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Abstract 

 

This paper investigates the impact on the dynamic characteristics of the time evolution of regional 

Greek net fixed capital time series by the depreciation method that was used for the production of 

the series’ data. Using annual data over the period from 1974 to 2006, Karpetis & Zikos (2014) 

constructed the series of net fixed capital assuming a depreciation period of 25 years, in the case 

of the thirteen administrative regions of Greece, using four different depreciation methods of 

capital. These series were used to estimate the ARIMA(p,d,q) model that describes best the series’ 

diachronic evolution. The statistical findings reveal, firstly, the affection of the pattern (monoton-

ic or sinusoidal) of series’ evolution by the used depreciation method of capital and secondly, the 

slow convergence of regional Greek net fixed capital towards its long run equilibrium value.           
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1. Introduction 

The knowledge of net fixed capital stock, both in regional and national level, is crucial for the 

applied economic research and the planning of economic policy, since time series of this variable 

can be used, either as a determinant of an economy’s production function, or for investigating the 

significance of the convergence hypothesis, which means that it can be a useful indicator for 

conducting the necessary cohesion policy.       

The measurement of net fixed capital, however, has always been a difficult task. The lack of 

statistical data concerning gross investment, made researchers construct their own series of fixed 

capital [Maddison (1994), Mas et al. (2000),Young & Musgrave (1980)]. The problem of course, 

becomes more severe in regional level, where the availability of fixed capital data series is 

limited. This problem could be partly solved either, by using a previously estimated production 

function [Dadkhah & Zahedi, (1986)] or by apportioning the national capital stock among the 

regions [Garofalo & Yamarik (2002)]. 

As for the case of Greece, annual estimations of net capital stock, in national level, are pro-

vided by Kamps (2006), for the period 1960-2001 (in constant prices of 1995) whereas, 

Skountzos & Mattheou (1991), estimated national gross capital stock over the period from 1950 

to 1991. In addition, Georganta et al. (1994), provided sectoral estimates of manufacturing capital 

stock over the period from 1980 to 1991.  In regional level, Melachroinos & Spence (2000), 

constructed annual series of net capital stock, for the thirteen administrative regions of Greece, 

covering the period 1980-1993.More recently, Karpetis & Zikos (2014) constructed the series of 

net fixed capital in the case of the thirteen administrative regions of Greece, covering the period 

from 1974 to 2006 and assuming a depreciation period of 25 years in the frame of the four 

different depreciation patterns of physical capital.    

Apart from data limitations, another significant issue in the determination of net fixed capital 

series, is the depreciation pattern of physical capital. In general, from a macro perspective, 

depreciation is a significant determinant in growth models such as the Solow model, while its 

estimates are important in national accounts, where depreciation is needed for tax purposes [Coen 

(1975)]. Among the various methods of the depreciation of capital which are encountered in the 

economic literature, the most commonly used are, the straight-line, the geometric decay, the 

“sum-of-the-years-digit” and the “one-hoss shay” pattern [Coen (1975), Hulten & Wykoff  

(1981)].    

The affection of the series of net capital, by the depreciation pattern of physical capital has 

been addressed in various researches [Domar (1953), Linhart (1970), Coen (1975), Young & 
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Musgrave (1980)], but additional problems like the determination of capital’s service life 

[Redfren (1955), Nevin (1963), Dean & Irwin (1964)] and the value of depreciation rate [Boskin 

et al. (1987)] can also affect the resulting estimates of net capital stock. However until today there 

is not any example of how the different depreciation patterns can affect the dynamic characteris-

tics of the time evolution of net fixed capital stock series.     

Thus, using the net capital stock series of the thirteen Greek administrative regions1, as these 

were estimated in Karpetis & Zikos (2014), our aim in this paper is to investigate, firstly, the 

effects on the dynamic characteristics of the time evolution of net capital stock by the four 

depreciation methods that employed in Karpetis & Zikos (2014) (namely, straight line deprecia-

tion, double declining balance, “sum-of-the-years-digits” & “one-hoss-shay”)  and secondly, the 

velocity of convergence of Greek regional net fixed capital towards its long-run equilibrium. 

The rest of the paper is organized as follows. In the second section, we analyze the deprecia-

tion methods used by Karpetis & Zikos (2014) in the production of the Greek regional net fixed 

capital stock time series. In the third section, we describe the followed procedure and the 

econometric tools utilized in order to obtain the dynamic characteristics of the series under 

investigation. Finally, in the last two sections we demonstrate the empirical results and the 

conclusions of our analysis. 

 

 

2. Depreciation methods 

Before proceeding to the methodology and empirical results of our analysis, we shall explain 

the depreciation patterns of physical capital used by Karpetis & Zikos (2014) in order to obtain 

their estimates of net fixed capital stock. In general, the level of a region’s net capital stock can be 

determined mathematically through the following equation: 

                                                           
, , ,j t j t j tNK I D                                                                 (1)                           

where 
,j tNK , is the level of net capital stock of a j region at time t, whereas 

,j tI  and 
,j tD  are the 

levels of gross investment and the depreciation of capital of region j  at time t , respectively. In 

addition, the level of region’s j  depreciation of capital stock at time t  (
,j tD ) is determined as: 

                                                            , ,

1

n

j t i j t i

i

D d I 



                                                                   (2)                                                  

                                                 
1 [1] Eastern Macedonia and Thrace (E.M.T.), [2] Central Macedonia (C.M.), [3] Western Macedo-

nia(W.M.), [4] Thessaly (TH.), [5] Epirus (EP.), [6] Ionian Islands (I.I.), [7] Western Greece (W.G.), 

[8] Central Greece (C.G.), [9] Attica (ATT.), [10] Peloponnese (PEL.), [11] Northern Aegean Islands 

(N.A.I.), [12] Southern Aegean Islands (S.A.I.), [13]  Crete (CR). 
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where, id , is the percentage of capital’s good initial productive capacity that is lost i  periods after 

its acquisition and n , the hypothesized period of its service life. 

Thus, substituting relation (2) in (1), the latter takes the following form: 

                                                         , , ,

1

n

j t j t i j t i

i

NK I d I 



                                                            (3)                        

It is evident from the above mathematical relation, that the assumed capital’s service life 

plays a significant role in the determination of net capital stock, an occasion that was examined in 

Redfern (1955) and Nevin (1963). In their analysis, Karpetis and Zikos (2014), defined exoge-

nously the service life of physical capital at 25 years, in line with Greek tax legislation. 

