
Evaluating the Performance of Dynamic and Tobit Models in
Predicting Credit Default

Arjana Brezigar-Masten

University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technology and Institute

of Macroeconomic Analysis and Development

Igor Masten1

University of Ljubljana, Faculty of Economics, and Bank of Slovenia

Matjaž Volk1
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predicting new defaulters, however, static tobit model is shown to outperform all other models
in terms of true positive rate by a large margin. Our results show that the prevailing credit risk
methodologies can be significantly improved by including the dynamics and choosing the tobit
functional form. This is especially pronounced for conventional default probability model that
is typically used by banks and regulators and is shown to have very low classification accuracy.
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1. Introduction

Credit default models are extensively used by banks and regulators. IRB regulation requires
from banks to provide their own estimates of probability of default, which is one of the key pa-
rameters that determines capital requirements (BCBS, 2001, 2006). Identifying non-performing
borrowers also enables banks and regulators to project expected losses and to assess potential
capital needs to cover these losses. In addition, default probability models can also be used for
stress testing purposes to simulate the effect of different scenarios.

In this paper we propose and test the performance of two novel methodologies for modelling
credit risk. Credit default is typically modelled using discrete choice methodology as was first
proposed by Altman (1968). The binary dependent variable is usually defined following BCBS
(2006) default definition, which is based on number of days past due. The default event occurs
when borrower is more than 90 days overdue. By transforming an overdue into a dichotomous
variable, a lot of potentially useful information is lost. In addition, overdue is already a risk
measure and therefore it seems reasonable to model it directly, without any transformations.
Since it is censored at value zero, we apply tobit modelling approach. Our first set of tests is
aimed to evaluate and compare the performance of classical binary probit model versus tobit
model.

Credit default indicators show a lot of persistence. Once a borrower defaults (becomes more
than 90 days overdue), it is not very likely that he will become performing again. Moreover,
an overdue, once being positive, is expected to increase in time. Estimating default probability
model, which includes autoregressive dynamics can thus significantly improve predicting per-
formance. Our second proposed novelty is thus to estimate dynamic probit and dynamic tobit
model using Wooldridge (2005) methodology and compare their performance with static version
of the models.

We evaluate the performance of the models by looking at their ability to discriminate between
performing and non-performing borrowers. Conventional default probability models, however,
usually follow the discrete time hazard rate modelling approach, which gives the probability
that borrower defaults in current period under the condition the default event did not occur
before (see for instance Bonfim, 2009 and Carling et al., 2007). As described by Hamerle et al.
(2003) this in an underlying methodology of IRB regulation. We therefore also estimate classical
default probability model, where only transitions to default are taken into account, and compare
its performance in predicting new defaulters with other proposed models. Our goal is not to find
the best performing model specification, but rather to use the same explanatory variables in all
the estimates and see how different functional form (probit vs. tobit) and different information
set (static vs. dynamic) affects the performance in explaining state of default and transition to
default. The performance of the models is evaluated using the data of Slovenian non-financial
firms.

We find that tobit modelling methodology outperforms all other models. In predicting non-
performing borrowers, where persistence is of a key importance, dynamic tobit correctly identifies
more than 70% of defaulters and issues less than 1% of false alarms. High performance - 66% true
positive rate - is also achieved by dynamic probit model, which outperforms the static version
by more than 30 percentage points. An important advantage of tobit model, however, is that its
prediction is number of days past due, which enables to form different classes of overdue. One
can for instance predict defaulters using any overdue threshold, not only 90 days as is standard
in binary models. We show that dynamic tobit has high classification accuracy across different
classes of overdue, from 30 to 360 days. For predicting new defaulters, however, we find that the
static tobit model is the advantageous modelling approach. It correctly identifies more than 50%
of new defaulters and outperforms all the other models by a large margin. It also issues more
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false alarms comparing to other methodologies, but given the gain in identifying defaulters, this
loss is relatively small and acceptable. This is especially true if one is more concerned in missing
defaulters (type I error) than issuing false alarms (type II error), like is typically assumed in early
warning literature (see Alessi & Detken, 2011 and Sarlin, 2013). Even though classical binary
default probability model is estimated explicitly on transitions to default, it is able to correctly
identify only 5% of new defaulters. Three sets of robustness checks confirm the validity of our
results.

