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Abstract

In an overlapping generations framework that allows for the presence of a debt crisis
senario (debt bubbles), we introduce productive government expenditures and a dynamic
�scal rule that combines �scal stimulus and �scal consolidation. We formally argue that
for the pursuit of escaping from a situation of exploding debt and low economic activity
a �scal rule has to be procyclical to increases in output and, at the same time, has to
control for the level of debt. Then, when the economy enters the sustainability area, the
same rule, has to endogenously adapt to the actual level of debt and income in order to
stimulate private investment through lower taxes. We provide a numerical example to our
theorerical results and we show that the tax rate has to adjust non-monotonically during
the process of recovery re�ecting the two counter-balancing properties of the examined
�scal policy rule.
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1 Introduction

Over the last years, particularly in Europe, we have witnessed a shift to austerity measures and
de�cit reducing policies to target the sustainability of public debt. The International Monetary
Fund (IMF), the European Central Bank (ECB), and the European Commission in an e¤ort
to help European countries to overcome situations of exploding debt have focused on policies
that place some level of �scal austerity (increase in taxation and spending cuts) to control the
volume of debt of each country. However, �rst, we have witnessed that those policies, due to
their discretionary nature, are continuously re-optimized given the failure of some countries to
achieve their targets. Second, using almost the same �scal policy measures in similar countries
(e.g. Portugal and Greece) we observe divergent results in economic outcomes (for a detailed
review see Brendon and Corsetti, 2016). Such variation in the dynamic adjustment of policy
instruments and divergence in the expected economic outcomes have resulted in an uncertain
economic environment raising the need of imposing a stable dynamic �scal policy rule subject
to the state of the economy.
The aim of this paper is to examine the properties of a �scal policy rule for debt sustain-

ability in a framework that allows for the presence of debt bubbles. From one hand, increasing
productive government spending stimulates an economy with low private investment and, in
turn, output, on the other hand, without considering a consistent �nance plan about the level
of debt, an expansionary policy can generate a debt bubble. According to our model the e¤ec-
tiveness of �scal stimulus and consolidation for debt sustainability is determined by the initial
conditions on the level of debt and capital stock. To this end, we provide a �scal rule that
can endogenously adjust to the need for stimulus and consolidation as the economy develops.
In particular, we show that a �scal rule has to be procyclical in output increases (contrary to
perceived notions) but at a high initial level of debt, taxation has to increase (endogenously)
in order to �nance the de�cits.1 After a threshold level of income, taxation negatively adjusts
to output increases and government expenditures are �nanced through a higher tax base.
Our paper is related to the literature on �scal consolidation and debt sustainability and

contributes in several manners. Earlier work by Sargent and Wallace (1981) states that there
is a ceiling on government indebtedness and that permanent de�cits will eventually need to
be monetized. However, some countries either belong to a monetary union or monetary policy
is constrained by the zero lower bound. Based upon that, among others, Eggertsson (2011),
Christiano, Eichenbaum and Rebello (2011) and Coehen et al. (2012) highlight the role of �scal
stimulus and they show that the government spending multipliers are potentially larger when
the zero bound is binding. However, their modelling approach does not allow for the presence
of debt bubbles that can be triggered by �scal stimulus and the fact that �scal multipliers
depend on the state of the cycle and the level of debt as empirical evidence by Auerbach and
Gorodnichenko (2012, 2013) and Ramey and Zubairy (2016) indicates. Furthermore, Corsetti
et al. (2013) highlight that the bene�ts to �scal expansion could easily be undone if the �scal
solvency of the government comes to be questioned �an issue that is of obvious relevance to
Southern European countries at present.

1In the optimal neoclassical growth model of in�nitely lived agents debt bubbles are ruled out optimally and
a procyclical �scal rule crowds out private investment strongly and generates instability. However, under the
existence of debt bubbles and unstable debt dynamics that can occur in an OLG framework, a procyclical policy
in output can place the economy in the sustainability area (through increases in productivity) as we will show
later on.
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To this end, by advancing the seminal work of Tirole (1985) and that of Chalk (2000),
we provide a theoretical framework, considering the aforementioned empirical evidence, where,
�rst, we do not allow for monetary policy, and second, we allow for the presence of debt bubbles
to take into account the unfavourable consequences of �scal stimulus on debt. Third, though
a policy rule inspired by Bohn (1998), we consider state depended �scal stimulus (through
productive government expenditures) to remedy a recession but at the same time we control
for the level of debt.
Regarding policy implications, we argue that �scal asymetries that may not rely solely on

fundamentals but on selfull-�lling pessimism derived from initial conditions as recent empirical
evidence indicates (De Grauwe and Yuemei, 2013, Ramey and Zubairy, 2016). In particular,
we show that multiple equilibria a la Azariadis and Stachurski (2005) can arise and although
countries have similar characteristics (e.g. Spain, Italy, Portugal and Greece) and follow similar
policies, they may face divergent paths in debt and income, as observed in the data (Brendon
and Corsetti, 2016). Our result is in line to Favero and Giavazzi (2007) where the absence of
a debt feedback e¤ect on taxes and government spending can result in incorrect estimates of
the dynamic e¤ects of �scal shocks. However, we advance their study by theoretically showing
that the feedback e¤ect of debt on taxes may not be monotonic subject to the initial conditions
(in line with Ramey and Zubairy, 2016). Once those non-linearities (phase of business cycle
along with the level of debt) are taken into account, empirical studies may come in more precise
results regarding �scal multipliers.
Section 2 sets up the model and Section 3 examines the equilibrium properties, existence,

uniqueness and stability. Section 4 investigates the e¤ect of the policy parameters on steady-
state output and we provide a simple numerical example about the short-run dynamics. Section
5 concludes the paper.