Alternatively, net fixed capital stock of region j  at time t , could be expressed as the sum of 

region’s gross investments at period t  (
,j tI ) and the part of gross investments that has not been 

depreciated during the last n  periods (
,j tND ), thus: 

                                           , , , , ,

1

(1 )
n

j t j t j t j t i j t i

i

NK I ND I d I 



                                              (4) 

Following the analysis of Coen (1975) and Linhart (1970) the four deprecation patterns of 

physical capital are analyzed as follows: 

According to the straight line depreciation (sld) pattern, the productive capacity of physical 

capital is reduced by the same amount in each of the n  periods of its service life. Namely, the 

depreciation follows a 1/id n  pattern, for 1,2,...,i n . Within the context of this method, the 

capital asset will have been completely depreciated until the end of the depreciation period. Thus, 

substituting 1/id n  in equation (2) , we obtain the level of depreciation at period t  as: 

 

                                                    , , ,

1 1

1n n
sld

j t i j t i j t i

i i

D d I I
n

 

 

                                                        (5) 

and consequently, after the substitution of equation (5)  in (4) , the level of net capital stock will 

be determined in the context of the following equation: 

                                                      
, ,

0

1
( )

j t

n
sld

j t i

i

NK n i I
n





                                                           (6) 

In the case of the double declining balance (ddb) depreciation method, the rate of decay of 

physical capital is considered constant and equal to 2 / n . However, the main drawback of this 

method is that the capital asset is not depreciated completely at the end of its service life, which 

means that capital will continue to contribute in the production process beyond its assumed 
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service life. In relation to this depreciation pattern, the rate of decay of physical capital is 

described by 
1(2/ ) [( 2) / ]i

id n n n   , for 1,2,...,i n . As a matter of fact, the magnitude of 

the depreciation at time t , will be defined through the following relation: 

                                    

1

, , ,

1 1

2 2
in n

ddb

j t i j t i j t i

i i

n
D d I I

n n



 

 

 
   

 
                                               (7) 

Τhe level of net capital stock of region j  and time t , will be defined after the substitution of 

the last equation into relation (4), and therefore will take the following form: 

   

                                                   
,

1

,

0

2
1

j t

in
ddb

j t i

i

NK I
n







 
  

 
                                                             (8) 

In terms of the “sum-of-the-years-digits” (syd) method, the depreciation pattern is set equal to 

1

( 1 )
n

i

i

d n i i


     for 1,2,...,i n . In that case, the level of depreciation at period t  will be 

defined via the following equation: 

                                        , , ,

1 1

2
( 1 )

( 1)

n n
syd

j t i j t i j t i

i i

D d I n i I
n n

 

 

   


                                          (9) 

This pattern implies a faster depreciation of the capital asset in the earlier years of its assumed 

service life, compared to the later years, and thus its productive capacity will be diminished faster. 

The level of net capital stock of region j  at period t , after the substitution of relation (9) into 

(1), can be determined as follows: 

                                        
, , ,

1

2
( 1 )

( 1)j t

n
syd

j t j t i

i

NK I n i I
n n





   

                                            (10) 

or equivalently and using (4) is formed as: 

                     
, , , ,

0 10 1

( 1) 2(1 )
(1 )

( 1)j t

i in n
syd

j t i j t j t i

i i

n n
NK I d I I

n n
 

  

     
            
                   (11) 

where 0 0d  . 

Furthermore, the last of the depreciation patterns used in Karpetis & Zikos (2014) is the 

“one-hoss-shay” (ohs) method, in the context of which the productive capacity of the capital asset 

is assumed to be undiminished, since depreciation capacity does not occur until the end of its 

entire service life, except for the last year, in which depreciation of the asset is taking place.  

According to this method, the level of depreciation of region j  at period t , is defined as 

follows: 
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                               , ,

1

n
ohs

j t i j t i

i

D d I 



  ,where 
0    1,2,...., -1     

1           
i

for i n
d

for i n


 


                            (12) 

Therefore, net capital stock of j region at period t , can be obtained after the substitution of 

(12) in equation (4) and is equal to: 

                                                       
,

1

,

0
j t

n
ohs

j t i

i

NK I






                                                                 (13) 

  

 

3. Methodology 

In order to investigate, firstly, the affection of the dynamic characteristics of the time evolu-

tion of net capital stock by the previously analyzed depreciation patterns and secondly, the 

convergence of Greek regional net fixed capital, towards its long-run equilibrium, we initially 

estimated the appropriate ARIMA(p,d,q) models that describe best the diachronic evolution of the 

time series. Having estimated the coefficients of the appropriate ARIMA (p,d,q) models, we 

obtained the characteristic roots of the specified Autoregressive, AR(p), and Moving Average 

processes, MA(q), that were used in the estimation of the ARIMA models.  

More specifically, employing the estimates of Karpetis & Zikos (2014) of Greek regional net 

fixed capital stock series of the period 1974-2006, as a first step, we utilized the Kwiatkowski, 

Phillips, Schmidt, and Shin, (1992) (K.P.S.S.) test of stationarity to determine the order of 

integration of 
2006

, 1974{ } , 1,2,....,13j t tNK j   sequences, for each depreciation pattern. Although, 

the K.P.S.S. test results are quite sensitive to the spectral estimation method and the bandwidth 

selection, we used the proposed by Kwiatkowski et al. (1992) Bartlett estimation technique, along 

with Andrews bandwidth selection, at a 5% level of significance, since in that case test results 

coincide to a larger extent than other estimation methods with the Autocorrelation coefficients 

diagrams (ACF)2.       

After the determination of the order of integration for every region and depreciation pattern, 

in the second step of the followed procedure, we specified the ARIMA (p,d,q) models, that 

describe best the time evolution of series over the period from 1974 to 2006. Using the Akaike’s 

information criterion (AIC), we defined the factors p and q of Autoregressive and Moving 

Average processes respectively, according to the lowest AIC statistic, after taking into considera-

tion the statistical significance of the estimated coefficients, among all the candidate ARIMA

( , , )p d q  models, where , 0,....,3p q  . The estimated series of the residuals were tested for the 

                                                 
2 See Note 1 from table 2. 
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presence of serial correlation and heteroskedasticity, using the Breusch – Godfrey [BG(h)] and 

ARCH(w) LM – test statistics respectively at 5% significance level. The test statistics were 

calculated for h = 1 & w = 2 lags in the test regression equation. 

From the estimated coefficients of the ARIMA models in final step of our procedure we de-

rived the characteristic roots of AR(p) and MA(q) processes to define firstly the pattern (monoton-

ic or sinusoidal) of the diachronic evolution of our series and secondly the velocity of conver-

gence towards their long run equilibrium value. 

It is well known3 that when the evolution of a  
0t t

Y



 series is described by a stochastic AR(p) 

model, the dynamic characteristics of the series’ evolution depend on the nature and magnitude of 

the characteristic roots ,  1, 2 , .... ,jλ  j       p , of the model. 

The nature of the characteristic roots (real or conjugate complex) determines the pattern of the 

series time evolution. More specifically, the described by the AR(p) model will be (monotonic) 

sinusoidal, in the case where some of the characteristic roots are (positive real numbers) either 

conjugate complex or negative real numbers.  

The magnitude of the characteristic roots determines the stationarity of the general solution of 

the stochastic difference equation described by the AR(p) model. The AR(p) model will be 

stationary, that is the  tY  sequence will converge asymptotically to a long – run equilibrium 

value, when the arithmetic values of the total number of the characteristic roots (real and complex) 

are smaller than one in absolute value  1   1, 2 , .... ,jλ   j       p  .        

In the special case of an AR(2) model the functional form of the encountered stochastic differ-

ence equation has as follows:  

 

 

2 1 1 2 0t t t tY a Y a Y a u                                                     (14) 

 

 

where 
*

ia  , i = 0, 1, 2: constant coefficients &  2~ 0,t uu N σ : an identically and independent-

ly distributed error term. 

