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ABSTRACT 
 
Previous studies have confirmed that Gold still acts as both a hedge and a safe haven for equity 
markets over recent years, and particularly during crises periods. Our work extends the recent 
literature on hedging and the diversification role of Gold by analyzing its interaction vis-à-vis the 
stock markets of the heterogeneous BRICS economies. Whilst they exhibit a high growth rate, 
these economies still experience a pronounced vulnerability to external shocks particularly to 
commodities. Via a multi-scale wavelet approach and a time-varying copula methodology, we 
reveal a strong time-varying asymmetric dependence structure between Gold and each of the 
BRICS. The multi-resolution analysis uncovers the time-scale co-evolvement patterns between 
the two markets, with profound regions of concentrated extreme variations. We indicate the 
potential implications of risk diversification and portfolio hedging strategies amongst the 
investigated markets. 
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1. INTRODUCTION  

Brazil, Russia, India, China and South Africa (BRICS) represent the leading emerging economies 

in the world. After the global financial crisis 2008-2009, gold emerged as an attractive asset class 

with low perceived risk in an environment of systematic instability, continued low demand and 

deflationary pressures. The volume of gold traded in 2014 as reported by London Bullion Market 

Association amounted approximately to 157000 tones with a value of $5.9 trillion. In March 

2013, BRICS countries signed an agreement for the creation of New Development Bank (NDB or 

also referred to as the BRICS Development Bank) based in Shanghai, which came into force in 

July 2015. The NDB aims to “mobilize resources for infrastructure and sustainable development 

projects in BRICS and other emerging market economies and developing countries to 

complement the existing efforts of multilateral and regional financial institutions for global 

growth and development”.1 For this purpose, it will be endowed with an enormous currency 

exchange reserve of US$100 billion backed by gold commodities. Based on reliable economic 

forecasts, BRICS are anticipated to exhibit exceptionally high economic growth rates over the 

next 50 years. According to the IMF estimates (IMF, 2015), the share of the BRICS countries in 

global GDP (PPP basis) is expected to be around 33% by 2020 and exceeds that of the G7 by 

2017. Negative shocks affecting the BRICS economic and financial systems could thus harm 

seriously the global growth and financial stability.  

According to previous studies, gold still acts as both a hedge and a safe haven for stocks 

particularly during crises periods, albeit not identically for all international markets. In our work, 

we extend the recent literature on hedging and diversification benefits of gold by analyzing its 

interactions with stock markets within the heterogeneous BRICS economies. While experiencing 

a high growth rate, these economies still present signs of high vulnerability to external shocks and 

commodity dependence. Baur and McDermott (2010) and Miyazaki et al. (2012) have all 

reported gold’s safe-haven status with respect to stock market movements. Moreover Baur and 

                                                            
1 http://brics.itamaraty.gov.br/media2/press-releases/219-agreement-on-the-new-development-bank-fortaleza-july-15  
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Lucey (2010) using daily data from 1995 to 2005 found that gold is on average a fair hedge 

against stocks and a safe haven in extreme stock market conditions. Hammoudeh et al. (2011) 

have highlighted the importance of other precious metals besides gold in risk management whilst 

Conover et al. (2009) suggested that investors could considerably improve portfolio performance 

by adding a significant exposure to the equities of precious metals. Riley (2010) also showed that 

precious metals in general have notable advantages like high expected returns and strong negative 

correlations vis-à-vis other asset classes. 

More recently, Baur (2013) via introducing seasonality into monthly gold prices from 1980 

to 2010 showed that September and November were the only months with positive and 

statistically significant gold price changes specifically called the “autumn effect”. Using a model 

of dynamic conditional correlation, Joy (2011) investigated the practical investment question of 

whether gold could act as a hedge against the US dollar. During the past 23 years, he found that it 

has behaved quite consistently. Furthermore through the application of copulas, Reboredo (2013) 

assessed the role of gold as a safe haven against the USD and demonstrated that the significantly 

positive unconditional dependence between gold and dollar depreciation is consistent with the 

fact that gold can act as hedge against USD fluctuations. He also founds that there exists a 

symmetric tail dependence between gold and USD rates, indicating that gold could be considered 

effective even against extreme upside or downward USD movements. 

In this work, we extend this recent literature on the diversification advantages of gold by 

analyzing its interactions and dependence structure against the BRICS stock markets. Firstly, we 

improve the common understanding of gold-stock market linkages by looking not only at the 

dynamic series interdependence on an aggregate level, but also at their scale-by-scale interaction 

utilizing a time-frequency framework. Relying on continuous and wavelet transforms as well as 

on time-varying copula modeling, we show evidence of a volatile dependence structure between 

gold and each one of the BRICS markets. Secondly, a “phase-cycle” coherence analysis between 

the BRICS and the gold market reveals that gold consistently and significantly leads equity 
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markets during the recent financial crisis. However, strong heterogeneity is observed between 

gold-equity pairs after the implementation of a frequency-domain causality analysis. Thirdly, in 

an attempt to model the second moment behavior of all markets, we illustrate that the 

implementation of a GJR-GARCH filter provides with statistically significant asymmetric effects, 

especially concerning the dependence between the stock South African and the Gold commodity 

market. Generally, the copula analysis showed that the lower tail dependence is larger than the 

upper tail one for all BRICS, a fact that indicates a stronger comovement of BRICS stock markets 

and gold during bear rather than in bull markets. Our results from the multi-scale analysis 

uncover the disaggregate time-scale convolution patterns between the two markets with often 

profound extreme variations. Finally we discuss the potential implications of our results on the 

equity portfolio risk diversification and efficient hedging strategies. 

The remainder of the article is organized as follows: Section 2 describes the data and 

performs a preliminary analysis. Section 3 presents the novel methodology based on time-scale 

spectral and copula approaches, while Section 4 reports and discusses the results. Section 5 

concludes. 

 

2. DATA AND PRELIMINARY ANALYSIS   

We consider a set of MSCI indices for the BRICS to avoid the domestic inflation problem and the 

3-month futures prices for gold, the latter of which efficiently incorporate expectations about 

forecasted gold demand. We use daily data as they are better to measure extreme dependence, 

spanning the period January 2000 to July 2014. Our dataset includes the global financial crisis of 

2007-2009 wherein as well as onwards, gold prices exhibited long swings and unstable 

fluctuations. Hence, we could investigate the role of the gold market vis-à-vis the BRICS 

economies during both in normal and crisis periods. We use logarithmic returns for all series. 

