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Abstract

We propose a general approach to study the differential effects of exogenous shocks in eco-

nomic models with heterogeneous agents. Our setting applies to models that can be stated

as “competition for market shares” in a broad sense. Examples that fit our type of structure

are ubiquitous in competition theory, monopolistic competition, political economics and ap-

plied game theory. We show that even in presence of any number of arbitrarily heterogeneous

agents, a single recursive relation characterizes the distributional pattern of equilibrium mar-

ket shares, and related measures. We identify conceptual conditions under which the market

share function rotates, thereby either causing more or less equality among the agents, and

study the distributional comparative statics in examples from various economic fields.
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1 Introduction

In reality, heterogeneous agents are omnipresent. Firms differ in their production possibilities,

workers have different abilities or skills, and consumers have different preferences or income.

Heterogeneity in the distribution of such fundamentals typically yields differences in equilib-

rium outcomes, which can be a major concern for several reasons. For instance, a regulating

authority would like to know which conditions affect market concentration or the sales distri-

bution, and which interventions (taxes, subsidies, emission permits,...) have what distributional

consequences. A sports tournament designer may want to know which prize structure makes

competition most unpredictable by equalizing winning chances between stronger and weaker

teams. It is not uncommon for economic models to neglect agent heterogeneity, either by as-

suming perfect symmetry, by resorting to a single representative agent,1 or by focusing more on

some aggregate and less on the distributional impact of an exogenous shock. The cost of such a

simplification is that the distributional comparative statics of the model cannot be studied.

In this paper we seek to resolve the problem of analyzing the comparative-statics with het-

erogeneous agents at the general and the applied level. To this end, we develop a systematic

approach to study the comparative-statics in models with payoff functions that can be formu-

lated as “competition for market shares” in a broad sense. An arbitrary number of agents may

differ in their type (production costs, preferences, disposable income, ability,...), and each agent

chooses some economic variable, such as a product price, the quantity to supply, or an advertis-

ing intensity that, jointly with the actions of all other agents, determines the equilibrium market

share of every agent.2 The respective equilibrium market share function, a density on the agent

type space, is the core object of the analysis. This conceptualization of the market share func-

tion fits to many different examples, with a contextual interpretation of what a “market share”

means. For example, in monopolistic competition with CES-demand, heterogeneous firms (by

means of technology or product quality) compete in prices, and their respective market share is

their share of overall consumption expenditure. Contests constitute a different class of examples.

In a single-prize contest, the market share of a contestant is her probability of winning the prize.

Alternatively, in the contest model of advertising, the market share of a firm amounts to the

1There are various definitions of what a representative agent could and should mean, and in many cases there
is no respective representative agent (see Jackson and Yariv (2016) for a recent discussion).

2The equilibrium concept is defined in section 2.1, and encompasses the standard cases of monopolistic compe-
tition equilibria, Walrasian equilibria, aggregate-taking behavior equilibria and, with an appropriate modification,
Nash equilibria.
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share of consumers that acquire the product, in response to its relative advertising intensity.

Our main question is how an exogenous shock, such as a common demand or innovation shock

in competition models, introduction or change of a sale tax, or a more or less effort-sensitive prize

function in a contest, may distort the respective market share function and related measures,

such as the distribution of payoffs, prices, efforts, quantities or similar.3 Put generally, we seek

to study under which circumstances a change in the economic environment makes already strong

agents even stronger, or when we could expect to see a reduction of market concentration. The

answer to this question boils down to understanding when and how our equilibrium market

share function rotates, and we provide general and particular answers. We first uncover the

main principles that guide the distortion of the market share function, without having a specific

application in mind. In a second step, we use these results to derive novel and testable predictions

about the distribution of market shares and related measures, as a function of idiosyncratic and

aggregate conditions in a subset of applications from various economic fields.

Main results We show that the possible rotational patterns of the equilibrium market share

function are described by a recursive relation between agent types, captured by a single opti-

mality equation, for an arbitrary degree of agent heterogeneity and without the need to analyze

the entire system of equilibrium equations. This recursion equation decomposes the relation

between the market shares of any two different types into a direct-aggregative and an indirect

effect of the shock, where the former is decisive for the type of rotation, and the latter influences

quantitative aspects of the rotation. A rule of thumb is that if marginal benefits increase more

(less) than proportional for the stronger agent, this tends to increase (decrease) the inequality

of the equilibrium market shares. Thus, if the shock is such that marginal benefits increase

uniformly for all agents, equality across agents increases, while shocks that affect the incentives

of all agents proportional to their current market shares have no distributional consequences.

Our general analysis identifies a remarkable role of power functions for the distributional

comparative statics. If costs and benefits associated with attaining a certain market share are

type-invariant power functions of the market share, then the rotations induced by a shock have

the property that the relative change in market share is always strictly increasing in agent

type. A consequence is that if a shock induces a rotation, the strongest (weakest) agents al-

3While we are mostly interested in the distributional effects of common shocks, our methods can also be applied
to idiosyncratic shocks (section 3.2.4).
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ways gain (lose) comparably most market share. Such power function occur naturally in several

cases, ranging from monopolistic competition with CES-demand, competitive production with

homogeneous production technology to imperfectly discriminatory contests with Tullock success

functions.

At the applied level, our approach allows us to address previously underexplored questions con-

cerning market concentration and distribution in a variety of models at a general level. An

important example is monopolistic competition with CES-demand (Dixit and Stiglitz, 1977).

This model has been a central ingredient in many later equilibrium models, such as the Melitz-

model of international trade (Melitz, 2003). The Melitz-model introduces firm-side heterogeneity

in terms of a linear production function that depends on an idiosyncratic efficiency parameter.

While heterogeneous firms, in terms of technology or product quality, play an indispensable role

for understanding the empirical regularities observed in trade data (Redding, 2011; Gervais,

2015), the general determinants of firm-side market shares of consumption expenditures have

received little attention,4 which is our core focus. We consider monopolistic competition model

with CES demand, possibly with idiosyncratic product quality levels, and study how the equi-

librium market shares of the firms depend on the central aggregate parameters of this model for

different classes of production technologies. If production belongs to the family of homogeneous

technologies, an increase in the substitutability of final products causes a rich-gets-richer effect,

where already large firms expand their market size while small firms become marginalized. We

extend the analysis to the more challenging case where firms have heterogeneous production

elasticities. A major insight is that the neutrality of income for firm market shares is driven by

the assumption of identical elasticities. With heterogeneous elasticities growing income yields

quantity growth jointly with a growing inequality of firm market shares. An industry-wide in-

crease in efficiency has a similar effect, while it necessarily generates winners and losers in terms

of absolute profits. This occurs because large firms face less downward pressure on prices as

efficiency increases while they can expand their quantities by relatively more. It follows that

with spillover process innovations, the most dominant firms also have the strongest incentive to

4An exception is Mrazova et al. (2016), who relate the observed distribution of firm sales or markups to the
underlying distribution of technology in a monopolistic competition setting. They show that if productivity and
sales parameters follow the same generalized power function, then they must be related by means of a simple
power function. A class of demand functions, including CES demand as a special case, is derived that links sales
and productivity distribution in such a way.
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innovate, while laggards are hurt by such innovations.

A very different class of examples, where distributional concerns may arise for a variety of

reasons, are contests (Konrad, 2009). Indeed, many real-world competitions, such as obtaining

a research grant, lobbying, elections, sports tournaments or advertising for market shares can

best be described by means of a contest for a scarce resource. We consider a generalized con-

test model with a possibly endogenous prize function, and study the distributional comparative

statics of important aggregate parameters, such as prize value, the degree of influence on the

success chances of the individual contestants, or the distribution of prize money across multiple

prizes. Among other results, we show that a prize increase favors strong contestants in terms

of success chances, provided that the cost elasticities of efforts increases across agents. In case

of a Tullock contest, we show that an increase in contest noise, i.e., a reduction in the ability

to influence own success chances, always levels the playing field by equalizing winning odds.

Introducing (or increasing) a second prize in a contest tends to make the chances of winning

the first prize (typically also of winning any prize) more equal. Particularly, an even split of

an available prize budget across two prizes equalizes success chances most, at the cost of min-

imizing total effort. We also study how the sensitivity of the prize function to efforts affects

the equilibrium market share function. Our leading example is advertising for market shares,

where ads influence consumer attention as well as the willingness to pay of attentive consumers.

According to our model, we should observe increasing market concentration if advertising has

persuasive or attaching effects, while market shares become more uniformly distributed if ads

are more of a disturbing nature. Finally, the results from this section have some implications for

tournament design, essentially because of an efficiency-equity trade-off. Letting the prize func-

tion become more sensitive to the winner’s effort tends to make success chances more unequal,

while aggregate effort increases. If the goal is to make the competition less predictable, which

is a central design aspect of sports tournaments, then a “handicapping” of winning efforts can

achieve this goal, but comes at the costs of a reduction in total efforts.

This paper further considers the following applications. In the Logit model of product compe-

tition choice we show that if the deterministic part of utility becomes more decisive (choice is

less noisy) this is associated with an increasing inequality of the supplier market shares. One

suggestive consequence is that the weakest firms (in terms of low product quality or high supply
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costs) have the strongest incentive to increase the noisiness in the choice procedure e.g., by re-

sorting to obfuscation tactics. We further consider the distributional implications of an import

tax on domestic and foreign firms market shares in the domestic market.

We also include simple Walrasian general equilibrium models, where we jointly discuss the

distributional patterns on the firm and the consumer side. Specifically, we consider a model

where consumers with quasilinear preferences sell their resources to firms and acquire the pro-

duced consumption good on a competitive market. We show that an introduction (or increase)

of a quantity tax has differential implications for firm-side market shares only if costs are not

a common-elastic power function. If firm heterogeneity is driven by different elasticities of

marginal costs, then the tax increases equality of market shares on the supply side (a subsidy

would have opposite effects). A similar result applies for the distribution of consumption over

consumers. The tax will affect consumer-side market share only if the utility functions for the

good are not common-elastic power functions. With Log-utility, the tax reduces consumption

inequality of the good among consumers. A common efficiency shock on the firm side has an

effect similar to a subsidy, and therefore tends to increase consumption inequality.

We further study the effects of a uniform contraction of the available production resources for

the distribution of firm market shares and consumer consumption in a competitive single input-

output private ownership economy, where income is composed of labor and capital earnings.

We find that if the source of income inequality is the resource endowment, then consumption

inequality always increases as the resource is depleted. If however income inequality originates

from the share distribution, then more or less consumption inequality can result depending on

aggregate production possibilities.

Finally, we ask how the distribution of consumption and leisure across consumers depends on

the state of technology in the economy and on the importance of leisure relative to consumption.

In case of the former, a common positive technology shock, in terms of more efficient labor, boosts

consumption, real wages and profits. As profits and wages increase proportionally, the incentives

to work more and benefit from the higher wage or to rather enjoy more leisure and finance

consumption from the higher capital income counterbalance each other, making labor supply

and consumption shares invariant to technology. However, absolute consumption differences

between the wealthy and the poor increases. If consumption becomes more important relative

to leisure, consumers tend to supply more labor, increasing firm profits. This benefits capital
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owners more, and therefore consumption-side market shares become less equally distributed. It

may even happen that in equilibrium the poorest end up with a lower consumption level, despite

a higher propensity to consume.

Article structure We outline the general model in section 2, where we state the definition of

equilibrium and establish existence of a unique equilibrium (Theorem 1). In section 3 we define

the concept of a rotation of the market share function, develop the essential analytical tools to

study such rotations and derive some general insights about the possible causes of rotations.

The main results on existence and type of rotation are presented in sections 3.2.1 and 3.2.2

(Theorems 2 - 4). The methods and results developed are applied in section 4 to a number of

examples. All proofs are in the appendix.

2 The model

Let I be an index set and i ∈ I an agent. In many economic models, the payoff of each agent i

can be decomposed as

Π(i) = Market share(i) ∗Market value(i)− Costs(i) (1)

In a given model, an agent typically needs to choose a variable (or a set of variables) with the

goal of maximizing (1), possibly subject to a number of constraints. Specifically, let

Π(i) = max
t(i)≥0

p(i, t(i), T ;x)V (i, t(i), T ;x)− Φ(i, t(i);x), (1’)

where t(i) ∈ R is agent i’s choice variable (this could be a price, a quantity, an effort,...), and T =∫
i t(i) is an aggregate. Further, p(i) = p(i, t(i), T ;x) is i’s market share, V (i) = V (i, t(i), T ;x)

the market value and Φ(i, t(i)) the costs of agent i given her choice of t(i) and the aggregate T .

Finally, x ∈ X is an exogenous parameter drawn from some parameter set, which influences at

least one of the component functions of Π(i).

This paper seeks to analyze how the equilibrium distribution of market shares p(i), i ∈ I,

and related quantities such as Π(i) or t(i), depend on x in presence of heterogeneous agents.

We first need to be precise, of course, what we mean by equilibrium, and how heterogeneity is

introduced, which are the topics of the next section.
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2.1 Heterogeneity and Equilibrium: Definition, Existence and Uniqueness

To solve our model we invoke two conventions. Both are without loss of generality with respect

to the purpose of this paper. First, we reformulate the model as a direct competition for market

shares. Second, we introduce continuum agents.

Market shares It is convenient to reformulate the optimization problem (1’) as

Π(i) = max
p(i)≥0

p(i)V (i, p(i), T ;x)− Φ(i, p(i), T ;x). (2)

In (2) the agent directly chooses her market share p(i), instead of indirectly over t(i).5 Such

a transformation is possible if the functions p(·), V (·) and Φ(·) are bijective in t(i), which we

always assume.6 Thus, the way we solve for the equilibrium is different from how the agents

truly act in the model. Working with the transformed model is useful for our comparative-static

purposes, but it is more natural to think that agents directly choose certain variables (efforts,

prices, quantities) that determine their respective market shares when obtaining an intuition.

Continuum agents We set I = [0, 1] for the agent population. The formal advantage of

working with continuum agents is that they will allow for a simpler representation of equilibrium

objects. Most importantly, the market share p(i) will be a (density) function p : [0, 1] → R+,

rather than a discrete mapping, that changes its support as the number of agents change.

Importantly, continuum agents are without loss of generality in our setting. It is possible to

identify the equilibrium market share pd(i) for any given number of atomistic agents n ∈ N

by a corresponding equilibrium density p(i) with support [0, 1] by means of rescaling with the

factor 1/n (see appendix A.1 for details). For example, if n = 3 and pd(1) = 1/2, pd(2) = 1/3,

pd(3) = 1/6, then p(i) = 3/2, i ∈ [0, 1/3), p(i) = 1, i ∈ [1/3, 2/3) and p(i) = 1/2, i ∈ [2/3, 1],

and
∫
p(i)di = 1/3(3/2+1+1/2) = 1. Moreover, our formulation encompasses the case of “true”

continuum agents, where the equilibrium density is a strictly monotonic, continuous function

p(i). While there is no direct atomistic-agent analogue to this case, we argue in appendix A.1

that this can be seen as the limiting case of a large number of distinct atomistic agents.

5The solutions of problem (2) for the various agents could be such that the sum of all p(i) is greater or less
than one, but it must be equal to one in any equilibrium (see Definition 1).

6We are slightly abusing notion here. If p(i) = p(i, t(i), T ;x) then, assuming invertibility, t(i) = h(i, p(i), T ;x)
and plugging this, e.g., into the market share function V (i, t(i), T ;x) would yield a new function V̂ (i, p(i), T ;x)
which we again label with the function symbol V .
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2.1.1 Equilibrium Definition

We are now ready to formally state the definition of an equilibrium. Consider the slightly more

general payoff function7

Π(i) = B(i, p(i), T )− Φ(i, p(i), T ). (3)

Definition 1 (Equilibrium) An equilibrium is a bounded function p : [0, 1] → R+ and a

number T ∈ (0,∞) such that

i) For each i ∈ [0, 1], p(i) solves max
p(i)≥0

Π(i), where Π(i) is given by (3).

ii)
∫ 1

0 p(i)di = 1

An intuitive interpretation of the equilibrium conditions is that in any equilibrium each agent is

choosing her action variable t(i) to maximize her payoff while holding a correct belief about the

aggregate T . Section 4 shows that this equilibrium definition identifies, e.g., Walrasian (price)

equilibria, the monopolistic equilibrium with CES-utility (or logit) consumers and, with an

appropriate modification, the Nash equilibrium in games with a sum-aggregative representation

of payoffs (such as contests or the Cournot model). We next show that under a natural set of

technical assumptions on the benefitB(·) and cost C(·) functions, the above notion of equilibrium

is well-defined.

2.1.2 Heterogeneity and main assumptions

Let g(i, p(i), T ) ≡ ∂B(·)
∂p(i) and ϕ(i, p(i), T ) ≡ ∂Φ(·)

∂p(i) denote marginal revenue and marginal costs,

respectively. Note that, for given T > 0, the FOC pertaining to maximizing (3) at an interior

point p(i) > 0 is

g(i, p(i), T ) = ϕ(i, p(i), T ). (4)

Our formal analysis will be squarely centered around this innocent-looking expression. If not

mentioned otherwise we will take the following assumption as satisfied.

Assumption 1 Let Π(i) be given by (3).