Our paper is related to a recent study performed by Jones et al. (2015). They test the perfor-
mance of various binary classifiers in predicting credit rating changes. In addition to conventional
techniques such as probit/logit, they also evaluate the performance of more advanced approaches
like non-linear classifiers, neural networks, support vector machines and others. They find that
newer classifiers significantly outperform all other modelling approaches. Although the goal of
our paper is very similar, it provides two new pieces of evidence. First, we show the performance
of the models can be significantly improved if, instead of conventional binary model, tobit mod-
elling methodology is applied. Second, we provide evidence that the dynamic specification of
the model significantly improves the performance in predicting non-performing borrowers. To
our knowledge both, tobit and dynamic methodologies, have not yet been applied to credit risk
modelling. Moreover, we propose an approach for modelling credit default on quarterly frequency
using mixed frequency data. This enables to monitor the changes in credit portfolio on higher
frequency and also more accurately since the information set is updated each quarter.

The findings of this paper have important implications for banks and banking regulation. We
show that the conventional default probability model that is typically used by IRB banks achieves
very low classification accuracy. This poses a question whether this modelling approach, which
at the end determines banks capitalisation, is an appropriate methodology. A simple upgrade
of the model with dummies indicating overdue in previous period significantly improves the
classification accuracy. The performance can be further improved by using the tobit modelling
approach. Although the prediction of the tobit model, which is days past due, can not be directly
used in IRB formula for capital requirements, this approach is far more accurate in identifying
new defaulters, and therefore it seems reasonable to use it in practice.

The rest of the paper is structured as follows. Section 2 provides descriptive analysis of
the dynamics of different credit risk measures. In Section 3 we present the methodology for
estimating and evaluating different credit default models. Estimation and evaluation results
are presented in Section 4. Section 5 presents three sets of robustness checks, while Section 6
concludes the paper and discusses implications.

2. The dynamics of credit default measures

The key data source for our analysis is Credit register of Bank of Slovenia, which is excep-
tionally rich database with many information that are not publicly available. The variable we
are most interested in is overdue in loan repayment, which signals financial problems of firms
and is also a key credit risk measure under Basel regulation (see BCBS, 2006). It is first avail-
able in 2007q4, which limits our analysis to 29 quarterly cross sections from 2007q4 to 2014q4.
Restricting the analysis to non-financial firms, which were during the crisis shown to be the most
problematic segment, results in large sample of more than 1 million observations represented by
a triple firm-bank-time.

Figure 1 shows the evolution of loans broken down to different classes of days of overdue in
loan repayment. It can be seen that after the start of the crisis in 2008q4, the share of non-
performing loans started rising rapidly and reached very high levels. The share of loans with
more than 90 days overdue, which is a standard measure of non-performing loans (BCBS, 2006),
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rose by more than 25 percentage points until the third quarter of 2013. In 2013q4 it dropped
by 8 percentage points, which is the result of transfer of bad loans from two largest banks
to Bank Assets Management Company (BAMC). It should thus not be understand as natural
improvement of banks’ credit portfolio, but rather as an institutional measure that reduced the
pressing burden of non-performing loans. Second tranche of transfer was carried out at the end
of 2014. Contrary to non-performing loans, the share of loans with 0 days overdue dropped
considerably in times of financial stress.

Figure 1: Share of loans across different classes of overdue (in %)

Source: Bank of Slovenia, own calculations.

Other classes between 0 and 90 days overdue represent only a small share of total loans, since
these are in many cases only transition classes to higher days past due. The only exception is
class between 0 and 30 days, which represents around 3 to 10 percentage share of total loans.
There are many borrowers who occasionally have small delays in loan repayment, but whose
overdue does not necessarily increase from one period to another.

