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Abstract

This paper proposes a novel approach to provide directional forecasts for carry

trade strategies; this approach is based on Support Vector Machines (SVM), a learn-

ing algorithm which delivers extremely promising results. Building on recent find-

ings of the literature on carry trade we condition the SVM on indicators of uncer-

tainty and risk; we show that this provides a dramatic improvement of the perfor-

mance of the strategy, in particular during periods of financial distress such as the

recent financial crises. Disentangling between measures of risk we show that the

best performances are obtained by conditioning the SVM on measures of liquidity

risk rather than on market volatility.
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1 Introduction

The uncovered interest parity (UIP) is probably one of the simplest and most intuitive

no-arbitrage conditions in financial markets. For risk neutral investors with rational

expectations the expected exchange rate change has to compensate the interest differ-

ential that may arise between two currencies. Such no arbitrage condition is most likely

to hold in the FX market as it is the closest approximation to the notion of market effi-

ciency. Yet the empirical evidence fails to provide support for the UIP, on the contrary it

supports the opposite: high yielding currencies tend to appreciate instead of depreci-

ating as predicted by the theory. This is known as the “forward bias puzzle”1 and has a

natural implication: the possibility of realising excess returns from carry trade, i.e. the

practice of investing in high yield currency by going short on low yield ones.

Simple carry trade strategies delivered positive average excess returns for substan-

tially long periods, coupled with Sharpe ratios significantly higher than those measured

in other financial markets (such as the US stock market), spurring a considerable atten-

tion by economists and practitioners alike. During the last decades a large literature has

developed investigating the reasons underlying the UIP puzzle and the explanations for

the excess of returns from carry trade.2

Being based on a simple arbitrage condition, the carry trade does not require any

model. As such it is a rather naı̈ve strategy and we know that more sophisticated in-

vestors would make use of any information that they may find useful, particularly if

deriving from some established model. Unfortunately the literature is of little help in

this respect. In fact in a carry trade strategy the only unknown is the exchange rate and

the improvement of the strategy necessarily implies making a correct guess about the

future change in the exchange rate. However, since the seminal work by Meese and

Rogoff (1983) the literature struggled in finding a model able to display sufficient pre-

dictive power for the exchange rate, to the point that over the last 30 years ”to beat the

random walk” has been the most relevant challenge for international economists in-

volved in exchange rate forecasting (see Rossi (2013) for a recent survey). In explaining

excess returns from carry trade, two main approaches have been followed by the litera-

1The name derives from the fact that the failure of the UIP results in the forward rate being a biased
predictor of future spot rates.

2See Engel (2014) for a recent survey.
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ture. On the one hand the “traditional view” emphasises the importance of fundamen-

tals in providing useful information for exchange rate forecasting; in particular Jordà

and Taylor (2012) show that conditioning the carry trade strategy on the predictions of

a simple fundamental equilibrium exchange rate model yields an increase in perfor-

mance with a significant improvement in Sharpe ratios. On the other hand, building

on the fact that carry trade returns are negatively skewed, the “risk view” posits they

are essentially a compensation for currency crashes reflecting a sort of “Peso problem”.

Indeed Brunnermeier, Nagel, and Pedersen (2009), Burnside et al. (2011) and Farhi et al.

(2015) show that crash risk accounts for a high fraction of the carry trade risk premium

in advanced countries over the last 20 years.3 Menkhoff et al. (2012) find that excess

returns to carry trades are a compensation for time-varying risk and in particular to

for global foreign exchange volatility risk. More recently Cenedese, Sarno, and Tsiakas

(2014) provide some theoretical underpinnings of the relationship between volatility

and carry trade returns using an intertemporal capital asset pricing model and show

that conditioning the carry trade strategy on FX risk measures results in a clear im-

provement in the performance, even accounting for transaction costs.

Our paper fits in this line of research by providing innovative contributions on sev-

eral domains: first we propose a novel approach to directional forecasts for carry trade

strategies; this approach is based on Support Vector Machines, a learning algorithm

which provides extremely promising results and a wide range of possible applications

in finance. To our knowledge this is the first time these tools been applied exchange

rate modelling and carry trade. Second we condition the SVM model on indicators of

uncertainty and risk; we show that this provides a dramatic improvement of the per-

formance of the strategy, in particular during periods of financial distress such as the

recent financial crises. This provides a clear support for the view that considers excess

returns from carry trade a compensation for risk. Third we disentangle among different

measures of risk showing that the best performances derive from measures of liquidity

risk rather than from measures of market volatility.

The remainder of the paper is structured as follows: section 2 illustrates the methods

applied and the data used; section 3 presents the results; section 4 concludes.

3Using different techniques Jurek (2014) downsizes the importance of crash risk.
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2 Methdods and data

There are two general approaches in constructing the carry trade. The traditional ap-

proach defines the carry strategy in terms of interest rate differentials; this is the ap-

proach followed by, among others, Brunnermeier, Nagel, and Pedersen (2009) and Jordà

and Taylor (2012). An alternative approach casts the carry trade in terms of forward cur-

rency contracts, see for example Burnside et al. (2011), Cenedese, Sarno, and Tsiakas

(2014) and Bakshi and Panayotov (2013). Clearly the two approaches are equivalent so

long as the Covered Interest Parity holds which is one assumption well supported by

the empirical evidence.