7We ignore x here, having in mind that x can take on any fixed value in a parameter interval X.
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(A1) For any T > 0, i ∈ [0, 1] and p(i) ≥ 0: Π(i) is a C2-function of p(i) and strongly

quasiconcave in p(i), g(i, 0, T ) > 0 and g(i, ·, T ) is bounded from above, ϕ(i, 0, T ) = 0,

∂ϕ(i,p,T )
∂p > 0 and lim

p→∞
ϕ(i, p, T ) =∞.

(A2) For any i ∈ [0, 1]: g(i, p, ·) and ϕ(i, p, ·) are C1-functions, g(i, 1, 0) > 0, g(i, 1, ·) is bounded

from above, ϕ(i, p, 0) = 0, ϕ(i, p, ·) is strictly increasing and lim
T→∞

ϕ(i, p, T ) =∞ whenever

p > 0, and gT (i, p, T ) < ϕT (i, p, T ) whenever g(i, p, T ) = ϕ(i, p, T ).

(A3) For any p, T > 0: B(·, p, T ), g(·, p, T ) are (weakly) decreasing and Φ(·, p, T ), ϕ(·, p, T )

(weakly) increasing on [0, 1].

We also maintain, for simplicity, that inaction is possible by setting B(i, 0, T ) = Φ(i, 0, T ) = 0.8

Assumptions (A1) and (A2) amount to natural differentiability, boundary and slope assumptions.

In particular, these assumptions assert the existence of a unique equilibrium, and their precise

role will be clarified below. Note that we impose no assumption on how the (marginal) revenue

depends on p(i) or T , but we maintain that marginal costs are increasing in T . Intuitively, this

means that maintaining a certain market share p(i) at a higher aggregate effort level T requires

to bear higher efforts and expenses.9

The order assumption (A3) is how we introduce heterogeneity to the model. (A3) implies

that agents are sorted left-to-right in thus that (marginal) benefits are (weakly) decreasing and

(marginal) costs (weakly) increasing in agent index i. A simple example is that agents are

heterogeneous according to their (production) efficiency, such that

Π(i) = p(i)V (p(i), T )− c(i)Φ(p(i), T ), (5)

where c(·) is increasing.

2.2 Existence and uniqueness

Assumptions (A1) and (A2) ascertain the existence of a unique equilibrium.

Theorem 1 (Existence and uniqueness) Any model with payoffs (3) that satisfy assump-

tion 1 has a unique equilibrium (p(i), T ). All equilibrium payoffs Π(i) are positive, and p(·) is a

bounded, decreasing and strictly positive density.

8This is not problematic because we shall not consider entry or exit decisions.
9This will become self-evident in the context of specific applications.
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The proof evolves in two steps, corresponding to the two requirements in the equilibrium def-

inition. Its baseline reasoning is illustrated in Figure 1. (A1) implies that a unique optimizer

 

𝜑𝜑(𝑖𝑖, 𝑝𝑝(𝑖𝑖),𝑇𝑇) 
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𝑔𝑔(𝑖𝑖, 0,𝑇𝑇)  

Figure 1: Equilibrium existence and uniqueness

p(i;T ) > 0 exists for any given T > 0 and any fixed i ∈ [0, 1]. The existence of such an

optimizer follows because a zero market share is not optimal (g(i, 0, T ) > 0 = ϕ(i, 0, T )), the

gains from increasing one’s market share are limited (g(·, T ) bounded from above) and marginal

costs are strictly increasing in p(i) and unbounded. Uniqueness of this optimizer is implied by

strong quasiconcavity. Assumption (A2) then assures that there is a unique T > 0 such that∫
p(i;T )di = 1. To see why, suppose that g(i, p, T ) is bounded above and away from 0 for any

p ≥ 0 and any T > 0, consistent with (but stronger than) assumption (A2). In such a case

even the best agent (i = 0) seeks to set her market share p(i;T ) arbitrarily small as marginal

costs become arbitrarily large (T →∞). Similarly, even the worst agent aims at an arbitrarily

large p(i;T ) if T → 0 and marginal costs become arbitrarily small. These two facts imply that

lim
T→∞

∫
p(i;T )di = 0 and lim

T→0

∫
p(i;T )di = ∞, and existence of a T > 0 with

∫
p(i, T )di = 1

follows because
∫
p(i; ·)di is continuous. Uniqueness then follows from the last assumption in

(A2), which assures that
∫
p(i; ·) is strictly decreasing at

∫
p(i, T )di = 1.10

Among other, assumption (A3) precludes leap-frogging in equilibrium:

Corollary 1 (Basic equilibrium properties) Consider two agents i, j ∈ [0, 1] with i < j. In

equilibrium p(i) ≥ p(j) and Π(i) ≥ Π(j) (no leap-frogging). Moreover, p(i) > p(j) if g(i, p, T ) ≥

g(j, p, T ) and ϕ(i, p, T ) ≤ ϕ(j, p, T ) ∀p, T > 0, where at least one inequality is strict, and Π(i) >

10This assumption is also essential for the comparative-static results, because it assures that T increases if
marginal benefits increase exogenously for all agents (Lemma 1).
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Π(j) if B(i, p, T ) ≥ B(j, p, T ) and Φ(i, p, T ) ≤ Φ(j, p, T ) ∀p, T > 0, where at least one inequality

is strict. Further, p(i) = p(j) if both g(i, p, T ) = g(j, p, T ) and ϕ(i, p, T ) = ϕ(j, p, T ) ∀p, T > 0.

The last statement of Corollary 1 implies that if there is a non-trivial interval Î ⊂ [0, 1] of

homogeneous agents, meaning that B(i, p, T ) = B(j, p, T ) and Φ(i, p, T ) = Φ(j, p, T ) ∀i, j ∈ Î

and any p, T > 0, then p(i) = p(j) ∀i, j ∈ Î. This means that if [0, 1] is partitioned by a finite

number of non-trivial distinct homogeneous agent intervals In, such that g(i, p, T ) ≥ g(j, p, T )

and ϕ(i, p, T ) ≤ ϕ(j, p, T ), one inequality strict, whenever j > i, i ∈ In but j /∈ In, then p(·)

must be a step-wise decreasing density with finitely many steps, where p(i) = p(j) iff i, j ∈ In.

In such a case we can assume, wlog, that p(·) is right-continuous. In the trivial case, where n = 1

and thus I1 = [0, 1], meaning that all agents are homogeneous, the equilibrium is symmetric, i.e.

p(i) = 1 ∀i ∈ [0, 1]. Finally, if g(i, p, T ) ≥ g(j, p, T ) and ϕ(i, p, T ) ≤ ϕ(j, p, T ), one inequality

strict, for any two i, j ∈ [0, 1] with i < j, such that no two agents are identical, then p(·) is a

strictly decreasing density.

We summarize this discussion by illustrating the possible structures of p(·) in an example.

Suppose that for any i ∈ [0, 1] (2) is given by

Π(i) = p(i)V (p(i), T )− c(i)C(p(i), T ), (6)

where the cost coefficient function c(·) > 0 either is a finite step-wise increasing function, or a

strictly increasing C1-function, according to the following definition.

• Class I consists of all increasing, right-continuous step functions for which ∃i0 ∈ (0, 1):

i < i0 ≤ j ⇒ c(i) < c(j), i, j ∈ [0, 1].

• Class II consists of all strictly increasing functions c ∈ C1 ([0, 1], [1, c̄]).

We refer to the final qualification for class I functions as the somewhere strictly increasing (SI)

property, which means that c(·) has a step “somewhere in the middle”, and is equivalent to

the requirement that c(i) is not constant on (0, 1). Class II functions trivially satisfy SI. Class

I functions capture the case of finitely many different cost types. That is, the steps partition

the population into equivalent cost types, and all members of an equivalence class (agents

“sitting on the same step”) are homogeneous to each other and, by Corollary 1, display an

indistinguishable equilibrium behavior. As an interpretation, one could think of every cost type
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k being “represented” by an agent ik, who solves problem (6) for the entire group. The more

important interpretation however is to view these steps as the continuum analogue to the case

of finitely many atomistic agents (see appendix A.1).

The discussion following Corollary 1 shows that if c(i) is class I, a step function capturing

agent cost groups k = 1, ...,K with measures γ1, ..., γK > 0,
∑

k γk = 1, then p(i) will be a

corresponding step-wise decreasing (density) function, meaning that p ([0, 1]) = {p(i1), ..., p(iK)}

and
∫ 1

0 p(i)di =
∑K

k=1 γkp(ik).
11 If c(·) is class II, then it follows from Theorem 1, (4) and the

Implicit Function Theorem that p(i) must be differentiable density with p′(i) < 0 on (0, 1).

Summarizing, this means that the respective equilibrium share function p(·) inherits the class

membership of c(·).

3 Heterogeneity: Toolbox and general results

Throughout section 3.1 we develop the machinery that will help us analyze how the equilibrium

distribution of market shares depends on the parameters of a model. The most important con-

cepts for the later analysis are the definition of rotations (Definition 2), Proposition 2, Corollary

2 and the notion of a monotone ratio.

3.1 Rotations

Let X ⊂ R be an open parameter interval, A ≡ [0, 1]×X, and consider a function p : A→ R+

with the properties that p(0, x) ≥ p(1, x) > 0, and p(·, x) is weakly decreasing ∀x ∈ X. In

the following, we develop our theory of distributional comparative-statics for the two classes of

density functions that naturally emerge with heterogeneous agents.

• Density p belongs to class I if p(·, x) is a step-wise decreasing, right-continuous density

with finitely many steps that has the somewhere strictly decreasing (SSD) property,

i.e. ∀x ∈ X ∃i0 ∈ (0, 1): p(i, x) > p(j, x) for i < i0 ≤ j.

• Density p belongs to class II if p(i, x) is C1 and ∂p(i,x)
∂i < 0 for i ∈ (0, 1), x ∈ X

11Hence in case of class I finding the equilibrium generally requires solving a (K + 1)-system of equations in
the unknowns p(i1), ..., p(iK) and T .
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The simplest case of a class I density is the two-types case. If the fraction of “good” (e.g.,

low-cost) types is γ ∈ (0, 1), and we let i = 0 represent good types and i = 1 bad types, p(·) has

the form

p(·) =

 p0 i ∈ [0, γ)

p1 i ∈ [γ, 1]
, p1 =

1− γp0

1− γ
, p0 ≥ p1 (7)

How do p(·, x′) and p(·, x) differ in general if x′ 6= x? Among the simplest and most interesting

movements of p(·, x) as x varies is the idea of rotation.

Definition 2 (Rotations) Let x 6= x′ ∈ X, and consider the two functions p(·, x′) and p(·, x).

We say that p(·, x′) is an outward-rotation (OR) of p(·, x), or p(·, x) is an inward-rotation

(IR) of p(·, x′), if ∃ 0 < i0 ≤ i1 < 1 such that

p(i, x′) > p(i, x) i ∈ (0, i0)

p(i, x′) < p(i, x) i ∈ (i1, 1)

p(i, x′) = p(i, x) i ∈ (i0, i1)

(8)

where the last condition only is required if i0 < i1. We say that a parameter change dx > 0

induces a (local) OR (IR) of p(·, x) if ∃δ > 0 such that p(·, x′) is OR (IR) of p(·, x) for any

x′ ∈ (x, x+ δ).

Figure 2 presents some examples of rotations. If p(·, x′) is OR (IR) of p(·, x), this means that the

inequality of market shares (or market concentration) has increased (decreased). Given that the

decreasing density p(·, x) has the SSD property ∀x ∈ X, the corresponding distribution function

F (·, x) is a strictly increasing, continuous and concave function, that is strictly above the 45◦-

line for i ∈ (0, 1). Moreover, if p(i, x′) is OR of p(i, x), then F (·, x) stochastically dominates

F (·, x′).12

3.1.1 Detecting rotations

We now derive useful conditions asserting that p(i, x′) is an OR (or IR) of p(i, x). For a given

density on [0, 1], let [i0]x = {i ∈ I : p(i, x) = p(i0, x)} be the equivalence class of agents

with representative i0. If p(·, x) is of class I, then there is a finite number of such equivalence

classes, and if p(·, x) is of class II, each agent forms her own equivalence class. The union of all

12See Proposition B.1, Online Appendix.
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Figure 2: Class I and II rotations

equivalence classes form a partition of I. Given a density p(·, x), we define the binary relation

B by j B i if j > i and j /∈ [i]x. If p(·, x) is of class II, the relations B and > coincide, and if

p(·, x) is of class I, j B i means that j is of a “worse” type than i.13

If p(·, x′) − p(·, x) is strictly decreasing over its equivalence classes, i.e., if p(·, x′) − p(·, x) is

strictly decreasing for any two different agent types, then p(·, x′) is OR of p(·, x):

Proposition 1 (Difference test) Let x, x′ ∈ X and suppose that ∞ > p(·, x′), p(·, x) > 0 are

right-continuous, decreasing SSD densities with identical equivalence classes. If

p(i, x′)− p(i, x) > (<)p(j, x′)− p(j, x) whenever j B i ∈ (0, 1) (9)

is satisfied, then p(·, x′) is an OR (IR) of p(·, x).

If p(·, ·) is strictly submodular, then (9) is satisfied, but note that if p(·, x) is a step-function,

p(·, ·) cannot be strictly submodular.14 There exists an alternative sufficient condition for the

OR-property, which is particularly useful in applications.

13Given that in our comparative-static exercises we maintain the initial heterogeneity as, e.g., specified by the
cost coefficient function c(i), we do not require to make B x-specific as the equivalence classes do not change (but
the heights of the steps do).

14In particular, if p(·, ·) is strictly submodular, then p(·, x) must be strictly decreasing ∀x ∈ X. See Online
Appendix B.1 for a comment on how the difference and ratio test differ from (log-)supermodularity.

14



Proposition 2 (Ratio test) Suppose that the premise of Proposition 1 is satisfied. If

p(i, x′)

p(j, x′)
> (<)

p(i, x)

p(j, x)
whenever j B i ∈ (0, 1) (10)

is satisfied, then p(·, x′) is OR (IR) of p(·, x).

Note that Propositions 1 and 2 encompass both class I and II densities. Comparing conditions

(9) and (10), the following observation is useful.15 If u′ > u > 0, v′ > v > 0 and u′

v′ ≥
u
v > 1

then we have increasing differences, i.e., u′ − v′ > u − v. Hence, with increasing arguments

a (weakly) increasing ratio implies strictly increasing differences. Further, both conditions are

equivalent if p(i, x), p(i, x′) are linear in i (which they cannot be if p(·) is of class I). Finally, in

the two-types case (7) properties (9), (10), the OR-property and stochastic dominance of the

respective distribution functions are all equivalent:

Proposition 3 (Two-types case) Let x, x′ ∈ X and suppose that the densities p(·, x), p(·, x′)

are specified by (7) with distribution functions F (·, x), F (·, x′). Then properties (8), (9), (10)

and strict stochastic dominance F (i, x′) > F (i, x) are equivalent.

The practical significance of conditions (9) and (10) is that we can derive corresponding calculus

tests to detect a rotation. This will enable us to use a local criterion to decide about a global

property of p(·). We only present the differential version of condition (10) here, because this

turns out to be most relevant for our applications.16

Corollary 2 (Ratio test) Suppose that p(·) is a class I or II density. Further, if p(·) is class

I, let p(i, x) be differentiable in x, except at step points. Let x0 ∈ Int(X). If

∂

∂x

(
p(i, x)

p(j, x)

)
> 0 ∀x ≥ x0 and any j B i ∈ (0, 1) (11)

whenever the derivative exists, then for any x > x0 (10) holds with “>” and hence p(i, x) is OR

of p(i, x0). If the first inequality in (11) is reversed, then, for any x > x0, (10) holds with “<”,

and p(i, x) is IR of p(i, x0).

15See Online Appendix B.1 for a more general comparison.
16Further results are in the Online Appendix (section B.1).
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By defining

∆i(x) ≡
∂p(i,x)
∂x

p(i, x)
=

dp(i)

p(i, x)

condition (11) can be succinctly reformulated as

∆i(x) > ∆j(x) ∀x ≥ x0 and any j B i ∈ (0, 1) (11’)

Monotone ratios We say that the function p(i, x) has monotone ratios if for any x, x′ ∈ X

with x′ > x, condition (10) holds with a fixed inequality for any jB i.17 Monotone ratios yield a

particularly pronounced type of rotation, where the effect of dx on p(i) increases monotonically

towards the tails of the distribution. Specifically, if p(i, x) has monotone ratios and p(i, x′) is

OR of p(i, x), then any agent’s relative change in her market share compared to any weaker

agent type j > i increases if x′ 6= x. An equivalent interpretation is that the relative change in

market shares is strictly increasing in agent type. Hence with an OR (IR) the strongest agents

(i ∈ i[0]) gain (lose) most while the weakest agents (i ∈ i[1]) lose (gain) most.

3.2 Distributional comparative-statics: General Results

Let (marginal) benefits depend on an exogenous parameter with Bx(i, p, T, x), gx(i, p, T, x) > 0.18

Hence any change dx 6= 0 shifts g(·), but potentially by different magnitudes for different agents,

and our rotational tools allow to extract the equilibrium effects of dx for the distribution of mar-

ket shares p(i). The main challenge to overcome is that g(·) and ϕ(·) in any equilibrium equation

(4) generally are allowed to depend on p and T , which both are endogenous to the model. A first

important stepping stone is to note that, with the assumptions made, the equilibrium aggregate

increases in x:

Lemma 1 The equilibrium aggregate T = T (x) verifies T ′(x) > 0.