Figure 1 reveals that overdue is highly autoregressive process. It can be best seen by increasing
share of loans with overdue above 360 days. Once an overdue bridges a certain threshold, it is
expected to increase in time and reach higher number of days past due. Since these borrowers
are financially very weak and are not able to pay back their debt to banks, they are sooner or
latter expected to bankrupt. In 83% of cases when an overdue changed between two consecutive
quarters, this change was positive. This finding is partly the result of the fact that overdue is
censored at zero, which means that by the nature of the variable the increases could be much
more frequent. However, even when we look only at the cases when overdue> 0, we get a similar
result: 80% increases and only 20% decreases. This dynamic is, however, very heterogeneous
across different classes of overdue. As can be seen in Table 1, an overdue is more likely to
decrease between two consecutive quarters when it is lower than 30 days. This is the result of
already mentioned occasional delayers who are in majority of cases able to repay the debt and
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their overdue thus typically returns to zero in the next quarter. In other classes positive dynamic
prevails and the higher is the overdue, more likely it is, that it will further increase. This is to
be expected, since once an overdue exceeds a certain threshold, it is not very likely that a firm
will ever be able to repay the debt.

Table 1: Share of increases and decreases of overdue over different classes, in %

Overdue One quarter horizon One year horizon
class % of increases % of decreases % of increases % of decreases

0 days 4.4 - 8.7 -
0-5 days 27.4 57.7 34.4 56.5
5-10 days 36.2 58.7 43.3 52.9
10-20 days 41.0 52.9 48.3 47.5
20-30 days 46.6 47.6 50.1 45.0
30-60 days 53.4 43.5 57.5 40.2
60-90 days 62.9 35.5 66.0 32.6
90-180 days 75.6 23.5 74.1 25.2
180-360 days 88.8 10.9 84.3 15.4
>360 days 95.3 4.6 91.5 8.4

Source: Bank of Slovenia, own calculations.
Note: The table reports the percentage of increases and decrease of overdue over different
classes of overdue and two horizons.

Looking at changes in one year period in Table 1 reveals similar dynamic, but decreases
prevail only until overdue is below 10 days. In addition, with exception of last three classes,
the increases of overdue are more frequent on yearly basis than quarterly. This means that also
borrowers with fewer days past due can be more problematic on a long run. Although they were
in majority of cases able to repay their debt on a short run, this signals that they might not be
able to do so on a long run. Overall, Table 1 clearly reveals that overdue has strong positive
autoregressive component, especially when it is higher than 30 days.

Default rate and its projection, probability of default, is typically of a main interest in banks,
since it is one of the key factors that determines projected expected losses and capital require-
ments for IRB banks. In addition, PD is also an important factor in loan approval and pricing.
Table 2 shows the default rate over different classes of overdue. It is calculated as a share of
borrowers that had been performing in time t − 1 and became more than 90 days overdue in
time t. As expected, the share of transitions to non-performing status is higher, the higher was
the overdue in previous period and it further increases when calculated on one year horizon.
Lower levels of overdue can thus be used as an early warning signal for potential defaulters in
future periods. Classical PD model, where the transition to default is typically explained with
borrower-specific factors, is unable to fully capture this information. It only captures some part
of it when problems in loan repayment are reflected also in firm financial ratios. These, however,
are usually available only once a year, which disable updating the estimated probabilities of
default on the same frequency as overdue is refreshed.

Our analysis thus far reveals three potential upgrades of current prevailing credit risk mod-
elling techniques. First, overdue by itself is already a risk measure and thus it seems natural
to model it directly. A lot of useful and valuable information is lost, when it is transformed to
dichotomous variable and estimated with discrete choice model. An overdue, even if it is low,
signals financial problems of a firm and it is thus important to monitor the whole spectrum of
delays in loan repayment. Second, autoregressive component seems to be an important factor
in modelling credit risk. As shown, an overdue is expected to increase in time, whereas default
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Table 2: Default rate over different overdue classes, in %

Overdue

class
One quarter horizon One year horizon

0 days 0.3 3.7
0-5 days 6.1 15.7
5-10 days 12.3 25.1
10-20 days 16.2 31.2
20-30 days 23.3 35.5
30-60 days 40.3 49.1
60-90 days 59.6 64.1

Source: Bank of Slovenia, own calculations.
Note: The table reports the default rate - share of borrowers
that were less than 90 days overdue in time t− 1 and became
more than 90 days overdue in time t - over different classes of
overdue and two horizons.

status shows a lot of persistence. Past information on days past due can also significantly con-
tribute to explaining transition to default. It is therefore sensible to estimate dynamic credit
risk model and see if it adds valuable information comparing to static one. Third, credit risk
should be monitored on higher frequency. One year horizon for modelling probability of default
that is typically used in the literature and also proposed by BCBS (2001) to IRB banks, is a
very long period, since a lot can change over such a long horizon. In extreme case, an overdue
may increase from 0 to over 360 days. Standard PD model, which is usually estimated using
firm financial ratios is not able to capture such severe deterioration, since its information set is
not updated during the year.