We chose to follow the latter approach which has the major advantage of allowing

a simple incorporation of transaction costs which are crucial in determining the real

return on carry trade strategies.4

The return from the carry trade strategy can be briefly illustrated as follows:

zt+1 =


(
Fask
t,t+1

Sbid
t+1

)γt
− 1 if γt > 0(

F bid
t,t+1

Sask
t+1

)γt
− 1 if γt < 0

where:

γt =

+1 if log
(
Ft,t+1

St+1

)
> 0

−1 if log
(
Ft,t+1

St+1

)
< 0

Considering the return i on deposits, the return from carry trade becomes:

rt = (1 + zt)(1 + i)− 1

Clearly, given that there are several currency pairs to be considered among the coun-

tries considered there is an issue of the identification of the “best” strategy. In order to

avoid the problem of data snooping we concentrate only on two portfolios: one equal-

weight portfolio which consists in placing a uniform bet of size 1/N where N is the

number of currency pairs. The second is a dynamically rebalanced portfolio where in

4As shown by Lyons (2001) bid ask spreads quoted by standard data providers are approximately twice
the size of inter-dealer spreads. Therefore our estimates on transaction costs are very conservative.
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each period currencies are ranked by their interest rate differential and the investment

is conducted in only the first three currencies.

2.1 Carry trade and Support Vector Machines

As stated in the introduction the standard carry trade strategy is rather simple and naı̈ve

and could be ideally improved by adding information that help predicting future ex-

change rate changes. We do so by conditioning the long-short trade choices of a carry

trade strategy on the prediction of a model. Instead of using the direction of the forecast

of a standard regression model, we use a Support Vector Machine where the input vari-

ables are indicators of market uncertainty. Thus conditional upon observing indicators

of market uncertainty at time t the SVM yields a prediction about the direction of the

carry trade return at time t+1. SVM is currently one of the most popular machine learn-

ing algorithms and has successfully been applied to numerous fields, and recently also

to financial market forecasts.5 The SVM is a binary classification algorithm that classi-

fies observations with certain features in two classes. This is particularly interesting for

the purpose of the carry trade since what really matters for the investor or the trader is

the ability to predict the direction of the trade, not its magnitude. In order to gain excess

returns from the carry trade one in fact has to correctly guess the direction of change of

exchange rates not to accurately forecast the exchange rate itself. In this respect binary

classification systems may work better than standard econometric tools such as Probit

or Logit regressions.

Intuitively the Support Vector is an algorithm which constructs the hyperplane that

maximises the distance between two classes of observations (long and short positions

in our case). When the two classes are clearly separable the SVM is analogous to a

linear optimization problem that can be solved with standard tools (i.e. lagrange mul-

tiplier). Figure 1 helps refining the intuition. In the figure we have represented two

classes of observations (black and grey dots) each of which is defined by two variables

(X1, X2); there are infinite possible linear separating hyperplanes that can be used as

classifiers (the figure on the left panel shows three of them). SVMs identify the optimal

separating hyperplane in the following way: first the perpendicular distance between

5See for example Huerta, Corbacho, and Elkan (2013) and Papadimitriou, Gogas, and Stathakis (2014).
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Figure 1: Support Vector Machine: optimal separating hyperplane
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any observation and the given hyperplane is computed, subsequently it is identified

the smallest distance from the observation to the hyperplane; this defines the margin,

that is the maximal width of the slab parallel to the hyperplane that has no interior data

points. The optimal separating hyperplane is such that maximises the margin. In the

right panel of Figure 1 there are three observations (two black and one grey) that have

the minimum distance from the hyperplane. These observations are called the sup-

port vectors and they identify the margin (the distance between the two dashed lines).

The intuition underlying the margin maximisation is that a large margin on the training

data is expected to deliver a good classification on the test data.

A classification based on the optimal separating hyperplane could be extremely ef-

ficient but has a drawback: it could be too sensitive to individual observations; as clear

from Figure 1 a change in the support vectors would imply a potentially large change

in the position of the maximal margin hyperplane. SVMs are flexible instruments that

solve this problem by introducing a form of soft margin classification; in other words

they allow the misclassification of few training observations in order to reach a better

classification for most of the training observations.

The example provided in Figure 1 is rather simple, however there are several cases

where a linear separation is not possible, for instance when the relationship between

the predictors and the outcome is non-linear. This is indeed the case with exchange

5



Figure 2: Support Vector Machines: the kernel principle
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rates where there is a growing literature stressing the presence of non-linearities in their

dynamic adjustment (Sarno, Valente, and Leon, 2006). The left panel of Figure 2 show

one such example, where a linear classificator would perform rather poorly.

In principle it would be possible to enlarge the feature space with non linear func-

tions of the predictors, but this would result in a huge number of features and the com-

putational cost would be unmanageable.

Fortunately a useful result by Cortes and Vapnik (1995) shows that it is possible to

project the dataset through a kernel function into a higher dimensional space (i.e. fea-

ture space) where the dataset is linearly separable (see the right panel of the figure).

More formally let x be a M element vector of variables (in our case the returns from

carry trade and the conditioning factors such as uncertainty) and let N be the number

of training periods. The SVM is a classification function:

f(x) = β +
N∑
i=1

αiyiφ(x,xi)

where xi defines the vector of variables in the training set, yi is a classifier that takes

values of +1 or −1 formally assigning each observation in one of the two groups, β is a

constant that shifts the SVM output, αi are parameters which are non zero only for the
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support vectors and depend on the tuning parameter for the soft margin classification.