It should be emphasized that T ′(x) > 0 holds independent of the equilibrium behavior of p(i).

Intuitively, an exogenous increase in marginal benefits increases “efforts” (activities to improve

17If p(·, x) is of class II, then the monotone ratio condition is equivalent to strict log-super(sub)modularity of
p(i, x).

18For expositional ease we formally consider only benefit shifters. It will become self-evident how to adopt the
analysis if x were a cost shifter instead.
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the own market share) of all agents and thus also aggregate effort.19

3.2.1 Existence of distributional effects

We now use (4) and our rotation tools to determine how p(·;x) depends on x, always assuming

g(·), ϕ(·) (heterogeneity) to be such that the equilibrium density p(i) is either of class I or II.

Let x0 ∈ X. Because in equilibrium p(i;x) is implicit in (4) for any given i ∈ [0, 1], we have that

g(i, p(i), T, x0)ϕ(j, p(j), T ) = g(j, p(j), T, x0)ϕ(i, p(i), T ) i, j ∈ [0, 1] (12)

or, in short-hand notation, g(i)ϕ(j) = g(j)ϕ(i). In the following we always let i ∈ [0, 1) and

take any j B i. Total differentiation of (12) with respect to x implies

dp(i) (gp(i)ϕ(j)− g(j)ϕp(i)) = dp(j) (gp(j)ϕ(i)− g(i)ϕp(j)) + r, (13)

where dp(i) = ∂p(i;x0)
∂x and

r =
(
gT (j)T ′(x0) + gx(j)

)
ϕ(i) +ϕT (i)T ′(x0)g(j)−

(
gT (i)T ′(x0) + gx(i)

)
ϕ(j)−ϕT (j)T ′(x0)g(i)

Define

∆i ≡
dp(i)

p(i;x0)
, εi ≡

gp(i)p(i)

g(i)
, ηi ≡

ϕp(i)p(i)

ϕ(i)
,

where ηi > 0 and εi < ηi by strong quasiconcavity (assumption A1). These definitions together

with (12) allow to restate (13) as a surprisingly simple type-recursive relation:

∆i = ∆jkij +Rij , kij =
ηj − εj
ηi − εi

> 0, (14)

where

Rij =
1

ηi − εi
(A(i)−A(j)) , A(s) ≡

(
gT (s)

g(s)
− ϕT (s)

ϕ(s)

)
T ′(x0) +

gx(s)

g(s)
, s = i, j. (15)

19Lemma 1 also holds if x is an idiosyncratic, rather than a common, shock. In particular, if M = {i ∈ [0, 1] :
gx(i, p, T, x) > 0} is a set of positive (Lebesgue) measure and gx(i, p, T, x) = 0 ∀i ∈MC , then T ′(x) > 0.
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Equation (14) decomposes the relation between ∆i and ∆j into a direct-aggregative effect

(Rij),
20 and an indirect effect (kij). We write R and k instead of Rij , kij whenever there is

no confusion. Decomposition (14) is key to understanding if and how dx affects the distribution

of market shares. Our first main theorem establishes that there are distributional effects of

dx 6= 0 if and only if x has a non-zero direct-aggregative effect on two different agents i, j.

Theorem 2 (Distributional Effects) If R = 0 ∀i, j ∈ [0, 1] and any x ∈ X, then ∆i = 0

∀i ∈ [0, 1] and hence p(·, x′) = p(·, x) for any x, x′ ∈ X. If for a given x ∈ X ∃i, j ∈ [0, 1] such

that R 6= 0, then ∃δ > 0 such that p(·, x′) 6= p(·, x) for any x′ ∈ (x− δ, x+ δ)\{x}.

Note that R = 0 ∀i, j ∈ [0, 1] iff A(i) = A(j) ∀i, j ∈ [0, 1], i.e., iff A(·) is independent of i. As

an example, if g(i) = g(T, x) and ϕ(i) = ϕ(i, p)h(T ), then A(s) is independent of s, and hence

p(i, x) is invariant to x. More generally, if both g(i) and ϕ(i) are multiplicatively separable21

in (i, p) and T , the bracket in A(s) is independent of s. In such a case, dx 6= 0 will induce

distributional effects if and only if g(i) is not multiplicatively separable in (i, p) and x.

3.2.2 Rotational effects

We know from Theorem 2 that for dx to induce a distributional effect on p(·), we require that

R 6= 0 for at least two agents i 6= j, but can we say more about how p(·) responds to a (possibly

small) change in x?

Definition 3 For a given x0 ∈ X, we say that R is uniformly positive (negative), if R(x0) >

(<)0 ∀i, j ∈ [0, 1]. If R(x) > (<)0 ∀i, j ∈ [0, 1] holds for any x ∈ X, then R is globally uniformly

positive (negative).

The first main result of this section establishes that the direct-aggregative effect R, if uniform,

is decisive for the resulting distributional pattern.

Theorem 3 (Rotational Effects) If R is globally uniformly positive (negative), then for any

x′ > x0 we have that p(i, x′) > (<)p(i, x) ∀i ∈ [0] and p(i, x′) < (>)p(i, x) ∀i ∈ [1]. Moreover,

20To understand this terminology, note that A(i) is the total derivative pertaining to (4) with respect to x,
normalized by g(i).

21A function hT (i,p,T )
h(i,p,T )

with h(·) > 0 is invariant to i if and only if h(i, p, T ) = h1(i, p)h2(T ). Note that

multiplicative separability includes the case where h(i, p, T ) does not depend, e.g., on T at all.

18



if p(·, x) is of class I and R is uniformly positive (negative) at x0 ∈ X, then dx > 0 induces a

local OR (IR) of p(·, x0).

The first statement in Theorem 3 likewise applies to class I and II densities, and shows how the

extreme tails of the distribution evolve for dx 6= 0. An immediate corollary is that the distribu-

tional pattern of the two-types case is entirely characterized, at least locally, as a consequence

of Theorems 2 and 3. This follows because in the two-types case R01 ≥ (>)0 iff R10 ≤ (<)0,

meaning that R is either uniformly positive (negative) or R = 0. Moreover, it follows from (the

proof of) Theorem 3 that if R is globally uniformly positive (or negative) in the three-types case,

then any x > x0 induces an OR (IR) of p(·, x0), because the behavior of the “middle group”

does not matter.

While the indirect effects (“k” in (14)) are not decisive whether or not dx induces a rotation

(given a uniform positive or negative R), the value of k has implications for the structure of the

distributional pattern, as we highlight the next two results. Similar to Definition 3, we say that

k(x0) is uniformly larger (smaller) than one if k(x0) ≥ (≤)1 ∀i, j ∈ [0, 1].

Corollary 3 Suppose that p(·, x) is class I, and let R be uniformly positive (negative) at x0 ∈ X.

If k is uniformly larger (smaller) than one, there is δ > 0 such that

p(i, x′) > p(i, x) ⇒ p(i, x′)

p(i, x0)
> (<)

p(j, x′)

p(j, x0)
∀j B i (16)

if x′ ∈ (x0, x0 + δ). If k is uniformly smaller (larger) than one, there is δ > 0 such that

p(i, x′) < p(i, x) ⇒ p(i, x′)

p(i, x0)
> (<)

p(j, x′)

p(j, x0)
∀j B i (17)

if x′ ∈ (x0, x0 + δ).

Given that R is uniformly positive, (16) says that among the agents gaining market share, the

stronger an agent is (lower index i), the more the agent gains in relative terms. Similarly, (17)

says that among the loosing agents, the weaker the agent is, the more she looses in relative

terms.

If k is uniformly equal to one, both statements of Corollary 3 apply, which suggests a complete

order across equivalence classes in terms of how the relative market shares change. This applies
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likewise to class I and class II densities. As Theorem 4, the second main result of this section,

shows, this is indeed the case, but there is more. If k is uniformly equal to one, then the possible

rotational pattern induced by dx > 0 are globally valid for any x > x0 by means of the monotone

ratio property.

Theorem 4 (Global rotation condition) If k(x) = 1 ∀i, j ∈ [0, 1] and any x ∈ X, and R is

globally uniformly positive (negative), then p(i, x) has monotone ratios, and p(i, x) is OR (IR)

of p(i, x0) for any x > x0.

Theorem 4 applies to class I and II densities likewise. The additional power of the global rotation

condition stated in Theorem 4 is that, because of monotone ratios, rotations satisfy a global

transitivity condition. If R is globally uniformly positive (negative), then for any i ∈ [0, 1],

the relative market share p(i,x)
p(j,x) , j B i, is strictly increasing (decreasing) in x, meaning that the

market shares will be distributed less and less equally (more and more equally) as x increases.

Inspection of (14) shows that k(x) = 1 uniformly, and thus p(i, x) has monotone ratios, if

both functions g(·) and ϕ(·) have agent-independent p-elasticities, i.e., if

g(i, p, T, x) = ĝ(i, x, T )pξ(x,T ) ϕ(i, p, T ) = ϕ̂(i, T )pζ(T ), (18)

where the exponents ξ(x, T ), ζ(T ) are real-valued functions.22 Because the p-derivative of a

p-power function f(p) = αpγ is again a p-power function, the fact that with agent-independent

p-elasticities we obtain global rotations with the interesting probabilistic structure of monotone

ratios, makes for a strong case to model B(·) and Φ(·) as power functions of p. Power functions

indeed constitute a quite flexible functional class, particularly because in (18) the exponents

need not be constant. As we shall see in section 4, many important examples from several

subfields of economics indeed involve power functions and, by Theorem 4, will therefore produce

strong distributional comparative-static predictions.

3.2.3 General determinants of the direct-aggregative effect

Since the direct-aggregative effect is decisive for the distributional pattern of p(·) (Theorems 2

and 3), we ought to learn more about the main principles that determine sign(R). We assume

that ϕ(i) = ϕ(i, p)C(T ) throughout the remainder of this section. Many applications indeed

22Note that this includes the case, where marginal revenue does not depend on p at all (ξ(x, T ) = 0).
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imply this type of cost function (see section 4). If ϕ(i) = ϕ(i, p)C(T ), then sign (A(i)−A(j))

depends only on g(·). The next proposition states general principles that determines whether R

is (uniformly) positive or negative.

Proposition 4 Suppose that ϕ(i) = ϕ(i, p)C(T ), let g(·) be a C2-function and define h(i, p, T, x) =

Ln (g(i, p, T, x)). If hx(i, p, T, x0) ≥ hx(j, p, T, x0), hT (i, p, T, x0) ≥ hT (j, p, T, x0) for all i, j ∈

(0, 1) with j B i, and hT (i, p′, T, x0) ≥ hT (i, p, T, x0), hx(i, p′, T, x0) ≥ hx(i, p, T, x0) for any

i ∈ (0, 1) and p′ > p, where at least one of the above inequality is strict, then R is uniformly

positive at x0. If all inequalities are reversed (and one strict so), then R is uniformly negative

at x0. Moreover R is globally uniformly positive (negative) if these inequalties hold ∀x ∈ X.

We briefly explore the formal conditions in Proposition 4; further applications are in section

4. A shock dx > 0 induces all agents to seek for a larger market share which, by Lemma 1,

increases the equilibrium T . Incentives to increase market shares are relatively stronger for

strong agent types if and only if marginal benefits increase proportionally more for these types,

i.e., iff dg(i)/g(i) > dg(j)/g(j) holds for j B i. This is why a uniform change in marginal

benefits (dg(i) = dg(j)) together with heterogeneity g(i) > g(j) causes an IR (R < 0) of p(i),

while in case of a proportional change dg(i)/g(i) = dg(j)/g(j) there are no distributional effects.

The possibly differential incentive effects of dx > 0 are either reinforced or weakened by the

equilibrium change in aggregate effort. Particularly, if gT > (<)0, then R > 0 is more likely

to result if the increase (decrease) in marginal benefits triggered by dT > 0 affects the strong

agent relatively more (less). In the special case, where marginal benefits are a non-idiosyncratic

p-power function,

g(i, p, T, x) = u(i)v(T, x)pξ(T,x),

Proposition 4 implies that R is determined solely by the elasticity function ξ(T, x). In particular,

R is uniformly positive if ξT , ξx ≥ (≤)0 with one strict inequality, and R = 0 uniformly if ξ is

constant.

3.2.4 Idiosyncratic shocks

While the above analysis dealt with shocks dx that affect all agents, it can easily be adopted

to the case of a pure idiosyncratic effect of dx, which we illustrate in a simple example (see

section 4.1.2 for another example). Let p(·, x) be of class I, and let g(i) = g(i, x) and ϕ(i) =

21



c(i)p(i)ηh(T ), such that kij = 1 everywhere. Suppose that dx > 0 only for agents i ∈ [m], where

m ∈ (0, 1). That is, gx(i, x0) > 0 ∀i ∈ [m] and gx(i, x0) = 0 else.23 Then Rmj(x0) > 0 ∀j Bm,

Rim(x0) < 0 ∀m B i, and Rij(x0) = 0 ∀i, j /∈ [m]. It then follows from (14) that ∆i(x0) > 0

∀i ∈ [m] while ∆j(x0) < 0 ∀j /∈ [m]. Hence we obtain the intuitive result that type m gains

market shares while all other types lose market shares. Moreover, because we must have that

∆i = ∆j for i, j /∈ [m] the other types lose market share by approximately the same proportion.

4 Applications

In this section we analyze the distributional comparative statics in an array of examples. We

must restrict the analysis to a subset of all interesting comparative-statics, and some of them

may be worth exploring further in stand-alone contributions.

4.1 Monopolistic Competition

4.1.1 Competition with CES-Demand

Suppose that there is a continuum [0, 1] of consumers, indexed by ι, each endowed with CES

utility of the form

U(ι) =

∫ 1

0
rsqs(ι)

σds, ι ∈ [0, 1], (19)

where s ∈ [0, 1] is a differentiated product supplied by a single firm, also labeled by s. Further,

rs > 0 measures the importance of product s to any consumer,24 qs(ι) ≥ 0 is the respective

quantity demanded by ι, and σ ∈ (0, 1) is the elasticity of substitution. Each consumer is

endowed with disposable income I(ι) > 0, and chooses each qs(ι), s ∈ [0, 1], to maximize (19)

subject to
∫
Psqs(ι)ds = I(ι), where Ps > 0 is the price of product s. Setting η ≡ 1

1−σ > 1, and

summing up consumer demand qi(ι) for product i ∈ [0, 1] yields

qi =
Irηi P

−η
i∫

rηsP
1−η
s ds

, I ≡
∫
I(ι)dι > 0. (20)

To write firm profits Π(i), i ∈ [0, 1], in a way consistent with our framework, let T ≡
∫
rηsP

1−η
s ds,

p(i) ≡ rηi P
1−η
i
T and for supply costs Φ(i, qi) = c(i)qγii , c(i) > 0, γi ≥ 1. This includes the standard

23If [m] 6= [0] we additionally assume that dx > 0 is such that it does not change the order of market shares
(i.e. p(·, x′) remains a decreasing density).

24For example, rs could be the (relative) quality of variety s.
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case of constant marginal production costs. Then

qi =
I

r
η
η−1

i

p(i)
η
η−1T

1
η−1 (20’)

and

Πi = Piqi − c(i)qγii = Ip(i)− Iγi c(i)

r
γiη

η−1

i

p(i)
γiη

η−1T
γi
η−1 , (21)

where p(i) is the market share of total income that firm i obtains. From a formal viewpoint,

competition in the CES-model is akin to a contest for expenditure shares (see section 4.3). Each

firm chooses its market share p(i) (by choosing its price Pi given own demand (20)) to maximize

(21), which yields the FOC

(
η − 1

ηγi

)η−1

I(1−γi)(η−1) =
c(i)η−1

rγiηi
p(i)η(γi−1)+1T γi . (22)

We discuss the distributional comparative statics of the CES model by considering separately

the standard case of homogeneous and the more challenging case of heterogeneous production

elasticities. One major upshot of our tools from section 3 is that we can study the distributional

comparative statics without the need to explicitly solve the model (which in general is not

possible here).

Homogeneous production elasticities Suppose that γi = γ ≥ 1, ∀i ∈ [0, 1]. Then (22)

implies that kij = 1 ∀i, j ∈ [0, 1]. Therefore, by Theorem 4, equilibrium market shares p(i) must

have the monotone ratio property whenever the direct-aggregative effect R is either globally

uniformly positive or negative. The power-function property of ϕ(i, p(i), T ) is implied by the

constant substitution elasticity σ. Suppose that c(i) ≤ c(j) and r(i) ≥ r(j) whenever i < j, such

that p(i) ≥ p(j) in equilibrium.25 Moreover, let c(i) < c(j) or r(i) > r(j) for some i, j ∈ [0, 1]

such that p(i) either is class I or II. Our first result states that equilibrium expenditure shares

become more unequal the stronger substitutes the products are or the less elastic the cost

function is, while there is no such effect of income, quality or production efficiency.

Proposition 5 The CES-model with homogeneous production elasticities has the following dis-

tributional comparative-statics:

25It is easy to verify that the CES verifies (A1) and (A2). Thus, by Theorem 1, a unique equilibrium exists.