3. Methodology

This section presents the methodology for estimating and comparing credit default models.
We are interested in three sorts of comparison. First, does it matter if we change the functional
form of the model? More specifically, we compare the performance of probit model, where the
default is modelled as a binary variable, and model where overdue in loan repayment is mod-
elled explicitly, without any transformations. Since overdue is censored at zero, standard OLS
estimator would result in biased estimates. We therefore apply tobit estimator, which captures
this source of non-linearity. Second, does the dynamic specification of the model improve per-
formance? We estimate both probit and tobit model including autoregressive term and compare
the resulting performance with static specification of the models. Third, we compare the perfor-
mance of the models in explaining the state of default and transition to default. For the latter,
the accuracy of classical PD model is compared with the dynamic version of PD model and with
prediction ability of aforementioned models.

Overall, we estimate and compare performance of six models, which can be divided into
three groups. They differ in the definition of the dependent variable and in functional form of
the model. The first group includes the models where the dependent variable is state of default:
static probit and dynamic probit. In the second group we model overdue in loan repayment
and apply censored regression: static tobit and dynamic tobit. Lastly, the transition to default
is modelled with static PD model and dynamic PD model. Our goal is not to find the best
performing model specification, but rather to use the same explanatory variables in all the
estimates and see how different functional form (probit vs. tobit) and different information set
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(static vs. dynamic) affects the performance in explaining state of default and transition to
default.

To our knowledge this is the first attempt to model credit default in a dynamic setting.
There are some analysis, like for instance Costeiu and Neagu (2013), where past information are
included in the model, but not explicitly as lagged dependent variable. Hence, we first present
some theory and solutions on how to estimate dynamic non-linear panel data models. Next, we
present the specification of all the models and describe how we evaluate their performance.

3.1. Dynamic non-linear panel data models

The key issue in estimating dynamic panel data models is the initial conditions problem, which
is the result of correlation between unobserved heterogeneity and past values of the dependent
variable. In linear models this problem can be easily solved with appropriate transformation,
like first differencing, which eliminates the unobserved effects. Although the transformed error
term is correlated with transformed lagged dependent variable, instrumental variables can be
used to achieve a consistent estimator. Anderson and Hsiao (1982) propose using yit−2 as an
instrument in first-differenced equation. Arellano and Bond (1991) upgrade this approach by
using a GMM-type of model with all possible instruments in each time period, whereas Blundell
and Bond (1998) propose a system estimator, where also level equation with instruments in
differences is estimated.

The problem with initial conditions is even more complicated in non-linear models. There
are no transformations that would eliminate the unobserved effects. Suppose we are interested
in modelling the process:

y∗it = αyit−1 + x′itβ + ηi + εit (1)

where y∗it is latent index, yit−1 is first lag of the dependent variable, xit is a vector of strictly
exogenous variables, ηi is unobserved individual effect and εit is error term, which is assumed to
be distributed with mean 0 and variance σ2

ε . As described by Akay (2012) the type of the model
depends on how the dependent variable is observed. If yit is observed as an indicator

yit =

{
1 if y∗it > 0

0 if y∗it ≤ 0
(2)

the model to be estimated is dynamic probit or logit model. If, on the other hand, yit is observed
as the variable that is censored at zero

yit =

{
y∗it if y∗it > 0

0 if y∗it ≤ 0
(3)

this leads to tobit model specification. Referring to our case, binary credit default models - state
probit and transition probit - fit into equation 2, whereas overdue is censored at zero and can
thus be represented with equation 3.

In estimating these models one needs to deal with unobserved individual-specific effect ηi,
which is correlated with initial values yi0, unless the start of the observed panel data set coincides
with the start of the stohastic process. In this case initial values are non-stohastic constants and
there is no need to deal with the initial conditions problem. In practice, however, we usually ob-
serve data after the start of the stohastic process and the conditional distribution of initial values
must be specified. One option is to assume that initial values are not affected by past develop-
ments, i.e. to treat them as exogenous variables independent of all other regressors including
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unobserved individual effects. As described by Akay (2012) this is a very naive assumption,
which typically leads to serious bias.

