N -0,0169 -0,0155 -0,0094 -0,0157 -0,0218 -0,0189 -0,0349 -0,0360 -0,0072 -0,0062 -0,0072 -0,0072
tracking, )y 0,0100 0,0100 0,0093 0,0088 0,0086 0,0086 0,0076 0,0084 0,0254 0,0254 0,0251 0,0239
IRmy NaN 0,0340 0,0219 0,0058 0,0599 -0,0242 -0,0248 0,0439 0,0007 0,0014
trackingme 0,0000 0,0004 0,0038 0,0055 0,0004 0,0033 0,0047 0,0006 0,0035 0,0074

RTS BSE SSE
2006-2010 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
13 0,0009% 0,0053% 0,0216% 0,0080% 0,0943% 0,0958% 0,0914% 0,0633% 0,0907% 0,0924% 0,0937% 0,1361%
min -16,4032% -15,6767% -13,2803% -12,9818% -7,0145% -7,0576% -7,1491% -6,4699% -7,1185% -7,1913% -7,8707% -9,8429%
max 9,6029% 10,0595% 9,3845% 12,4053% 10,2740% 10,3894% 11,7132% 7,5746% 4,0467% 4,1162% 4,4252% 5,4538%
52 0,0003 0,0003 0,0003 0,0004 0,0002 0,0002 0,0002 0,0002 0,0001 0,0001 0,0001 0,0002
SRy 0,0005 0,0030 0,0127 0,0041 0,0700 0,0709 0,0647 0,0449 0,0921 0,0925 0,0828 0,1022
ORN Y 1,0017 1,0103 1,0405 1,0126 1,2210 1,2239 1,2043 1,1347 1,4392 1,4389 1,3854 1,4828
SoRny 0,0007 0,0041 0,0174 0,0056 0,1005 0,1018 0,0940 0,0643 0,1339 0,1349 0,1154 0,1541
max dd 0,7337 0,7342 0,6933 0,7291 0,3167 0,3192 0,3437 0,3145 0,1828 0,1887 0,1757 0,1690
IRy /N -0,0128 -0,0105 -0,0017 -0,0094 0,0176 0,0191 0,0148 -0,0114 -0,0166 -0,0158 -0,0153 0,0058
tracking )y 0,0185 0,0182 0,0165 0,0175 0,0101 0,0102 0,0101 0,0114 0,0203 0,0203 0,0201 0,0200
IRmy 0,0452 0,0414 0,0061 0,0261 -0,0075 -0,0489 0,0298 0,0080 0,0664
trackingmy 0,0010 0,0050 0,0117 0,0006 0,0038 0,0063 0,0006 0,0037 0,0068

Table 5 Empirical Results: 2006 - 2010. + and 52 describe the mean and variance and min/max the respective minimum/maximum of the out-of-sample returns. SR,y describes the Sharpe Ratio of the
minimum variance strategy, SoRpsy the Sortino ratio and ORjpsy the Omega ratio. The maximum drawdown is given by max dd, and IRy and trackingy describe the information on the deviation from the
assessed strategy against benchmark strategy k and the respective information ratio. Here, k is given by equally weighted strategy (1/N) and mean-var efficient portfolios based on un-decomposed return series
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DJI 30 FTSE 30 DAX 30
2010-2016 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
T 0,0269% 0,0270% 0,0293% 0,0297% 0,0156% 0,0151% 0,0116% 0,0071% 0,0445% 0,0446% 0,0429% 0,0485%
min -3,7954% -3,8201% -3,5992% -4,0641% -3,6648% -3,6529% -4,4917% -4,2918% -5,6470% -5,6082% -5,4475% -7,6292%
max 3,6866% 3,7204% 3,9758% 4,4496% 3,9654% 3,9503% 3,9596% 3,5162% 3,3996% 3,3670% 3,6337% 3,6229%
52 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001