23



p(·) p(i)
p(j)

Π(i)
Π(j)

P (i)
P (j)

∫
Π(i)di

dσ > 0 OR + + γ > 1: sign
(
r(i)
r(j) −

c(i)
c(j)

)
-

dγ > 0 IR - - γ > 1: sign
(
r(i)
r(j) −

c(i)
c(j)

)
+

dI > 0 0 0 0 0 +

dc, dr > 0 0 0 0 0 0

Table 1: Comparative statics: CES

The last row of Table 1 considers the case of either a common cost (or quality) shock, where

c(i) = c (r(i) = r) and dc > 0 (dr > 0).

Equilibrium market shares p(i) are invariant to dI, dc, dr, and it follows from the proof of

Proposition 5 that Π(i) is invariant to dc, dr as well. Stronger substitutes (dσ > 0) makes

competition more intense which, intriguingly, lets already rich firm expand their market size

and may marginalize small firms further. An interesting observation pertains to relative prices.

In general, Pi R Pj is possible, meaning that relative prices can move quite independently from

market shares and relative profits (and vice-versa) in this model. With linear production costs

(γ = 1), we obtain that Pi
Pj

= c(i)
c(j) ≤ 1, showing that in this case relative prices do not depend on

the substitution parameter σ at all. Similarly, prices are invariant to the distribution of quality

r(i). Moreover, if heterogeneity is entirely driven by quality (c(i) = c(j)), then even Pi = Pj for

any quality distribution. This changes with nonlinear production (γ > 1), because then Pi > Pj

whenever c(i) = c(j) but r(i) > r(j), and the change in relative price given dσ depends entirely

on the quality-cost ratios.

Heterogeneous production elasticities We now consider the more challenging case, where

heterogeneity originates from different cost elasticities γi, and discuss separately the cases of

a common efficiency shock26 (dc < 0) and a positive income shock (dI > 0). Contrary to the

homogeneous elasticity case, neither income nor efficiency are neutral as both shocks now imply

an OR of p(i) as well as an increase in relative profits and prices. Moreover, dc < 0 generates

winners (dΠ(i) > 0) and losers (dΠ(j) < 0), and increasing income yields quantity growth

together with a growing inequality of market shares.

26An alternative interpretation is that each qi is produced with a single-input technology, where c is the
competitive factor cost.
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For simplicity, we set r(i) = 1 and c(i) = c > 0 ∀i ∈ [0, 1], and assume that γ(·) ≥ 1 is an

increasing, non-trivial finite step function. Moreover, we assume parameters such that q(i) ≥ 1

∀i ∈ [0, 1],27 which by optimality (22) and (20’) then assures that p(i) > p(j) for jB i, such that

p(i) is class I. This also implies that Pi < Pj and qi > qj for any j B i. Because for any given

T > 0, (22) implies that ∂p(i;T )
∂I , ∂p(i;T )

∂c < 0, T ′(I), T ′(c) < 0 follow. Evaluating (15) for (22) and

x = c analogously gives

sign(Rij) = sign (A(i)−A(j)) = sign

(
(γj − γi)

T ′(c)

T

)
, j B i,

showing that dc < 0 together with heterogeneous elasticities causes an OR of p(·) by Theorem

3. Using (20’) in (22) and rearranging yields

η − 1

η

(
I

T

) 1
η

= γicq
(γi−1)+ 1

η

i and γiq
(γi−1)+ 1

η

i = γjq
(γj−1)+ 1

η

j . (23)

Because dc < 0 triggers an OR and dT > 0, (20’) implies that dqi > 0 for some i and, by the

2nd equation in (23), hence dqi > 0 ∀i ∈ [0, 1]. But dqi > 0 further implies, again by (20’),

that η∆i + ∆T > 0, hence also d(p(i)T ) > 0, which by p(i)T = P 1−η
i assures that dPi < 0.

This shows that dc < 0 increases all quantities supplied and decreases all equilibrium prices,

in a way that relative quantities qi
qj

(use (20’)) and relative prices
Pj
Pi

must increase. Because

Π(i) = p(i)I
(
γiη−η+1
γiη

)
it follows that Π(i)

Π(j) increases, too. Since, by the OR, p(i) increases for

i < i0 and decreases for i > i0, there must be winners and losers, where firm i wins iff its

equilibrium market share increases. This occurs, in contrast to the homogeneous elasticity case,

because dc < 0 allows large firms to decrease their prices by relatively less (Pi/Pj increases),

reflecting their relative advantage in the production process, while their quantity qi expands by

relatively more. It follows that in such a CES economy, the most dominant firms would also

have the strongest incentive to innovate, if this allows to reduce c, even if the innovation spills

over to their competitors, while laggards are always hurt by such innovations. The case dI > 0

is more intricate, and we summarize our main result as a proposition.

Proposition 6 An increase in income dI > 0 triggers an OR of p(·), increases all quantities

qi and also increases relative quantities qi
qj

, relative profits Πi
Πj

, relative market shares p(i)
p(j) and

27This can be assured, e.g., by assuming that I is large (or c small) enough.

25



relative prices
Pj
Pi

for any j B i.

4.1.2 Competition with Logit-Demand

In this section we analyze the distributional comparative statics implied by the Logit model

with heterogeneous quality. In this model, expected demand from a given consumer is a choice

probability system (Anderson et al., 1992). Specifically, we consider the Logit demand-system

of a single consumer (or a unit mass of identical consumers) with linear utility and Logit noise

parameter λ > 0, single-product suppliers, and no outside option.28 As in the last section, firms

i ∈ [0, 1] offer possibly different qualities, parametrized by a(i) ≥ 0. A firm’s market share in

this model is its selling chance

p(i) =
eλ(a(i)−Pi)∫
eλ(a(s)−Ps)ds

, (24)

where Pi is the price of product i. The market share p(i) depends negatively on Pi and positively

on a(i). Assuming risk neztral firms, a constant production cost c(i) of the good, and setting

T ≡
∫
eλ(a(s)−Ps), the (expected) profit of firm i is

Πi = Pip(i)− c(i)p(i) =

(
a(i)− Ln(p(i)T )

λ

)
p(i)− c(i)p(i). (25)

Let a(·) be decreasing and c(·) increasing, such that p(i) is either of class I or II. Each firm

chooses its market share (its price subject to demand (24)) to maximize profits. The FOC of

this problem are29

a(i)− Ln(p(i)T )

λ
− 1

λ
= c(i) (26)

from which

p(i) =
eλ(a(i)−c(i))

eT
=
eλz(i)

eT
, z(i) ≡ a(i)− c(i). (27)

Hence
p(i)

p(j)
= eλ(z(i)−z(j)) (28)

28In Online Appendix B.2 we show that the distributional comparative-statics of the Logit model with outside
option are similar. Moreover, if there is a measure L > 0 of iid consumers, then p(i)L would be the fraction of
consumers served by firm i. With respect to the distributional outcome, setting L = 1 is wlog.

29Exponentiating (26), one can easily see that this model verifies (A1) and (A2), and hence a unique equilibrium
exists by Theorem 1.
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and
∂

∂λ

p(i)

p(j)
= eλ(z(i)−z(j))(z(i)− z(j)),

where the assumptions made on a(i), c(i) assure that z(i)−z(j) > 0 for any jBi. This shows that

the ordered ratio property holds with the Logit, and an increase of λ yields an OR of p(·). The

parameter λ > 0 controls the noise in the logit. In the degenerate case where λ = 0, the choice

process is purely random in such that neither price nor quality have any influence on choice

probabilities, and uniform market shares (p(i) = 1) result in any equilibrium. An increase in λ

means that the price, i.e., the deterministic part of utility, becomes more decisive, which always

is associated with an increasing inequality of the market shares. This finding is similar to the

CES-case, where an increase in the substitution elasticity (also making prices “more decisive”)

leads to an OR. It follows from (26) that Pi = 1
λ + c(i), showing that prices always decrease in

λ, and

sign

(
∂

∂λ

Pi
Pj

)
= sign (c(i)− c(j)) ≤ 0

Because Π(i) = p(i)
λ , relative payoffs increase in λ while industry profits

∫
Π(s)ds = 1

λ decrease;

hence dλ > 0 always generates losers (dΠ(i) < 0 must hold for a positive-measure set of firms).

The interesting converse is that the weakest firms (in terms of low quality or high costs) have

the strongest incentive to increase the “noisiness” in the choice procedure (dλ < 0), e.g., by

resorting to obfuscation tactics (Ellison and Wolitzky, 2012; Hefti, 2016a).

Finally, we prove that dλ > 0 can generate winners, provided that there is sufficient firm

heterogeneity. From

Π(i) =
1

λ
∫
eλ(x(s))ds

, x(s) ≡ z(s)− z(i) ≤ 0,

we obtain that

sign

(
∂Π(i)

∂λ

)
= sign

(
−
∫
eλ(x(s))ds− λ

∫
x(s)eλ(x(s))ds

)

With symmetric firms we must have ∂Π(i)
∂λ < 0 as then x(s) = 0. To see that profits of the best

firms can increase in λ, consider the two-types case with x(0) = 0 and x(1) = z(1)−z(0) = C < 0.

If α ∈ (0, 1) is the fraction of strong types, then ∂λΠ(0) > 0 iff α < −(1 − α)(1 + λC)eλC . We

can always find α ∈ (0, 1) small enough, such that this inequality is satisfied, provided that

27



λC < −1 (enough heterogeneity). Note that because ∂λ
∫

Π(i)di < 0, the losses of the poor

must always outweigh the gains of the rich.

Import competition and taxation In this variation, we study the distributional conse-

quences that an import tax has in the domestic market for home firms and importers using the

Logit framework.30 Suppose that the domestic market for the products is composed of home

(“H”) and foreign (“F”) firms, that export their products into home at an import tax of τ . Let

iH ∈ [0, 1] and iF ∈ [0, 1] index a home and foreign firm, respectively. Then the market share of

firm iχ in the home market is

p(iχ) =
eλ(a(iχ)−Pχs )∫

eλ(a(sH)−PHs )dsH +
∫
eλ(a(sF )−PFs )dsF

, χ ∈ {H,F} ,

where PHs (PFs ) is the price of firm sH (sF ), and
∫
p(i)di =

∫
p(iH)diH +

∫
p(iF )diF = 1. With

T ≡
∫
eλ(a(sH)−PHs )dsH +

∫
eλ(a(sF )−PFs )dsF we obtain

Π(iH) =
(
a(iH)− c(iH)− Ln(p(iH)T )

λ

)
p(iH),

Π(iF ) =
(
a(iF )− (τ + c(iF ))− Ln(p(iF )T )

λ

)
p(iF ),

which have the same formal structure as (25). It follows that (26) - (28) logically apply also

to this version of the model, where we replace c(i) by c(iF ) + τ if iF > 1/2.31 Suppose that

heterogeneity is such that p(i) is class I, and consider a small tax increase dτ > 0 which does

not change the ranking expressed by p(i). By (28) we see that such a change has no effects on

the relative market shares p(iH)
p(jH) of domestic firms nor on the relative domestic market shares of

foreign firms p(iF )
p(jF ) , but the relative market shares p(iH)

p(iF ) of domestic firms to foreign firms increases

in τ (independent of whether iH B iF or iF B iH). Since by (27) we must have T ′(τ) < 0, it

follows again from (27) that p(iH) increases for any domestic firm and p(iF ) decreases for any

foreign firm. It follows that all domestic firms benefit from the import tax (dΠ(iH) > 0), but in

a way that leaves relative market shares and relative profits of domestic firms unaltered. This

essentially follows because the tax allows domestic firms to expand their quantities. From (22)

one can infer that all domestic prices PHi remain constant, while foreign prices PFi increase

30A similar analysis applies with CES-demand.
31Note that the following analysis could also be reformulated as finding the effects of an idiosyncratic change

of costs, in the spirit of section 3.2.4, for a proper subset of all firms (no H-F-distinction), where dτ quantifies a
non-common cost innovation or regulation.
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isometrically with τ .

Finally, we note that dλ 6= 0 has similar effects as before. An additional interesting insight

here is, that if importers (F-firms) are comparably strong (meaning that z(iF ) − τ � z(iH)),

such that importing firms gain from dλ > 0, then importers have an incentive to reduce the

noisiness of consumer choice, e.g. by educating consumers. The opposite holds if importers are

comparably weak; we would then expect importers to blur or complicate consumer perception.

4.2 Perfect competition and general equilibrium

This section demonstrates how the distributional methods and results from previous sections

can be applied to general equilibrium theory, where the distributions of firm-side and consumer-

side market shares are jointly determined. We begin by studying perfect competition with

price-taking firms that face and exogenous downward-sloping demand.

4.2.1 Perfect competition with exogenous demand

Suppose that price-taking firms face a given inverse demand function P = P (
∫
q(i)di, x) with

P1 < 0 and P2 > 0, where q(i) ≥ 0 is firm i’s quantity supplied, and x is a demand shifter.

Further, Φ(i, q(i)) is firm i’s cost function, which is strictly concave in q(i). Defining T ≡
∫
q(i)di

and the market share p(i) = q(i)/T yields the profit function Π(i) = Pp(i)T −Φ(i, p(i)T ), with

associated FOC P (T, x) = ϕ(i, p(i)T ). Because price-taking behavior implies an identical direct

effect of dx 6= 0 for all firms, we have

A(i) = −ϕT (i)

ϕ(i)
T ′ = −ϕq(i, p(i)T )p(i)T

ϕ(i, p(i)T )

T ′

T
. (29)

Proposition 7 Equilibrium price P , quantities q(i) and profits Π(i) are strictly increasing in

x. If Φ(i, q) is a power function of q with common and constant exponent η, then market shares,

relative profits and relative quantities all are invariant to x, but Π(i)−Π(j) and q(i)−q(j), jBi,

both increase in x. If Φ(i, q) = qη(i), where η(i) > 1 is an increasing finite step function and

P (T (x), x) > η(1), then dx > 0 induces a local OR of p(i), jointly with an increase in relative

profits and relative quantities.

If Φ(i, q) = qη(i) with heterogeneous exponents, the fact that kij = η(j)−1
η(i)−1 > 1 implies, by

Corollary 3, that p(i,x)
p(j,x) increases (locally) in x for any j B i, provided that p(i, x) increases in
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x. The case of iso-elastic (but possibly heterogeneous) costs is very relevant. For example, if

the output q(i) is produced with an input vector x(i), acquired on competitive factor markets,

according to a production function f(x(i)) which has (decreasing) returns to scale, then the

corresponding cost function is of the form Φ(i, q(i)) = q(i)η(i)w. Then different η(i) amount to

differences in the scale technology, where a lower η(i) < η(j) means that i produces at higher

returns to scale than j. Note that in such a case we could never expect to analytically solve the

equilibrium system of equations, even if P (T, x) were linear. Nevertheless, our tools provide us

with a clear comparative-static distributional prediction.

We now show that a different class of technology, the family of exponential costs, yields an

IR of p(i). Let Φ(i, q) = ec(i)q, c(i) < c(j), such that P (T, x) = c(i)ec(i)p(i)T and p(i) > p(j), as

well as c(i)p(i) > c(j)p(j). Then

A(i)−A(j) = T ′ (c(j)p(j)− c(i)p(i)) < 0,

showing that dx > 0 triggers an IR of p(·). It is easy to check that if Φ(i, q) = c(i)eq, the same

conclusion results.

A second example of costs with which dx > 0 yields an IR are polynomial costs. Suppose

that

Φ(i, q(i)) = c(i)
m∑
s=1

asq(i)
s, m > 1, as ≥ 0, (30)

such that costs are scaled polynomials of each other. Note that if aσ > 0 for a single σ > 1 and

as = 0 ∀s 6= σ, then (30) is monomial, and dx > 0 has no effect on p(i) by Proposition 7. The

following proposition shows that in all other cases, dx > 0 yields an IR of p(i).

Proposition 8 (Polynomial costs) If Φ(i, q(i)) is given by (30), c(i) is an increasing step

function and as, as′ > 0 for at least two s 6= s′, then dx > 0 induces a local IR of p(i).

4.2.2 Taxation effects in a simple partial equilibrium model

Suppose that each consumer ic ∈ [0, 1] has quasilinear utility U(ic) = m(ic) + V (ic, q(ic)
d),

where m(ic) is the quantity of the numeraire (“money”), and q(ic)
d ≥ 0 is the quantity of the

consumption good with price P . Moreover, V (ic, ·) is a strictly increasing and strictly concave

C2-function, and v(ic, q) ≡ ∂qV (ic, q). To avoid boundary problems, we let m(ic) ∈ R. Each

30



consumer is endowed with ωic > 0 of money, where ω =
∫
ωicdic. Each firm i ∈ [0, 1] produces

output q(i) with a technology q(i) = f(i, z(i)), where z(i) is the amount of the numeraire used

as input, acquired on a competitive factor market, and f(i, ·) is a C2-function with f(i, 0) = 0,

fq(i, q) > 0 and fqq(i, q) < 0 (strict concavity), with (q-)inverse f−1(i, f(i, z)) = z. Hence Π(i) =

Pp(i)T −Φ(i, p(i)T ) as in the last section, where Φ(i, qi) = f−1(i, z(i)) is strictly increasing and

strictly convex, and T =
∫
q(i)di. Each firm maximizes its profits, and each consumer maximizes

her utility, subject to Ppd(ic)T
d + m(ic) = ωic , where T d =

∫
q(ic)

ddic, and pd(ic) = qd(ic)/T
d

is consumer ic’s share of total market demand.32 An equilibrium consists of two densities

p(i), pd(i) > 0 with
∫
p(i)di =

∫
pd(i)di = 1 and a quantity T = T d such that the following

system of FOC’s is satisfied:

P = v(ic, p
d(ic)T ) ic ∈ [0, 1]

P = ϕ(i, p(i)T ) i ∈ [0, 1]
(31)

Because all agents are price-takers, a shock to one market side affects the market shares of the

other side only over the indirect-aggregative effect. We illustrate the consequences of this by

means of a tax example. Suppose that τ is a quantity tax levied on the supply side. Hence (31)

becomes

P − τ = ϕ(i, p(i)T )

P = v(ic, p
d(ic)T )

Note that T ′(τ) < 0.33 An introduction (or increase) of τ has the following distributional effects.