Another way of dealing with initial values is to use the fixed effect approach. Although
explicit modelling of individual effects seems attractive, the results can be biased due to incidental
parameters problem (Neyman & Scott, 1948). Honoré and Kyriazidou (2000) and Arellano and
Carrasco (2003) propose a method for fixed effects logit model, which solves the initial condition
problem by eliminating the unobserved heterogeneity. These models, however, can only be
estimated for individuals that in the observed period switch between both observed states. If the
states are persistent, like in our case, the number of observations would be considerably reduced.

The random effects solutions are much more common and attractive in practice 2. Wooldridge
(2005) proposes to use the density (ηi|yi0, xit) that specifies the functional form of unobserved
heterogeneity:

ηi = ξ0 + ξ1yi0 + x′iξ2 + ψi (4)

where xi is (xi1, xi2...xiT ). The basic logic of this procedure is that correlation between un-
observed heterogeneity ηi and initial value yi0 is captured by equation 4, which gives another
unobserved individual effect ψi that is not correlated with initial value yi0. This follows the logic
of Chamberlain (1984) who proposes to model conditional expectation of the unobserved effect
as a linear function of the exogenous variables and initial conditions. All that needs to be done
is to replace ηi in equation 1 with functional form 4, which results in:

y∗it = αyit−1 + x′itβ + ξ0 + ξ1yi0 + x′iξ2 + ψi + εit. (5)

The main advantage of this methodology is that it is computationally very simple and can
be implemented using standard random effects software. Additionally, the same methodology
can be used for estimating dynamic probit and dynamic tobit model. Since we are interested
in comparing the performance of different functional forms of credit default models, it is very
important that it is not affected by different methodology for estimating probit and tobit model.
A strong support for using this estimator in our analysis is also study by Akay (2012), who finds
that it performs especially well in panels that are longer than 5-8 periods, which is also the case
in our models.

3.2. Model specification

In order to estimate the credit default models we link Credit register data with firm balance
sheet and income statement data, which are for all Slovenian firms collected by the Agency of
the Republic of Slovenia for Public Legal Records and Related Services (AJPES) at yearly basis.
To do so, we aggregate Credit register data to firm-time level by taking the highest overdue a
particular firm has to any bank in quarter t. Note that our final dataset is of a mixed frequency.
Whereas Credit register data are on quarterly basis, balance sheet and income statement data
vary only yearly. As is presented below, we select a model specification that takes this into
account.

General specification of our models can be characterised with the following non-linear func-
tion:

yit = f(yit−1, x
q
it−1, djx

y
it−1, ηi), i = 1, ..., N, t = 1, ..., Ti, j = 1, ..., 4 (6)

2Another random effects estimator is suggested by Heckman (1981a,b) who proposes approximating the con-
ditional distribution of initial values using reduced form equation, estimated on the pre-sample information. As
discussed by Akay (2012), the main problem with this method is that it requires simultaneous estimation of re-
duced form and structural model, which is computationally very difficult. In addition, it is not that often applied
in empirical work.
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where yit is the dependent variable, which is defined as presented in Table 3. In both, probit
and PD models, we apply the 90-days threshold, which is very common in the literature (see for
instance Bonfim, 2009) and also in line with the recommendations of Basel Committee (BCBS,
2006). For static and dynamic probit we define the default indicator that is equal one if firm i
is more than 90 days overdue in quarter t. Similarly also for the PD model where the indicator
is equal one if firm became a defaulter in time t, but had still been performing in t − 1. For
the tobit models, we keep overdue as it is, without any transformations and thus use all the
information content in it. yit−1 is lagged value of the dependent variable, i.e. lagged default
indicator in dynamic probit case and lagged overdue in dynamic tobit case. In PD model lagged
dependent variable can not be included explicitly since we are modelling the transition to default
and thus it is equal to zero for all the firms. Similarly as Costeiu and Neagu (2013), we introduce
the dynamics in the PD model by including dummies for different classes of overdue in previous
period.

Table 3: Dependent variables in the models

Static & dynamic probit state of default: I(> 90)it
Static & dynamic tobit overdueit
Static & dynamic PD transition to default: I(> 90)it/(≤ 90)it−1

Note: The table reports the dependent variables for probit, tobit and PD models.