2 The model

2.1 Demand Side

We consider an overlapping generations model advanced by Diamond (1965) and Tirole (1985).
There are Nt consumers who each live for two periods. They choose their consumption today,
Ct, and tomorrow, dt+1, to maximize intertemporal utility as given by the following utility
function,

U = lnCt + � ln dt+1 (1)

where � is the weight that agents place in their second period utility. In the �rst period of
their life, agents inelastically supply labour and they receive a wage rate, wt which is taxed
by � t. When old, the agents consume their savings and they receive a return on their savings,
rt+1. By solving their intertemporal problem, the savings, S, of each individual are positively
determined by the after tax wage rate and their savings propensity, s = �

1+�
,

S(wt) = s(1� � t)wt (2)
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2.2 Supply Side

On the supply side, there exists a continuum of �rms that produces output, Yt, using capital,
kt, labour, lt, and a public good supplied by the government gt,

Yt = Ak
�
t l
1��
t g
t �+ 
 < 1 (3)

The wage rate and return on capital, using the labour market clearing condition, lt = 1, are
determined by

wt = (1� �)Ak�t g


t (4)

Rt = �Ak
��1
t g
t (5)

2.3 Government

We assume that the supply of the public good is determined by a Samuelson Rule, which states
that the marginal bene�t generated by the public good (expenditures) must be equal to the
marginal cost of its production given by:

gt = (
Ak
�
t )

1
1�
 (6)

Using (6), we can compute the equilibrium wage and real interest as follows:

w(kt) = (1� �)Ak�t g


t = (1� �) ~Ak

a
1�

t (7)

R(kt) = �Ak
��1
t g
t = � ~Ak

�
1�
�1
t (8)

where ~A � 




1�
A
1

1�
 . Further, we assume that the government �nances public expenditures
not only from taxation but also by issuing government debt. The budget constraint of the
government is given by

Bt+1 = RtBt + gt � � twt (9)

Following the �scal rule estimated by Bohn (1998) and similar to Gali et al. (2007), we assume
that the primary surplus/de�cit is a function of the level of debt and income determined by
the �scal policy parameters, a > 0 and b > 0 given by

gt � � twt = �aBt + byt (10)

Policy parameter a states what is the responsiveness of the de�cits to the level of debt ("debt
control" channel) and parameter b states the responsiveness of de�cit in the level of income
("�scal stimulus" channel). Thus, this rule places some level of �scal discipline, "austerity", as
given by a, in the sense that under an increase of debt, taxation has to increase so as to reduce
de�cit and, in turn, public debt. On the �ip side, as the economy develops policy parameter b
allows for higher structural de�cit in order to �nance public spending.2

2Expessing the primary de�cit as a ratio of yt we obtain
gt��twt

yt
= �aBt

yt
+ b. Thus, b > 0 is the part of

de�cit to income ratio that is structural. Interestingly, we show later on that even in the presence of a structural
de�cit (which is the case in many countries) our rule is able to place the economy in a sustainable path.
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3 Equilibrium dynamics

Given that in equilibrium saving must be equal to investment in real capital and government
bonds, after some algrebra (see Appendix 1), the dynamic equilibrium is determined by the
following dynamical system of equations

kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt (11)

Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt) (12)

The steady-state of capital stock and debt level in the economy is the bundle, (k�; b�) such that
kt+1 � kt = 0 and Bt+1 �Bt = 0 hold simultaneously.

Proposition 1 (Existence and Uniqueness). For (i) b < s(1���
)
(1�s) � bmax and (ii) a <

�
(1�s)(s(1���
)�(1�s)b) � a

max there exist two non-trivial equilibrium steady states, klowss > 0 and
khighss > 0 where klowss < khighss .
Proof. Appendix 2.

Proposition 2 (Stability) Both steady-states are stable. The lower equilibrium, klowss , is saddle-
path stable and the higher equilibrium, khighss , is a stable node.
Proof. Appendix 3.

Proposition 1 shows that if the level of structural de�cit, b, is not high enough to crowd-
out investment in capital and, if the response of the tax rate to the level of debt, a, is not
high enough (limits for "austerity", condition (ii)), then there exist two strictly positive non-
trivial equilibrium steady-states.3 Proposition 2 shows that both equilibria are stable, the
relatively lower one displays saddle-path stability and relatively higher one is a stable node.
Proposition 1 together with Proposition 2 imply that the initial conditions, the initial level of
debt and physical capital, determine the long-run position of the economy even the structural
parameters of the economy can be the same (see the phase diagram in Figure 1). In particular,
other things equal, for relatively high initial volume of debt and relatively low initial capital
stock the economy can be in a position of exploding debt leading to a debt bubble (point B,
Figure 1). While, after a threshold level of initial capital stock and volume of debt the economy
will converge to an equilibrium level of high capital stock and sustainable debt (point A, Figure
1). We illustrate this point using a numerical example in the following section.

4 Policy E¤ects and Implications

In this section we study the properties of the policy parameters of the �scal policy rule and
provide the associated policy implications.