For firms: Note that A(i) is given by (29), hence the results from last section apply. The tax

has differential implications for firm-side market shares only if costs are not a common-elastic

power function. If ϕ(i, q) has a q-elasticity which is increasing (decreasing) in i, then an increase

in the tax causes an IR (OR) of p(i), while a decrease of τ (or the introduction of a subsidy)

has opposite effects. For consumers: The tax affects prices and equilibrium quantities, where

Ad(ic) =
T ′(τ)

T

(
−vq(ic, p(ic)T )p(ic)T

v(ic, p(ic)T )

)
,

32By quasilinearity, we need not worry about the firm ownership, and therefore have not included corporate
shares in the budget constraints.

33This intuitive result can formally be derived as follows. T =
∫
ϕ−1(i, P − τ)di ≡ T (P, τ), and T d =∫

v−1(ic, P )dic ≡ T d(P ), where TP (P, τ) > 0, Tτ (P, τ) < 0 and T dP (P ) < 0. Because T = T (P, τ) = T d(P ) = T d

we have P ′(τ) > 0, and thus T ′(τ) < 0 because T dP (P ) < 0.
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and thus (note that ηdic(·) < 0 by concavity)

Rdicjc =
1

−ηdic
(Ad(jc)−Ad(ic)) =

1

ηdic

(
vq(ic, p(ic)T )p(ic)T

v(ic, p(ic)T )
− vq(jc, p(jc)T )p(jc)T

v(jc, p(jc)T )

)
T ′(τ)

T

Thus the tax has consequences for pd(ic) only if V (ic, q) is not a common-elastic power function.

A standard example in the quasilinear framework is Log-utility V (ic, q) = aicLn(1+q), aic < ajc .

In this case an increase in the tax yields an IR of pd(i), i.e., dτ > 0 reduces consumption

inequality of the good among consumers. A subsidy therefore tends to increase consumption

inequality. A similar finding holds with an efficiency shock. Suppose that ϕ(i, q) = c(i)ϕ(q),

c(i) ≤ c(j), and now consider a process innovation leading to a lower cost coefficient ĉ(i) <

c(i) ∀i ∈ [0, 1]. Because P
∫

1
c(i)di =

∫
ϕ(p(i)T )di ≡ G(T ), where G′(T ) > 0, we have T =

G−1
(
P
∫

1
c(i)di

)
. Therefore, the aggregate supply increases in the innovation, and we have

T̂ > T in equilibrium because aggregate demand decreases in P . It follows that, with Log-

utility, the innovation leads to an OR of pd(i), i.e., an increase in the consumption inequality,

similar to a subsidy.

4.2.3 General equilibrium: two applications

Decreasing resources Consider a single input-output private ownership economy; firms and

consumers are indexed as before. Consumers sell their production resources to firms and acquire

the consumption good at a price P with their income.34 All markets are competitive. Let

ω(ic) > 0 denote the resource endowment of consumer ic, and S(ic) = s(ic)Π is consumer ic’s

share of aggregate profits Π =
∫

Π(j)dj. Further ω =
∫
ω(ic)dic and

∫
s(ic)dic = 1, where both

ω(·) and s(·) are (weakly) decreasing functions. This allows us to distinguish between income

inequality caused either by differences in resource or capital endowment. Every consumer ic

uses his entire income for consumption, yielding a demand (q(ic) = pd(ic)T
d)

pd(ic)T
d =

ω(ic) + S(ic)

P
. (32)

Aggregate demand is T d = (ω + Π)/P . Further, the production process of each firm is described

by a cost function as in section 4.2.2. Because firms behave as price-takers, firm FOC are given

by (31) (2nd equation), and A(i) by (29). The difference to the partial equilibrium model

34Consumers care only about the consumption good.
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is that now demand and the (relative) consumption price depend on capital income (profit),

which in turn depends on demand. In the following we consider the comparative statics if

dω(ic) = dω < 0 ∀ic ∈ [0, 1], i.e., there is a uniform contraction of the available resources. We

assume cost functions and ω(·), s(·) to be such that p(·), pd(·) are of class I.

Proposition 9 (Firms) In equilibrium: T ′(ω), P ′(ω) > 0 and ∂ωΠ(i), ∂ωq(i) > 0. If the q-

elasticity of ϕ(i, q) is strictly increasing (decreasing) over firm equivalence classes, dω < 0

induces a local IR (OR) of p(i). If Φ(i, q(i)) = c(i)q(i)η, then p(i) is invariant to ω.

While all firms supply less to the market as the scarcity of the resource increases, it depends in

a clear way on the production possibilities whether market concentration increases or decreases.

Additionally, it can be shown that if production functions are heterogeneous power functions

(such that η(i) is increasing), the resulting IR caused by dω < 0 is passed on to the shares of

the firms in the factor market. Specifically, dω < 0 induces an IR of the firm’s relative shares in

the factor market.

The next proposition shows how consumption inequality depends on ω. We consider the

two extreme regimes, where consumption inequality originates from i) the resource endowment

allocation or ii) from the share allocation. The main result is that if consumption inequal-

ity is driven by distribution of the resource endowment, then a resource contraction increases

consumption inequality. If instead inequality originates mainly from the dispersion of capital

holdings, then the distributional pattern depends on aggregate profits and thus on aggregate

production possibilities.

Proposition 10 (Consumption) (i) If s(ic) = 1 ∀ic, then dw < 0 induces a global OR of

pd(·) with monotone ratios, and relative consumption qd(ic)/q
d(jc) increases. (ii) If ω(ic) = ω

∀ic, then dw < 0 induces a global OR (IR) of pd(·) with monotone ratios, if and only if Π(ω)

is strictly concave (convex). Moreover, qd(ic)/q
d(jc) increases (decreases) if and only if dω < 0

leads to an OR (IR) of pd(·).

Note that if income inequality originates from the share distribution and production is best

described by common-elasticity power functions, consumption shares, relative consumption, firm

market shares and relative profits all become invariant to ω.
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Corollary 4 If ω(ic) = ω ∀ic and Φ(i, q(i)) = c(i)q(i)η, then pd(·) and qd(ic)/q
d(jc) are invari-

ant to ω, but dq(ic) < dq(jc) < 0, i.e., absolute consumption inequality decreases.

Note that all propositions apply analogously (with “reversed signs”) in case of a resource ex-

pansion dω > 0.

Labor-consumption decisions Consider a perfectly competitive private ownership economy

as before, where a consumption output is produced by firms using only labor as input. Each

consumer ic ∈ [0, 1] owns a unit of perfectly divisible labor and decides between consumption

q(ic) ≥ 0 and leisure f(ic) ∈ [0, 1] according to utility u(ic) = x(ic)
αf(ic)

1−α. The parameter

α ∈ (0, 1) measures how important consumption is relative to leisure. The consumer budget

constraint is q(ic) = (1 − f(ic))w + S(ic), where w is the real wage and S(ic) = s(ic)Π ≥ 0 is

capital income of corporate shares. As before s(·) ≥ 0 is decreasing with
∫
s(ic)dic = 1, and

Π =
∫

Π(i)di are aggregate profits. It follows that optimal consumption and leisure choices

are given by q(ic) = α(w + S(ic)) and f(ic) = α
1−α

q(ic)
w , respectively.35 Let pd(ic) = q(ic)/T

d,

T d =
∫
q(ic)dic deonte ic’s share of total consumption. Each firm i ∈ [0, 1] produces y(i) ≥ 0

units of the good using only labor as input according to a strictly concave technology, yielding

a corresponding strictly convex cost function Φ̂(i, q(i)) = wΦ(i, q(i)) with Φ(i, 0) = 0. We

suppose that Φ(·, q) is such that p(·) is of class I (while pd(·) could be of class I or II). The profit

is Π(i) = p(i)T − wΦ(i, p(i)T ), with FOC 1 = wϕ (i, p(i)T ). Because the wage is exogenous

to each firm, A(i) must be of the type (29). Consequently, the type of rotation of p(i) is

determined entirely by the indirect-aggregative effect of a common shock, and Rij > (<)0

if dT > 0 and the q-elasticity of ϕ(i, q) is strictly increasing (decreasing) in q. Hence the

distributional comparative-statics of firm-side variables obey essentially the same laws as with

an exogenous demand (section 4.2.1).

We now seek to analyze how the distribution of consumption and leisure across consumers

depends on i) the (common) state of technology in the economy and ii) the importance of

leisure as parametrized by α. To this end, we begin by setting Φ(i, q(i)) = c(i)q(i)η, η > 1,

c(i) > 0, where c(·) is increasing. A common positive technology shock means dc(i) < 0 ∀i, i.e.,

production efficiency increases for all firms.36 With this technology Rij = 0, showing that p(·)
35This interior solution requires that S(ic) ≤ α

1−αw which, for simplicity, we shall assume to hold. Corresponding
precise conditions can be derived, e.g., in the context of our parametric example. Moreover, the main results carry
through if the boundary condition f(ic) ≤ 1 becomes binding (and thus q(ic) = S(ic)) for some consumers.

36More precisely, we mean by dc(i) < 0 a downward shift of the function c(·) in the sense that c(i) = ĉ(i) + ε
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and relative profits do not depend on the state of technology or α. We summarize the main

distributional results in the following proposition, where always j B i and jc B ic.

Proposition 11 (i) A common increase in efficiency (dc(i) < 0) increases all equilibrium con-

sumption levels q(ic), the wage and all profits Π(i), while pd(ic), p(i),
q(ic)
q(jc)

, f(ic) (and labor

supply) and relative profits all are invariant to the state of technology, but dq(ic) > dq(jc) and

dΠ(i) > dΠ(j), showing that absolute consumption and profit inequality increases in efficiency.

(ii) dα > 0 induces an OR of pd(ic), with monotone ratios, and increases q(ic)
q(jc)

and f(ic)
f(jc)

as well

as all profits, aggregate consumption and aggregate labor supply, while wages fall. Firm market

shares p(i) and relative profits are invariant to α. Finally, dΠ(i) > dΠ(j), and dq(ic) > dq(jc)

whenever dq(ic) > 0.

The intuition in case of an efficiency increase is that this allows firms to produce at lower costs

(equivalently: more from a given input), yielding higher supply, higher profits, higher real wages

and more consumption. As profits and wages increase proportionally, the incentives to work

more and benefit from the higher wage or to rather enjoy more leisure and finance consumption

from the higher capital income counterbalance each other, leading to a constant labor supply

and constant consumption shares. Because consumption levels increase, dq(ic) > dq(jc) follows.

The intuition for dα > 0 is that if consumption is more important, consumers want to supply

more labor to afford more consumption, which reduces real wages and increases profits, which

benefits capital owners and therefore increases consumption inequality. Additionally, one can

show that because real wages plunge the poorest may even end up with a lower consumption

level despite that dα > 0 increases the propensity to consume more.37

We now show that the result on dα generalizes beyond the case where costs are common-

elasticity functions. Suppose that Φ(i, q(i)) is not restricted beyond the assumption stated in

the beginning of this paragraph, and consider dα > 0. Then the results on pd(ic), q(ic)/q(jc),

f(ic)/f(jc), w, T and aggregate labor supply in Proposition 11 remain valid provided that

T ≤ w.38 To see this, write firm FOC as p(i)T = ϕ−1(i, 1/w). Integration yields

T =

∫
ϕ−1(i, 1/w)di ≡ H(w),

and dε < 0.
37If Φ(i, q(i)) = c(i)q(i)η and a positive mass of consumers holds no shares at all(s(i) = 0) this is the case iff

α(η − 1) > 0
38If Φ(i, q(i)) = c(i)q(i)η it can be shown that indeed T ≤ w must hold in equilibrium.
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with H ′(w) < 0. Setting T d = T implicitly defines w(α) by

H(w(α)) = α(w(α) + Π(w(α))). (33)

By the Envelope Theorem −∂wΠ(i) = Φ(i, q(i)) < q(i)ϕ(i, q(i)) = q(i)/w, where the inequality

follows from the strict concavity of Φ(i, ·) and Φ(i, 0) = 0, and the equality from firm FOC.

Integration yields −Π < T/w. By (33) we have

w′(α) =
w + Π

H ′(w)− α(1 + Π′(w))
.

The denominator is negative if T ≤ w, because then 1+Π′(w) ≥ 0, which assures that w′(α) < 0.

Then T ′(α) > 0, and the remaining claims follow from the proof of Proposition 11.

4.3 Contests

Many real-world competitions can best be described as contests for scarce goods. In a contest,

a number of agents can invest efforts of some kind to win a prize. The prize could be, e.g.,

obtaining a research grant, winning a political election, or winning a sport championship. In

(imperfectly discriminatory) contests, individual effort levels and winning chances are positively

correlated but, other than in auctions, the highest effort level does not win the contest for sure

(Konrad, 2009). Further, there are some cases where we would expect the value of the prize

itself to depend on the winning or aggregate effort.

In this section we seek to study how the reward scheme in contests affects the equilibrium

dispersion of success chances and related measures. A general formulation of a contest payoff

function is

Π(i) = π (t(i), T )V (t(i), T, x)− Φ (i, t(i)) , (34)

where π(t(i), T ), T =
∫
t(i)di, is a Contest Success Function (CSF), and V (t(i), T, x) is the

prize function. The CSF captures how individual efforts to seize the prize translate into winning

odds, where we always assume that ∂tπ(t, T ) > 0 on the relevant range. A natural benchmark

assumption is that π(·) is zero-homogeneous in (t, T ), i.e., doubling all effort level leaves indi-

vidual success chances unchanged. Then, for T > 0, we let π(t, T ) = π̂(t/T ) wlog. Regarding

the prize function, we assume that V (·) > 0 is a C2 function. The parameter x is an exogenous
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prize shifter with Vx > 0 and Vxx ≥ 0. Note that this includes the standard case where V > 0

is a fixed prize value. We take all functions involved in (34) to be such that Assumption 1 is

satisfied. A standard example is the Tullock fixed-prize contest with linear effort costs

Π(i) =
t̂(i)1/η∫
t̂(s)1/ηds

V − c(i)t̂(i),

where η ∈ (0, 1) quantifies the degree of noise in the Tullock CSF (higher η means more random-

ness in the CSF). Using the monotone transformation t(i) ≡ t̂(i)1/η, we obtain the equivalent

representation of a linear Tullock CSF with iso-elastic costs

Π(i) =
t(i)

T
V − c(i)t(i)η. (35)

The distributional comparative-statics of the contest model (34) can be analyzed by the frame-

work of this article, using the transformation p(i) = π̂(t(i)/T ). Then

Π(i) = p(i)V
(
π̂−1(p(i))T, T, x

)
− Φ

(
i, π̂−1(p(i))T

)
(34’)

There are two conceivable interpretations of p(i). First, p(i) is agent i’s probability to seize a

single prize worth V (·). Second, p(i) is the market share of agent i, and V (·) is the value of

the market share to the agent. The two models are formally equivalent, while the notion of a

“winner” makes sense in the first interpretation.

Our first result shows that a prize shift induces distributional effects only if V (·) depends on

i (through p(i)) or Φ(i, t(i)) is not a common-elastic power function.

Proposition 12 Let π(t(i), T ) be a zero-homogeneous CSF. If the prize function is V (T, x)

the distributional patterns of p(i) are determined by the t-elasticity of marginal costs alone. If

additionally Φ(i, t) = c(i)tη, then p(i), Π(i)/Π(j) as well as t(i)/t(j) are invariant to x.

As with quantity competition, if the q-elasticity of marginal costs increases (decreases) over agent

equivalence classes, dx > 0 induces an OR (IR) of p(i). Because the Tullock fixed-prize contest

(35) is a special case of Proposition 12, an exogenous change of the prize dV has no distributional

effects other than dt(i) > dt(j) > 0 as well as dΠ(i) > dΠ(j) > 0. The derivation of (34’) shows

that η parametrizes the noise of the CSF in a Tullock contest with an agent-independent prize,

37



and an increase in noise always induces an IR of p(i).

Corollary 5 In the Tullock contest with Π(i) = p(i)V (T )− c(i)p(i)ηT η, where c(·) is such that

p(·) is of class I or II, dη > 0 induces a global IR of p(i), with monotone ratios, and Π(i)/Π(j)

as well as t(i)/t(j) both increase in η.