Based on the descriptive statistics (Table 1) we see that India has on average a higher daily 

return (0.030%) compared to the rest of the BRICS, whereas gold return (0.039%) is slightly 
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higher. The unconditional volatility is higher for Russia followed by Brazil, China, South Africa, 

India and gold. As all returns are negatively skewed for the gold market and the BRICS and 

kurtosis is greater than three we infer that all examined markets are not normally distributed, a 

fact that is further substantiated by the Jarque-Bera test. In addition, we compute the Ljung-Box 

and the Engle (1982) test. The results of the Ljung-Box test applied for the case of a 12-order 

autocorrelation are significant for all series. The ARCH test for 12 lags provides with strong 

evidence of conditional heteroscedasticity in all return series. Stationarity and unit root tests 

applied on all series conclude that price variables are not stationary, while returns are stationary 

at all conventional significance levels. The optimum lag length is selected based on the Schwarz 

Information Criterion (SIC) 2. Next, we observe that a weak positive correlation (0.09) is found 

between gold and China equity market followed by India (0.11), Russia (0.12), Brazil (0.15) and 

South Africa (0.28) respectively. Those moderately weak unconditional correlations may imply 

portfolio diversification benefits from investing in BRICS equity markets and the gold derivatives 

market. The observed instability in the BRICS markets could be rationalized by the impact of the 

different economic and financial crises since 2008. This result could be visually inspected in 

Figures 1 and 2. Furthermore, the gold prices are upward until 2012 as also displayed in the 

corresponding Figures, whereas from the second quarter of 2013 onwards the recent decline in 

gold price has probably generated a significant increase in overall demand in China and India 

compared to the same time period for 2014. After the Lehman Brothers collapse and the 

subsequent Subprime crisis, China and Russia proceeded in incorporating gold as an integral part 

of their newly designed monetary system in an attempt to counterbalance the consequences for 

the bond and stock US markets as well as compete in terms of capital inflows. Those results have 

been also reported by the World Gold Council (2014). Therefore, the issue of possible hedging 

and diversification benefits from investing in gold is fundamentally important for industrialized 

countries, yet only recently became of utmost importance for the BRICS economies as well. 

                                                            
2 Results are available upon request. 
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3. METHODOLOGY 

3.1 Frequency-domain causality analysis 

Firstly, we investigate the nature and direction of interdependencies as well as the spillover 

effects between the BRICS equity markets and gold futures’ market, utilizing a frequency-

domain causality analysis. The standard Granger causality test ignores the possibility that the 

strength and direction of the detected causality (if any) can vary over different frequencies or 

time horizons as reported in Lemmens et al. (2008). To overcome this crucial issue Breitung and 

Candelon (2006) developed a variation of the standard causality test in the frequency domain 

based on the works by Granger (1969) and Geweke (1982).3 Specifically, Breitung and Candelon 

(2006) would express the relationship between equity series (Et) and gold returns (Gt) under a 

Vector Autoregressive (VAR) model: 
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In order to test the hypothesis that gold does not cause equities in the frequency interval 
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The F -statistic under the null is approximately distributed as )2,2( pTF   within ),0(   . It is 

worth noting that the particular frequency domain causality test can also be conducted under a 

cointegrating framework. Breitung and Candelon (2006) suggest that in cointegrated systems the 

definition of causality at zero frequency is equivalent to the concept of long-run causality. In our 

                                                            
3 This causality approach has been previously implemented in the analysis of monetary policy and its impact on 
financial markets e.g., by Assenmacher-Wesche and Gerlach (2007), Assenmacher-Wesche et al. (2008), Lemmens 
et al. (2008) and Gronwald (2009) among others. 
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study we tested for cointegration and we were not able to detect it, hence the stationary VAR of 

the return series is well-specified.4 According to Breitung and Candelon (2006), the presence of 

causality between variables at different frequencies implies that specific frequency components 

of one variable can be predicted by those of the other variable. 

 
3.2 Coherence analysis of co-movement  

The commonly used Breitung and Candelon (2006) test provides causality results only at 

some pre-specified frequency range ሾߙ,  represents the lowest frequency ߚ ሿ. The right valueߚ

upon which the test can infer on causality. According to Bekiros and Marcellino (2013) 

employing multi-scale wavelet analysis provides an efficient means of overcoming the constraint 

of reaching a threshold in the lowest possible frequency investigated, hence probing further in the 

long- and short-run behavior of the variables. Bekiros and Marcellino (2013) also argue that as 

the Breitung and Candelon test is based on vector autoregressive modelling, it cannot reveal 

nonlinear interrelationships of 2nd or higher order as opposed to wavelet coherency approach 

utilized in this work. Via time-scale wavelet analysis we can detect time-varying links between 

gold and the BRICS markets under a time-frequency framework. Overall, wavelets are not 

restricted to a pre-specified frequency range imposed by the raw data frequency.  

The flurry of interest in economic applications of multi-resolution analysis occurred in the 

mid-90s mostly by Ramsey and his collaborators. Ramsey, Usikov and Zaslavsky (1995) pursued 

a wavelet approach in detecting self-similarity in US stock prices, whilst Ramsey and Lampart 

(1998a, 1998b) used a wavelet-based scaling method to investigate the relationship and causality 

between money, income and expenditure. Their contribution was enhanced by Gençay and co-

authors (e.g., Gençay et al., 2001; Gençay et al., 2002; Fan and Gençay, 2010) and in particular 

by the seminal work of Gençay et al. (2002) on the introduction of wavelet multiresolution 

analysis in finance and economics. 

                                                            
4 More details on this issue as well as on the frequency causality testing of I(1) variables can be found in Breitung 
and Candelon (2006).  
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In our work we focus on the continuous wavelet transform (CWT) to analyze the phase 

synchronization and co-movement of the gold market and the BRICS and the maximal overlap 

discrete wavelet transform (MODWT) to investigate the time-scale dynamic causal links. The 

wavelet coherence allows identifying the phase or anti-phase between oscillations of the variables 

signals under investigation (Aguiar-Conraria and Soares, 2014). 