Both β and αi are chosen optimally within the training period. Finally we chose the

kernel function φ following the literature, selecting the Radial Kernel:

φ(x,xi) = e−δ||x−xi||2

where δ is a parameter chosen to optimise the in sample fit of the model.

SVMs have several interesting features which make them potentially extremely use-

ful for providing directional forecast of the exchange rate. The two main advantages are

the following.

• By construction the SVM is optimised to discriminate around the decision margin

while it attaches no weight to data which are easily classifiable. This is the main

difference with a regression based approach: the latter in fact weights all the ob-

servations and not just those close to the decision margin resulting less effective

in binary classification problems. In principle also logistic regression is efficient

as a classifier, it is limited by the fact that it estimates a linear decision boundary

• SVM deals with non-linearity quite naturally through the kernel function without

imposing a particular functional form which could be valuable in cases such as

the one we are dealing with where there is not a well established theory that pro-

vides clearly testable implications.6 This could help overcome a general problem

with non-linear models which are known to perform well in sample but fail in out

of sample forecasting (Teräsvirta, 2006).

As any machine learning algorithms the SVM needs a training period; we select the

training period as the previous 5 years, the algorithm is subsequently applied with a

rolling window of 5 years. The use of rolling window approach is widespread in ex-

change rate modelling since the seminal work of Meese and Rogoff (1983), and has the

benefit of reducing the problem of parameter instability over time (a known issue in

this field), at the cost of not considering possible efficiency gains from a sample size

increasing with time.

6Indeed Jordà and Taylor (2012) show that their augmented carry trade strategy improves the most
when they use a non linear model.
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2.2 Measuring performance

In comparing the results of a SVM strategy with the standard carry trade we use a num-

ber of measures. In a mean-variance setting we provide, alongside with the average

return, standard deviation, skewness, and Sharpe ratio. It is well known that standard

tests comparing Sharpe ratios of different investment strategies fail when tails are heav-

ier than the normal distribution or display time series correlation. We therefore use the

Ledoit and Wolf (2008) test, which is robust to non-normality and serial correlation in

returns. Given the skewness in carry trade returns we compute additional measures

widely used in finance which are particularly suitable with non normal returns: the

Omega ratio, the Sortino Index and the Upside potential. The Omega ratio measures

the probability weighted ratio of gains versus losses for some threshold return target,

and it employs all the information contained within the distribution of returns, not as-

suming normality of returns’ distribution.

Ω =
1
T

∑T
t=1 i

+(rt −Rmin)
1
T

∑T
t=1 i

−(rt −Rmin)

Where Rmin is the minimum acceptable return (0 in our case), T is the total number

of periods, i+ and i− are two indicator functions constructed as follows: i+ = 1 if rt >=

Rmin and i+ = 0 if rt < Rmin; i− = 1 if rt <= Rmin and i− = 0 if rt > Rmin

The Sortino Index is analogous to the Sharpe ratio with the difference that in com-

puting the standard deviation of excess returns it considers only negative returns.

SI =
R− T
DR

whereR is the average return andDR =
(

1
T

∑T
t=1 i

−(rt −Rmin)2
)1/2

is the downsize risk.

When return distributions are symmetrical and the target return is close to the me-

dian of the distribution, the Sortino and the Sharpe ratio provide similar results. How-

ever in the presence of skewness of returns there can be substantial differences. Gen-

erally speaking the larger the Sortino index the lower is the risk of large losses.

We include also the upside potential which measures the upside potential relative

to the downside risk
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UP =
1
T

∑T
t=1 i

+(rt −Rmin)√
1
T

∑T
t=1 i

−(rt −Rmin)2

Finally, following Della Corte and Tsiakas (2012) Fleming, Kirby, and Ostdiek (2001)

and Thornton and Valente (2012), we compute a utility based measure of performance.

In particular we calculate the performance fee, that is the maximum fee that an investor

is willing to pay to switch from the standard carry trade strategy to the improved SVM

strategy. The fee (F ) is derived by equating the average utility of the portfolios based on

the two investment strategies. Formally F solves the following equation:7

T−1∑
t=0

{(
RCTSVM
t+1 − F

)
− λ

2(1 + λ)

(
RCTSVM
t+1 − F

)2}
=

T−1∑
t=0

{
RCT
t+1 −

λ

2(1 + λ)

(
RCT
t+1

)2}

Clearly the measure above depends on the shape of the utility function and in par-

ticular on the relative risk aversion parameter λ.8

2.3 Data

Exchange rate data are extracted from Factset which provides bid, ask, and mid quotes

for spot and forward contracts on a daily basis. We conducted our analysis using both

monthly and weekly forward rates and our sample starts in October 1997 and ends in

August 2015.9 In terms of currency selection, in order to compare our results with the

major part of the literature we have considered only the most liquid currencies, i.e.

the so called G10 currencies. Specifically the selected currency are: Australian Dol-

7The equation below can be derived considering quadratic utility as good second-order approxima-
tion to the investors true utility function. Thus U(Wt+1) = WtR

p
t+1 − 1

2αW
2
t (Rp

t+1)2 where W is the
investor’s wealth, α is his absolute risk aversion and Rp is the return on his portfolio. Assuming con-
stant αWt, defining the coefficient of relative risk aversion λ = αWt/(1− αWt) and defining W0 as initial
wealth, we can derive the average utility as a consistent estimate of expected utility:

Ū(·) = W0

(
T−1∑
t=0

Rp
t+1 −

λ

2(1 + λ)
(Rp

t+1)2

)
From which the equation in the text follows.