 

The dynamic characteristics of series’  
0t t

Y



 diachronic evolution are defined by the nature 

of the difference equation’s characteristic roots  , 1, 2jλ j    , that is the roots of the characteristic 

equation: 

                                                 
3 See Walter Enders (1995), Applied Econometric Time Series, 1st edition, New York: John Wiley & 

Sons, ch. 1, pp. 1 – 61. 
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  2
1 2 0P λ λ a λ a                                                            (15)   

 

 

Τhe sign of the determinant (Δ) of the characteristic equation determines the nature of the char-

acteristic roots:  

 

 

                                                          
2
1 24a  a D                                                                     (16) 

 

 

Three different cases arise on the basis of relation (16): 

 

1st case, D > 0. When the determinant is positive definite the characteristic equation has two real 

and distinct roots the magnitude of which is equal to: 

 

                                       1
1,2

2

 a
λ

 


D
     with   1 2λ λ                                              (17) 

 

 

2nd case, D = 0. In this case we have two real and equal characteristic roots: 

 

                                                  1
1,2

2

 a
λ


         with   1 2λ λ                                                  (18) 

 

3rd case, D < 0. In the case where the determinant is negative definite, the characteristic equation 

has two conjugate complex roots of the form: 

 

                                                    1,2λ m n i       ,     1i                                                      (19)  

 

where 1 2m  a   & 2n  D : the real and imaginary part of the imaginary roots respectively. 

 

In this case the diachronic evolution of  
0t t

Y



 sequence will be sinusoidal and its functional 

form will be given by the sum of the partial  p
tY  and the complementary  c

tY  solution of (14):  

 

                                                           
p c

t t tY Y Y                                                                       (20) 

 

The functional form of the complementary solution has as follows: 
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                                                        ˆ cosc t
tY R φ tA                                                              (21) 

 

where A > 0: the amplitude of oscillation, R  (0,1): the module or absolute value of the 

conjugate complex roots: 

 

2 2R m n                                                                     (22) 

 

 and φ̂ : an arc that satisfies the following relations simultaneously: 

 

 ˆ
m

cos φ
R

           (22.1)          &           ˆ
n

sin φ
R

           (22.2) 

 

If 1jλ  for j = 1,2, that is if  0,1R , the partial solution has the following functional form: 

 

 
2

0

1 2 1 0
1

p h
t j j t h

j h

a
Y θ λ  u

a a





 

 
   

    
                                              (23)  

 

where 1
1

1 2

λ
θ

λ λ



 & 2

2

1 2

λ
θ  

λ λ
 


. 

 

The general solution of the basic difference stochastic equation, as this is described by relation 

(20), will be stable if the constant coefficients ai, i = 1, 2, satisfy the following set of necessary & 

sufficient stability conditions:  

 

                                                                

1 2

1 2

2

1 0

1 0

1 0

a a

a a

a

  


  
 

                                                           (24) 

 

The satisfaction of the above stated set of stability conditions guarantees that  0,1R . As a 

result tY  will converge to 
p

tY  through oscillations asymptotically. The time period (P ) over 

which tY  performs a full cycle around 
p

tY  is given by the following relation: 

 

 

                                            
2 

ˆ

π

φ
P           ,          π ≈ 3.14                                               (25)  
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4. Empirical Results 

In the beginning of the previous section the first step of our analysis is mentioned to involve 

the identification of the stationarity properties of our series. For that reason, in table 1 we present 

the statistical results of the K.P.S.S. unit root test for each of the previously analyzed depreciation 

methods for every administrative region.  

 

Table 1 

         K.P.S.S. Unit Root test Results and Determination of series order of Integration 

 Variable sld ddb syd ohs 

     NK1,t 0.113736 

I(1) 

0.099601 

I(1) 

0.116732 

I(1) 

0.214616 

I(1) 

     NK2,t 0.43437 

I(0) 

0.448439 

I(0) 

0.43048 

I(0) 

0.143587 

I(1) 

     NK3,t 0.17601 

I(1) 

0.161802 

I(1) 

0.16251 

I(1) 

0.177842 

I(1) 

     NK4,t 0.229462 

I(0) 

0.160643 

I(0) 

0.231768 

I(0) 

0.152479 

I(1) 

     NK5,t 0.252422 

I(0) 

0.250318 

I(0) 

0.259605 

I(0) 

0.274214 

I(0) 

     NK6,t 0.397024 

I(0) 

0.410041 

I(0) 

0.39712 

I(0) 

0.376901 

I(0) 

     NK7,t 0.162564 

I(0) 

0.158447 

I(0) 

0.144767 

I(0) 

0.088861 

I(1) 

     NK8,t 0.149507 

I(0) 

0.114077 

I(0) 

0.148427 

I(0) 

0.449557 

I(0) 

     NK9,t 0.154709 

I(1) 

0.147521 

I(1) 

0.165683 

I(1) 

0.213003 

I(1) 

     NK10,t 0.306419 

I(1) 

0.264607 

I(0) 

0.398915 

I(0) 

0.449805 

I(0) 

     NK11,t 0.368181 

I(0) 

0.36594 

I(0) 

0.358779 

I(0) 

0.357312 

I(0) 

     NK12,t 0.256139 

I(0) 

0.254718 

I(0) 

0.275302 

I(0) 

0.295994 

I(0) 

     NK13,t 0.332364 

I(0) 

0.315678 

I(0) 

0.388668 

I(0) 

0.365704 

I(1) 

  Note 1: The above table presents the LM statistic in the context of the K.P.S.S. unit root test using Bartlett estima-

tion method along with Andrews Bandwidth criterion with only constant (no trend) in the test equation, at 

a level of significance 5%. 

Note 2: NKj,t,  reflects the variable of net fixed capital stock, for all administrative regions,  j = 1, 2 , .... , 13.  

Note 3: sld, ddb, syd & ohs indicate the four patterns of depreciation that analyzed in section 2, assuming a 25 year 

period for capital asset’s service life.  

Note 4: ( )I d ’s indicate the results of the unit root test at a level of significance 5% and the series order of Integra-

tion as well. 

Note 5: K.P.S.S. critical values: 0.216 (1%), 0.146 (5%) & 0.119 (10%). 
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The K.P.S.S. unit root test reveals that the series of net fixed capital stock (NKj,t, , j = 1, …. , 

13) for each depreciation pattern, are either stationary at their levels or stationary after taking their 

first differences. For example, in terms of the sld method, the series of Central Macedonia ( j = 2), 

Thessaly ( j = 4), Epirus ( j = 5), Ionian Islands ( j = 6), Western Greece ( j = 7), Central Greece   

( j = 8), Northern Aegean Islands ( j = 11), Southern Aegean Islands ( j = 12) and Crete ( j = 13), 

are all stationary processes (d = 0), whereas, for the remaining administrative regions, namely 

Eastern Macedonia and Thrace ( j = 1), Western Macedonia ( j = 3), Attica ( j = 9) and Pelopon-

nese ( j = 10), test results indicate an integration of order 1 (d = 1).   

As it can be clearly seen from table 2, the order of integration, as it was derived from the 

K.P.S.S. unit root test of each of the NKj,t series in relation to the four depreciation patterns, 

coincide in 8 out of 13 administrative regions. More specifically, the order of integration in terms 

of the depreciation pattern, is identical for Eastern Macedonia and Thrace ( j = 1), Western 

Macedonia ( j = 3), Epirus ( j = 5), Ionian Island ( j = 6), Central Greece ( j = 8), Attica ( j = 9), 

Northern Aegean Islands ( j = 11) and Southern Aegean Islands ( j = 12). In contrast, for the 

remaining administrative regions Central Macedonia ( j = 2), Thessaly ( j = 4), Western Greece    

( j = 7), Peloponnese ( j = 10) and Crete ( j = 13), results of order of integration are identical in 

three of the four depreciation methods.   

In addition, it is evident that generally the results of the ACF correlograms compared to the 

K.P.S.S. test results coincide in most cases. For example, in terms of the ddb depreciation pattern, 

results of order of integration between the K.P.S.S. unit root test and the ACF correlograms are 

similar except for the series of  the Eastern Macedonia and Thrace ( j = 1), the Attica ( j = 9) and 

the Northern Aegean Islands ( j = 11).   