SRy 0,0380 0,0381 0,0406 0,0379 0,0189 0,0183 0,0135 0,0082 0,0497 0,0496 0,0474 0,0508
ORN vy 1,1113 1,1118 1,1194 1,1113 1,0530 1,0514 1,0384 1,0224 1,1451 1,1449 1,1374 1,1495
SoR v 0,0540 0,0542 0,0576 0,0534 0,0264 0,0256 0,0188 0,0114 0,0697 0,0696 0,0672 0,0712
max dd 0,1667 0,1645 0,1721 0,1583 0,2032 0,2019 0,2071 0,2641 0,1970 0,1970 0,2199 0,2190
IRy /N -0,0133 -0,0130 -0,0085 -0,0078 -0,0190 -0,0199 -0,0264 -0,0339 0,0156 0,0159 0,0131 0,0200
tracking, /N 0,0048 0,0048 0,0047 0,0047 0,0055 0,0054 0,0054 0,0056 0,0070 0,0070 0,0072 0,0075
IRmo 0,0051 0,0139 0,0084 -0,0173 -0,0163 -0,0269 0,0035 -0,0075 0,0122
trackingmo 0,0002 0,0018 0,0033 0,0003 0,0024 0,0031 0,0003 0,0021 0,0032
TSX 60 ASX 30 Bovespa
2010-2016 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
T 0,0422% 0,0425% 0,0353% 0,0269% 0,0214% 0,0205% 0,0206% 0,0221% 0,0407% 0,0411% 0,0420% 0,0283%
min -3,3768% -3,4492% -3,5134% -3,4805% -3,7120% -3,7566% -3,9817% -3,9112% -10,5745% -10,5700% -10,3868% -10,0028%
max 3,0810% 3,1970% 2,8131% 2,9108% 2,4104% 2,4064% 2,6741% 2,6586% 33,5379% 33,6140% 31,6236% 28,8147%
52 0,0000 0,0000 0,0000 0,0000 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001
SRy 0,0701 0,0705 0,0544 0,0382 0,0284 0,0271 0,0261 0,0271 0,0335 0,0337 0,0348 0,0236
ORNy 1,2146 1,2164 1,1600 1,1102 1,0776 1,0740 1,0721 1,0744 1,1505 1,1514 1,1488 1,0904
SoR v 0,0998 0,1005 0,0770 0,0535 0,0396 0,0377 0,0366 0,0383 0,0632 0,0636 0,0634 0,0414
max dd 0,1321 0,1265 0,1479 0,1651 0,2033 0,2076 0,1991 0,1911 0,2468 0,2504 0,2893 0,2194
IRy /N 0,0550 0,0552 0,0443 0,0313 0,0320 0,0303 0,0303 0,0306 0,0413 0,0415 0,0438 0,0334
tracking, /N 0,0057 0,0057 0,0055 0,0051 0,0049 0,0049 0,0049 0,0054 0,0122 0,0123 0,0119 0,0114
IRmo 0,0090 -0,0265 -0,0419 -0,0330 -0,0032 0,0023 0,0110 0,0044 -0,0266
trackingmy 0,0003 0,0026 0,0037 0,0003 0,0024 0,0031 0,0004 0,0031 0,0047
RTS BSE SSE
2010-2016 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
T 0,0557% 0,0581% 0,0514% 0,0276% 0,0577% 0,0585% 0,0480% 0,0347% 0,1984% 0,1973% 0,1884% 0,2279%
min -11,2726% -11,1690% -10,8548% -10,4222% -5,3720% -5,3388% -5,2222% -6,0037% -10,0796% -10,0505% -9,9857% -8,7335%
max 5,2000% 5,0285% 5,1904% 4,9126% 3,6149% 3,6696% 4,1139% 4,6121% 24,5473% 24,5473% 24,5473% 24,5473%
52 0,0001 0,0001 0,0002 0,0002 0,0001 0,0001 0,0001 0,0001 0,0038 0,0038 0,0038 0,0038
SRy 0,0462 0,0486 0,0395 0,0207 0,0722 0,0731 0,0580 0,0374 0,0321 0,0320 0,0305 0,0368
ORN Y 1,1444 1,1522 1,1206 1,0603 1,2142 1,2168 1,1675 1,1061 1,7040 1,6920 1,6244 1,7745
SoR v 0,0629 0,0661 0,0540 0,0283 0,1066 0,1081 0,0840 0,0531 0,2203 0,2153 0,1979 0,2509