8In our calculations we assumed a value of λ = 6.
9More specifically the sample for the monthly forward contracts ranges from 10-1997 to 08-2015 while

the sample for the weekly forward contract ranges from 10-1999 to 08-2015.
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lar (AUD), Canadian Dollar (CAD), Swiss Franc (CHF), Euro (EUR), UK Pound (GBP),

Japanese Yen (JPY), Norwegian Krona (NOK), New Zealand Dollar (NZD), Swedish Krona

(SEK), US Dollar (USD). In computing the returns to carry trade it is necessary to define

a reference currency in terms of which they are calculated; we select the Dollar as the

majority of the studies do, therefore the perspective is that one of an American investor

who selects different investment strategies.

Regarding the measures of uncertainty that are employed in the SVM we use differ-

ent variables. First we consider the well known VIX index, i.e. the measure of the im-

plicit volatility of the S&P 500 index options. The VIX is probably the most popular mea-

sure of the expected volatility of the stock market. Second we consider the TED spread,

the difference between the LIBOR and the US short-term government bonds rate (T-

bills); it is the most popular measure of credit risk. Third we consider the Chicago Fed

National Financial Conditions Index (NFCI) which measures U.S. financial conditions

in money markets, debt and equity markets, and the traditional and shadow banking

systems. Fourth, following Christiansen, Ranaldo, and Söderlind (2011) we construct a

measure of the FX Implied Volatility by using the implicit volatility of the at the money

1-month options on CAD, CHF, EUR, JPY and GBP all against the USD.10 The VIX, TED

and NFCI indexes are obtained from the Federal Reserve Bank of St.Louis database, the

option data used for the FX implicit volatility measure are obtained from Bloomberg.

The frequency and the time availability is the same as the corresponding carry trade

strategy (weekly and monthly).

3 Results

In presenting the results we proceed as follows. First we document the failure of the

UIP in the sample of exchange rate considered, subsequently we show the importance

of measures of risk and uncertainty in explaining carry trade returns, finally we use

measures of uncertainty with the SVM in order to improve the carry trade strategy.

The excess returns from carry trade are a direct consequence of the failure of the

uncovered interest parity. Table 1 reports the results of the standard equation used to

10We use the simple average across these measures; using the 1st principal component instead of the
simple average would not change our results.
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test the UIP: st+1−st = α+β(ft−st)+εt+1, using monthly rates. The table reveals the well

known issues associated with the uncovered interest parity. First there is generally very

little support for the UIP: estimates of β are largely different from 1.11 Second although

several coefficients are negative suggesting the profitability of carry trade, there is a

large heterogeneity of results across currencies hinting that the selection of currencies

with which the carry trade is conducted can make a big difference.

3.1 Carry trade and uncertainty

We have stressed before that one possible explanation for the excess returns of carry

trade is that they are a compensation for a “crash risk” where traders are exposed to

larger losses the more the exchange rate deviates from fundamentals. In fact Brunner-

meier, Nagel, and Pedersen (2009) and Clarida, Davis, and Pedersen (2009) document

that carry trades are characterised by negative skewness. By linking funding and mar-

ket liquidity, Brunnermeier and Pedersen (2009) provide a theoretical rationalisation

for this. On the one hand the ability of traders to provide market liquidity depends

on their availability of funding; on the other hand traders’ funding, depends on as-

sets’ market liquidity. In such context in period of high volatility liquidity can dry up

generating liquidity spirals which can cause large losses on the carry trade. More im-

portantly the relationship between volatility and market return is asymmetric, deter-

mining a negatively skewed distribution of asset returns: in periods of high volatility

and market uncertainty large negative shocks generate losses and make traders’ fund-

ing constraints binding, forcing them to sell assets which in turn worsen volatility and

the funding problem. On the contrary funding constraints are not binding in case of

positive shocks, and the amplification mechanism would not unfold.

In this setting the relationship between carry trades returns and market uncertainty

is different from what traditionally posited by the standard intertemporal capital asset

pricing model - ICAPM - (Merton, 1973): Et[rt+1] = α + βV art[rt+1]

According to the ICAPM the condition above should hold for the full conditional

distribution of asset returns. On the contrary with a skewed distribution of returns,

the coefficient β varies along the distribution of expected returns possibly assuming

11In the table the level of significance refers to the test that the coefficient is different from 1 as pre-
dicted by the UIP.
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different signs at its extremes.

Following Cenedese, Sarno, and Tsiakas (2014) we document this by estimating pre-

dictive regressions where the expected return of carry trade at different quantiles are

regressed on measures of volatility. Our approach differs from Cenedese, Sarno, and

Tsiakas (2014) in one important aspect: they use a measure of ex post realised volatility

of the exchange rate, while we use forward looking measures of market uncertainty. We

believe that this is the most correct approach to frame the intertemporal capital asset

relationship which holds ex ante in expected terms.

In detail we estimate the following regression:

Qrt+1(k|Unct) = α(k) + β(k)Unct + εt+1 (1)

Where Qrt+1(k|·) is the k-th quantile of the distribution of returns from carry trade

and Unc are the following measures of uncertainty/risk: Ted spread, VIX, NFCI, FX im-

plied volatility, as described in section 2.3.