After determining the order of integration in the next step of the followed procedure, we 

estimated the appropriate ARIMA (p,d,q)  models for each administrative region and depreciation 

method, which are presented in the third column of table 3. As it can be clearly seen from that 

table, the employed depreciation method affects the choice of the appropriate ARIMA model, 

since discrepancies of the specified ARIMA models within a specific region appeared in 11 out of 

the 13 net fixed capital series. Exceptions are the first and the ninth administrative regions, where 

the employed ARIMA models are unaffected by the depreciation methods.  

As aforementioned, the final step of our analysis involved the determination of the character-

istic roots of AR(p) and MA(q) processes. In general, the estimated results of the AR(p) and MA(q) 

models as they are presented in table 3, indicate, firstly, the affection of the series dynamic 

characteristics by the employed depreciation methods and secondly, the slow convergence in 

most administrative regions of the series to their long-run equilibrium values.   
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Table 2 

Comparison between K.P.S.S. test results and results from the ACF correlograms 

K.P.S.S.   sld ddb syd ohs % sim.   ACF sld ddb syd ohs % sim. 

   NK1,t I(1) I(1) I(1) I(1) 100    NK1,t I(0) I(0) I(0) I(1) 75 

   NK2,t I(0) I(0) I(0) I(1) 75    NK2,t I(0) I(0) I(0) I(0) 100 

   NK3,t I(1) I(1) I(1) I(1) 100    NK3,t I(1) I(1) I(1) I(1) 100 

   NK4,t I(0) I(0) I(0) I(1) 75    NK4,t I(0) I(0) I(0) I(0) 100 

   NK5,t I(0) I(0) I(0) I(0) 100    NK5,t I(0) I(0) I(0) I(0) 100 

   NK6,t I(0) I(0) I(0) I(0) 100    NK6,t I(0) I(0) I(0) I(0) 100 

   NK7,t I(0) I(0) I(0) I(1) 75    NK7,t I(0) I(0) I(0) I(0) 100 

   NK8,t I(0) I(0) I(0) I(0) 100    NK8,t I(0) I(0) I(0) I(0) 100 

   NK9,t I(1) I(1) I(1) I(1) 100    NK9,t I(0) I(0) I(0) I(0) 100 

   NK10,t I(1) I(0) I(0) I(0) 75    NK10,t I(0) I(0) I(0) I(0) 100 

   NK11,t I(0) I(0) I(0) I(0) 100    NK11,t I(1) I(1) I(1) I(2) 75 

   NK12,t I(0) I(0) I(0) I(0) 100    NK12,t I(0) I(0) I(0) I(0) 100 

   NK13,t I(0) I(0) I(0) I(1) 75    NK13,t I(0) I(0) I(0) I(0) 100 

Note 1: Percentages of similarity between the K.P.S.S. test results and results from the ACF correlograms are  

             69.23%, 76.92%, 76.92% & 53.84% for the sld, ddb,syd & ohs respectively. 

Note 2: Columns %sim, indicate the similarity of order of integration between the different depreciation  patterns.  

 

 

The detailed examination of table 3 reveals that in the cases of Eastern Macedonia and Thrace ( j 

= 1), Epirus ( j = 5) and Central Greece ( j = 8) the pattern of the diachronic evolution is sinusoi-

dal for each depreciation method, which means that the net capital series of that regions converge 

to their equilibrium values (since all characteristic roots were derived from stationary series) 

through oscillations. Whereas, for the Northern Aegean Islands ( j = 11) the pattern of the 

diachronic evolution of the series is monotonic for each depreciation method. Subsequently, it is 

evident that in these cases, the dynamic characteristics of the series are unaffected by the 

depreciation methods. 

In contrast, for the remaining regions, namely Central Macedonia ( j = 2), Western Macedonia ( 

j = 3), Thessaly ( j = 4), Ionian Islands ( j = 6), Western Greece ( j = 7), Attica ( j = 9), Pelopon-

nese ( j = 10), Southern Aegean Islands ( j = 12) and Crete ( j = 13) results indicate either a 

sinusoidal diachronic evolution of the series under consideration or a monotonic pattern of 

evolution  within a specific region, which reveals the affection of the dynamic characteristics of 

the series by the employed depreciation method.       
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Table 3 

ARIMA models and characteristic roots of AR(p) & MA(q) polynomials 

Variable 
Deprec. 

Method 
Model 

AR(p) Characteristic Roots MA(q) Characteristic Roots 

1λ  
2,3 = ±λ m n i  Absolute values 

1λ  
2,3 = ±λ m n i  Absolute values 

m  n 1λ  2,3λ  m  n 1λ  2,3λ  

1,tNK  

sld ARIMA(2,1,2) ~ 0.655320 0.438392 ~ 0.788437 ~     0.586493     0.756964 ~ 0.957585 

ddb ARIMA (2,1,2) ~ 0.644820 0.445945 ~ 0.784002 ~     0.588940     0.755838 ~ 0.958198 

syd ARIMA (2,1,2) ~ 0.641906 0.440788 ~ 0.778677 ~     0.587102     0.755315 ~ 0.956656 

ohs ARIMA (2,1,2) ~ 0.769267 0.390119 ~ 0.862534 ~     0.670553     0.675939 ~ 0.952121 

2,tNK  

sld ARIMA(1,0,2) 0.900730 ~ ~ 0.900730 ~ ~  - 0.168952     0.733850 ~ 0.753047 

ddb ARIMA(2,0,2) ~ 0.717951 0.060776 ~ 0.720519 ~     0.160437     0.843940 ~ 0.859055 

syd ARIMA(2,0,2) 0.851010 0.615011 0 0.851010 0.615011 ~     0.146988     0.811110 ~ 0.824321 

ohs ARIMA(0,1,2) ~ ~ ~ ~ ~ ~   - 0.191096     0.726803 ~ 0.751506 

3,tNK  

sld ARIMA(3,1,3)  - 0.532569  - 0.096505 0.522934 0.532569 0.531765   - 0.957958   - 0.007602     0.979812 0.957958 0.979841 

ddb ARIMA(1,1,2)     0.529599 ~ ~ 0.529599 ~ ~     0.355013     0.159190 ~ 0.389070 

syd ARIMA(3,1,3)  - 0.495519  - 0.108607 0.490904 0.495519 0.502775   - 0.956785   - 0.005295     0.980485 0.956785 0.980500 

ohs ARIMA(3,1,3)  - 0.567701  - 0.099815 0.313069 0.567701 0.328596   - 0.948321   - 0.201666     0.965695 0.948321 0.986527 

4,tNK  

sld ARIMA(2,0,2) ~ 0.849373 0.194417 ~ 0.871340 ~     0.416665     0.490192 ~ 0.643349 

ddb ARIMA(2,0,2) ~ 0.841227 0.209153 ~ 0.866838 ~     0.423967     0.447460 ~ 0.616415 

syd ARIMA(2,0,2) ~ 0.841470 0.184177 ~ 0.861390 ~     0.407178     0.481669 ~ 0.630713 

ohs ARIMA(1,1,2) 0.758257 ~ ~ 0.758257 ~ ~     0.377554     0.555961 ~ 0.672042 

5,tNK  

sld ARIMA (2,0,1) ~ 0.925529     0.152498 ~ 0.938009 0.943836 ~ ~ 0.943836 ~ 

ddb ARIMA (2,0,1) ~ 0.910136     0.164435 ~ 0.924871 0.942 ~ ~ 0.942 ~ 

syd ARIMA (2,0,1) ~ 0.918138      0.162241 ~ 0.932362 0.942327 ~ ~ 0.942327 ~ 

ohs ARIMA (2,0,2) ~ 0.958723        0.131642 ~ 0.967719 ~ 0.920699      0.071502 ~ 0.923471 