Proposition 3 The policy parameter, a, negatively a¤ects the relatively lower steady state,
klowss , and, positively, a¤ects the higher steady-state equilibrium.
Proof. Appendix 4.

3For an alternative exposition, as can be seen in Appendix 1, the �scal rule can be expressed in terms of the
tax rate as �(kt; Bt) = (aBt � (b� 
)y(kt))=wt(kt).
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Proposition 3 states that the equilibria we derived in Proposition 1 display di¤erent prop-
erties. An increase in the "austerity" parameter, a, decreases the relatively lower steady-state
of the capital stock while it increases the relatively higher steady-state capital stock. In other
words, the higher the responsiveness of the tax rate to the level of debt, the higher the gap
between the two equilibria. The interesting implication of this theoretical property is that the
government by implementing higher austerity can help economies with high level of initial debt
and relatively low capital stock to enter to the area of sustainability. At the same time, the
rule changes endogenously once the capital stock achieves a certain threshold, and taxation
dynamically reduces so as to avoid a huge crowding out e¤ect of the private sector.
To better illustrate our analytical results, we provide a simple numerical example using

standard parameter values from the growth literature. Assume two countries, A (e.g. Spain)
and B (e.g. Greece). Both countries have the same structural characteristics such as total
factor productivity, A = 8, share of physical capital on the production function, � = 0:25,
productivity of the public good, 
 = 0:15, time preference, � = 0:098 and both follow the same
rule with weights, a = 0:5 and b = 0:013 (using the estimates by Bohn, 1998). Also, both
countries are developed in the sense that both belong to the area of low interest rates (right
hand side of the discontinuity in Figure 1). They only di¤er in their initial level of debt and
capital stock. Country B has relatively lower initial capital stock, KB

0 = 0:5, and higher initial
level of debt, BB0 = 0:5, than country A, KA

0 = 3 and BA0 = 0:3 correspondigly. Then, our
numerical exercise is to examine the way that the dynamics of each country evolve by setting
those di¤erent initial conditions for each country. Table 1 shows that Country A reaches the
high steady-state of capital stock with sustainable steady-state debt, while in Table 2, Country
B ends up in a situation of exploding debt. Thus, as Proposition 1 and 2 imply although those
countries have the same structural characteristics and follow the same policy rule, they will
display di¤erent dynamics and steady-states just by starting with di¤erent level of inherited
debt and capital stock.

Table 1
Country A: Dynamic adjustment towards the stable steady-state

with a = 0:5 and b = 0:013
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Table 2
Country B: Dynamic adjustment towards exploding debt

with a = 0:5 and b = 0:013

The policy implication that can be derived from this result is that, in the design of a policy
rule, the choise of the level of austerity has to depend not only on the fundamentals but also
on the initial state of the inherited debt and income. So, in cases of exploding debt, following
Proposition 3, countries have to increase the response of taxation to the level of debt, a, so as
to expand the area of sustainability. In Table 3 we provide the dynamic path of Country B by
only increasing the level of a from 0:5 to 0:8.
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Table 3
Country B: Dynamic adjustment towards the stable steady-state

with a = 0:8 and b = 0:013

According to Table 3, with higher a, the policy rule can place Country B to a stable path
for the capital stock associated with sustainable long-run level of debt. An interesting outcome
is the endogenous non-monotonic dynamics of the tax rate. The tax rate increases at low
levels of capital stock so as to decrease de�cit and stabilize the level of debt. As debt falls
and income increases, taxes fall in order to boost savings that will form a higher capital stock
and a higher tax base to �nance government expenditures. In other words, the two features of
the rule work as follows. On the one hand, higher "austerity" is enabled to put the economy
in a stable equilibrium path. On the other hand, in line with the optimal Samuelson rule for
the provision of public services, de�cit increases in order to �nance productive government
spending but through higher tax base and lower taxes. Di¤erently to other policy rules (which
work in environments of stable dynamic paths) and state that de�cits have to decrease as output
increases (for consumption smoothing) this rule guarantees some level of �scal consolidation so
as to avoid the emergence of debt bubbles but also provides �scal stimulus so as the economy
to be able to escape from the unstable path.
Under the theoretical foundations of this short paper, we believe that, �rst, the empir-

ical investigation of policy rules with the aforementioned properties and, second, a detailed
calibration of di¤erent countries under a debt crisis open interesting research directions with
subsequent implications for the design of �scal policy rules for debt sustainability.
Last, we do the same work for the policy instrument that controls the level of structural

de�cit (and has extensively analyzed by Chalk, 2000).

Proposition 4 The structural de�cit parameter, b, positively a¤ects the lower steady state klowss
and negatively a¤ects the higher, khighss , steady-state equilibrium.
Proof. Appendix 4.

Proposition 4 states that the equilibria display di¤erent properties also for the level of
structural de�cit. An increase in the level of structural de�cit positively a¤ects the low steady-
state while an increase in the level of structural de�cit negatively a¤ects the high steady-state.
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This theoretical result conforms with the result of Chalk (2000). A decline in the level of
structural de�cit positively a¤ects the level of high capital stock and increases the probability
that a country can escape from a poverty trap as it can increase the gap between the two
equilibria and, in turn, increase the area with stable node dynamics. However, as has already
been shown by Chalk (2000) and condition (i) of Proposition 1 there are limit in the use of
structural de�cits.