Table 4 reports the results. Following the Brunnermeier and Pedersen (2009) ar-

gument we expect the relationship between market uncertainty and returns from carry

trade to be negative al lower quantiles and positive at higher quantiles of the return dis-

tribution. The table fully confirms our prior for all the measures of uncertainty used, for

both monthly and weekly data. In addition Table 3 reports R2 of the regressions at the

different quantiles revealing that at lower quantiles not only market uncertainty has a

negative effect on carry trade returns but its explanatory power is particularly high. Fi-

nally Figures 3 and 4 report the standardised coefficients that allow comparison across

uncertainty measures.

3.2 SVM strategies

If market uncertainty is so important in predicting large negative returns, this informa-

tion could be used to improve carry trade strategies. We do so by implementing the

SVM tool described in section 2.1: we therefore augment the carry trade strategies on

the prediction of a SVM algorithm conditioned on the set of variables capturing market

uncertainty. Our strategy is extremely simple: for any pair of currency, given a direction

of trade pointed out by the standard carry trade, we confirm it if this is suggested by the

12



prediction of the SVM, otherwise we invert it. We therefore use the SVM for what it is

more efficient: directional forecast.

In order to compare our results with the literature, we implement the investment

strategy on both monthly and weekly forward rates and compute two different port-

folios. The first is an equally weighted portfolio that places a uniform bet on every

currency pair in the sample (Jordà and Taylor, 2012); the second is a dynamic portfolio

that invest in each period in the 3 currency pairs that display the largest forward-spot

differential.12 In every case the results are compared with the standard classic carry

trade strategy.

Table 4 present the results. A classic carry trade strategy conducted over the entire

period 2002-201513 yields an average yearly return of 2.74% (considering transaction

costs) in line with the results of the literature. Generally carry trade strategies deliver

Sharpe ratios that are well above the value of 0.4 which is the average of the SP500 over

the same period; in our case the Sharpe ratio is close to 0.7. Finally we confirm the

fact that carry trade returns are also characterised by negative skewness stressing the

importance of considering measures that account for more than just the first two mo-

ments.

The presence of transaction costs can make a big difference in terms of average re-

turn; in fact they explain a large part of the difference between the strategies conducted

on 1 week and 1 month forward contract (the average return drops from 2.7 to -0.4).

This is due to the fact that with forward contracts the frequency of transaction is higher

hence the amount of costs. This effect is mitigated in the dynamic rebalanced portfolio

by the lower frequency of portfolio adjustment and therefore by the reduced number of

transactions.

Dynamic rebalancing improves consistently the carry trade strategy: the average

return increases from 2.7% to 5.3% with monthly data and from -0.4% to 2.2% with

weekly data. This is in line with the results of Bakshi and Panayotov (2013) and with

Table 1 that shows a great deal of heterogeneity in UIP failures across currency pairs.

Turning to the main innovation of the paper, the use of the SVM conditioned on

uncertainty and risk improves spectacularly the returns from carry trade. Considering

12Both strategies involve a weekly rebalancing. In case of the monthly strategy every week we rebalance
1/4 of the portfolio.

13As stressed in section 2 the period before 2002 is used in sample for training the SVM algorithm.
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the equally weighted portfolio the average return jumps from 2.7 to 10.6% with monthly

data and from -0.4 to 9.9 with weekly data. Also the Sharpe ratio improves significantly

and the negative skeweness is strongly reduced (it actually disappears in the monthly

data); Omega, Sortino and Upside potential all increase significantly. In particular the

strong increase of the Sortino index suggests that the strategy based on the SVM model

minimizes the risk of heavy losses.

Finally turning to utility based performance measures, an investor would be willing

to pay a fee of up to 11% for switching from the standard carry trade strategy to the

SVM based one for the equally weighted portfolio with monthly forward rates. The

fact that the fee is higher than the return of the SVM model itself is an indicator of the

attractiveness of this strategy: the investor is willing to pay a lot not only for capturing

the higher return but also as a reward for the lower risk and a lesser exposure to negative

outcomes.

In order to better understand the origin of this improvement in performances Table

5 splits the results between cases where the SVM and the standard carry trade model

agree and where they disagree. It is evident that accounting for market uncertainty

allow to gain precisely in periods where the standard carry trade would yield negative

returns.

This is clearly shown in Figure 5 where the distribution of returns from the SVM

model and the standard carry trade are plotted for periods where the latter are positive

and are negative. The use of the SVM model allows to gain in negative periods rather

than improve performance in positive ones.

Figures 7 - 8 show the cumulative returns from carry trade strategies over the period

considered: while the risk based SVM does not improve dramatically the performance

prior to the financial crisis (where the standard carry trade is highly profitable), it makes

a huge difference during and after the crisis.

3.3 Inspecting the mechanism

The results of the previous section show that the use of the SVM algorithm conditioned

on measures of market uncertainty allows to improve significantly the returns from

carry trade and in particular to hedge against large negative drawdowns. The extremely
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positive result of the SVM model however comes at a price. As any other machine learn-

ing algorithm the SVM is a bit of a black box since it does not provide the information

economists are used to, such as the standard output from a regression (i.e. coefficients,

degree of significance, goodness of fit etc.). In this section we provide additional anal-

ysis that shed more light on the factors that drive the results.

3.3.1 Splitting time periods

With a dynamic perspective Figure 6 plots the returns from the standard carry trade and

from the SVM model during the period considered. It is striking that during periods of

financial turbulence such as the global financial crisis the SVM model has been able to

hedge considerably against large drawdowns of carry trade.