6,tNK  

sld ARIMA (1,0,0) 0.792008 ~ ~ 0.792008 ~ ~ ~ ~ ~ ~ 

ddb ARIMA (1,0,0) 0.780782 ~ ~ 0.780782 ~ ~ ~ ~ ~ ~ 

syd ARIMA (3,0,2) 0.791444   -0.185582        0.873429 0.791444 0.892927 ~  -0.216833      0.947273 ~ 0.971773 

ohs ARIMA (3,0,3) 0.809447   -0.834357    0.080123 0.809447 0.838195 -0.88586  -0.882884        0.132862 0.88586 0.892825 
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 Note 1: The characteristic roots were derived from statistically significant coefficients of the estimated ARIMA models (see table of Appendix A).  

Variable 
Deprec. 

Method 
Model 

AR(p) Characteristic Roots MA(q) Characteristic Roots 

1λ  
2,3 = ±λ m n i  Absolute values 

1λ  
2,3 = ±λ m n i  Absolute values 

m  n 1λ  2,3λ  m  n 1λ  2,3λ  

7,tNK  

sld ARIMA (2,0,1) ~ 0.907242     0.274450 ~ 0.947845 0.959394 ~ ~ 0.959394 ~ 

ddb ARIMA (1,0,2) 0.590167 ~ ~ 0.590167 ~ ~ -0.330792     0.910887 ~ 0.969092 

syd ARIMA (2,0,1) ~    0.908799      0.267848 ~ 0.947448 0.968492 ~ ~ 0.968492 ~ 

ohs ARIMA (3,1,3) -0.899082 0.675528      0.559347 0.899082 0.877045 -0.983896 0.680352      0.711941 0.983896 0.984753 

8,tNK  

sld ARIMA (2,0,1) ~ 0.879466      0.271100 ~ 0.920302 0.967513 ~ ~ 0.967513  

ddb ARIMA (3,0,2) -0.862256 0.908305      0.263538 0.862256 0.945765 0.973776 -0.953501           0 0.973776 0.953501 

syd ARIMA (2,0,1) ~ 0.881222      0.279233 ~ 0.924404 0.956967 ~ ~ 0.956967  

ohs ARIMA (2,0,1) ~ 0.857340        0.208791 ~ 0.882397 0.521864 ~ ~ 0.521864  

9,tNK  

sld ARIMA (0,1,2) ~ ~ ~ ~ ~ ~  -0.230824      0.784390 ~ 0.817648 

ddb ARIMA (0,1,2) ~ ~ ~ ~ ~ ~  -0.220445       0.798376 ~ 0.828251 

syd ARIMA (0,1,2) ~ ~ ~ ~ ~ ~  -0.220293       0.793444 ~ 0.823457 

ohs ARIMA (0,1,2) ~ ~ ~ ~ ~ ~  -0.253200       0.762425 ~ 0.803369 

10,tNK  

sld ARIMA (1,1,3) 0.731744 ~ ~ 0.731744 ~ -0.736015 0.758140     0.481179 0.736015 0.897948 

ddb ARIMA (0,0,3) ~ ~ ~ ~ ~ -0.957712 -0.104576      0.951330 0.957712 0.95706 

syd ARIMA (0,0,3) ~ ~ ~ ~ ~  -0.95469   -0.105127      0.950107 0.95469 0.955905 

ohs ARIMA (1,0,3) 0.479484 ~ ~ 0.479484 ~ -0.896173   -0.050954      0.936003 0.896173 0.937389 

11,tNK  

sld ARIMA (2,0,1) 0.813104 0.710339           0 0.813104 0.710339 0.957861 ~ ~ 0.957861 ~ 

ddb ARIMA (2,0,1) 0.810509 0.702224           0 0.810509 0.702224 0.960665 ~ ~ 0.960665 ~ 

syd ARIMA (1,0,0) 0.854842 ~ ~ 0.854842 ~ ~ ~ ~ ~ ~ 

ohs ARIMA (1,0,0) 0.872221 ~ ~ 0.872221 ~ ~ ~ ~ ~ ~ 

12,tNK  

sld ARIMA (2,0,1) ~ 0.931324      0.151433 ~ 0.943555 0.999687 ~ ~ 0.999687 ~ 

ddb ARIMA (2,0,1) ~ 0.896881       0.171762 ~ 0.91318 0.999956 ~ ~ 0.999956 ~ 

syd ARIMA (2,0,2) 0.863082 -0.650723           0 0.863082 0.650723 ~  -0.638435     0.176881 ~ 0.662485 

ohs ARIMA (1,0,2) 0.849205 ~ ~ 0.849205 ~ ~  -0.185694       0.641203 ~ 0.66755 

13,tNK  

sld ARIMA (2,0,1) ~ 0.964858   0.111763 ~ 0.971309  0.4918 ~ ~ 0.4918  

ddb ARIMA (1,0,3) 0.98348 ~ ~ 0.98348 ~ -0.794637 0.109273       0.982235 0.794637 0.988294 

syd ARIMA (2,0,0) ~ 0.889649      0.066533 ~ 0.892133 ~ ~ ~ ~ ~ 

ohs ARIMA (1,1,1) 0.977342 ~ ~ 0.977342 ~ 0.57323 ~ ~ 0.57323 ~ 
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In addition, an important feature of the net fixed capital stock series is the slow convergence 

towards their equilibrium values as it is obvious from the absolute values of the characteristic 

roots given in the 1λ  and 2,3λ  columns of AR(p) processes of table 3. The velocity of the series’ 

convergence is not identical in all administrative regions since in some cases such as the Western 

Macedonia ( j = 3) convergence is quite faster than Central Greece ( j = 8) for instance. However, 

in general the absolute values of the roots are too high, which means that the series of net fixed 

capital stock converge to their equilibrium values very slowly.     

Moreover, in the case of the characteristic roots of the MA(q) processes, the impact on the 

residuals’ pattern of diachronic evolution by the depreciation methods is less distinguishable, 

compared to the case of the actual values of NKj,t series. More specifically, in the majority of the 

regions [Western Macedonia ( j = 3), Epirus ( j = 5), Ionian Islands ( j = 6), Western Greece ( j = 

7), Peloponnese ( j = 10), Southern Aegean Islands ( j = 12) and Crete ( j = 13)], the pattern of the 

residuals’ diachronic evolution is either sinusoidal, which means that their evolution is character-

ized by oscillations or is monotonic within a specific region. In this case, of course, the dynamic 

characteristics of the residuals are affected significantly by the choice of the depreciation method. 

However, in the remaining regions, Eastern Macedonia & Thrace ( j = 1), Central Macedonia 

( j = 2), Thessaly ( j = 4) and Attica ( j = 9) the residuals’ behavior is sinusoidal whereas, for 

Central Greece ( j = 8) and Northern Aegean Islands ( j = 11) it seems that residuals’ evolution is 

monotonic. Of course in this case, it is rather obvious that the dynamic characteristics of the 

residuals of the Greek net fixed capital stock series is unaffected by the depreciation methods.        