The CWT specification following by Rua and Nunes (2009) uses the continuous Morlet 

wavelet function  t with a frequency parameter equal to six.5 The continuous wavelet 

transform	 ௧ܹ
ாሺݎሻ	of a discrete sequence  1, , 1,mx m M M 

 
with uniform time steps t  is 

defined as the convolution of mx
 with the scaled and normalized wavelet. The equation can be 

expressed as:   

௧ܹ
ாሺݎሻ ൌ ටఋ௧


	 ∑ ´ݔ

ெ
௧ୀଵ ߰ఙ ቂሺ݉´ െ ݉ሻ ఋ௧


ቃ         (6) 

where δ is the time step. The wavelet power is defined as | ௧ܹ
ாሺݎሻ|ଶ. In our CWT sepcification, 

the wavelet coherence is the most suitable tool for measuring the extent of synchronization 

between the gold market and the BRICS economies both over time and across scales. It is defined 

as the ratio of the cross power spectrum of two series over the product of each series’ power 

spectrum, thus it may be interpreted as the localized correlation between the series under 

consideration.  Let Et  be each of the BRICS equity market and Gt  the gold futures’ market with 

wavelet power spectra 	 ௧ܹ
ாሺݎሻ	and

 
	 ௧ܹ

ீሺݎሻ	 respectively. The cross-wavelet power spectrum is 

defined as 	 ௧ܹ
ாீሺݎሻ ൌ 	 ௧ܹ

ாሺݎሻ ∗ ௧ܹ
ீሺݎሻ whilst their coherence measure is estimated computed as 

in Torrence and Webster (1999): 

R୲ଶሺrሻ ൌ
ห୕൫୰షభ౪

ుృሺ୰ሻ൯ห
మ

୕ቚቀ୰షభห౪
ుሺ୰ሻห

మ
ቁቚ.୕ቚቀ୰షభห౪

ృሺ୰ሻห
మ
ቁቚ

          (7) 

                                                            
5 In a robustness analysis we utilized various different functions, yet the results are not significantly modified in the 
empirical application. 
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where Q refers to a smoothing operator (Rua and Nunes, 2009). The numerator is the absolute 

squared value of the smoothed cross-wavelet spectrum, while the denominator is the product of 

the smoothed wavelet power spectra (Torrence and Webster, 1999; Rua and Nunes, 2009). The 

value of the wavelet squared coherence ܴ௧ଶሺݎሻ	is bounded between 0 and 1. However unlike the 

standard correlation coefficient, the wavelet coherence measure only takes positive values i.e., 

evaluating the strength of the co-movement/relationship from extremely weak to very strong. As 

in Torrence and Compo (1998), we use Monte Carlo simulation methods are used to generate the 

statistical significance of the coherence measure. 

 
3.3 Multivariate dependence structure: Copulas 

In studying the dynamic inter-linkages of our variables we depend upon multivariate copula 

analysis. Modeling dependence using copula functions is appealing as they offer flexibility in 

modeling separately the marginals, are invariant to monotonic transformations of the variables as 

well as they provide information on both average dependence and tail dependence. 

Let Rs,t  and Rg,t  be random variables denoting BRICS’s stock and gold future returns 

(s→BRICS and g→gold) respectively, at time t. Moreover, let their conditional continuous 

cumulative distribution functions (CDFs) be Fs (Rs,t|ψt–1) and Fg (Rg,t|ψt–1) respectively, where ψt–1 

denotes all past return information for the corresponding assets. Sklar’s theorem (Patton, 2006) 

states that the conditional joint distribution function H for Rs,t and Rg,t  has a unique copula 

representation C, such that:  

,൫ܴ௦,௧߅ ܴ,௧|ݕ௧ିଵ൯ ൌ C൫ሺܨ௦,௧ሺܴ௦,௧|ݕ௧ିଵሻ,ܨ,௧ሺܴ,௧หݕ௧ିଵሻ൯     (8) 

Assuming all CDFs are differentiable, the joint density can be obtained as: 

݄൫ܴ௦,௧, ܴ,௧|ݕ௧ିଵ൯ ൌ
,൫ܴ௦,௧߅݀ ܴ,௧|ݕ௧ିଵ൯

ܴ݀௦,௧, ܴ݀,௧
 

ൌ c൫ሺܨ௦,௧ሺܴ௦,௧|ݕ௧ିଵሻ,ܨ,௧ሺܴ,௧หݕ௧ିଵሻ൯|ݕ௧ିଵሻ	ܠ	 ௦݂,௧ሺܴ௦,௧หݕ௧ିଵሻ	ܠ		 ݂,௧ሺܴ,௧|ݕ௧ିଵሻሻ        (9) 
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where ܿሺݑ௧, ௧ሻݒ ൌ ݀ଶܥሺݑ௧,  ௧ with ut = Fs(Rs,t|ψt–1) and vt = Fg(Rg,t|ψt–1)ݒ௧݀ݑ݀/௧|߰௧ିଵሻݒ

representing the conditional copula density. Thus, the conditional bivariate density function 

݄൫ܴ௦,௧, ܴ,௧|ݕ௧ିଵ൯ is represented by the product of the copula density and the two conditional 

marginal densities fs,t (Rs,t|ψt-1) and fg,t (Rg,t|ψt–1). Accordingly, the log-likelihood function can be 

written as: 

,൫ܴ௦,௧݄ൣ݈݃ ܴ,௧|ݕ௧ିଵ൯൧ ൌ logൣܿሺܨ௦,௧ሺܴ௦,௧|ݕ௧ିଵሻ൧  logൣ	 ௦݂,௧ሺܴ௦,௧|ݕ௧ିଵሻ൧  	logൣ	 ݂,௧ሺܴ,௧|ݕ௧ିଵሻ൧     (10) 

The parameters for the copula density and the marginal functions can be obtained by 

maximizing Eq. (10) using the two-step estimation procedure proposed by Joe (1997) called 

“Inference for Margins” approach (IFM). This consists of first obtaining the marginal density 

parameters for both marginals via maximum likelihood and then using these estimates to obtain 

the copula parameters (qg) by solving the following expression: 

ෞݍ ൌ ∑	ݔܽ݉݃ݎܽ ln ܿሺݑ௧ෞ, ௧ෝ்ݒ
௧ୀଵ ;  ሻ       (11)ݍ

where ݑ௧ෞ ൌ ;௧ିଵݕ|௦,௧ሺܴ௦,௧ܨ ሻݍ ௧ෝݒ , ൌ ;௧ିଵݕ|,௧ሺܴ,௧ܨ ෞݍ ) and ݍෞ	 , ෞݍ	  are the estimates of the 

marginal density parameters. The lower (left) and upper (right) tail dependence can be written in 

terms of the copula functions respectively as: 

ሻݒሺߣ ൌ lim୴→୭ ܲൣܺ  ܻ|ሻݒିଵሺܨ  ሻ൧ݒ௦ିଵሺܨ ൌ lim
୴→୭

ሺ௩,௩ሻ

௩
 (12) 

ሻݒሺߣ ൌ lim୴→ଵ ܲൣܺ  ܻ|ሻݒିଵሺܨ  ሻ൧ݒ௦ିଵሺܨ ൌ lim
୴→ଵ

ଵିଶ௩ାሺ௩,௩ሻ

ଵି௩
 (13) 

where ߣሺݒሻ, ሻݒሺߣ ∈ ሾ0.1ሿ. The two variables exhibit lower (upper) tail dependence if ߣ  0 

ߣ)  0), indicating a non-zero probability of observing an extremely small (large) value for one 

series together with an extremely small (large) value for the other series. 