5 Conclusion

Motivated by the recent debt crisis experience in the Eurozone we examined the theoretical
properties of an empirical rule inspired by Bohn (1998) in an overlapping generations frame-
work with productive public expenditures. Departing from discretionary policy making followed
nowadays by the European Commision and the IMF, we suggest a policy rule that can endoge-
nously adapt to the actual level of debt and income in the economy. We show that even in the
presence of structural de�cits a rule that is clever enough to place stability/instability when
necessary (subject to the initial conditions) can build a sustainable path for debt and output.
In particular, the rule has to provide �scal consolidation to guarantee a stable path for investors
but at the same time it has to provide �scal stimulus (productive government expenditures) to
stimulate the production of an economy with low private investment.
We beleive that our theoretical results brings forward interesting testable predictions for

empirical research.

6 Appendix

Appendix 1: Derivation of the Dynamical System

Given that in equilibrium saving must be equal to investment in real capital and government
bonds, the dynamic equilibrium is given by the following dynamical system

Bt+1 = R(kt)Bt � aBt + byt

kt+1 +Bt+1 = s(1� � t)w(kt)
and equation (10). Given that the government follows the Samuleson rule to determine the

public spending, the marginal tax needs to adjust to implement the �scal rule,

gt � �w = �aBt + byt
where deviding by yt

gt
yt
� � wt

yt
= �aBt

yt
+ b

and solving for � t the marginal tax is equal to

�� t = �a
Bt
yt
+ b� gt

yt
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. Also, from the Samuelson rule and the production function we get

gt
yt
= 


. Then, we have that

� �(kt; Bt)wt = �aBt + (b� 
)yt (13)

. We simplify the expression for kt+1 using eq. (13) and wt
yt
= 1� a,

kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt

which is equation (12).

Appendix 2. Existence and Uniqueness

From (11) and (12) the change of capital stock and the debt level of the economy is deter-
mined by the following dynamic system:

kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt

Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt)

We will �rst analyze the existence and uniqueness of steady-state equilibrium and, then,
we will analyze the stability of equilibrium and the dynamic behavior of capital and debt.
The steady-state of capital stock and debt level in the economy is that bundle, k; b, where
kt+1 � kt = 0 and Bt+1 �Bt = 0 simultaneously.
The locus where the change of debt is zero, Bt+1 �Bt = 0 is given by

B =
by(k)

(1 + a)�R(k) � �(k)

The properties of �(k) are the following:

1. lim
k!0

�(k) = 0 and lim
k!1

�(k) =1.

2. �(k) is discontinuous at k = �k where �k : (1 + a) � R(�k) = 0 Under the Cobb-douglas

function production function �k =
�
(1+a)

� ~A

� 1�

��1�


3. For 0 < k < �k then �(k) < 0 and for �k < k <1 then �(k) > 0:

Proof. Note that y(k) > 0 for any k and @((1+a)�R(kt))
@k

= � �R(kt) > 0 (monotonic function).
Also, lim

k!0
(1 + a) � R(kt) = �1 and lim

k!1
(1 + a) � R(kt) = (1 + a) > 0. This means that
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for 0 < k < �k then (1 + a) � R(kt) < 0 and for �k < k < 1 then (1 + a) � R(kt) > 0 For

R(k) = � ~Ak
�
1�
�1 that is (1 + a)� � ~Ak

�
1�
�1 > 0) k̂ <

�
(1+a)

� ~A

� 1�

��1�


4. The limit behavior of �(k) from the left and the right of discontinuity is given by:
lim
k!�k�

�(k) = �1 and lim
k!�k+

�(k) =1:

5. The �rst order derivative �(k) is given by:
@�(k)
@k

= b
y
0
(kt)((1 + a)�R(kt)) + (R0(kt))y(kt)

((1 + a)�R(kt))2
which after simpli�cation (see footnote)4

@�(k)
@k

= b

�
(1+a)
(1�
) �

R(k)
�

�
R(k)

((1 + a)�R(kt))2

For 0 < k < �k then@�(k)
@k

< 0:

This happens because 0 < k < �k , y
0
(kt)((1 + a) � R(kt)) < 0 and (R0(kt))y(kt) < 0 given

that y
0
(kt) > 0, (1 + a)�R(kt) < 0 and R0(kt) < 0 and y(kt) > 0:

De�nition 1 De�ne kmin �
�
(1+a)

(1�
) ~A

� 1�

��(1�
)

For �k < k <1 then,
(i) @�(k)

@k
< 0 for �k < k < kmin

(ii) @�(k)
@k

> 0 for kmin < k <1:

Proof. @�(k)
@k

< 0 if y
0
(k)((1 + a) � R(k)) + (R0(k))y(k) < 0 which following R(k) =

� ~Ak
�
1�
�1
t = � y(k)

k
andRk = �( �

1�
�1) ~Ak
�
1�
�2
t = �( �

1�
�1)
y(k)
k2
, y

0
(kt) =

�

(1� 
)
~Ak

�

(1� 
)�1
t =

�

(1� 
)
y(k)
k
we have

4""""""Simpli�cation of the numerator of �rst order derivative

�

(1� 
)
y(k)
k ((1 + a)�R(k)) + �( �

1�
 � 1)
y(k)
k2 y(k))�

1

(1� 
) ((1 + a)�R(k)) + (
�
1�
 � 1)

y(k)
k

�
�y(k)
k�

( (1+a)(1�
) �
R(k)
(1�
) ) + (

�
1�
 � 1)