Table 6 splits the sample in three periods and shows that indeed the major gains

from the SVM model are obtained during and after the financial crisis when, in the

presence of low or negative returns from carry trade, correcting the strategy for uncer-

tainty yields consistently higher returns coupled with substantially higher Sharpe and

Omega ratios. This is the period where the information on market uncertainty is used

more efficiently by the learning algorithm.

3.3.2 Disentangling between uncertainty measures

As stated above the SVM model uses information from four indicators of market uncer-

tainty to improve the carry trade strategy. As a matter of fact the SVM is more efficient

in using disaggregated information rather than aggregated one, thus its performances

worsen slightly if we collapse the four indicators by, for example, a principal compo-

nent or factor analysis.

However the measures we have considered for market uncertainty capture some-

what different aspects and it would be interesting to understand what effect the SVM

model is really capturing. In order to shed light on this issue we have split the measures

of market uncertainty in two groups: one comprising the VIX and the FX volatility in-

dex, another comprising the TED and the NFCI index. While the former capture market

volatility the latter capture uncertainty linked to liquidity issues and as such are more

in line with the Brunnermeier, Nagel, and Pedersen (2009) argument. Table 7 shows
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that both groups of measures provide useful information to the SVM model: using only

one group of indicators instead of both in fact reduces the average returns significantly.

However it seems that conditioning the SVM on liquidity measures yields better perfor-

mances than conditioning on volatility measures only, particularly during the financial

crises where the difference in Sharpe ratios and in the Sortino index is extremely rele-

vant.

Finally we have performed predictive regressions where the realised returns of SVM

carry trade have been regressed on lagged uncertainty measures. This analysis is very

stylised as the coefficients cannot be interpreted as proper factor loadings since the

SVM can by construction use a nonlinear approach whereas here we are using a lin-

ear regression model; nevertheless despite its limitations this approach can be fruitful

in shedding light on the relative role of the different indicators of market uncertainty.

Table 8 shows that overall, with the exception of the Forex volatility, all the indicators

are significant; comparing indicators of volatility and of liquidity the former seem to be

less relevant of the latter both in terms of significance and of the explained variance of

the returns. The analysis by time periods reveals that before the global financial crisis

indicators of market uncertainty are not predictive of carry trade returns, while during

the crisis they become highly significant, particularly those of market liquidity. Inter-

estingly in the period following the financial crisis, when it is well known that global

carry trade resumed, indicators of market liquidity are still significant, but with the op-

posite sign, denoting a different relationship between carry trade and market liquidity

which is captured by the flexibility of the SVM algorithm.

4 Conclusions

In this paper we have contribute to the literature on carry trade by proposing a novel

approach to provide directional forecasts for carry trade strategies. This approach is

based on Support Vector Machines, a binary classification mechanism which can po-

tentially be applied to several fields in economic forecasting with extremely promising

results. This is particularly interesting for the purpose of the carry trade since what re-

ally matters for the investor or the trader is the ability to predict the direction of the

trade not its magnitude. We condition the SVM model on indicators of uncertainty

16



and risk; we show that this provides a dramatic improvement of the performance of

the strategy in particular during periods of financial distress such as the recent finan-

cial crises. Finally we show that the relative contribution of liquidity variables is more

relevant than that one of volatility variables.

Albeit at its infancy the use of machine learning algorithms can help researchers

to understand several aspects of international finance where standard tools perform

rather poorly. Further research on these issues is certainly needed.
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Table 2: Quantile regressions

Quantile 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Monthly
TED con -0.005 -0.003 -0.002 0.000 0.000 0.001 0.001 0.002 0.003 0.004

-15.794 -14.404 -9.484 -2.943 2.467 6.784 12.069 17.208 23.179 27.981
beta -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-2.467 -3.961 -3.955 -3.313 -2.411 -2.762 -1.928 -0.585 2.541 1.216
VIX con -0.005 -0.003 -0.001 0.000 0.000 0.001 0.001 0.002 0.003 0.004

-15.771 -15.098 -9.014 -2.930 2.232 7.555 12.487 17.626 22.570 27.118
beta 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

-1.492 -2.545 -1.480 -0.030 1.192 1.957 3.123 2.867 3.556 4.889
NFCI con -0.005 -0.003 -0.002 0.000 0.000 0.001 0.001 0.002 0.003 0.004

-18.351 -17.140 -9.715 -3.155 1.760 7.007 12.040 17.932 22.874 27.537
beta -0.001 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-6.152 -8.212 -4.340 -2.944 -0.990 -0.672 0.651 2.678 2.579 3.949
FXV con -0.005 -0.003 -0.002 0.000 0.000 0.001 0.001 0.002 0.003 0.004

-17.284 -15.470 -9.388 -2.935 2.138 6.947 11.554 17.465 22.473 28.329
beta -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

-3.162 -3.065 -1.870 -0.042 0.208 1.026 0.957 1.863 2.535 5.571
Weekly
TED con -0.014 -0.009 -0.005 -0.003 -0.001 0.000 0.002 0.004 0.006 0.008

-21.263 -21.046 -15.101 -9.297 -3.609 1.519 7.611 12.709 18.656 23.663
beta -0.007 -0.005 -0.002 -0.001 -0.001 0.000 0.000 0.000 0.001 0.002