To model the dependence structure, we consider various types of copula functions with 

symmetric and asymmetric tail behavior and time-varying dependence. The bivariate normal and 

student-t copula is defined as follows: 

,௧ݑேሺܥ ;	௧ݒ ሻߩ	 ൌ ΦሺΦିଵሺݑ௧ሻ,Φିଵሺݒ௧ሻሻ     (14) 

,௧ݑௌ௧௨ௗ௧ି௧ሺܥ ;	௧ݒ ,ݎ	 ሻݒ ൌ ௩ܶሺݐ௩ିଵሺݑ௧ሻ,  ௧ሻሻ   (15)ݒ௩ିଵሺݐ
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where Φ is the bivariate standard normal CDF with correlation ρ (-1< ρ<1), Φିଵሺݑ௧ሻ and 

Φିଵሺݒ௧ሻ are the standard normal quantile functions and T is the bivariate Student-t CDF with 

degree-of-freedom parameter and correlation ρ (-1< ρ <1). Let ݐ௩ିଵሺݑ௧ሻ,	and	ݐ௩ିଵሺݒ௧ሻ	be the 

quantile functions of the univariate Student-t distributions. Both copulas display symmetric 

dependence, even though the Gaussian has zero tail dependence and the Student-t displays tail 

dependence given by ߣ ൌ ߣ ൌ ݒ√௩ାଵሺെݐ2  1ඥ1 െ ඥ1/ߩ  ߩ  0. Next, we consider two 

other copulas with symmetric tail dependence, namely the Plackett and the Frank copulas, 

specified respectively as: 

,௧ݑ௧௧ሺܥ ;	௧ݒ ሻߨ	 ൌ

ଵ

ଶሺగିଵሻ
ሺ1  ሺπ െ 1ሻ൫ሺݑ௧ሻ  ሺݒ௧ሻሻ൯ െ ටሺ1  ሺπ െ 1ሻ൫ሺݑ௧ሻ  ሺݒ௧ሻሻሻଶ െ ߨሺ4ߨ4 െ 1൯ݑ௧ݒ௧	 (16) 

,௧ݑிሺܥ ;	௧ݒ ሻߣ	 ൌ
ିଵ

ఒ
log 

൫ଵିషഊ൯ି൫ଵିషഊഋ൯൫ଵିషഊೡ൯

൫ଵିషഊ൯
൨     (17) 

where ߨ ∈ ሾ0,∞ሿ\ሼ1ሽ and ߣ ∈ ሾെ∞,∞ሿ\ሼ0ሽ. Both copulas display tail independence.  

Given that dependence may change under different market circumstances (in booms or 

bursts) we consider copula functions with asymmetric tail dependence structures as well. The 

Gumbel copula reflects upper tail dependence, whereas its rotation reflects lower tail dependence 

as follows: 

,௧ݑ௨ሺீܥ ;	௧ݒ ௧ሻఋሻݒ௧ሻఋ+ (-logݑሻ= exp(-((-logߜ	
ଵ
ఋ	ൗ )     (18) 

,௧ݑோ௧௧ௗ_ீ௨ሺܥ ;	௧ݒ ሻߜ	 ൌ ௧ݑ	  ௧ݒ െ 1  ௨ሺ1ீܥ െ ,௧ݑ 1 െ ;	௧ݒ     (19)	ሻߜ	

with ߜ ∈ ሾ1,∞ሿ. The upper and lower tail dependence structure of the Gumbel copula is given by 

ൌ 2 െ 2
ଵ
ఋൗ 	and	ߣ ൌ 0 respectively, while the opposite holds for the rotated Gumbel. We also 

employ the symmetrized Joe-Clayton (SJC) copula as it simultaneously considers lower and 

upper tail dependence, determining the presence or absence of asymmetry: 

,௧ݑௌ൫ܥ ;	௧ݒ ߣ	
ௌ, ߣ

ௌ	൯ ൌ 0.5ሺܥ൫ݑ௧, ;	௧ݒ ߣ	
, ߣ

	൯  ௌ൫1ܥ െ ,௧ݑ 1 െ ;	௧ݒ ߣ	
ௌ, ߣ

ௌ	൯ 

௧ݑ  ௧ݒ െ 1ሻ       (20) 
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where,	ܥ൫ݑ௧, ;	௧ݒ ߣ	
, ߣ

	൯ ൌ 1 െ ሺ1 െ ሼሾ1 െ ሺ1 െݑ௧ሻሿ	ିఊ  ሾ1 െ ሺ1 െݒ௧ሻሿ	ିఊሽ	
ିଵ ఊൗ ሻ

ଵ
ൗ  and  

݇ ൌ ଶሺ2݈݃/1 െ ߣ
ሻ and ߛ ൌ െ1/݈݃ଶሺߣ

ሻ. Moreover, ߣ
ௌሺݒሻ ∈ ሾ0,1ሿ and ߣ

ௌሺݒሻ ∈ ሾ0,1ሿ. 

For this copula function, the tail dependence coefficients are themselves the parameters of the 

copula. In case ߣ
ௌ ൌ ߣ

ௌthen the market structure is symmetric, otherwise it is asymmetric. 

We finally account for time-varying dependence structure by allowing the copula 

parameters to be time-varying with dynamics described in an evolution equation. For the 

Gaussian and Student-t copulas, we describe the dynamics of the linear dependence parameter as 

evolving over time according to the dynamic model proposed by Patton (2006): 

௧ߩ ൌ ΩሺΨ  Ψߩ௧ିଵ  Ψଶ
ଵ

ଵ
∑ Φିଵ൫ݑ௧ି൯
ଵ
ୀଵ . Φିଵሺݒ௧ିሻ  (21) 

where ߗ denotes the logistic transformation ߗሺݔሻ ൌ ሺ1 െ ݁ି௫ሻሺ1 െ ݁ି௫ሻିଵ(x) used to keep 

ሻis substituted as t-1ݔwithin (-1,1). For the Student-t copula, Φିଵሺ	௧ߩ
v(x). For the conditional 

Gumbel copula and its rotation, the evolution of δ specified follows an ARMA(1,10) process 

given by: 

݀௧ ൌ ሺΨ  Ψ݀௧ିଵ  Ψଶ
ଵ

ଵ
∑ หݑ௧ି െ ௧ିหݒ
ଵ
ୀଵ      (22) 