R(k)
�

�
R(k)�

(1+a)
(1�
) �

R(k)
(1�
) +

�
1�


R(k)
� � R(k)

�

�
R(k)�

(1+a)
(1�
) �

R(k)
(1�
) +

R(k)
1�
 �

R(k)
�

�
R(k)�

(1+a)
(1�
) �

R(k)
�

�
R(k)

@�(k)
@k = b

�
(1+a)
(1�
) �

R(k)
�

�
R(k)

((1 + a)�R(kt))2
""""""""""
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�

(1� 
)
y(k)
k
((1 + a)�R(k)) + �( �

1�
 � 1)
y(k)
k2
y(k) < 0)

�

(1� 
)((1 + a)�R(k)) + �(
�
1�
 � 1)

y(k)
k
< 0

�

(1� 
)((1 + a)� �
y(k)
k
) + �( �

1�
 � 1)
y(k)
k
< 0

(1 + a)
�

(1� 
) � �
�

(1� 
)
y(k)
k
+ � �

1�

y(k)
k
� � y(k)

k
< 0

(1 + a)
�

(1� 
) � �
y(k)
k
< 0

(1 + a)

(1� 
) �
y(k)
k
< 0

(1 + a)

(1� 
) �
R(k)
�
< 0) (1 + a)�� (1� 
)R(k) < 0 that is

(1 + a)� � (1 � 
)� ~Ak
�
1�
�1 < 0 ) k

�
1�
�1 > (1+a)

(1�
) ~A ) k <
�
(1+a)

(1�
) ~A

� 1
�
1�
�1 ) k <�

(1+a)

(1�
) ~A

� 1�

��(1�
) � kmin: The opposite otherwise.

Second order derivative:

@2�(k)
@k2

= b

�
(1+a) �R
(1�
) �

2R �R
�

�
(1 + a�R)2 +

�
(1+a)
(1�
) �

R
�

�
R2 (1 + a�R) �R

(1 + a�R)4

taking common factor �R and eliminating (1 + a�R)

b �R

�
(1+a)
(1�
) �

2R
�

�
((1 + a)�R) +

�
(1+a)
(1�
) �

R
�

�
R2

(1 + a�R)3
=

b �R

�
(1+a)
(1�
) �

2R
�

�
((1 + a)�R) +

�
(1+a)2R
(1�
) �

2R2

�

�
(1 + a�R)3

= b �R

�
(1+a)
(1�
)(1 + a)�

2R
�
(1 + a)

�
�
�
(1+a)R
(1�
) �

2R2

�

�
+
�
(1+a)2R
(1�
) �

2R2

�

�
(1 + a�R)3

=

b �R(1+a)
(1�
)�

�(1 + a)� (1� 
)2R + �R
(1 + a�R)3

= b �R(1+a)
(1�
)�

�(1 + a)� (1� 
)2R + �R
(1 + a�R)3

=

@2�(k)

@k2
=

b �R

(1� 
)�
R(�� 2(1� 
)) + �(1 + a)

(1 + a�R)3

Analysis of @
2�(k)
@k2

: We analyze the case after the discontinuity, that is, for �k < k <1
Then, for �k < k <1 then 1 + a�R > 0 then @2�(k)

@k2
> 0 if R(�� 2(1� 
)) + �(1 + a) < 0

) R(2(1 � 
) � �) > �(1 + a) ) R > �(1+a)
2(1�
)�� ) k <

�
(1+a)

~A(2(1�
)��)

� 1�

��(1�
) � ~k . So, for

�k < k < ~k , @
2�(k)
@k2

> 0

We also, want to show that ~k is indeed above the discontinuity �k

First, we compare ~k with �k, we need ~k > �k )
�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
)

>
�
(1+a)

� ~A

� 1�

��1�
 )

(1+a)
~A(2(1�
)��) <

(1+a)

� ~A
)

� < (2(1� 
)� �)) 2� < 2(1� 
)) a� (1� 
) < 0 which holds.
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Thus the function is convex for �k < k < ~k , @2�(k)
@k2

> 0 and concave for ~k < k < 1 ,
@2�(k)
@k2

< 0. Last, lim
k!1

@2�(k)
@k2

= 0:

Now we are going to analyze the locus where the change of capital stock is zero,Kt+1�Kt = 0
is given by

�(k) =
(s(1� �)� (1� s)b� s
) y(k)� k

(R(k)� a(1� s))

where y(k) = ~Ak

�

(1� 
) and yk = ~A
�

(1� 
)k
�

(1� 
)�1 = �

(1� 
)
y(k)
k
and the limit behavior

is: lim
t!0

y(k) = 0, lim
t!1

y(k) =1 lim
t!0

yk =1 and lim
t!1

yk = 0

and
R(k) = � ~Ak

�
1�
�1
t = � y(k)

k
and Rk = �( �

1�
 � 1) ~Ak
�
1�
�2
t = �( �

1�
 � 1)
y(k)
k2
= ( �

1�
 � 1)
R(k)
k

1. lim
k!0

�(k) = lim
k!0

�(k) = 
y(0)�0
(R(0)�a(1�s)) = 0 and lim

k!1
�(k) =

@((s(1��)�(1�s)b�s
)y(k)�k)
@k

@((R(k)�a(1�s)))
@k

=

lim
k!1

(s(1��)�(1�s)b�s
)�y(k)�1
�R(k)

= lim
k!1

(s(1��)�(1�s)b�s
)y00 (k)
R00 (k)

=1

2. �(k) is discontinuous at k = k̂ where k̂ : R(k̂) � a(1 � s) = 0. Under a Cobb-douglas

production function k̂ =
�
a(1�s)
� ~A

� 1�

��(1�
)

Remark 1 We show that the discontinuity of the debt locus to be below the discontinuity of the

k locus. That is
�
(1+a)

� ~A

� 1�

��1�


<
�
a(1�s)
� ~A

� 1�

��(1�
) ) (1 + a) > a(1� s)) (1 + a) > a(1� s))

1 > �as where for a > 0 and � 2 (0; 1) this always holds.