max dd 0,2848 0,2814 0,3248 0,3402 0,1805 0,1780 0,1961 0,2837 0,4255 0,4360 0,4944 0,4662
IRy /N 0,0285 0,0329 0,0190 -0,0170 0,0462 0,0477 0,0269 0,0043 0,0293 0,0291 0,0276 0,0341
tracking, /N 0,0059 0,0058 0,0066 0,0066 0,0056 0,0056 0,0060 0,0065 0,0603 0,0602 0,0603 0,0604
IRmy 0,0387 -0,0115 -0,0501 0,0211 -0,0357 -0,0495 -0,0133 -0,0293 0,0532
trackingmy 0,0006 0,0038 0,0056 0,0004 0,0027 0,0046 0,0008 0,0034 0,0055

Table 6 Empirical Results: 2010 - 2016.7 and 52 describe the mean and variance and min/max the respective minimum/maximum of the out-of-sample returns. SRjpsy describes the Sharpe Ratio of the
minimum variance strategy, SoRjsy the Sortino ratio and ORjsy the Omega ratio. The maximum drawdown is given by max dd, and IRy and trackingy describe the information on the deviation from the
assessed strategy against benchmark strategy k and the respective information ratio. Here, k is given by equally weighted strategy (1/N) and mean-var efficient portfolios based on un-decomposed return series
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DJI 30 FTSE 30 DAX 30
2007-2009 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
7 -0,0066% -0,0039% -0,0214% -0,0211% -0,0192% -0,0160% -0,0168% -0,0642% -0,0843% -0,0846% -0,0856% -0,0580%
min -7,7854% -7,6324% -7,6949% -7,8221% -8,1488% -8,0408% -8,7883% -10,3711% -7,2481% -7,5901% -8,4755% -7,6912%
max 9,7203% 9,8513% 10,0642% 10,3124% 9,6387% 9,7875% 8,9639% 8,6938% 7,9862% 8,2566% 7,9934% 9,3030%
52 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002
SRy X X X X X X X X X X X X
ORMp v 0,9848 0,9910 0,9560 0,9582 0,9607 0,9671 0,9676 0,8856 0,8339 0,8352 0,8346 0,8853
SoR v -0,0070 -0,0041 -0,0206 -0,0194 -0,0188 -0,0157 -0,0158 -0,0545 -0,0799 -0,0789 -0,0791 -0,0578
max dd 0,3839 0,3755 0,4524 0,4279 0,4024 0,3957 0,4027 0,5301 0,6145 0,6156 0,6254 0,5225
IRl/N 0,0135 0,0161 -0,0004 -0,0001 0,0463 0,0493 0,0510 0,0098 -0,0142 -0,0145 -0,0145 0,0087
trackingl/N 0,0106 0,0106 0,0094 0,0092 0,0122 0,0121 0,0115 0,0116 0,0113 0,0113 0,0120 0,0116
IRy 0,0656 -0,0456 -0,0279 0,0569 0,0053 -0,0607 -0,0043 -0,0034 0,0445
trackingm 0,0004 0,0033 0,0052 0,0006 0,0046 0,0074 0,0007 0,0038 0,0059
TSX 60 ASX 30 Bovespa
2007-2009 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
7 -0,0206% -0,0196% -0,0103% -0,0153% -0,0905% -0,0865% -0,0841% -0,0979% -0,0656% -0,0627% -0,0725% -0,0801%
min -5,1438% -5,1241% -6,6166% -6,3838% -7,5756% -7,6570% -7,5265% -6,4131% -7,0026% -6,8893% -8,1648% -9,2738%
max 4,9433% 5,0497% 5,6951% 5,9811% 4,4451% 4,3195% 5,8802% 5,4767% 7,2918% 7,4988% 8,0535% 12,9811%