Hence an increase in randomness of the contest tends to benefit weak contestants more, which

is reminiscent of the finding with Logit demand in section 4.1.2.

In some circumstances the market value V (·) may be thought of depending positively or

negatively on the agent’s effort level. For example, the intensity of political lobbying (Konrad,

2009), litigation expenditures (Posner, 1992), salary negotiations (Amegashie, 1999) or money

invested to obtain a monopoly franchise (Chung, 1996) can influence the final conditions of the

winning agent. Similarly, V (·) can express the market value of limited consumer attention to a

firm (Hefti, 2016a). To unshroud the effects of the t(i)-sensitivity of V (·), we let V (i) = αt(i)+β.

In the advertising example, α 6= 0 means that advertising intensity t(i) determines market share,

e.g., the fraction of consumers paying attention to i, but t(i) further affects the willingness to pay

of attentive consumers, e.g., by strengthening the attachment or joy experienced by consuming a

brand (α > 0),39 or by increasing the nuisance or intrusion felt by ad exposure (α < 0) (Johnson,

2013; Hefti and Liu, 2016).

Proposition 13 Suppose that V (t(i)) = αt(i) + β, where β > 0 and α R 0. Let π(t(i), T ) be

a zero-homogeneous CSF, and Φ(i, t) = c(i)tη, η > 1, where c(·) is such that p(·) is class I. Let

z(p) ≡ π̂−1(p). Then dα > 0 induces a local OR (IR) if ∀p > 0: z′′(p)p
z′(p) > (<) − 2. Further,

dβ > 0 induces a local OR if either α > 0 and z′′(p)p
z′(p) < −2 or if α < 0 and z′′(p)p

z′(p) > −2.

A corollary is that in the Tullock contest (z′′(p) = 0), dα > 0 induces an OR with monotone ratios

(and an increase in relative efforts and payoffs), while dβ > 0 leads to an OR if α < 0. Because

T ′(α) > 0, Proposition 13 reveals an interesting efficiency-equity trade-off. For example, if α is a

design variable, say in a sport tournament, and the CSF is best described by the Tullock formula,

then increasing the effort sensitivity of the prize function induces more unequal winning chances

(the same teams tend to win all the time), but also increases aggregate effort.40 Conversely,

39In such a case, advertising has a persuasive or complementary nature (Bagwell, 2007).
40In practice, this could mean making the prize function more or less expenditure-dependent, because individual

efforts typically are not directly observable.
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if the goal is to make the competition less predictable (IR of p(·)),41 then a reduction of total

effort is unaviodable.

In terms of real-world prediction, in the advertising example we expect to observe more market

concentration at higher levels of advertising affinity (α > 0) and less market concentration with

annoying advertising (α < 0) provided that π̂−1(p) is not too concave (otherwise the reverse

prediction applies). The fact that the curvature of π̂−1(p) plays a role is quite intuitive as we

exemplify in case of α > 0. An increase in α increases marginal revenues of advertisers, but more

so for high intensity advertisers (t(i) high). If π̂−1(p) is convex, then marginally increasing the

market share is easier the higher the current level of market share is. Hence dα has a stronger

incentive effect to increase the market share (advertising) for already strong advertisers, leading

to an OR of p(·).

Two-prize contests As a final variation we show that introducing (or increasing) a second

prize in a contest tends to make the chances to win the first prize more equal. Contests with

multiple prizes have received attention in the contest architecture literature, but typically only

the case of symmetric agents is studied.42 Consider a contest with two fixed prizes V1 > 0 and

V1 ≥ V2 ≥ 0. Suppose that there is a number n of atomistic agents.43 Expected profit of i, given

an effort profile (t(1), ..., t(n)), is

Π(i) =
t(i)

T
V1 +

t(i)

T

∑
j 6=i

t(j)

T − t(j)
V2 −

1

η
c(i)t(i)η (36)

Then p(i) = t(i)/T is the probability to win the first prize. It can be verified by our standard

approach that the overall prize composition (V1, V2) has no distributional effects on p(i), provided

that there are only two cost types. It turns out that this is not valid in general. Already with

three cost types it is possible to construct examples where p(i) varies with the prize composition.

The general difficulty with (36) is that if there are more than two cost types, (36) is a

function not only of t(i), but also of all t(j) with j 6= i. By imposing the simplifying assumption

41In sports economics, the idea of increasing the competitive balance between two agents, i.e. reducing p(i)/p(j),
is a very important concern of optimal tournament designer (Szymanski, 2003).

42For example Clark and Riis (1998) consider the case of a multi-prize contest with symmetric contestants.
Their main interest is aggregate effort, and they find that highest aggregate effort requires to award only one
prize.

43It is easier to set up the problem with discrete agents. The respective optimality conditions can then be easily
given a “continuum interpretation” such that our distributional tools can be applied.
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of sampling with (instead of without) replacement for the second prize, the two-prize contest

fits into the present framework, and (36) becomes

Π(i) =
t(i)

T
V1 +

T − t(i)
T

t(i)

T
V2 −

1

η
c(i)t(i)η, (37)

where T−t(i)
T

t(i)
T is the chance of i to win the second prize.44 Replacing t(i) by p(i)T in (37) and

differentiating with respect to p(i) yields the FOC

V1 + (1− 2p(i))V2 = c(i)p(i)η−1T η. (38)

It turns out that with (38) we can obtain a characterization of how changes in the prize scheme

(V1, V2) affect the distribution of the first-prize winning chances.

Proposition 14 If dV1
V1

> (<)dV2V2 a local OR (IR) results. If dV1
V1

= dV2
V2

, p(i) remains constant.

Proposition 14 suggests that an unilateral change of a single prize in presence of another prize

has distributional consequences. An unilateral increase of the first (second) prize implies more

inequality (equality) in the first-prize winning chances p(i), and if the overall prize money

V = V1 + V2 is increased, both prizes should be increased proportionally if p(i) is to be kept

constant. Proposition 14 further provides insights on how changing the composition of a given

overall prize sum V = V1 + V2 > 0, V1 ≥ V2 ≥ 0, affects p(i) and thus relative efforts t(i)/t(j).

The fact that dV1 < 0 and dV2 > 0 both imply an IR suggests that the case of an even prize split

V1 = V2 = V/2 generates most equality, while V1 = V (a single-prize contest) induces inequality.

Moreover, there is an interesting effort-equality trade-off because at the same time aggregate

effort T (V1, V2) decreases if V2 = V − V1 increases.45

Analyzing how the distribution of equilibrium payoffs depends on the prizes turns out to be

tricky in general. However, in the special case where η = 2 it is possible to show that Π(i)
Π(j) = p(i)

p(j) .

It follows that relative payoffs increase (decrease) whenever ∆i > ∆j . Since dV1 > 0 causes an

OR, it follows that Π(0)
Π(1) increases, while this ratio decreases if dV2 > 0. Hence moving from a

single prize two two equal prizes tends to squish payoffs together. Finally, one could also ask

44We would expect these sampling chances to be close to those in (36) for a large number of agents. For
example, if t(j) = t > 0 ∀j then the absolute difference between the two is of order 1/n2. The approximation
comes at a cost, however. It follows from Proposition 14 that a change of (V1, V2) may have distributional effects
already in the two-types case.

45To see that T (V1, V − V1) decreases in V1, use V2 = V − V1 in (38) and note that ∂
∂V1

p(i) > 0.
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how the overall chances to win any prize depend on (V1, V2). The chance of agent i to win a

prize is s(i) ≡ p(i) + (1 − p(i))p(i), and thus ds(i) = 2dp(i)(1 − 2p(i)). Assuming that there is

not so much asymmetry that p(i) ≥ 1/2, s(i) behaves like p(i) since sign ds(i) = sign dp(i).

4.4 Relation to Nash equilibrium

In the previous sections we analyzed a contest model under the assumption that individual

agents take the aggregate T =
∫
t(i)di as given when choosing their effort (their equilibrium

market share), while T is still endogenous to the model. One justification is that contestants

have a good intuition about the average (or aggregate) effort imputed in equilibrium while they

do not know the cost functions (the strategies) of the competitors.46 We now demonstrate, by

means of the contest example, that our distributional tools can be successfully applied to the

concept of Nash equilibrium.47

Consider first a fixed-prize contest with n atomistic agents and payoffs

Π(i) = π

(
t(i)∑
t(s)

)
V − Φ(i, t(i)) (39)

Define the market share p(i) = π(t(i)/T ) as before. The only difference is that each agent i now

takes into account its own effect on the aggregate. Let Ti ≡
∑

s 6=i t(s) and z(p(i)) ≡ π−1(p(i)).

Because T = Ti + t(i) and t(i) = z(p(i))T we obtain t(i) = z(p(i))
1−z(p(i))Ti. Thus we can restate (39)

in terms of own market share as

Π(i) = p(i)V − Φ

(
i,

z(p(i))

1− z(p(i))
Ti

)
(39’)

A Nash equilibrium is a probability vector (p(1), ..., p(n)) and an aggregate T > 0 such that

Ti = (1 − z(p(i)))T and p(i) maximizes (39’). It follows that any interior Nash equilibrium

satisfies the FOC system

V =
ϕ(i, z(p(i))T )

1− z(p(i))
z′(p(i))T, (40)

showing that we can apply our rotation tools to study the distributive comparative-statics as

46Another justification is that with continuum agents T =
∫

(t(s)ds does not depend on t(i). This type
of argument was used by Dixit and Stiglitz (1977) and later by Melitz (2003) in the context of monopolistic
competition with continuum firms. Hefti (2016b) shows that similar principles apply to Nash and aggregate-
taking behavior in sum-aggregative games with respect to equilibrium uniqueness and stability.

47More generally, the following technique can be used in games with a sum-aggregative structure, such as the
Cournot model.
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in the earlier models. One advantage, however, of the previous contest model is that it yields

a slightly more tractable structure.48 From (40) it follows that the distributional effects of dV

depend only on the elasticity of the cost function, similar to Proposition 12.

Proposition 15 Let π(t(i), T ) be a zero-homogeneous CSF. The distributional patterns of p(i)

induced by dV are determined by the t-elasticity of marginal costs alone. Specifically, if Φ(i, t) =

c(i)tη, then p(i), Π(i)/Π(j) as well as t(i)/t(j) are invariant to x.

Evaluated in the special case of a Tullock CSF with arbitrary noise parameter η ≥ 1, Proposition

15 shows that the choice of V has no distributional impacts also in the Nash equilibrium.

Proposition 12 is not valid if V = V (T, x) and agents take into account own effects on the

aggregate T . The reason is that V (·) then depends on t(i). From Proposition 13 we know that

an idiosyncratic prize function may induce rotations of p(i). Nevertheless, nothing prevents

us from applying the previous methods also in this case. As a final illustration, suppose that

V (T, x) is affine-linear in T . Then a similar finding as in Proposition 13 results.49

Proposition 16 Suppose that V = α
∑
t(s) + β, Φ(i, t) = c(i)tη, where β > 0 and π(x) = x

(Tullock CSF). If α ≥ 0, then dα > 0 induces an OR of p(i). If α < 0, then dβ > 0 induces an

OR of p(i).

In the advertising interpretation, Proposition 16 thus suggests that if aggregate advertising has

a strong positive externality among the advertisers, we can expect to see very concentrated

markets.

5 Conclusion

The methods developed in this paper allow to analyze how the equilibrium distribution of agent

market shares and related measures depends on fundamental parameters of the respective model.

The distributional predictions are directly derived in term of output variables, such as (relative)

market shares or relative payoffs, rather than by the strategic variables that generated them

(e.g., effort levels in contests or prices in monopolistic competition). The advantage is that the

48The respective FOC is V = ϕ(i, z(p(i))T )z′(p(i))T . For given p(i), T marginal costs are thus higher if the
own effect on the aggregate are taken into account. This is intuitive, because an increase in t(i) also increases T
which, ceteris paribus, decreases t(i)/T .

49In the following proposition we assume parameters such that payoffs are strictly quasiconcave in p(i).
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former is more likely to be available in empirical data. Obtaining robust comparative-static

predictions, which do not hinge on ex ante restricting heterogeneity, e.g., to just two types or to

a specific type of distribution may be particularly valuable to applied work, because real-world

agents barely are symmetric and the extent of the ex ante heterogeneity may be unobservable.

While we have applied our tools to several different models, this paper is far from comprehensive,

and some of our applications may be worth a detailed separate consideration.

Our approach could provide a valuable instrument for studying questions related to distribu-

tion and welfare. For example, a planer may aim to implement a set of instruments to obtain a

certain distributional outcome, e.g., because of fairness concerns or other considerations. While

we did not study normative questions directly, understanding the distributional comparative-

static effects of various possible instruments in a certain economic context most likely constitutes

a central milestone in addressing normative distributional questions.
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A Appendix

A.1 Continuum representation for atomistic agents

We illustrate that the equilibrium distribution in case of n ∈ N atomistic (“discrete”) agents

can be identified with our finite step density model. The following argument considers the

case, where heterogeneity enters the model through a cost coefficient function as in (5). This

should suffice to make evident that the representation result applies similarly to other cases as

well. Consider a population consisting of n ∈ N atomistic (or “discrete”) agents, indexed by

{1/n, 2/n, ..., 1}. Suppose that the agents differ in their cost coefficient c(i), i ∈ {1/n, 2/n, ..., 1}.

Then, the agents can be partitioned into 1 ≤ K ≤ n groups of identical agents, with group size

nk,
∑

k nk = n. This partition gives 1 ≤ K ≤ n equivalence classes (groups) of sizes n1, ..., nK ,∑
k nk = n. We identify each group by a “representative” agent ik. In equilibrium every

agent (i/n) chooses pd(i/n) (d for “discrete”) to maximize her payoff Π(i), where pd(i/n) must

satisfy
∑n

i=1 p
d(i/n) = 1. Let p(i) denote the (step) density function that characterizes our

(continuum) equilibrium from definition 1 with the corresponding cost step function c(i) = c(ik)

on [ik, ik+1), and group measures γ1, ..., γK satisfying γk = nk/n. We now establish the formal

equivalence between the discrete equilibrium probability distribution
{
pd(1/n), ..., pd(1)

}
and

the equilibrium step density p(i).
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Theorem 5 (Continuum Representation) Let n ∈ N and suppose that agents are parti-

tioned in K cost groups. If
{
pd(i/n)

}
corresponds to the discrete equilibrium and p(i) is the

equilibrium (step) density of the respective continuum problem, then pd(i/n) = 1
np(i/n) is satis-

fied for all i ∈ {1, ..., n}

Proof: In the continuum case we only have to solve the optimization problem for a represen-

tative agents ik. In the discrete equilibrium 1 =
∑n

i=1 p
d(i/n) =

∑K
k=1 p

d(ik)nk. The claim now

is that 1
np(ik) = pd(ik) for k = 1, ...,K. But because in the continuum equilibrium we must have

1 =

∫ 1

0
p(i)di =

∑K

k=1
p(ik)γk =

∑K

k=1

(
1

n
p(ik)

)
nk

the claim follows from the uniqueness of equilibrium. �

Hence the continuum step-function case and the atomistic case are equivalent up to the

multiplicative constant 1/n (independent of group composition), which means that we can work

with either model, and justifies our procedure of the main text. It then also follows that

p(ik)γk = pd(ik)nk corresponds to the market share of a member of group k, illustrating why we

used the notion of a “representative” agent.

Because Theorem 5 remains valid as n grows arbitrarily large, this provides the following

justification for using strictly increasing cost coefficient functions (class II) as an approximation

for the case of many different agents. Suppose that c(i) is a class II function defined on [0, 1]

(e.g., c(i) = 1+ i), and let p(i) = p(c(i)) denote the corresponding equilibrium density (a strictly

decreasing, continuous function). Then, because c(i) is continuous on a compact interval, for

n ∈ N the sequence of step functions defined by cn(i) = c(i) if i ∈ {0, 1/n, 2/n, ..., 1} and cn(i) =

c(s/n) for i ∈ (s/n, (s + 1)/n), s ∈ {0, 1, ..., n − 1}, converges (uniformly) to c(i) as n → ∞.50

Consider the atomistic equilibrium distribution pd(i/n) induced by c(0), c(1/n), c(2/n), ..., c(1).

By Theorem 5, npd(i/n) = p(i/n), where p(i/n) is the step-density version of pd(i/n). More

precisely, for a given n ∈ N this density is a decreasing finite step function with pn(i) = p(cn(i)),

where cn(i) is as defined above. Because cn(i) → c(i) and p(i) is continuous, we have p(i) =

p(c(i)) = p(lim cn(i)) = lim p(cn(i)) = lim pn(i). This shows that while, of course, the atomistic

pd(i/n) becomes arbitrarily close to zero as n grows large, the “scaled” distribution law as

captured by the step-density version p(i/n) approaches p(i).

50Such approximations of continuous functions by a sequence of step functions are a standard result in real
analysis and integration theory.
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A.2 Proofs

Proof of Theorem 1 The proof consists of two steps. i) Fix i ∈ [0, 1] and T > 0 arbitrarily.