Assumption 1 We assume a positive e¤ect of income (investment) on the accumulation of
capital stock which happens under the following condition (s(1 � �) + s(b � 
) � b > 0 or
b < s(1���
)

(1�s) � bmax

3. De�ne kAUT : (s(1� �)� (1� s)b� s
) y(kAUT ) � kAUT = 0 (in other words B = 0)

which in the Cobb-douglas case is given by: (s(1� �)� (1� s)b� s
) ~Ak
�� (1� 
)
(1� 
) � 1 =

0) kAUT =
�

1
~A(s(1��)�(1�s)b�s
)

� (1�
)
��(1�
)

:

Assumption 2 Parametric condition such that: k̂ > kAUT is:
�
a(1�s)
� ~A

� 1�

��(1�
)

>
�

1
~A(s(1��)�(1�s)b�s
)

� (1�
)
��(1�
) )

a(1�s)
� ~A

< 1
~A(s(1��)�(1�s)b�s
) ) a(1� s)((s(1� �)� (1� s)b� s
)) < � which imposes limits on

austerity a < �
(1�s)(s(1��)�(1�s)b�s
) � a

max.
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Then, because of concavity of y(k) it is easy to show that the value of �(k) is given by the
following remark.

Remark 2 (i) for 0 < k < kAUT then �(k) > 0 and R(k̂)� a(1� s) > 0
(ii) for kAUT < k < k̂ then �(k) < 0 and R(k̂)� a(1� s) > 0
(iii) for k̂ < k <1 then �(k) > 0 and R(k̂)� a(1� s) < 0

4. The limit behavior of �(k) at the discontinuity is given by:

lim
k!k̂�

�(k) = �1 and lim
k!k̂+

�(k) =1:

5. The �rst order derivative of �(k).

De�ne 
 � (s(1� �)� (1� s)b� s
)

@�(k)
@k

= (
yk�1)(R(k)�a(1�s))�(
y(k)�k)Rk
(R(k)�a(1�s))2 =

We then use the following equations

R(k) = � y(k)
k
, and Rk = �( �

1�
 � 1) ~Ak
�
1�
�2
t = �( �

1�
 � 1)
y(k)
k2

= ( �
1�
 � 1)

R(k)
k
; yk =

�

(1� 
)
y(k)
k
= 1

(1�
)R(k)

Then, the derivative gets: (we express everything in R(k))

@�(k)
@k

=
(
 1

(1�
)R(k)�1)(R(k)�a(1�s))�(

R(k)k
�

�k)( �
1�
�1)

R(k)
k

(R(k)�a(1�s))2 =

=
(
 1

(1�
)R(k)�1)(R(k)�a(1�s))�(

R(k)k
�

�k)( �
1�
�1)

R(k)
k

(R(k)�a(1�s))2 =

(

R(k)
(1�
) (R(k)�C)�(R(k)�C)�(


R(k)k
�

( �
1�
�1)

R(k)
k
�k( �

1�
�1)
R(k)
k
)

(R(k)�C)2 =

 R2

(1�
)�C

R

(1�
)�R+C�(

R2

�
( �
1�
�1)�(

�
1�
�1)R)

(R(k)�C)2 =


 R2

(1�
)�C

R

(1�
)�R+C�

R2

1�
 +

R2

�
+ �
1�
R�R

(R(k)�C)2 =


�
R2�(
a(1�s)��

(1�
) +2)R+a(1�s)
(R�a(1�s))2

@�(k)

@k
=



�
R2 � (
a(1�s)��

(1�
) + 2)R + a(1� s)
(R� a(1� s))2

De�ne Z = 

�
, C = a(1� s) and � = (
C��

(1�
) + 2) = (
a(AC�1)
(1�
) + 2)

@�(k)

@k
=
ZR2 � �R + C
(R(k)� C)2

which is a quadratic equation with at most two roots.

5.1 (Limiting behavior) By applying the de hospital rule

lim
k!0

@�(k)

@k
=



�
> 0 and lim

k!1

@�(k)

@k
=

1

(a(1� s)) > 0

13



5.2 @�(k)
@k

> 0 if ZR2��R+C > 0 and @�(k)
@k

< 0 for ZR2��R+C < 0 which depends on
the number of roots.
Discriminant: �2 � 4ZC = (a(AC�1)

(1�
) + 2)2 � 4ZC = a2(ZC2�2ZC+1)
(1�
)2 + 4a(ZC�1)

(1�
) + 4� 4ZC =
a2(ZC2�2ZC+1)

(1�
)2 + 4a(ZC�1)
(1�
) + 4(1� ZC)

6.(Second order derivatives)

The �rst order derivative is given by:

@�(k)
@k

= ZR2��R+C
(R(k)�C)2

Taking the second order derivative we obtain that:
@2�(k)
@k2

= (Z2R �R�� �R)(R�C)2�(ZR2��R+C)(R(k)�C)2 �R
(R�C)4 =

�R (Z2R��)(R�C)�(ZR2��R+C)2
(R�C)3 =

�RZ2R(R�C)��(R�C)�2ZR2+2�R�2C)
(R�C)3 =

�R (Z2RR�Z2RC)��R+�C�2ZR2+2�R�2C)
(R�C)3 =

�RZ2R2�Z2RC��R+�C�2ZR2+2�R�2C
(R�C)3 =

�R�Z2RC+�C+�R�2C
(R�C)3 =

�RR(��2ZC)+C(��2)
(R�C)3 = �R

R(��2ZC)+C((
C��
(1�
) )

(R�C)3 ) �R
R(��2ZC)+C(�(



�C�1
(1�
) )

(R�C)3 =

@2�(k)

@k2
= �R

R(�� 2ZC) + C(�ZC�1
(1�
) )

(R� C)3

The derivative is negative until the discontinuity 0 < k < k̂ (R� C > 0) of the kk locus if:
R(�� 2ZC) + C(�(ZC�1

(1�
) ) > 0 because
�R < 0: Thus, we need that,

R >
�C(�(AC�1

(1�
) ))

(�� 2ZC)

� ~Ak
��(1�
)
1�


t >
�C(�(ZC�1

(1�
) ))

(�� 2ZC)

k <

 
�C(�(ZC�1

(1�
) ))

� ~A(�� 2ZC)

! 1�

��(1�
)

� ~k

this is a necessary and su¢ cient condition for concavity. We now want to show if this is
true for 0 < ~k < k̂ ( ~k below the discontinuity k̂).�

�C(�(ZC�1
(1�
) ))

(��2ZC)

� 1�

��(1�
)

<
�
C
� ~A

� 1�

��(1�
)�

�C(�(ZC�1
(1�
) ))

(��2ZC)

�
>
�
C
� ~A

�
14



�
�(�(ZC�1

(1�
) ))

(��2ZC)

�
> 1

�(�(ZC�1
(1�
) )) > (�� 2ZC)

(�(AC�1
(1�
) )) < (�� 2ZC)

Note that � = (
C��
(1�
) + 2) = (



�
C�1

(1�
) + 2) = (
�(


�
C�1)

(1�
) + 2) = (�(ZC�1)
(1�
) + 2)

Substituting to the inequality (�(ZC�1
(1�
) )) <

�(ZC�1)
(1�
) +2� 2ZC ) 0 < +2� 2ZC ) 2ZC <

2 ) ZC < 1:Which holds from the assumption that limits austerity (see Remark) where we
have a(1�s)

�
< 1

(s(1��)�(1�s)b�s
) )
C
�
< 1



) 


�
< 1

C
) Z < 1

C
) ZC < 1.

Lemma 1 Under Remark 1, then �(k) is concave and inverse U-shaped for 0 < k < k̂ and
convex (U-shaped) for k̂ < k <1.

To illustrate this Lemma with diagrams we get:

The steady states are de�ned by the following expression

F (k) = �(k)� �(k)

F (k) =
(
) y(k)� k
(R(k)� C) �

by(k)

(1 + a)�R(k)
i. F (0) = 0

For 0 < k < �k; �(k) > 0 and �(k) < 0 thus, F (k) > 0. Also, lim
k!�k�

F (k) = +1

Then, lim
k!�k�

F (k) = �1 and lim
k!�k+

�F (k) > 0. So, just after the discontinuity of the debt

locus the F (k) function is increasing.
Also, lim

k!k̂�
F (k) = �1; lim

k!k̂�
�F (k) < 0:

So, F (k) is increasing from the discontinuity of the debt locus and it is decreasing at the
discontinuity of the capital stock locus.
Since, �k < k < k̂ the derivative changes sign, we are going to explore if the maximum of

the function is positive.

�F (k) = @�(k)
@k

� @�(k)
@k
; @�(kmax)

@k
� @�(kmax)

@k
= 0) ZR2��R+C

(R(k)�C)2 �
�
(1+a)
(1�
) �

R
�

�
R = 0

ZR2 � �R + C �
�
(1+a)
(1�
) �

R(k)
�

�
R(k) (R(k)� C)2 = 0

ZR2 � �R + C �
�
(1+a)
(1�
) �

R
�

�
R (R2 � 2RC + C2) = 0

ZR2 � �R + C �
�
(1+a)�(1�
)R

(1�
)�

�
(R3 � 2R2C +RC2) = 0

ZR2 � �R + C � R3(1+a)
(1�
)� +

2R2C(1+a)
(1�
)� � RC2(1+a)

(1�
)� + R3(1�
)R
(1�
)� � 2R2C(1�
)R

(1�
)� + RC2(1�
)R
(1�
)� = 0
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F
00
(k) = �R

R(�� 2ZC) + C(�ZC�1
(1�
) )

(R� C)3
� b �R

(1� 
)�
R(�� 2(1� 
)) + �(1 + a)

(1 + a�R)3
:

Because we proved that �R
R(��2ZC)+C(�ZC�1

(1�
) )

(R�C)3 < 0 after the discontinuity of the debt locus and

between the k austerity, then, for concavity of F (k) we need b �R
(1�
)�

R(�� 2(1� 
)) + �(1 + a)
(1 + a�R)3

>

0 which from the analysis of the debt locus after the discontinuity hold for R(� � 2(1� 
)) +

�(1 + a) < 0) k <
�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
) � ~k. Thus, for k < ~k then F 00

(k) < 0. Thus, if that ~k

is below the discontinuity of the k-locus k̂ =
�
a(1�s)
� ~A

� 1�

��(1�
)

.