As in the case of AR(p) processes, residuals also characterized by a slow convergence towards 

their equilibrium values, as it is apparent from the absolute values of the characteristic roots, 

which are given in the last two columns of table 3. In general, the absolute values of the charac-

teristic roots are too high, since they approach the value of one, as in the case of the actual series, 

which means that the residuals of net fixed capital stock converge to their equilibrium values very 

slowly. 

Furthermore, for a better understanding of the impact on the pattern of the diachronic evolu-

tion of the series by the employed depreciation method, we constructed table 4 in which we 

present the degree of the series’ differentiation in terms of their evolutionary pattern on the basis 

of each depreciation method. As it can be clearly seen, in 7 out of 12 regions [since for Attica     

( j = 9) there are not characteristic roots for the actual NKj,t series] significant discrepancies of the 

series’ evolutionary pattern due to the different depreciation methods of physical capital do exist. 

For example, the NKj,t series of Crete ( j = 13), exhibit an oscillatory diachronic evolution for the 
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sld and the syd depreciation methods whereas, for the ddb and the ohs depreciation methods, 

they follow a monotonic evolution. In contrast, only in four cases [Eastern Macedonia and 

Thrace ( j = 1), Epirus ( j = 5), Central Greece ( j =8) and Northern Aegean Islands ( j = 11)] the 

evolutionary motive is not affected by the depreciation methods since there is 100% coincidence 

within these regions. 

In addition, the general results of the series’ evolutionary pattern for each depreciation 

method as they are presented in the last row of table 4, indicate an oscillatory evolution in the 

majority of the regions, with higher percentages (61.53%) for the sld and syd methods compared 

to those of ddb and ohs depreciation methods (46.51%). 

 

Table 4 

Differentiation of series’ evolutionary motive on the basis of the 

depreciation method of physical capital 

 sld ddb syd ohs 
As percentage of total 

Monotonic Oscillatory 

1,tNK  Oscillatory Oscillatory Oscillatory Oscillatory 0.0% 100.0% 

2,tNK  Monotonic Oscillatory Monotonic ~ 50.0% 25.0% 

3,tNK  Oscillatory Monotonic Oscillatory Oscillatory 25.0% 75.0% 

4,tNK  Oscillatory Oscillatory Oscillatory Monotonic 25.0% 75.0% 

5,tNK  Oscillatory Oscillatory Oscillatory Oscillatory 0.0% 100.0% 

6,tNK  Monotonic Monotonic Oscillatory Oscillatory 50.0% 50.0% 

7,tNK  Oscillatory Monotonic Oscillatory Oscillatory 25.0% 75.0% 

8,tNK  Oscillatory Oscillatory Oscillatory Oscillatory 0.0% 100.0% 

9,tNK  ~ ~ ~ ~ ~ ~ 

10,tNK  Monotonic ~ ~ Monotonic 50.0% ~ 

11,tNK  Monotonic Monotonic Monotonic Monotonic 100.0% 0.0% 

12,tNK  Oscillatory Oscillatory Monotonic Monotonic 50.0% 50.0% 

13,tNK  Oscillatory Monotonic Oscillatory Monotonic 50.0% 50.0% 

A
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61.53% 46.15% 61.53% 46.15% 

 

M
o
n

o
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n
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30.76% 38.46% 23.07% 38.46% 
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5. Conclusions 

 

In this paper we tried to investigate the impact on the dynamic characteristics of the Greek 

regional net fixed capital series by the four depreciation methods (sld, ddb, syd, ohs), that were 

employed in Karpetis & Zikos (2014), assuming a 25 year period of capital asset’s service life. 

Using their estimations of net fixed capital stock series over the period from 1974 to 2006, in our 

followed procedure we initially estimated the appropriate ARIMA(p,d,q) models describing best the 

diachronic evolution of net fixed capital series and then, from the estimated ARIMA (p,d,q) 

coefficients we derived the characteristic roots of the actual NKj,t  series and of their residuals as 

well.   

The results of our analysis indicate that the choice of a specific depreciation method is possibly 

connected with an affection of the dynamic characteristics of the NKj,t series. Namely, as it was 

revealed from tables 3 and 4, the pattern of the diachronic evolution may vary from one deprecia-

tion method to another within a specific region. More specifically, as table 4 indicates, the 

evolutionary motive due to the employed depreciation method differs in 7 administrative regions, 

whereas in only 4 regions there was an absolute coincidence. Finally, the high absolute values of 

the characteristic roots indicate a slow convergence of regional net fixed capital stock series 

towards their equilibrium values as for the case of Greece.   
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Appendix A: Estimation results calculated from the regression  , , , , 

=1 =1

= + ( ) + + ( )

p q

j t i j t i j t i j t i

i i

Y c a Y u a u  , where , , = Δ ( )
d

j t j tY NK  with j = 1, …. , 13 

,j tY  
Deprec. 

Method 
2

R  c  1a  2a  3a  1θ  2θ  3θ  AIC JB ARCH(1) BG(2) 

1, Δ( )tNK  

sld 0.358554 
5.826346 

(0.34780) 

1.310640 

(0.00000) 

-0.621632 

(0.00320) 
~ 

-1.172986 

(0.00000) 

0.916969 

(0.00000) 
~ 8.216276 

0.462132 

(0.793687) 

0.068137 

(0.794100) 

0.127853 

(0.938100) 

ddb 0.317243 
4.303771 

(0.45744) 

1.289639 

(0.00000) 

-0.614660 

(0.00500) 
~ 

-1.177881 

(0.00000) 

0.918143 

(0.00000) 
~ 8.179177 

0.314248 

(0.854598) 

0.046664 

(0.828974) 

0.173588 

(0.916866) 

syd 0.317452 
5.190301 

(0.38001) 

1.283812 

(0.00000) 

-0.606338 

(0.00518) 
~ 

-1.174205 

(0.00000) 

0.915190 

(0.00000) 
~ 8.206376 

0.374312 

(0.829314) 

0.099849 

(0.752010) 

0.115995 

(0.943652) 

ohs 0.439686 
10.965183 

(0.15447) 

1.538535 

(0.00000) 

-0.743965 

(0.00007) 
~ 

-1.341106 

(0.00000) 

0.906534 

(0.00000) 
~ 8.350276 

0.059071 

(0.970896) 

0.008773 

(0.925375) 

0.132485 

(0.935904) 

2,tNK  

sld 0.965634 
9.446792 

(0.00000) 

0.900730 

(0.00000) 
~ ~ 

0.337904 

(0.03960) 

0.56708 

(0.00280) 
~ 1.002565 

0.783454 

(0.675889) 

0.081169 

(0.775700) 

2.669855 

(0.263200) 

ddb 0.953067 
7.012683 

(0.00000) 

1.435902 

(0.00000) 

-0.519147 

(0.00620) 
~ 

-0.320874 

(0.02340) 

0.737975 

(0.00000) 
~ 9.816667 

1.633468 

(0.441872) 

0.075307 

(0.783800) 

1.032589 

(0.596700) 

syd 0.962187 
7.990295 

(0.00020) 

1.466026 

(0.00000) 

-0.523384 

(0.00950) 
~ 

-0.293976 

(0.08090) 

0.679505 

(0.00010) 
~ 9.892005 

1.685301 

(0.430568) 

0.02631 

(0.871100) 

0.812641 

(0.666100) 

2, Δ( )tNK  ohs 0.00000 
3.797527 

(0.00660) 
~ ~ ~ 

0.382192 

(0.01710) 

0.564761 

(0.00170) 
~ 1.020570 

0.848569 

(0.654238) 