-6.936 -8.770 -5.692 -4.585 -2.097 -1.376 -0.140 0.227 2.365 3.733
VIX con -0.013 -0.010 -0.005 -0.003 -0.001 0.001 0.002 0.004 0.006 0.009

-21.351 -19.136 -14.184 -8.645 -3.257 2.274 8.001 12.874 18.899 26.490
beta -0.004 -0.004 -0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.003

-5.459 -5.272 -2.111 -0.968 -0.652 1.885 3.023 3.171 4.323 7.211
NFCI con -0.013 -0.009 -0.005 -0.003 -0.001 0.001 0.002 0.004 0.006 0.009

-18.964 -19.096 -14.798 -9.352 -3.646 1.803 7.982 13.019 18.864 25.341
beta -0.005 -0.003 -0.002 -0.001 -0.001 0.000 0.001 0.001 0.001 0.003

-6.069 -5.875 -4.426 -3.614 -2.560 -0.369 1.777 1.797 3.480 7.312
FXV con -0.013 -0.009 -0.005 -0.003 -0.001 0.001 0.002 0.004 0.006 0.008

-21.827 -20.766 -14.824 -9.674 -3.261 1.924 8.157 13.389 20.032 28.386
beta -0.004 -0.003 -0.001 -0.001 0.000 0.000 0.001 0.001 0.002 0.003

-6.733 -6.563 -4.157 -2.146 -0.416 1.194 3.080 3.774 6.603 9.461

Coefficients from predictive regressions of the carry trade returns on various measures of uncertainty. TED:
difference between the LIBOR and US T-bills. VIX index: measure of the implicit volatility of the S&P 500 index
options. NFCI: Chicago Fed National Financial Conditions Index, measures U.S. financial conditions in money,
debt and equity markets, plus the traditional and “shadow” banking systems. FXV: implicit volatility of at the
money 1-month options on CAD, CHF, EUR, JPY and GBP against the USD.
Carry trade returns are computed for an equally weighted portfolio. T stats are reported below coefficients.
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Table 3: R2 from quantile regression

Quantile 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Monthly
TED 4.39 3.10 1.57 0.89 0.68 0.69 0.14 0.02 0.37 0.32
VIX 2.37 1.59 0.22 0.00 0.16 0.47 0.71 0.82 0.90 1.43
NFCI 9.59 5.87 1.75 0.67 0.20 0.03 0.04 0.36 0.64 1.06
FX VOL 3.86 2.94 0.49 0.00 0.00 0.10 0.12 0.35 0.50 1.09
Weekly
TED 13.44 5.90 2.57 1.03 0.42 0.14 0.01 0.01 0.27 2.14
VIX 10.72 3.33 0.55 0.11 0.01 0.14 0.69 0.74 1.82 7.34
NFCI 12.04 5.44 2.05 0.87 0.43 0.01 0.10 0.21 0.92 5.21
FX VOL 12.22 5.86 1.69 0.50 0.01 0.16 0.60 0.79 2.98 9.22

R2 from predictive regressions of the carry trade returns on various measures of uncer-
tainty. TED: difference between the LIBOR and US T-bills. VIX index: measure of the
implicit volatility of the S&P 500 index options. NFCI: Chicago Fed National Financial
Conditions Index, measures U.S. financial conditions in money, debt and equity mar-
kets, plus the traditional and “shadow” banking systems. FXV: implicit volatility of at
the money 1-month options on CAD, CHF, EUR, JPY and GBP against the USD.
Carry trade returns are computed for an equally weighted portfolio.
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Table 5: Agreement and disagreement between SVM and standard carry trade
strategy

Mean StDev Skew Sharpe Min Max Median

Monthly
Equal weights
Model Agree 0.18 0.76 -0.31 0.22 -4.94 4.45 0.19
Model Disagree
Carry Trade -0.24 0.79 0.15 -0.33 -5.09 5.13 -0.24
Carry Trade SVM 0.24 0.81 0.37 0.28 -4.28 6.34 0.22
Dynamic
Model Agree 0.24 0.86 -0.67 0.25 -4.94 4.45 0.31
Model Disagree
Carry Trade -0.28 0.81 -0.18 -0.37 -3.53 2.36 -0.23
Carry Trade SVM 0.28 0.83 0.46 0.32 -2.23 4.07 0.21
Weekly
Equal weights
Model Agree 0.15 1.55 -1.21 0.09 -19.00 11.34 0.27
Model Disagree
Carry Trade -0.37 1.56 0.05 -0.25 -8.84 6.67 -0.45
Carry Trade SVM 0.28 1.55 -0.08 0.17 -6.85 8.72 0.37
Dynamic
Model Agree 0.15 1.78 -1.34 0.08 -16.33 7.26 0.33
Model Disagree
Carry Trade -0.37 1.67 0.11 -0.23 -6.52 5.41 -0.42
Carry Trade SVM 0.25 1.67 -0.16 0.14 -5.64 6.33 0.31

Equal weights = equally weighted portfolio
Dynamic = carry trade on first 3 currencies rebalanced every period
All values are computed on annual basis and include transaction costs. High/Low ret.
report the highest (lowest) return of the period
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Table 6: Carry trade strategies, splitting by time periods, monthly rates