Thus, a su¢ cient parametric condition for concavity of F (k) in the area between the dis-
continuities, �k < k < k̂, is that ~k < k̂ that is�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
)

<
�
a(1�s)
� ~A

� 1�

��(1�
) ) (1+a)

~A(2(1�
)��) >
a(1�s)
� ~A

) (1 + a)� > a(1 � s)(2(1 �

)� �):

Lemma 2 If (1 + a)� > a(1 � s)(2(1 � 
) � �) then in the area between the discontinuities
�k < k < k̂; F

00
(k) < 0:

This Lemma means that if an equilibrium exists will be multiple. Furthermore,the debt
locus will be convex at the tangency and the k locus concave.
A su¢ cient parametric condition for concavity of F (k) is to investigate between the discon-

tinuities of debt locus and the kAUT (because in the area between kAUT and the discontinuity of
k-locus the debt is negative and no equilibrium can exist). So, in this case a su¢ cient condition
is ~k < kAUT .�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
)

<
�

1
~A(s(1��)�(1�s)b�s
)

� (1�
)
��(1�
) ) (1+a)

(2(1�
)��) >
1

(s(1��)�(1�s)b�s
) ) (1 +

a) (s(1� �)� (1� s)b� s
) > (2(1� 
)� �).

If (1 + a) (s(1� �)� (1� s)b� s
) > (2(1� 
)� �) then in the area between the �k < k <
kAUT ; F

00
(k) < 0:

Under Lemma 1 and Lemma 2 and conditions (i) and (ii) of Proposition 1 we show that
the shape of the k locus is inversed U-Shaped and the shape of the b-locus decreasing after
the area of the discontinuity. So two equilibrium steady-state exist. The diagram following
diagram graphically illustrates our theoretical result (note the before the discontinuity there
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cannot exist an equilibrium with k > 0 because the debt-locus has negative values)

Appendix 3. Stability

In this section, we are going to analyze the stability properties and the type of each equi-
librium. We are going to construct the phase diagram and analyze the arrows of motion.
The dynamic equation for debt is given by
Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt)
Remind that, for �k < k < 1 then (1 + a) � R(k) > 0. Then, for Bt+1 � Bt > 0, R(kt) �

a� 1)Bt + by(kt) > 0 that is Bt < by(kt)
(1+a)�R(k) . Thus, for any Bt lower then the �(k) locus and

because �(k) is convex, the debt is decreasing (increasing under the �(k) locus).
The dynamic equation for the capital stock is given by
kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt

For kt+1�kt > 0 if (s(1� �) + s(b� 
)� b) y(kt)�kt+(a(1� s)�Rt(kt))Bt > 0: Remind
that, for �k < k < kAUT then �(k) > 0 and R(k̂) � a(1 � s) > 0. Dividing the inequality by
R(k̂) � a(1 � s) > 0 we get (s(1��)+s(b�
)�b)y(kt)�kt

R(k̂)�a(1�s) � Bt > 0 ) Bt <
(s(1��)+s(b�
)�b)y(kt)�kt

R(k̂)�a(1�s) )
Bt <

(s(1��)+s(b�
)�b)y(kt)�kt
R(k̂)�a(1�s) ) Bt < �(k). Because �(k) is a concave function, for every B

below the �(k) locus the capital stock is increasing and below the �(k) locus, it is decreasing.

According to this analysis, the phase diagram and the arrows of motion are given by:
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we can deduct that there are two stable equilibria. The lower equilibrium is saddle-path
stable and the second equilibrium is stable node.

Appendix 4. Steady-State E¤ects of Policy Parameters

The equilibrium steady-state of capital is given by:

F (k) =
(
) y(k)� k
(R(k)� C) �

by(k)

(1 + a)�R(k)
where 
(b) � (s(1� �)� (1� s)b� s
) ; C(a) � a(1� s)

Firstly, we examine the e¤ect of austerity parameter on steady-state capital stock. From
the implicit function theorem we have:

@k
@a
= �

@F (k)
@k

@F (k)
@a

@F (k)
@a

= (
y(k)�k)
(R(k)�C)2 +

by(k)

((1 + a)�R(k))2
> 0 from 0 < k < kAUT .

@F (k)
@k

> 0 from 0 < k < kmax and
@F (k)
@k

< 0 from kmax < k < kAUT .
Given that the one equilibrium, klowss is below kmax and the other, khighss , above kmax those to

equilibria display di¤erent properties resulting to Proposition 3.
Secondly, we examine the e¤ect of structural de�cit parameter on steady-state capital stock.

From the implicit function theorem we have:

@k
@b
= �

@F (k)
@k

@F (k)
@b

(s(1� �)� (1� s)b� s
)

@F (k)
@b

= �(1�s)
(R(k)�C) �

y(k)

(1 + a)�R(k)
We know that for 0 < k < kAUT ; R(k̂) � C > 0 and for �k < k < 1; (1 + a) � R(k) > 0.

Thus, in the area we are interested �k < k < kAUT we have:

@F (k)
@b

< 0; for �k < k < kAUT , thus, resulting to Proposition 4.
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