52 0,0001 0,0001 0,0001 0,0002 0,0002 0,0002 0,0003 0,0003 0,0002 0,0002 0,0002 0,0003
SRyy X X X X X X X X X X X X
ORNy 0,9435 0,9468 0,9734 0,9640 0,8437 0,8507 0,8611 0,8515 0,8504 0,8570 0,8539 0,8721
SoR v -0,0267 -0,0253 -0,0121 -0,0167 -0,0770 -0,0734 -0,0687 -0,0765 -0,0649 -0,0622 -0,0648 -0,0586
max dd 0,3925 0,3902 0,3269 0,4059 0,3098 0,3028 0,3384 0,3941 0,4957 0,4930 0,5370 0,6355
IRy /N -0,0077 -0,0069 0,0010 -0,0038 -0,0379 -0,0347 -0,0375 -0,0449 -0,0530 -0,0511 -0,0628 -0,0778
tracking, 0,0119 0,0118 0,0108 0,0100 0,0143 0,0145 0,0128 0,0137 0,0133 0,0133 0,0124 0,0109
IRmy 0,0192 0,0228 0,0080 0,0857 0,0147 -0,0113 0,0407 -0,0170 -0,0174
trackingm 0,0005 0,0045 0,0066 0,0005 0,0043 0,0065 0,0007 0,0041 0,0084
RTS BSE SSE
2007-2009 Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run Daily Data Short Run Middle Run Long Run
I3 -0,0572% -0,0501% -0,0358% -0,1117% -0,0090% -0,0075% -0,0234% -0,0112% 0,0115% 0,0116% 0,0136% 0,0091%
min -16,4032% -15,6767% -13,2803% -12,9818% -6,6434% -6,5910% -7,1072% -6,4699% -2,2669% -2,3230% -2,3643% -2,9543%
max 9,6029% 10,0595% 9,3845% 12,4053% 5,4387% 5,4012% 5,1287% 5,3015% 2,3724% 2,4163% 2,3460% 3,3240%
52 0,0004 0,0004 0,0003 0,0004 0,0002 0,0002 0,0002 0,0002 0,0000 0,0000 0,0000 0,0000
SRy X X X X X X X X 0,0334 0,0325 0,0316 0,0167
ORN vy 0,9005 0,9124 0,9392 0,8421 0,9823 0,9854 0,9581 0,9798 1,1962 1,1886 1,1683 1,0840
SoR v -0,0383 -0,0335 -0,0260 -0,0731 -0,0086 -0,0071 -0,0209 -0,0102 0,0486 0,0472 0,0469 0,0257
max dd 0,7337 0,7342 0,6933 0,7291 0,2959 0,2963 0,3356 0,3100 0,0559 0,0564 0,0770 0,0998
IRy /N -0,0144 -0,0115 -0,0056 -0,0416 0,0586 0,0598 0,0482 0,0560 -0,0022 -0,0022 -0,0014 -0,0033
tracking 0,0225 0,0221 0,0197 0,0209 0,0126 0,0126 0,0124 0,0128 0,0248 0,0248 0,0246 0,0242
IRmy 0,0613 0,0361 -0,0442 0,0248 -0,0349 -0,0035 0,0024 0,0110 -0,0088
trackingmo 0,0012 0,0059 0,0123 0,0006 0,0041 0,0062 0,0002 0,0019 0,0028

Table 7 Empirical Results: 2007 - 2009. 7 and 52 describe the mean and variance and min/max the respective minimum/maximum of the out-of-sample returns. SR,y describes the Sharpe Ratio of the
minimum variance strategy, SoRpsy the Sortino ratio and ORjpsy the Omega ratio. The maximum drawdown is given by max dd, and IRy and trackingy describe the information on the deviation from the
assessed strategy against benchmark strategy k and the respective information ratio. Here, k is given by equally weighted strategy (1/N) and mean-var efficient portfolios based on un-decomposed return series
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