Mean StDev Skew Max Min Sharpe Omega Sortino Upside

2003-2006
Equal weights
Carry Trade 5.98 2.48 -0.09 0.98 -0.97 2.06 2.30 0.62 1.10
Carry trade SVM 14.88 2.65 0.58 1.46 -0.54 5.28*** 9.38 3.18 3.56
Dynamic
Carry Trade 9.67 4.45 -0.17 1.66 -1.60 1.97 2.14 0.54 1.01
Carry trade SVM 18.37 3.95 -0.02 1.69 -1.59 4.43*** 5.24 1.66 2.06

2007-2011
Equal weights
Carry Trade -1.35 3.42 -0.33 1.90 -2.03 -0.66 0.86 -0.07 0.44
Carry trade SVM 15.20 3.45 0.51 2.09 -1.23 4.15*** 5.75 1.66 2.01
Dynamic
Carry Trade 3.23 7.06 -0.37 3.38 -3.37 0.33 1.19 0.09 0.57
Carry trade SVM 15.59 5.88 -0.41 3.38 -3.37 2.50*** 2.85 0.64 0.98

2012-2015
Equal weights
Carry Trade -0.04 1.81 -0.14 0.64 -0.71 -0.52 0.99 0.00 0.54
Carry trade SVM 7.44 1.82 -0.19 0.81 -0.86 3.60*** 4.41 1.27 1.64
Dynamic
Carry Trade -4.52 4.30 -0.12 1.33 -1.54 -1.26 0.69 -0.18 0.40
Carry trade SVM 8.86 3.51 -0.05 1.43 -1.48 2.28*** 2.55 0.66 1.09

Equal weights = equally weighted portfolio
Dynamic = carry trade on first 3 currencies rebalanced every period
All values are computed on annual basis and include transaction costs. High/Low ret. report the highest
(lowest) return of the period.
Significance levels for the Sharpe ratio refer to the Ledoit and Wolf (2008) test.
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Table 7: Carry trade strategies, disentangling between uncertainty measures

Mean StDev Skew Max Min Sharpe Omega Sortino Upside
All sample
Carry Trade 2.74 2.69 -0.36 1.90 -2.03 0.69 1.46 0.21 0.68
SVM liquidity 8.75 2.70 0.29 1.46 -1.37 2.91*** 3.50 0.98 1.38
SVM volatility 6.63 2.59 0.22 1.73 -1.32 2.21*** 2.65 0.69 1.11
2003-2006
Carry Trade 5.98 2.48 -0.09 0.98 -0.97 2.06 2.30 0.62 1.10
SVM liquidity 11.49 2.91 0.79 1.46 -0.76 3.66*** 4.95 1.77 2.21
SVM volatility 10.10 2.69 0.64 1.33 -0.64 3.43*** 4.31 1.48 1.93
2007-2011
Carry Trade -1.35 3.42 -0.33 1.90 -2.03 -0.66 0.86 -0.07 0.44
SVM liquidity 12.81 3.10 -0.05 1.44 -1.37 3.85*** 5.00 1.29 1.62
SVM volatility 6.36 3.08 0.14 1.73 -1.32 1.78*** 2.21 0.52 0.95
2011-2015
Carry Trade -0.04 1.81 -0.14 0.64 -0.71 -0.52 0.99 0.00 0.54
SVM liquidity 5.39 1.97 -0.04 0.84 -0.65 2.28*** 2.71 0.74 1.17
SVM volatility 4.61 1.80 0.09 0.84 -0.80 2.07*** 2.58 0.69 1.12

Values refer to monthly returns on equally weighted portfolios
SVM liquidity= carry trade with SVM conditioned on measures of liquidity (TED and NFCI)
SVM volatility= carry trade with SVM conditioned on measures of liquidity (VIX and FX Vol.)
All values are computed on annual basis and include transaction costs. High/Low ret. report the highest
(lowest) return of the period.
Significance levels for the Sharpe ratio refer to the Ledoit and Wolf (2008) test.
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Table 8: Determinants of SVM carry trade returns

All sample All sample All sample 2003-2006 2007-2011 2012-2015

Forex vol -0.000 0.000 -0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

VIX -0.000** -0.000* 0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

TED -0.002*** -0.002** -0.003 -0.002** 0.017**
(0.001) (0.001) (0.003) (0.001) (0.008)

NFCI 0.003*** 0.002** -0.004 0.003** -0.006**
(0.001) (0.001) (0.004) (0.001) (0.003)

Cons. 0.006*** 0.001 0.004*** 0.002 0.006*** -0.008*
(0.002) (0.001) (0.001) (0.005) (0.002) (0.005)

r2 0.055 0.008 0.039 0.015 0.050 0.067
N 858 864 864 235 228 171

The table reports the coefficients of regressing returns of the SVM carry trade strategy on lagged in-
dicators of market uncertainty.
SVM carry trade returns refer to monthly rates on equally weighted portfolios. Weekly data
The reported standard errors are based on NeweyWest approach with optimal lag selection.
* p<0.10, ** p<0.05, *** p<0.01
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Figure 3: Standardised beta coefficients from quantile regressions on carry trade re-
turns, Forward 1M
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Figure 4: Standardised beta coefficients from quantile regressions on carry trade re-
turns, Forward 1W
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Figure 5: Distribution of returns of the carry trade and SVM model; equally weighted
portfolio, monthly forward rates.
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Figure 6: Returns from carry trade strategies; equally weighted portfolio, monthly for-
ward rates.
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Figure 7: Cumulative returns from carry trade strategies, monthly rates
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Figure 8: Cumulative returns from carry trade strategies, weekly rates
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