For the SJC copula, the evolution of upper and lower tail dependence is given by an AR-

MA(1,10) process as: 

߬,௧
ௌ ൌ Ω ቂΨ

  Ψଵ
߬,௧ିଵ

ௌ  Ψଶ
 ଵ

ଵ
∑ หݑ௧ି െ ௧ିหݒ
ଵ
ୀଵ ቃ  (23) 

 

߬,௧
ௌ ൌ Ω ቂΨ

  Ψଵ
߬,௧ିଵ

ௌ  Ψଶ
 ଵ

ଵ
∑ หݑ௧ି െ ௧ିหݒ
ଵ
ୀଵ ቃ (24) 

 
3.4 Incorporating second-moment spillover effects 

Finally, we study the parameter estimates of the marginal distributions for the BRICS equity 

markets and gold incorporating spillover effects via GARCH-class models. As the choice of the 

most suitable GARCH-type model specification appears to be challenging task, we consider 

standard competing models: standard GARCH, EGARCH, GJR-GARCH and FIGARCH. Based 
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on the Log (L) and SIC criteria, we select the GJR-GARCH(1,1) as the best second-moment 

model for both markets. The GJR-GARCH specification is proposed by Glosten, Jagannathan and 

Runkle (1993) and includes a leverage term to model asymmetric volatility. In the GJR-GARCH 

model, large negative changes are more likely to be followed by large negative changes than 

positive changes. The GJR model is only a simple extension of the GARCH model, with an 

additional term added to capture possible asymmetries: 

  ௧ଶߪ ൌ ߱  αߝ௧ିଵ
ଶ  ௧ିଵߪߚ

ଶ  γߝ௧ିଵ
ଶ             (25)		௧ିଵ߇

where It-1=1 if εt-1˂0 and otherwise It-1=0. According to Glosten et al. (1993) the positivity and 

stationarity of the volatility process is guaranteed whenever the parameters satisfy the constraints 

ω>0, α, β, γ≥0, and γ+( α+β)/2 ˂1. Lastly, we assume that the error term follows the Skewed-t 

distribution to account for clustering tails. 

 
4. EMPIRICAL RESULTS 

We explore the interrelationships between the BRICS’ equity markets and the 3-month futures’ 

Gold market at various investment horizons which directly correspond to different wavelet 

components. The CWT can be particularly important in investigating the scale-dependent 

(a)synchronization between those markets. As opposed to simple unconditional or conditional 

linear correlation, the wavelet coherence measure detects time-varying linear and nonlinear 

phase-dependent linkages via the cross-wavelet power spectrum. The application of the proposed 

methodology will reveal the heterogeneity of market participants and their investment horizons in 

both markets. Practically, short-term investors are interested in interim price fluctuations whilst 

long-term agents trade the long-run price movements.  

Firstly, we present in Figure 3 the contour graphs of the cross-wavelet coherency for the 

return series between gold market and the BRICS. The thick black contour lines illustrate the 

95% confidence intervals estimated from Monte Carlo simulations using phase-randomized 

surrogate series. The vertical axis shows the frequency (scale) and the horizontal axis, the time in 
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days. The color presentation ranges from blue used for low coherency, to red indicating high 

phase co-movement. Innovatively, the coherency measure incorporates linear and nonlinear 

interdependencies including 2nd or higher order effects, beyond simple linear correlation 

relationships. In particular, the X-axis represents the time period explored, divided in 500, 1000, 

1500, 2000, 2500, 3000 to 3500 days. The corresponding dates are 2001M12D03, 2003M11D03, 

2005M10D03, 2007M09D03, 2009M08D03, 2011M07D04, and 2013M06D03 respectively, while the 

exact starting and ending dates are 2000M01D04 and 2014M07D31. The downward pointing “cone 

of influence” indicates the region affected by the so-called “edge effects”, shown with a lighter 

shade black line. The track (direction) of the arrows provides the signal lag/lead phase relation 

between both the gold and equity markets. Arrows pointing to the right signify phase-

synchronized series, whilst those pointing to the left indicate out-of-phase variables. Moreover, 

arrows pointing to the right–down or left-up indicate that gold leads the BRICS, whereas the 

right–up or left-down arrows reveal the reverse linkage. The in-phase regions signify a cyclical 

interaction between the variables while the out-of-phase (or anti-phase) behavior demonstrates an 

anti-cyclical effect. The contour plots derived by a three-dimensional analysis enable to detect 

areas of varying co-movement among the return series over time and across frequencies. Overall, 

the areas of stronger interdependence in the time-frequency domain imply lower benefits from 

international portfolio diversification. From the coherence analysis we observe that the Brazil-

Gold, Russia-Gold and China-Gold market pairs, at the long-term frequency band (or short term 

35-105 daily scale), demonstrate a relatively high degree of co-movement (in-phase) with the 

arrows pointing right, within the period 2005M10-2006M09. In the same frequency band, the 

South Africa-Gold pair shows a high degree of synchronization, albeit only within 2004. Next, 

India and Brazil equity markets display a time-varying lag-lead relationship vis-à-vis gold at 

different “regions” of the time-frequency state-space. During 2002M09-2003M06 and 2004M03-

2004M12, namely in the (70-128) and (50-70) day-interval (long-term frequency band), the 

contour arrows point right-down and right-up, a fact that signifies a directional change from 
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Gold-leading to lagging behavior against the Brazilian market. On the other hand, for 2005M10-

2006M11 and 2003M08-2004M08 and (30-105) and (40-100) day-interval the contour arrows for 

the India-Gold pair point right down and right-up, which indicates a directional change from 

leading to lagging directionality, yet now at the short term time scale. The analysis from all 

contours reveals a relatively high degree of co-movement between the India-Gold and China-

Gold pairs concentrated at the (242-275) frequency band scales from 2003M08 to end of 2004, 

whereas in the similar frequency band scale, a relatively high degree of co-movement is observed 

between South Africa and Gold markets concentrated on the long-term frequency band which 

corresponds to 2001M1-2005M2. For the long-term time scale (505-610 days), Gold is leading 

the BRICS during 2003M11-2011M07 for Brazil and Russia, within 2007M09-2012M04 for 

India, in 2005M10-2011M07 for China, and during 2002M11-2011M11 for South Africa. 

Importantly, all through the global financial crisis (2008-2009) the gold market leads 

significantly the equity markets. To summarize, the wavelet phase inspection demonstrated a 

strong heterogeneity across scales with continuous (dynamic) directional reversals for all 

investigated pairs. 