(A1) assures that the equation (4) has a unique solution p(i;T ) > 0, and that this solution

indeed maximizes (3) given T . Now, consider the function p(i, T ) ≡ p(i;T ), noting that p(i, ·) is

a strictly decreasing C1-function on (0,∞) as a consequence of the Implicit Function Theorem,

the strong quasiconcavity assumption in (A1), and the last assumption of (A2). Moreover,

p(·, T ) is a decreasing function because of (A3) and, hence, p(·, T ) is integrable over [0, 1], so

let G(T ) ≡
∫ 1

0 p(i, T )di, noting that G is differentiable. ii) We show: ∃! T > 0: G(T ) = 1. Fix

i ∈ [0, 1]. By (A3) there must exist Ti > 0: g(i, 1, Ti) = ϕ(i, 1, Ti). Therefore, ∃T0 > 0 such that

p(0, T0) = 1. Because p(i, ·) strictly decreasing, it follows that p(0;T ) < 1 for T > T0. Since

p(·, T ) is decreasing, we must have p(i, T ) < 1 for any i ∈ [0, 1] and T > T0, which implies that

lim
T→∞

G(T ) < 1. Similarly, it follows that ∃T1 > 0 such that p(1;T1) = 1. Thus p(i, T1) > 1 for

i ∈ [0, 1] and T < T1, hence lim
T→0

G(T ) > 1. As G(·) continuous, ∃T > 0 such that G(T ) = 1,

and uniqueness follows from the fact that, for each i ∈ [0, 1], p(i;T ) and hence G(T ) is strictly

decreasing in T . Finally, Π(i) > 0, because p(i) = p(i;T ) > 0 is the unique maximizer and

Π(i)|p(i)=0 = 0. �

Proof of Corollary 1 To see that p(i) > (≥)p(j) as claimed, note that g(i, p, T ) R ϕ(i, p, T )

⇔ p(i) R p because, by strong quasiconcavity (A3), g(i, ·, T ) must intersect ϕ(i, ·, T ) from above

at p(i) (see Figure 1). Further, in equilibrium

g(i, p(j), T ) > (≥)g(j, p(j), T ) = ϕ(j, p(j), T ) > (≥)ϕ(i, p(j), T ) (41)

Hence g(i, p(j), T ) ≥ ϕ(i, p(j), T ) and thus p(i) ≥ p(j), where these two inequalities are strict

if at least one inequality in (41) is strict. It also follows that p(i) = p(j) if all inequalities in

(41) are equalities, which proves the last claim of Corollary 1. The claims about payoffs holds

because

Π(i) = B(i, p(i), T )− Φ(i, p(i), T )

≥ B(i, p(j), T )− Φ(i, p(j), T ) > (≥)B(j, p(j), T )− Φ(j, p(j), T ) = Π(j),
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where the first inequality follows from optimality, and the second type of inequality follows from

(A3) and the additional presumption in Corollary 1. �

Proof of Proposition 1 Define g(i) ≡ p(i, x′)− p(i, x), and note that
∫
g(s)ds = 0. Suppose

that g(0) ≤ 0 By presupposition, g is decreasing, right-continuous and, by SSD, ∃i0 ∈ (0, 1):

0 ≥ g(0) > g(i), ∀i ≥ i0. Hence
∫
g(s)ds < 0, a contradiction. Therefore g(0) > 0, and a

similar argument shows that g(1) < 0. Because g is decreasing, right-continuous and g(0) > 0,

the set {i : g(i) > 0, i > 0} is non-empty, and we let i0 = sup{i > 0 : g(i) > 0}, noting that

i0 ∈ (0, 1). It follows that p(i, x′) > p(i, x) on (0, i0), and
∫ i0

0 g(s)ds > 0. Because g decreases and∫
g(s)ds = 0, the set {i : g(i) < 0, i ≥ i0} is non-empty, and we set i1 = inf{i ≥ i0 : g(i) < 0}.

If i0 < i1 then g(i) = 0 on (i0, i1), as g is decreasing and right-continuous. These facts together

imply that p(·, x′) is OR of p(·, x). �

Proof of Proposition 2 Define g(i) ≡ p(i,x′)
p(i,x) , and establish g(0) > 1, g(1) < 1 and the

existence of 0 < i0 ≤ i1 < 1 such that g(i) > 1 if i < i0, g(i) = 1 if i ∈ [i0, i1) and g(i) = 1 for

i ≥ i1 by exactly the same reasoning as in the proof of Proposition 1. �

Proof of Corollary 2 We only show the OR case. Define f(x; i, j) ≡ p(i,x)
p(j,x) . If p(·) is class

II and (11) is satisfied, then f(x; i, j) > f(x0; i, j) whenever x > x0, and the claim follows from

Proposition 2. If p(·) is class I, then p(·, x) is piecewise constant for any given x ∈ X, with a

finite number of downward jumps. If (11) is satisfied for any two i, j ∈ (0, 1) with j B i that

are not jump points of p(·, x), we must have that f(x; i, j) > f(x0; i, j) for any such i, j and any

x > x0, proving the claim by Proposition 2. �

Proof of Lemma 1 By (A1), equation (4) has a unique solution for given T, x, denoted by

p(i;T, x). Define G(T ;x) ≡
∫
p(i;T, x)di, note that in equilibrium G(T ;x) = 1. Quasiconcavity

(A1) and gx > 0 imply that p(i;T, x) is strictly increasing in x for a fixed T and any i ∈ [0, 1].

Because, by (A2), GT (T ;x) < 0 (see the proof of Theorem 1), applying the Implicit Function

Theorem to the equilibrium equation G(T (x), x) = 1 yields T ′(x) > 0. �
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Proof of Theorem 2 We proof the first claim by contradiction. Hence suppose that R = 0

∀i, j ∈ [0, 1] and any x ∈ X, but ∃j ∈ (0, 1) such that ∆j 6= 0 (and hence dp(j) 6= 0). Because

in equilibrium the integral condition

∫
∂p(s, x)

∂x
ds = 0 (42)

must hold, we can suppose, wlog, that ∆j > 0 for some j ∈ (0, 1). By (14) we must have ∆i > 0

for all i < j, and because of (42) ∃j′ ∈ (0, 1), j′ > j, such that ∆i < 0 for all i > j′. Take i < j

and i′ > j′. Then ∆i > 0 but also ∆i = k∆i′ < 0, contradiction. Turning to the second claim,

note that if R 6= 0 for some i, j then ∆i = 0 ∀i ∈ [0, 1] is impossible by (14). Hence ∀x ∈ X

∃i: ∆i(x) 6= 0, or equivalently ∂p(i,x)
∂x 6= 0, and therefore ∃δ > 0 such that p(i, x′) 6= p(i, x) for

x′ ∈ (x− δ, x+ δ), thus we have p(·, x′) 6= p(·, x) on that interval. �

Proof of Theorem 3 Step 1: We first prove the second claim, and restrict attention to the

OR-case (the IR-case is similar). Because R(x0) is uniformly positive, ∃i ∈ (0, 1): ∆i(x0) > 0

by the proof of Theorem 2. By the integral condition (42), there then must also be i′ ∈ (0, 1):

∆i′(x0) < 0. It then follows from (14) that i0 = sup{i ∈ [0, 1] : ∆i(x0) > 0} ∈ (0, 1), i1 = inf{i ∈

[0, 1] : ∆i(x0) < 0} ∈ (0, 1) and i0 ≤ i1. For any i < i0: ∆i(x0) > 0 and hence ∂p(i,x0)
∂x > 0. This

derivative condition implies that ∀i < i0 ∃δi > 0: p(i, x) > p(i, x0) ∀x ∈ (x0, x0 + δi).

Step 2: Because p(·, x) is class I, there is a finite number of equivalence classes to the left of

i0, and we only need to consider a single i, with corresponding δi, for each step of p(·, x) to the

left of i0. Let δ0 > 0 be the smallest value of these δi. We have thus shown that ∃ i0 ∈ (0, 1)

such that for any given x ∈ (x0, x0 +δ0) we have p(i, x) > p(i, x0) for i < i0. A similar argument

shows that we can find δ1 > 0 such that ∃ i1 ∈ (0, 1) such that p(i, x) < p(i, x0) for i > i1 and

any x ∈ (x0, x0 + δ1). Let δ ≡ min{δ0, δ1} > 0. Summarizing, the arguments so far show that

∃i0, i1 ∈ (0, 1), i0 ≤ i1 such that for x ∈ (x0, x0 + δ) we have p(i, x) > p(i, x0) for i < i0 and

p(i, x) < p(i, x0) for i > i1. If ∆i 6= 0 for any i ∈ (i0, i1] we must have i0 = i1 and the proof

is complete. Now suppose that ∃m ∈ (i0, i1]: ∆m(x0) = 0. Then (14) implies that ∆i > 0 for

any m B i, and ∆j < 0 for any j Bm. But this shows that there can be at most one step of

p(·, x) for which ∆m(x0) = 0. It follows that independent of whether p(m,x′) >=< p(m,x) for

x ∈ (x0, x0 + δ), p(·, x′) must be OR of p(·, x0). We now prove the first claim. By step 1 and
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the global uniform positivity of R, we must have ∆0(x) > 0 and thus ∂p(0,x)
∂x > 0 for any x > x0

(note that this result is valid also if p(·) is of class II), hence p(i, x′) > p(i, x0) ∀i ∈ [0]. Similarly,

∆1(x) < 0 for all x > x0, hence p(i, x′) < p(i, x0) ∀i ∈ [1]. �

Proof of Corollary 3 We only prove the first claim as the remaining claims are proved iden-

tically. Recall from the equivalence class argument in step 2 of the proof of Theorem 3 that there

is a finite number of ∆i(x0) > 0, possibly a single ∆m(x0) = 0 and a finite number ∆j(x0) < 0.

Define f(i, j, x) = p(i,x)
p(j,x) . If ∆i′(x0) ≥ 0 then any i with i′ B i has ∆i(x0) > ∆i′(x0) by (14).

Hence we must have ∂f(i,i′,x0)
∂x > 0. If ∆i′(x0) < 0 but ∆i(x0) > 0, then obviously ∂f(i,i′,x0)

∂x > 0

Thus for any pair (i, i′) as described above ∃δi,i′ > 0 such that f(i, i′, x′) > f(i, i′, x0) for all

x′ ∈ (x0, x0 +δi,i′). The proof is completed by letting δ > 0 be the smallest among these (finitely

many) δi,i′ and δ0, δ1 as identified in the proof of Theorem 3. �

The claim follows immediately from Corollary 2 because, by (14), if R(x) is globally uniformly

positive (negative) and k = 1, then ∆i(x) > (<)∆j(x), for any j B i and any x ∈ X, and hence

condition (11’) holds. �

Proof of Proposition 4 We only prove the uniformly positive case (the negative case is

established under the same type of arguments). We need to show that for

A(i) =
gT (i)

g(i)
T ′(x) +

gx(i)

g(i)

we have A(i) > A(j) whenever j B i. So take any j B i. First, hT (i, p′, T, x0) ≥ hT (i, p, T, x0)

and hT (i, p, T, x0) ≥ hT (j, p, T, x0) yield

hT (i, p(i), T, x0) ≥ hT (i, p(j), T, x0) ≥ hT (j, p(j), T, x0)

and because T ′(x) > 0 by Lemma 1 we have

gT (i)

g(i)
T ′(x) ≥ gT (j)

g(j)
T ′(x),
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where the inequality is strict, whenever at least one of the initial inequalities is strict. Second,

hx(i, p, T, x0) ≥ hx(j, p, T, x0) and hx(i, p′, T, x0) ≥ hx(i, p, T, x0) yield

hx(j, p(j), T, x0) ≤ hx(j, p(i), T, x0) ≤ hx(i, p(i), T, x0)

and hence also
gx(i)

g(i)
≥ gx(j)

g(j)

where, again, the inequality is strict if one of the previous inequalities is strict. This shows that

R(x0) > 0, and the global case follows immediately. �

Proof of Proposition 5 Consider the first two rows of Table 1. If γi = γ ≥ 1, ∀i ∈ [0, 1],

then (22) implies

p(i)

p(j)
=

(
c(j)

c(i)

) η−1
η(γ−1)+1

(
r(i)

r(j)

) γη
η(γ−1)+1

,

from which ∂
∂η

p(i)
p(j) > 0 and ∂

∂γ
p(i)
p(j) < 0, and the first column in Table 1 follows from Corollary 2.

The third and fifth columns follow from Π(i) = p(i)I
(
γη−η+1
γη

)
, because then Π(i)

Π(j) = p(i)
p(j) . From

p(i) =
rηi P

1−η
i
T we obtain

P (i)

P (j)
=

(
c(i)

c(j)

) 1
1+(γ−1)η

(
r(i)

r(j)

) (γ−1)η
1+(γ−1)η

,

and the fourth column follows from differentiating this expression. The remaining two rows of

Table 1 are obvious from the above derivations. �

Proof of Proposition 6 The fact that T ′(I) < 0 gives ∂qi
∂I > 0 ∀i ∈ [0, 1] by the left equation

in (23). The right equation in (23) implies that

q
(γi−1)+ 1

η

i

q
(γj−1)+ 1

η

j

is independent of I. Because q(·) ≥ 1 and γi < γj , j B i, this together with dqi, dqj > 0

further implies that qi
qj

is strictly increasing in I. Therefore p(i)
p(j) increases in I by (20’) which,

by Corollary 2, implies an OR of p(·). Since Π(i) = p(i)I
(
γiη−η+1
γiη

)
, relative profits increase in
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I, and because p(i) =
rηi P

1−η
i
T so do relative prices

Pj
Pi

. �

Proof of Proposition 7 By FOC, P (T, x) = ϕ(i, q(i)), either dq(i) > 0 or dq(i) ≤ 0 ∀i. Then,

dx > 0 implies that q(i) increases; if dq(i) ≤ 0 ∀i, then dP ≤ 0 by FOC but because also dT ≤ 0,

PT < 0 and Px > 0 this is impossible. A standard Envelope-theorem argument shows that Π(i)

increases in x. If Φ(i, q) is a power function with common and constant exponent η, so is φ(i, q),

Rij = 0 by (29) and p(i) is invariant to x by Theorem 2. If Φ(i, q) is a power function for each

i, then Π(i) = P (T, x)p(i)T ηi−1
ηi

. Hence if ηi = η ∀i, then x does not affect relative profits

and quantities as long as p(i) does not change. Profit and quantity differences increase in x by

the remark following Proposition 2. Let Φ(i, q) = qη(i) as stated by the proposition. Because

P (T (x), x) > η(1), we must have q(i) > 1 by the FOC, ∀i, and because also η(i)q(i)η(i)−1 =

η(j)q(j)η(j)−1, we must have q(i) > q(j) and hence p(i) > p(j) for any jB i. Because T ′(x) > 0,

sign(A(i)−A(j)) = (η(j)−η(i)) > 0 by (29), hence an OR results, and the claims about relative

profits and quantities follows immediately. �

Proof of Proposition 8 Since T ′(x) > 0, we have sign(A(i)−A(j)) = sign
(
ϕT (j)
ϕ(j) −

ϕT (i)
ϕ(i)

)
,

where where
ϕT (i)

ϕ(i)
=

∑
s(s− 1)asp(i)

s−1T s−2∑
sas(p(i)T )s−1 .

Then

∂

∂p

(
ϕT (i)

ϕ(i)

)
> 0 ⇔

∑
s(s− 1)2asx

s−1
∑

sasx
s−1 >

(∑
s(s− 1)asx

s−1
)2

We claim that the second inequality holds. Note that both sides of this inequality are polynomials

of degree 2(m− 1), hence it is of the form

u1x+ u2x
2 + ...+ u2(m−1)x

2(m−1) > w1x+ w2x
2 + ...+ w2(m−1)x

2(m−1)

We now claim that uk ≥ wk, k = 1, ...,m − 1, where the inequality is strict for some k. Let

s, s′ ∈ {2, ...,m} be such that s+s′ = k for a given k. Then A = s(s−1)2ass
′as′+s

′(s′−1)2as′sas

is a summand in the calculation of uk, while B = 2s(s − 1)ass
′(s′ − 1)as′ is the corresponding

summand in the calculation of wk. If as = 0 or as′ = 0, then A = B, so let as, as′ > 0. If s = s′

then again A = B, so let s 6= s′ (such s, s′ exist by presumption). Claim: A > B. To see this
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is suffices to show that s(s− 1)2s′ + s′(s′ − 1)2s > 2s(s − 1)s′(s′ − 1), which is equivalent to

(s− 1)2− 2(s− 1)(s′− 1) + (s′ − 1)2 > 0. Since s, s′ > 1 the last inequality is satisfied. Because

p(i) > p(j) for any j B i, this implies that ϕT (i)
ϕ(i) > ϕT (j)

ϕ(j) , hence Rij < 0, showing that an IR

results. �

Proof of Proposition 9 Aggregation of firm FOC yields T (P ) =
∫
ϕ−1(i, P )di, and T ′(P ) >

0 because ϕq(i, q) > 0. T d = T and aggregate demand imply that PT (P ) = ω + Π(P ), from

which P ′(ω) = (T + PT ′(P ) − Π′(P ))−1. Hotelling’s Lemma gives Π′(P ) =
∫
∂PΠ(i)di = T .