0.013925 

(0.906100) 

0.923130 

(0.630300) 

3, Δ( )tNK  

sld 0.633915 
-5.672508 

(0.00220) 

-0.725578 

(0.00010) 

-0.385564 

(0.01310) 

-0.150596 

(0.26580) 

0.973161 

(0.00000) 

0.974652 

(0.00000) 

0.919724 

(0.00000) 
6.283978 

0.894041 

(0.639531) 

0.127596 

(0.720900) 

6.870126 

(0.032200) 

ddb 0.039114 
-6.000366 

(0.01870) 

0.529599 

(0.03340) 
~ ~ 

-0.710025 

(0.02120) 

0.151375 

(0.42350) 
~ 8.088185 

25.94260 

(0.000002) 

1.440729 

(0.230000) 

0.908947 

(0.634800) 

syd 0.680209 
-5.165959 

(0.00470) 

-0.712732 

(0.00010) 

-0.360416 

(0.01570) 

-0.125259 

(0.33610) 

0.967375 

(0.00000) 

0.971512 

(0.00000) 

0.919834 

(0.00000) 
6.231555 

0.842629 

(0.656184) 

0.468552 

(0.493700) 

5.680326 

(0.058400) 

ohs 0.663308 
-6.655203 

(0.00420) 

-0.767332 

(0.00000) 

-0.221306 

(0.18450) 

-0.061298 

(0.67930) 

1.351653 

(0.00000) 

1.355724 

(0.00000) 

0.922940 

(0.00000) 
6.223226 

0.790583 

(0.673484) 

0.415213 

(0.519300) 

0.381585 

(0.826300) 
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,j tY  
Deprec. 

Method 
2

R  c  1a  2a  3a  1θ  2θ  3θ  AIC JB ARCH(1) BG(2) 

4,tNK  

sld 0.905527 
3.056464 

(0.00000) 

1.698746 

(0.00000) 

-0.759233 

(0.00000) 
~ 

-0.833329 

(0.00030) 

0.413898 

(0.03270) 
~ 8.953694 

0.903688 

(0.636453) 

0.249479 

(0.617400) 

2.746804 

(0.253200) 

ddb 0.891967 
2.643640 

(0.00000) 

1.682454 

(0.00000) 

-0.751408 

(0.00000) 
~ 

-0.847933 

(0.00040) 

0.379968 

(0.05380) 
~ 8.868615 

0.584397 

(0.746620) 

0.623081 

(0.429900) 

2.453162 

(0.293300) 

syd 0.897553 
2.872203 

(0.00000) 

1.682941 

(0.00000) 

-0.741993 

(0.00000) 
~ 

-0.814355 

(0.00060) 

0.397798 

(0.04070) 
~ 8.939108 

0.855950 

(0.651828) 

0.326774 

(0.567600) 

2.921483 

(0.232100) 

4, Δ( )tNK  ohs 0.431987 
6.631656 

(0.58840) 

0.758257 

(0.00000) 
~ ~ 

-0.755109 

(0.00050) 

0.45164 

(0.01240) 
~ 9.149774 

1.119436 

(0.571370) 

0.020597 

(0.885900) 

3.023523 

(0.220500) 

5,tNK  

sld 0.941988 
6.461525 

(0.00000) 

1.851059 

(0.00000) 

-0.879860 

(0.00000) 
~ 

-0.943836 

(0.00000) 
~ ~ 6.177263 

0.372514 

(0.830060) 

0.848440 

(0.357000) 

1.600440 

(0.449200) 

ddb 0.919183 
5.317609 

(0.00000) 

1.820272 

(0.00000) 

-0.855386 

(0.00000) 
~ 

-0.942000 

(0.00000) 
~ ~ 6.145066 

0.514272 

(0.773263) 

0.885930 

(0.346600) 

1.230136 

(0.540600) 

syd 0.93681 
5.942815 

(0.00000) 

1.836276 

(0.00000) 

-0.869300 

(0.00000) 
~ 

-0.942327 

(0.00000) 
~ ~ 6.191022 

0.396300 

(0.820247) 

0.893612 

(0.344500) 

1.578525 

(0.454200) 

ohs 0.978186 
1.037104 

(0.00000) 

1.917446 

(0.00000) 

-0.936479 

(0.00000) 
~ 

-1.841397 

(0.00000) 

0.852799 

(0.00000) 
~ 6.165071 

0.598737 

(0.741286) 

1.732663 

(0.188100) 

4.058621 

(0.131400) 

6,tNK  

sld 0.994507 
6.623426 

(0.00000) 

0.792008 

(0.00000) 
~ ~ ~ ~ ~ 2.368568 

7.174858 

(0.027669) 

0.142466 

(0.705800) 

0.280462 

(0.869200) 

ddb 0.992413 
5.892803 

(0.00000) 

0.780782 

(0.00000) 
~ ~ ~ ~ ~ 2.236499 

17.03623 

(0.000200) 

0.455779 

(0.499600) 

0.008426 

(0.995800) 

syd 0.991354 
6.647601 

(0.00000) 

0.420279 

(0.00010) 

-0.503562 

(0.00000) 

0.631033 

(0.00000) 

0.433666 

(0.00000) 

0.944343 

(0.00000) 
~ 2.202765 

1.014005 

(0.602298) 

0.128767 

(0.719700) 

0.648903 

(0.722900) 

ohs 0.997257 
9.590795 

(0.00000) 

-0.859267 

(0.00000) 

0.648164 

(0.00000) 

0.568694 

(0.00000) 

2.651628 

(0.00000) 

2.361359 

(0.00000) 

0.706151 

(0.00000) 
2.488390 

0.183532 

(0.912319) 

0.174902 

(0.675800) 

1.833862 

(0.399700) 

7,tNK  

sld 0.879873 
2.200079 

(0.00000) 

1.814483 

(0.00000) 

-0.898410 

(0.00000) 
~ 

-0.959394 

(0.00000) 
~ ~ 8.060493 

2.769522 

(0.250384) 

2.843347 

(0.091800) 

0.155297 

(0.925300) 

ddb 0.878010 
1.953051 

(0.00000) 

0.590167 

(0.00010) 
~ ~ 

0.661584 

(0.00000) 

0.939138 

(0.00000) 
~ 8.093057 

0.046614 

(0.976962) 

0.073240 

(0.786700) 

0.228700 

(0.891900) 

syd 0.857678 
2.068868 

(0.00000) 

1.817598 

(0.00000) 

-0.897658 

(0.00000) 
~ 

-0.968492 

(0.00000) 
~ ~ 8.052771 

3.923027 

(0.140645) 

3.187430 

(0.074200) 

0.020358 

(0.989900) 

7, Δ( )tNK  ohs 0.407755 
2.242584 

(0.55920) 

0.451974 

(0.00150) 

0.445503 

(0.00340) 

-0.691581 

(0.00000) 

-0.376808 

(0.00010) 

-0.369052 

(0.00110) 

0.954121 

(0.00000) 
8.201791 

1.079876 

(0.582784) 

0.000465 

(0.982800) 

1.750666 

(0.416700) 
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,j tY  
Deprec. 