It is highly informative to compare the results of the cross-wavelet coherency 

measurement against those from the Breitung and Candelon (2006) spectral-domain test for short- 

and long-run causality within a wide range of frequencies in the interval [0, ] . Figure 4 

illustrates the bivariate relationships amongst all investigated pairs. The frequency on the 

horizontal axis  can be “translated” into a cycle or periodicity of T days as derived by 

 /2T . We consider four spectral bands, i.e., very short time horizons corresponding to 

(0, 0.5), short-run horizons with  (0.5, 1.5), medium range periods of  (1.5, 2.5) and the 

longest time periods laying in (2.5, π). Specifically, short-term fluctuations are displayed towards 

the right end of the graph, long-term frequencies in the left end whilst the 5% and 10% level 

confidence bands are also included. The results from the spectral-domain test are in general in 

accordance with those from the wavelet analysis. Both bidirectional and unidirectional causalities 
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are revealed at different frequency bands. The Brazil-Gold pair presents strong causality from 

Brazil equity market to gold within (0.00, 1.05) and (2.40, 2.70) frequency bands, namely both 

for short-run and very long-run horizons. However, the reverse dependence is observed at very 

short-run (0.00, 0.30), medium (1.35, 2.30) and long-term time periods corresponding to  

(2.50, 2.95). For the Russia-Gold pair, the causality runs from Russia to gold returns for (0.00, 

0.50), (0.60, 1.10), (1.35, 1.52) and (2.25, 2.70) frequency bands, whereas the reverse 

interrelationship is found for short- and long-run horizons. Within  (0.00, 0.90) and (2.25, 

2.96) we observe causality linkages from India to gold markets whereas for   (0.00, 1.10) and 

(1.55, 2.40) frequency bands, the causality runs from China to gold. Interestingly, causalities 

emerge from the gold market to India only in the medium-term  (1.15, 1.60), as opposed to 

univariate links from gold to China at  (0.00, 0.60), (1.15, 1.75) and (2.40, 2.90) that 

correspond directly to very short-run, medium and long-run horizons. Finally, we revealed 

causalities from South Africa to gold markets for frequency bands laying within (0.00, 0.60), 

(1.40, 1.60) and (2.35, 2.70) intervals, whereas reverse linkages emerged for short-run and 

medium-range horizons. Nevertheless, according to Bekiros and Marcellino (2013) via the multi-

scale wavelet analysis we overcome the constraint of reaching a threshold in the lowest possible 

frequency investigated, as well as probe further into nonlinear interrelationships of 2nd or higher 

order as opposed to the Breitung and Candelon test which is based on linear VAR modelling. 

Next, we analyze the results from the second-moment dynamics before we proceed to the 

copula-based dependence structure as they will be useful for the tail modeling of the marginals. 

Table 2 reports the estimation results from the GJR-GARCH model for both BRICS and Gold 

markets. The mean equation parameters are significant in all cases except for China, while the 

ARCH effects are highly significant. In particular, all conditional variance terms (β) for the 

BRICS and gold futures’ returns are significant at the 1% level. The asymmetry parameters (γ) 

are also significant at the 1% level in all cases as well. Interestingly, gammas (γ) affect positively 

the BRICS equity markets whereas the reverse is true for the gold market. Furthermore, the 



 
 

17

estimated tail parameters are strongly significant with values exceeding two, suggesting that there 

exists a distinctive divergence from normality. All skewness terms are negative and statistically 

significant, hence the Student-t fits all return variables well. The results of the diagnostics applied 

to the standardized residuals and squared residuals indicate that the GJR-GARCH model with 

Student-t error marginals is correctly specified.  

Finally, Table 3 (panels A and B) exhibits the results of the tail-dependence structure. 

Panel A presents the estimates for the parametric copula models. Specifically, for the symmetric-

class, the Student-t copulas perform better than the Normal, Clayton, Rotated Clayton, Plackett, 

Frank, Gumbel, Rotated Gumbel and Symmetrized Joe-Clayton (SJC) ones in all cases based on 

the AIC results. In fact, the dependence parameter for the Student-t copulas is quite close to the 

unconditional linear correlation as reported in Table 1. This outcome leads to considering the t-

copula the best descriptor of the return dependence between BRICS equity markets and gold. The 

“strength” of dependence is higher for the South Africa-Gold pair, followed by the Brazil-Gold, 

the China-Gold, whilst the India-Gold pair appears to be the weakest. For the asymmetric tail-

class copulas and in particular for the Clayton and Gumbel, the parameter estimates are 

significant and reflect the positive dependence between the BRICS markets and gold commodity 

futures market. The lower- and upper-tail dependence parameters of the Gumbel and rotated 

Gumbel copulas have similar values (panel A), whilst the estimated values of λLSJC and λUSJC 

for the SJC copulas are different. Interestingly, the lower-tail parameters are higher than the 

upper-tail ones in all cases, thus the co-movement level of BRICS’ stock and gold markets is 

higher in bear markets. Lastly, according to Panel B which presents results for the time-varying 

copulas, the rotated Gumbel appears to provide the best description of the return dependence 

based on the AIC and maximum log-likelihood scores. Nevertheless, the estimated parameters for 

some pairs are not statistically significant, namely the time-varying copulas cannot be considered 

consistently superior vis-à-vis the constant ones for the investigated series. Figures 5, 6 and 7 

illustrate that copula parameters change over time, e.g., for the Gumbel copula the dependence 
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parameter ranges in (0.00-1.46) for Brazil, (0.02-1.38) for Russia, in (1.02-1.28) for India and in 

(1.08-1.82) and (1.03-1.12) for South Africa. Overall, for Brazil, India and South Africa the left-

tail is higher than the right-tail dependence. The reverse is observed for Russia, whilst the upper-

tail dependence for China is found to be significant only during the period 2007-2011. 

 

5. CONCLUSIONS 

Our work extends the recent literature on global portfolio hedging and diversification effects of 

gold-based strategies, in particular putting emphasis on the heterogeneous BRICS stock markets. 

While having a high growth rate, these economies still experience a high degree of vulnerability 

to external shocks especially to commodity dependence. We specifically probe into the nature 

and directionality of gold-stock market linkages by investigating not only the dynamics of the 

time series interdependence, but also their interactions under a time-frequency framework.  