Therefore P ′(ω) > 0, and T ′(ω) > 0 follows. Then, ∂ωq(i) > 0 because, by firm FOC and

ϕq(i, q) > 0, ∂P q(i) > 0, and ∂ωΠ(i) > 0 because ∂PΠ(i) = q(i) > 0. The remainder of the

claim follows from Theorem 3 because T ′(ω) > 0 and A(i) is given by (29). �

Proof of Proposition 10 Note first that pd(ic) has the monotone ratio property because (32)

is linear in pd(ic), and therefore an OR (IR) of pd(ic) always implies that q(ic)/q(jc) increases

(decreases). Equation (32) implies that for jc B ic the ratio pd(ic)/p
d(jc) increases (decreases)

in ω if
dω(ic) + s(ic)dΠ

ω(ic) + s(ic)Π
> (<)

dω(jc) + s(jc)dΠ

ω(jc) + s(jc)Π
(43)

(i) If s(ic) = 1 ∀ic is used in (43) together with dΠ = Π′(ω) > 0, we obtain that pd(ic)/p
d(jc)

decreases in ω. Therefore dω > (<)0 induces a global IR (OR) of pd(ic) by Theorem 4. (ii) Using

ω(ic) = ω ∀ic in (43) shows that pd(ic)/p
d(jc) decreases (increases) in ω if Π− Π′(ω)ω > (<)0.

Because Π′(ω) > 0 and Π(0) = 0, Π − Π′(ω)ω > (<)0 if Π(ω) is strictly concave (convex), and

the claim follows from Theorem 4. �

Proof of Corollary 4 With iso-elastic costs, Π(i) = Pq(i)η−1
η , and thus Π = PT η−1

η . To-

gether with aggregated consumer FOC, this implies that PT = ηω and Π = (η − 1)ω. Because

Π is linear in ω, pd(ic) and q(ic)/q(jc) must be invariant to ω by the proof of Proposition 10

(ii). Aggregated firm FOC together with PT = ηω imply that ω/P = γω1/η, where γ > 0 is a

constant. Because q(i) = ω/P (1 + s(ic)(η − 1)) it follows that ∂ωq(i) > 0. Hence the facts that

q(ic)/q(jc) is constant but q(ic) > q(jc) both decrease, imply the last claim. �

Proof of Proposition 11 Invariance of p(i) and Π(i)
Π(j) to α and a common dc(i) follow from

the constant and common elasticity of costs as argued in the main text. Equilibrium profits are
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Π(i) = p(i)T η
η−1 . In equilibrium T = T d, and summation of consumer FOC yields T = α(w+Π).

Using Π =
∫

Π(i)di in this equation implies that

T =
αη

α+ (1− α)η
w. (44)

But because S(ic) = s(ic)Π, capital incomes change in equal proportions, and

dS(ic)

S(ic)
=
dΠ(i)

Π(i)
=
dT

T

(i) Equation (44) additionally implies that dT/T = dw/w. Therefore

dw + dS(ic)

w + S(ic)
=
dw + dS(jc)

w + S(jc)

showing that p(ic)/p(jc) and q(ic)/q(jc) remain constant, proving that p(ic) is unaffected. Be-

cause f(ic) = (1− α)(1 + S(ic)/w), also f(ic) remains constant. Integration of the FOC of the

firm problem yields

T =

(
1

wη

) 1
η−1

C, C ≡
∫
c(i)

1
1−η di. (45)

The aggregate effect of the exogenous common efficiency increase thus is entirely captured by

dC > 0, and (44), (45) together imply that T ′(C), w′(C) > 0, which further assure that dΠ(i) > 0

and dq(ic) > 0 for each firm and consumer, respectively. Finally, dq(ic) > dq(jc) and dΠ(i) >

dΠ(j) follow from the above results and the remark after Proposition 2. (ii) Equations (44),

(45) then imply that w′(α) < 0 and T ′(α) > 0. By the latter also ∂αΠ(i) > 0, and hence

Π′(α) > 0 as well as dS(i) > 0 (provided that s(i) > 0). Because aggregate output increases

so does aggregate labor supply. To prove the OR of pd(ic), it suffices to show that pd(ic)/p
d(jc)

increases in α by Corollary 2, hence that

dw + dS(ic)

w + S(ic)
>
dw + dS(jc)

w + S(jc)
.

This inequality holds by the fact that S(ic) = s(ic)Π, dw < 0 and dΠ > 0. The monotone ratio

property follows because the consumer FOC is linear in pd(ic), which immediately also implies

that q(ic)/q(jc) and f(ic)/f(jc) increases. It follows that dq(ic) > dq(jc) if dq(ic) > 0. �
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Proof of Proposition 12 The FOC of (34’), evaluated for the case V (T, x), is V (T, x) =

ϕ
(
i, π̂−1(p(i))T

)
. As Vx > 0 also T ′(x) > 0 by Lemma 1 and, using t(i) = π̂−1(p(i))T , thus

sign(Rij) = sign

(
ϕt(j, t(j))t(j)

ϕ(j, t(j))
− ϕt(i, t(i))t(i)

ϕ(i, t(i))

)
,

which shows the first claim. The second claim then follows, because Rij = 0 if all Φ(·) are

common-elastic power functions and Π(i) = V (T, x)ηp(i)z
′(p(i))−z(p(i))
ηz′(p(i)) . �

Proof of Corollary 5 The FOC imply

p(i)

p(j)
=

(
c(j)

c(i)

) 1
η−1

.

Thus dη > 0 induces a global IR with monotone ratios by Corollary 2, (18) and Theorem 4, and

the claims on relative payoffs and efforts follow from Π(i) = p(i)V (T )η−1
η and t(i) = p(i)/T . �

Proof of Proposition 13 The FOC are αT (z(p(i)) + p(i)z′(p(i))) + β = ηc(i)z(p(i))η−1T η.

Evaluation of the conditions in Proposition 4 for h = Ln (αT (z(p) + pz′(p)) + β) and x = α

shows that both hα(i) > (<)hα(j) and hT (i) > (<)hT (j) both are equivalent to z(p(i)) +

p(i)z′(p(i)) > (<)z(p(j)) +p(j)z′(p(j)). Thus, if z′′(p)p
z′(p) > (<)−2 ∀p > 0, such that z(p) +pz′(p)

is a strictly increasing (decreasing) function, we have from Proposition 4 that R is uniformly

positive (negative), and the first claim follows from Theorem 3. Similarly, if x = β, then

hβ(i) > hβ(j) if either α > 0 and z′′(p)p
z′(p) < −2 ∀p > 0 or if α < 0 and z′′(p)p

z′(p) > −2 ∀p > 0. In

both cases an OR results,51 proving the second claim. �

Proof of Proposition 14 Totally differentiating the LHS of (38) yields dV1 + (1− 2p(i))dV2.

By Proposition 4 the differential change dV1, dV2 causes an OR of p(i) if

z(p) ≡ dV1 + (1− 2p)dV2

V1 + (1− 2p)V2

is increasing in p. The claim then follows from sign(z′(p)) = sign (dV1V2 − dV2V1). �

51The cases α > (<)0 and z′′(p)p
z′(p) > (<)− 2 cannot be signed unambiguously.
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Proof of Proposition 15 Like in the proof of Proposition 12 we obtain that

sign(Rij) = sign

(
ϕt(j, z(p(j))T )z(p(j))T

ϕ(j, z(p(j))T )
− ϕt(i, z(p(i))T )z(p(i))T

ϕ(i, z(p(i))T )

)

proving the first claim. With iso-elastic costs ϕ(i, z(p(i)T ) = ηc(i)z(p(i))η−1T η−1 from which

Rij = 0 follows. Hence p(i) is invariant to dV , and the remaining claims follow from

Π(i) = V
ηp(i)z′(p(i))− z(p(i))(1− z(p(i))

ηz′(p(i))

and t(i)/t(j) = z(p(i))/z(p(j)). �

Proof of Proposition 16 Rewriting the payoff with the market share variable p(i) gives

Π(i) = p(i)

(
αTi

1− p(i)
+ β

)
− c(i)

(
p(i)

1− p(i)

)η
T ηi ,

from which the equilibrium FOC αT +β(1− p(i)) = ηc(i)p(i)η−1T η can be deduced. For h(i) ≡

Ln(α(1 − p(i)) + β) we obtain sign(hT (i) − hT (j)) = signα, hα(i) > hα(j) and sign(hβ(j) −

hβ(i)) = signα. All claims then follow from Proposition 4. �
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B Online Appendix

The following proposition describes the equilibrium distribution function F (i, x) in greater detail.

Proposition B.1 Suppose that ∀x ∈ X the decreasing density p(·, x) has the SSD property.

Then:

a) F (i, x) > i, i ∈ (0, 1), x ∈ X

b) If p(i, x′) is OR of p(i, x), then F (·, x) strictly stochastically dominates F (·, x′), i.e. F (i, x′) >

F (i, x), ∀i ∈ (0, 1).

c) F (i, x) is strictly increasing, continuous and concave in i, x ∈ X. If p(i) is strictly

decreasing, then F (i) is strictly concave.

Proof a) Consider i0 ∈ (0, 1). If p(i0) ≥ 1, then by SSD and because p(·, x) is a decreasing

density ∃ î < 1: p(i) < 1 on [̂i, 1]. Thus there must also be ĩ ∈ (0, i0] such that p(i) > 1 on [0, ĩ).

Hence F (i0) > i0. If p(i0) < 1 then, by SSD and the decreasing density property, ∃i ∈ (0, i0]:

F (i0) =

∫ i

0
p(s)︸︷︷︸
≥1

+

∫ i0

i
p(s)︸︷︷︸
<1

Then
∫ i

0 (p(s)− 1) =
∫ 1
i (1− p(s)) >

∫ i0
i (1− p(s)), where the inequality follows from the fact

that 1 − p(s) > 0 for s ∈ [i, 1]. Hence F (i0) > i0. b) Follows from a similar type of argument.

If i ∈ (0, i0], then p(i, x′) > p(i, x) > 0 for i ∈ (0, i0), and hence F (i, x′) > F (i, x). If i ∈ (i0, 1),

then ∫ i0

0

(
p(s, x′)− p(s, x)

)
=

∫ 1

i0

(
p(s, x)− p(s, x′)

)
>

∫ i

i0

(
p(s, x)− p(s, x′)

)
where the inequality follows from p(s, x′) = p(s, x) on (i0, i1) and p(s, x) > p(s, x′) on (i1, 1].

Hence again F (i, x′) > F (i, x). c) F (·, x) strictly increasing follows directly from p(·, x) > 0.

Let i, j ∈ [0, 1] and i < j. Let t ∈ [0, 1]. First, note that tF (i) + (1− t)F (j) = F (j)− t
∫ j
i p(s),

and F (ti+ (1− t)j) =
∫ j

0 p(s)−
∫ j
i′ p(s) where i′ = ti+ (1− t)j. From these two expressions it

follows that F is concave iff t
∫ j
i p(s) ≥

∫ j
i′ p(s), or equivalently if

t

∫ i′

i
p(s)− (1− t)

∫ j

i′
p(s) ≥ 0 t ∈ (0, 1), i < i′ < j (46)

1



Because p(i) is decreasing, we must have p(i) ≥ p(i′) ≥ p(j) (with strict inequalities in the

strictly decreasing case). Hence (46) is satisfied (strictly so in the strictly decreasing case) if

t

∫ i′

i
p(i′)− (1− t)

∫ j

i′
p(i′) ≥ 0 t ∈ (0, 1)

This inequality reduces to t(i′ − i)− (1− t)(j − i′) ≥ 0, which, by construction of i′, is satisfied.

This verifies the (strict) concavity of F (·, x), and continuity of F (·, x) follows from concavity

and the fact that F (·, x) cannot jump at the boundary points {0, 1}. �

In words, a) means that the market share of one of the best i% agents always exceeds i%. Further,

a) - c) are consequences of the SSD property, and thus in general of agent heterogeneity and the

no leap-frogging property of p(i).

B.1 More on rotations

We first state the differential version of Proposition 1:

Corollary B.1 Suppose that the presumptions of corollary 2 hold. If ∀i < j with j /∈ G(i) and

x0 ∈ Int(X) we have that

∂

∂x

(
p(i, x′)− p(j, x′)

)
> 0 ∀x′ ≥ x0 (47)

whenever the derivative exists, then p(i, x′) is OR of p(i, x) whenever x′ > x0. If the inequality

in (11) is reversed, then p(i, x′) is IR of p(i, x).

As the proof is logically similar to the proof of Corollary 2 we omit it here. We include the

following calculus result for the sake of completeness (we omit its obvious proof).

Corollary B.2 Suppose that p is C2 and belongs to class II, let X be an open interval and

x′ > x. If ∂2

∂i∂xp(i, x) < 0, (i, x) ∈ Int(A), then p(i, x) satisfies (9) on A. If ∂2

∂i∂xLn (p(i, x)) < 0,

(i, x) ∈ Int(A), then p(i, x) satisfies (10) on A.

Relation between difference and ratio test While the ratio test and the difference test

can both be used to establish an OR or IR of p(·), they are not equivalent, and we explore their

relation in this section.
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Proposition B.2 Suppose that the premise of proposition 1 is satisfied. If (10) is satisfied,

then (9) holds for all i such that p(i, x′) ≥ p(i, x). If (9) is satisfied, then (10) holds for all

j > i such that j /∈ G(i) and p(i, x′) ≤ p(i, x).

Proof: If (10) is satisfied, then equivalently p(i,x′)−p(i,x)
p(i,x) > p(j,x′)−p(j,x)

p(j,x) whenever j > i, and

j /∈ G(i). Suppose that p(i, x′) ≥ p(i, x), and take j > i, j /∈ G(i). Hence p(i, x) > p(j, x), and

the first claim follows from p(i,x′)−p(i,x)
p(j,x) > p(j,x′)−p(j,x)

p(j,x) . If (9) is satisfied, then:

p(i, x′)

p(i, x)
>
p(j, x′)− p(j, x)

p(i, x)
+ 1 j > i, j /∈ G(i) (48)

Now, because of (48) condition (10) is satisfied if p(j,x′)−p(j,x)
p(i,x) + 1 ≥ p(j,x′)

p(j,x) , or equivalently, if

p(j,x′)−p(j,x)
p(i,x) ≥ p(j,x′)−p(j,x)

p(j,x) . But this inequality must hold, because as p(i, x′) ≤ p(i, x) (48)

implies that p(j, x′)− p(j, x) < 0. �

If p is the (stage I) success chance, then proposition B.2 says that if p satisfies setwise decreas-

ing differences, the setwise decreasing competitive balance property is satisfied at least for the

“loosing” range, where p(i, x′) ≤ p(i, x). Conversely, if the decreasing competitive balance prop-

erty is satisfied, then the “winning” range, where p(i, x′) ≥ p(i, x), satisfies setwise decreasing

differences.

To place the last result in the relevant theoretical context, note that p(i, x) is setwise strictly

submodular on A ≡ [0, 1] × X if and only if p(i, x) has setwise strictly decreasing differences

on its domain, i.e. (9) is satisfied on A. Similarly, p(i, x) has setwise strictly decreasing ratios

on A if and only if p(i, x) is setwise strictly log-submodular on A, i.e. if and only if Ln(p(i, x))

is setwise strictly submodular on A. It is a known result that if p(·, ·) were monotonic on A,

then log-supermodularity would imply supermodularity, and submodularity would imply log-

submodularity (see Topkis (1998), p. 65). However, because in our context p(i, x) generically

cannot be montonic in both arguments,52 the result does not apply to our setting, but propo-

sition B.2 can be viewed as an extension of the result to the case of a partially monotonic

function.

52E.g. in the continuous case the integral condition implies the existence of at least one intersection of p(i, x)
and p(i, x′).
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B.2 Additional results

Logit-demand with an outside option In the Logit model of section 4.1.2 we have assumed

that the consumer always purchases one alternative, but what if there is an outside option? A

simple way of incorporating an outside option into the Logit (see, e.g., Anderson et al., 1992) is

to write expected demand of firm i as

qi =
e−λPi∫
e−λPs + x

, x = eλV0 .

If x = 0 this corresponds to the previous model, with a uniform quality level but heterogeneous

costs c(i). We have
∫
qidi < 1 iff x > 0, because with x > 0 there is a non-zero probability

that the consumer does not purchase at all. Define p(i) as the market share of i relative to total

supply, p(i) ≡ qi∫
qi
di. Then qi = p(i) T

T+x , where T =
∫
e−λPs , and profits are

Πi = Piqi − c(i)qi =
T

T + x

((
−Ln(p(i)T )

λ

)
p(i)− c(i)p(i)

)

which is essentially (25) scaled by a positive number. Hence (26) - (28) remain valid for x > 0

(with the reinterpretation of p(i)), and the main distributional effects of λ are preserved. In

particular, an increase in λ leads to an OR of p(·) and increases relative profits as well as relative

prices Pi
Pj

(because c(i) < c(j), j B i). Moreover, a change in the value of the outside option

(dx 6= 0) has no equilibrium effects on market shares nor on relative profits nor on relative

(expected) quantities supplied. By (26) prices Pi are invariant to x, and by (27) T ′(x) = 0,

showing that the only effect of (a change in) the outside option is to change individual and

aggregate supply, and to scale all equilibrium profits by a factor, while preserving market shares

and market prices.53

53Note however that quantity differences, qi − qj > 0, and profit differences Π(i)−Π(j) > 0 decrease in x.
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