Method 
2

R  c  1a  2a  3a  1θ  2θ  3θ  AIC JB ARCH(1) BG(2) 

8,tNK  

sld 0.897463 
9.268767 

(0.00000) 

1.758931 

(0.00000) 

-0.846955 

(0.00000) 
~ 

-0.967513 

(0.00000) 
~ ~ 1.073717 

0.722611 

(0.696766) 

1.905293 

(0.167500) 

0.000000 

(1.00000) 

ddb 0.891772 
8.095639 

(0.00000) 

0.954355 

(0.00000) 

0.671913 

(0.00640) 

-0.771263 

(0.00000) 

-0.020275 

(0.86790) 

-0.928496 

(0.00000) 
~ 1.066130 

2.389515 

(0.302777) 

0.024828 

(0.874800) 

0.093187 

(0.954500) 

syd 0.882395 
8.671019 

(0.00000) 

1.762443 

(0.00000) 

-0.854523 

(0.00000) 
~ 

-0.956967 

(0.00000) 
~ ~ 1.074903 

0.704792 

(0.703002) 

2.273089 

(0.131600) 

0.052597 

(0.974000) 

ohs 0.909273 
1.254238 

(0.00000) 

1.714679 

(0.00000) 

-0.778625 

(0.00000) 
~ 

-0.521864 

(0.06580) 
~ ~ 1.121218 

0.098604 

(0.951854) 

3.180758 

(0.074500) 

1.392524 

(0.498400) 

9, Δ( )tNK  

sld 0.413457 
5.704192 

(0.05290) 
~ ~ ~ 

0.461647 

(0.00450) 

0.668548 

(0.00020) 
~ 1.157658 

0.096354 

(0.952965) 

1.01E-06 

(0.999200) 

0.203651 

(0.903200) 

ddb 0.396883 
4.648266 

(0.09300) 
~ ~ ~ 

0.440890 

(0.00350) 

0.686000 

(0.00010) 
~ 1.146894 

0.230518 

(0.891135) 

0.032233 

(0.857500) 

0.016197 

(0.991900) 

syd 0.398038 
5.262120 

(0.06380) 
~ ~ ~ 

0.440586 

(0.00470) 

0.678082 

(0.00010) 
~ 1.151844 

0.265718 

(0.875589) 

0.002397 

(0.960900) 

0.121723 

(0.941000) 

ohs 0.432476 
8.577043 

(0.01320) 
~ ~ ~ 

0.506400 

(0.00430) 

0.645402 

(0.00060) 
~ 1.183518 

0.155684 

(0.925110) 

0.06008 

(0.806400) 

1.247780 

(0.535900) 

10, Δ( )tNK  sld 0.021784 
4.945926 

(0.65310) 

0.731744 

(0.00110) 
~ ~ 

-0.780266 

(0.00280) 

-0.309696 

(0.24060) 

0.593456 

(0.00370) 
9.933699 

15.81677 

(0.000368) 

0.396140 

(0.529100) 

4.851412 

(0.088400) 

10,tNK  

ddb 0.746645 
2.255928 

(0.00000) 
~ ~ ~ 

1.166864 

(0.00000) 

1.116272 

(0.00000) 

0.877230 

(0.00000) 
9.799585 

15.17707 

(0.000506) 

0.005057 

(0.943300) 

0.176922 

(0.915300) 

syd 0.764969 
2.417218 

(0.00000) 
~ ~ ~ 

1.164944 

(0.00000) 

1.114482 

(0.00000) 

0.872353 

(0.00000) 
9.853221 

16.94466 

(0.000209) 

0.001639 

(0.967700) 

0.458455 

(0.795100) 

ohs 0.839183 
3.380696 

(0.00000) 

0.479484 

(0.01310) 
~ ~ 

0.998081 

(0.00000) 

0.970026 

(0.00000) 

0.787465 

(0.00000) 
1.009612 

4.601379 

(0.100190) 

0.006355 

(0.936500) 

3.971273 

(0.137300) 

11,tNK  

sld 0.950123 
6.026446 

(0.01470) 

1.523443 

(0.00000) 

-0.577579 

(0.00030) 
~ 

-0.957861 

(0.00000) 
~ ~ 5.506528 

392.0975 

(0.000000) 

0.033889 

(0.853900) 

0.482848 

(0.785500) 

ddb 0.929894 
5.259114 

(0.02350) 

1.512733 

(0.00000) 

-0.569159 

(0.00040) 
~ 

-0.960665 

(0.00000) 
~ ~ 5.511038 

434.3090 

(0.00000) 

0.019169 

(0.889900) 

0.487508 

(0.783700) 

syd 0.964066 
6.145660 

(0.27310) 

0.854842 

(0.00000) 
~ ~ ~ ~ ~ 5.500097 

498.9579 

(0.000000) 

0.028789 

(0.865300) 

1.537550 

(0.463600) 

ohs 0.988192 
5.427712 

(0.44250) 

0.872221 

(0.00000) 
~ ~ ~ ~ ~ 5.625717 

145.0544 

(0.000000) 

0.238227 

(0.625500) 

1.907364 

(0.385300) 
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,j tY  
Deprec. 

Method 
2

R  c  1a  2a  3a  1θ  2θ  3θ  AIC JB ARCH(1) BG(2) 

12,tNK  

 

sld 0.966549 
2.149624 

(0.00000) 

1.862649 

(0.00000) 

-0.890297 

(0.00000) 
~ 

-0.999687 

(0.00000) 
~ ~ 3.904860 

5.917430 

(0.051886) 

1.209591 

(0.271400) 

0.872213 

(0.646500) 

ddb 0.958399 
1.740070 

(0.00000) 

1.793762 

(0.00000) 

-0.833898 

(0.00000) 
~ 

-0.999956 

(0.00000) 
~ ~ 3.795892 

7.758787 

(0.020663) 

0.657260 

(0.417500) 

0.450625 

(0.798300) 

syd 0.968330 
1.634019 

(0.00050) 

0.21236 

(0.17780) 

0.561627 

(0.00030) 
~ 

1.276870 

(0.00000) 

0.438887 

(0.04830) 
~ 4.033646 

1.707740 

(0.425764) 

2.435580 

(0.118600) 

2.321910 

(0.313200) 

ohs 0.987539 
2.342306 

(0.00010) 

0.849205 

(0.00000) 
~ ~ 

0.371387 

(0.03090) 

0.445624 

(0.01010) 

 

~ 4.507202 
0.954484 

(0.620492) 

0.414957 

(0.519500) 

 

1.181663 

(0.553900) 

 

13,tNK  

sld 0.981314 
8.474362 

(0.11570) 

1.929715 

(0.00000) 

-0.943441 

(0.00000) 
~ 

-0.491800 

(0.02350) 
~ ~ 5.031520 

0.817982 

(0.664320) 

0.141466 

(0.706800) 

2.886468 

(0.236200) 

ddb 0.976908 
1.096797 

(0.60530) 

0.983480 

(0.00000) 
~ ~ 

0.576091 

(0.00020) 

0.803061 

(0.00000) 

0.776142 

(0.00000) 
4.926840 

0.678543 

(0.712289) 

0.462585 

(0.496400) 

0.138785 

(0.933000) 

syd 0.977096 
7.712628 

(0.20650) 

1.779297 

(0.00000) 

-0.795901 

(0.00000) 
~ ~ ~ ~ 5.048995 

0.552607 

(0.785583) 

0.023233 

(0.878900) 

2.761263 

(0.251400) 

13, Δ( )tNK  ohs 0.816238 
2.721604 

(0.63280) 

0.977342 

(0.00000) 
~ ~ 

-0.573230 

(0.00400) 
~ ~ 5.117250 

5.746853 

(0.056505) 

0.011335 

(0.915200) 

3.529478 

(0.171200) 

Note: p – values in parenthesis. 
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