Relying on a multi-scale wavelet approach and a time-varying copula methodology, we were able 

to reveal a strong time-varying dependence structure between gold and each of the BRICS’ 

markets. The phase/coherence analysis shows that gold leads significantly the BRICS markets 

during the global financial crisis. The heterogeneity is evidenced also by the asymmetric effects 

derived from the GJR-GARCH volatility modeling, which exhibits highly statistically significant 

parameters for both markets. The lower tail is higher than the upper-tail dependence in all cases, 

therefore the BRICS and gold markets co-move much more in bear than in bull markets. The 

multi-resolution analysis uncovers the time-scale co-evolvement patterns between the two 

markets, with profound regions of concentrated extreme variations. Our results reveal the 

potential implications of equity portfolio risk diversification and hedging strategies between 

BRICS and commodity markets. 
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TABLE 1: DESCRIPTIVE STATISTICS 

  Gold Brazil Russia India China S. Africa 

Mean(%) 0.039 0.027 0.023 0.030 0.025 0.028 

Std. Dev. 0.012 0.022 0.026 0.018 0.019 0.018 

Skewness -0.279 -0.248 -0.522 -0.136 -0.003 -0.333 

Kurtosis 8.854 10.208 14.338 10.271 8.598 7.748 

J-B 5478.87+ 8270.66+ 20543.78+ 8389.24+ 4965.59+ 3641.95+ 

Q(12) 27.95+ 55.89+ 49.78+ 71.14+ 31.23+ 41.61+ 

Q2(12) 315.96+ 3771.09+ 1846+ 790.62+ 2333.04+ 2488.19+ 

ARCH(12) 14.98+ 145.09+ 68.94+ 31.15+ 81.47+ 83.28+ 

Correlation. vs. Gold 1 0.15 0.12 0.11 0.09 0.28 

Obs. 3803 3803 3803 3803 3803 3803 
 
Notes: J-B, Q(12), Q2 (12) and ARCH(12) correspond to the Jarque-Bera, Ljung-Box for 12-order serial 
autocorrelation in raw and squared residuals, and Engle (1982) test for conditional heteroscedasticity. + and ++ 
indicate the rejection of the null at the 1% and 5% significance level, respectively. 
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TABLE 2: GJR-GARCH PARAMETER ESTIMATION & DIAGNOSTICS 

Panel A: Estimation results of GARCH 

 Brazil Russia India China S. Africa Gold 

Parameter Estimates-mean equations 

Const(m)(%) 
0.0004+++ 
(0.0003) 

0.0010+

(0.0002) 
0.0008+

(0.0002) 
0.0005++

(0.0002) 
0.055++ 

(0.0002) 
0.0006+

(0.0001) 

AR(1) 
0.082+ 
(0.015) 

0.050+

(0.016) 
0.085+

(0.016) 
0.052 

(0.015) 
0.036++ 
(0.016) 

-0.044+

(0.014) 

Parameter estimates-GARCH process 

Const(v)(10-4) 
0.082+ 
(0.029) 

0.082+ 
(0.021) 

0.087+

(0.017) 
0.032+

(0.009) 
0.071+ 

(0.016) 
0.009+

(0.003) 

ARCH 
0.009 

(0.007) 
0.064+

(0.012) 
0.041+ 
(0.010) 

0.024+

(0.006) 
0.015+++ 

(0.008) 
0.057+

(0.010) 

GARCH (β) 
0.918+ 
(0.018) 

0.888+

(0.012) 
0.852+ 
(0.017) 

0.924+

(0.009) 
0.901+ 
(0.013) 

0.954+

(0.006) 

GJR(γ) 
0.100+ 
(0.020) 

0.070+

(0.018) 
0.148+ 
(0.027) 

0.080+

(0.017) 
0.111+ 
(0.019) 

-0.027+

(0.011) 

Student-df 
9.255+ 
(1.293) 

5.517+

(0.502) 
7.168+ 
(0.842) 

7.014+

(0.802) 
11.859+ 
(1.969) 

4.171+

(0.328) 

Log (L) 9737.00 9455.70 10629.45 10460.66 10426.7 12025.95 

Panel B: Diagnostic tests 

Skewness -0.249+ -0.392+ -0.057+ -0.087+ -0.208+ -0.105+ 

Kurtosis 1.105+ 2.956+ 2.378+ 1.034+ 0.610+ 6.577+ 

AIC -5.118 -4.969 -5.593 -5.497 -5.479 -6.320 

SIC -5.106 -4.957 -5.582 -5.486 -5.468 -6.309 

Q(20) 20.31[0.37] 16.05[0.65] 29.42[0.06] 32.36[0.03] 23.77[0.20] 17.29[0.56] 

Q2 (20) 15.85[0.66] 12.31[0.57] 33.14[0.02] 13.99[0.72] 28.46[0.06] 8.56[0.96] 

ARCH(10) 0.93[0.51] 0.66[0.76] 1.34[0.20] 0.49[0.89] 0.52[0.87] 0.59[0.82] 

J-B 202.55[0.00] 1482.70[0.00] 897.31[0.00] 177.44[0.00] 86.62[0.00] 6863.60[0.00] 

 
Notes: +, ++ and +++ indicate the rejection of the null at the 1%. 5% and 10% levels, respectively. Const(m) and 
Const(v) refer to the constant terms in the mean and variance equations. JB stands for the Jarque-Bera test, Q(20) and  
Q2(20) for the Ljung-Box test for autocorrelation with 20 lags. ARCH represents the Engle (1982) test for 
conditional heteroscedasticity. Standard errors are reported in parentheses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

23

TABLE 3: CONSTANT AND TIME-VARYING COPULA ESTIMATION RESULTS 

Panel A: Time-invariant Copulas 
 Brazil Russia India China South Africa 

Normal copula 

ρ 0.148 0.133 0.113 0.097 0.265 

LogLik. -42.497 -34.284 -24.640 -18.252 -138.603 

AIC 86.99 70.56 51.28 38.50 279.20 

Clayton copula 

ρ 
0.199+ 

(0.021) 
0.185+ 
(0.021) 

0.155+ 
(0.020) 

0.132+ 
(0.020) 

0.370+ 
(0.024) 

LogLik. 56.877 50.069 36.776 27.215 158.546 

AIC -111.73 -98.13 -71.55 -52.42 -315.09 

Rotated Clayton copula 

ρ 
0.154+ 
(0.021) 

0.129+ 
(0.020) 

0.108+ 
(0.020) 

0.084+ 
(0.019) 

0.293+ 
(0.023) 

LogLik. 33.286 24.358 17.829 11.092 100.099 

AIC -64.57 -46.716 -33.65 -20.18 -198.19 

Plackett copula 

π 
1.644+ 
(0.084) 

1.541+ 
(0.080) 

1.427+ 
(0.072) 

1.358+ 
(0.068) 

2.351+ 
(0.114) 

LogLik. 45.304 34.304 23.695 18.316 138.501 

AIC -88.608 -66.60 -45.38 -34.63 -275.00 

Frank copula 

λ 
0.915+ 
(0.100) 

0.795+ 
(0.101) 

0.662 
(1.001) 

0.585+ 
(0.099) 

1.717+

(0.199) 
LogLik. 41.179 31.181 21.917 17.426 37.14 

AIC -80.357 -60.36 -41.83 -32.85 -72.28 

Gumbel copula 

δ 
1.102+ 
(0.012) 

1.100+ 
(0.019) 

1.100+ 
(0.019) 

1.100+ 
(0.019) 

1.191+ 
(0.014) 

LogLik. 51.829 39.598 27.041 11.236 141.822 

AIC -101.65 -77.19 -52.08 -20.47 -281.64 

Rotated Gumbel copula 

δ 
1.114+ 
(0.012) 

1.105+ 
(0.011) 

1.100+ 
(0.019) 

1.100+ 
(0.019) 

1.212+ 
(0.014) 

LogLik. 70.897 60.039 43.410 29.928 184.126 

AIC -139.79 -118.07 -84.81 -57.85 -366.25 

Student-t copula 

r 
0.152+ 
(0.018) 

0.135+ 
(0.018) 

0.113+ 
(0.017) 

0.100+ 
(0.016) 

0.266+ 
(0.017) 

υ 
4.984+ 
(0.504) 

0.548+ 
(0.599) 

6.159+ 
(0.766) 

8.723+ 
(1.439) 

4.613+ 
(0.428) 

LogLik. 106.694 87.556 66.800 41.222 217.664 

AIC -209.38 -171.11 -129.59 -78.44 -431.32 

Symmetrised Joe-Clayton (SJC) copula 

λU 
0.013 

(0.013) 
0.002 

(0.005) 
0.001 

(0.002) 
0.000 

(0.000) 
0.069+ 
(0.019) 

λL 
0.072+ 
(0.021) 

0.073+ 
(0.019) 

0.054+ 
(0.018) 

0.041++ 
(0.018) 

0.176+ 
(0.019) 

LogLik. 69.477 58.157 42.756 30.770 190.895 

AIC -134.95 -112.31 -81.50 -57.53 -377.78 
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Panel B: Time varying Copulas 

 Brazil Russia India China South Africa 

Time-varying Normal copula 

Ψ0 
0.001 

(0.001) 
0.001 

(0.001) 
0.009++ 
(0.004) 

0.197 
(0.283) 

0.018 
(0.019) 

Ψ1 
0.020+ 
(0.004) 

0.018+ 
(0.004) 

0.032+ 
(0.010) 

0.001 
(0.967) 

0.032++ 
(0.013) 

Ψ2 
2.002+ 
(0.006) 

2.001+ 
(0.006) 

1.903+ 
(0.044) 

0.0002 
(0.995) 

1.951+ 
(0.086) 

LogLik. 67.096 58.991 39.165 18.252 149.677 

AIC -128.18 -111.97 -72.32 -30.49 -293.34 

Time-varying rotated Gumbel Copula 

Ψ0 
1.324++ 
(0.527) 

0.466++ 
(0.745) 

-0.634+ 
(0.237) 

2.225+ 
(0.101) 

-0.140 
(0.105) 

Ψ1 
-0.352 
(0.402) 

0.171 
(0.548) 

0.951+ 
(0.175) 

-1.852+ 
(0.122) 

0.621+ 
(0.057) 

Ψ2 
-1.893+ 
(0.264) 

-1.033++ 
(0.444) 

-0.320+++ 
(0.157) 

0.098++ 
(0.049) 

-0.536+ 
(0.131) 

LogLik. 96.014 80.375 52.475 33.816 221.293 

AIC -186.02 -154.74 -98.944 -61.62 -436.58 

Time-varying SJC copula 

Ψ0 
1.654 

(1.308) 
3.241++ 
(1.582) 

-1.031 
(3.166) 

-13.681+ 
(1.000) 

1.719 
(1.238) 

Ψ1 
-16.774+ 
(4.860) 

-25.000+ 
(6.627) 

-14.404 
(12.328) 

-0.001 
(1.000) 

-15.384+ 
(4.300) 

Ψ2 
-5.045 
(4.452) 

-5.037+++ 
(2.750) 

-0.003 
(1.004) 

-0.000 
(1.000) 

-1.167 
(2.310) 

Ψ3 
0.527 

(1.549) 
1.547+++ 
(0.944) 

1.488 
(1.382) 

-3.384+ 
(0.600) 

-1.399+ 
(0.331) 

Ψ4 
-10.917++ 
(5.207) 

-13.099+ 
(2.936) 

-14.333+ 
(5.289) 

-0.057 
(1.000) 

-2.754+ 
(0.963) 

Ψ5 
1.086 

(2.454) 
-3.941 
(2.591) 

-2.524 
(2.719) 

-0.020 
(0.999) 

3.604+ 
(0.468) 

LogLik. 93.101 78.264 49.803 30.076 228.886 

AIC -174.17 -144.50 -87.58 -48.13 -445.75 
 
Notes: The table reports the maximum likelihood estimates for the different copula models. Standard error values are 
presented in parentheses and Akaike information criterion (AIC) values adjusted for small-sample bias are provided 
for the different copula models. The minimum AIC value (in bold) indicates the best copula fit.  
+, ++ and +++ indicate significance at the 1%. 5% and 10% level respectively. 
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FIGURE 3: CROSS-WAVELET COHERENCE BETWEEN THE BRICS AND GOLD MARKETS 

 

  

 
 
Notes: Phase arrows indicate the direction of co-movement among the returns series of the BRICS’ equity markets and Gold 
pairwise. Arrows pointing to the right signify perfectly phased variables. The direction “right-up” indicates lagging gold market, 
whilst the “right-down” direction indicates leading gold vs. the BRICS. Arrows pointing to the left signify out-of-phase variables. 
The direction “left-up” indicates leading Gold, whilst the “left-down” direction indicates a lagging Gold market. In-phase 
variables represent a cyclical relationship and out-of-phase (or anti-phase) variables show anti-cyclical behavior. The thick black 
contour lines indicate the 5% significance intervals estimated from Monte Carlo simulations with phase-randomized surrogate 
series. The cone of influence, which marks the region affected by edge effects, is shown with a lighter shade black line. The color 
legend for spectrum power ranges from Blue (low power) to Red (high power). Y-axis measures frequency (scale) and X-axis 
represents the time period studied ranging from 500, 1000, 1500, 2000, 2500, 3000 to 3500 obs. The corresponding dates are 
2001M12D03, 2003M11D03, 2005M10D03, 2007M09D03, 2009M08D03, 2011M07D04, and 2013M06D03 respectively. The starting and 
ending dates are 2000M01D04 and 2014M07D31, respectively. 
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