Due to mixed frequency data, the distinction needs to be made between regressors that are
available quarterly (xqit−1) and those that vary only yearly (xyit−1). Since the latter can have
different effect across quarters, we multiply them with dj , which are simply the dummy variables
for each quarter. In this way we get a quarter-specific effect of yearly varying regressors on
our dependent variables, which are observed quarterly. All the regressors are included with one
period lag 3. There are mainly two reasons for this. First, given current information, this will
enable us to predict credit default at least one period ahead. Second, by including past values
of regressors we avoid possible simultaneous causality problems.

In selecting the explanatory factors we follow the model specification by Volk (2012), who
models the probability of default as a function of firm size, age, liquidity, indebtedness, cash flow,
efficiency, number of days with blocked account and number of relations a particular borrower
has with banks 4. The last two variables are observed quarterly, while others that are calculated
on a basis of firm balance sheet and income statement data, are available only once per year.
Hence, we interact them with quarterly dummies.

ηi term in equation 6 captures the functional form for unobserved heterogeneity. As can be
seen in equation 4, Wooldridge’s (2005) original proposal is to include initial value of the depen-
dent variable and the realizations of other regressors in each time period. This procedure would
in our case lead to approx. 100 additional parameters to estimate. Given that we work with a
large panel of data, this might not be so problematic. However, increasing the number of param-
eters to be estimated significantly extends the optimization procedure when the dataset is large
and given that the model is already complex, this might also lead to problems with convergence.
To avoid these problems we rely on evidence provided by Rabe-Hesketh and Skrondal (2013)
who show that including only within means and initial values of each regressor does not lead to

3For variables that are observed at yearly frequency this means including its values form previous year not
previous quarter, since this would result in contemporaneous values for quarters 2, 3 and 4.

4We also ran a stepwise selection procedure, which resulted in a model with very similar performance. The
results are available upon request.
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any bias comparing to Wooldridge’s (2005) original specification. Therefore, our functional form
for individual specific effects in dynamic probit and tobit model is the following:

ηi = ξ0 + ξ1yi0 + x′i0ξ2 + x̄′iξ3 + z′iξ4 (7)

where yi0 is initial value of the dependent variable for each firm, which is the initial value of
default indicator in case of dynamic probit model and the initial overdue in dynamic tobit case.
The majority of initial values is taken from 2007q4 when our dataset starts. However, for those
that enter subsequently, their first observation is taken as an inital value. xi0 is a vector of inital
values for all the regressors, whereas x̄i are within means of the regressors, defined as 1

Ti

∑Ti

t=0 xit
5. As explained by Wooldridge (2005), functional form for individual specific effects may include
also other time invariant regressors. We add zi, which is a set of industry dummies that controls
for specificity of each industry.

We control for unobserved heterogeneity also in static and PD models. There are mainly two
reasons for this. First, we capture the correlation between error term and firm specific effect and
thus achieve consistent estimates (Chamberlain, 1984). Second, in this way the dynamic models
do not have any advantage in terms of performance stemming from this additional terms. We use
the same functional form as presented in equation 7 for dynamic models, with the only difference
that we exclude initial values of the dependent variable. The same approach is used also for the
dynamic PD model, which does not explicitly include lagged dependent variables and is thus not
subject to initial conditions problem presented in section 3.1.

3.3. Model evaluation

Basic goal of this paper is to compare the performance of different functional forms and
specifications of presented credit default models. We do this by looking at several measures that
can be calculated from the contingency matrix presented in Table 4. The columns represent
the actual observed state, whereas the rows are predicted state by the model. For the latter we
take the in-sample fit that is actually the prediction one quarter ahead. The prediction accuracy
measures that we use are shown under the Table 4. The most important measure is the true
positive rate, which shows the share of correctly predicted defaults. Banks and regulators are
mostly concerned in identifying problematic loans, but of course, not on the cost of issuing too
many false alarms 6. For this reason, we show also other measures that will help us to assess
model performance. Accuracy, as an overall classification accuracy measure, is also important,
but is largely driven by the classification of non-defaulters, which represent a large majority in
our data.

We use several criteria that places the observations in the contingency matrix. First, we
compare probit and tobit models in terms of their ability to predict non-performing borrowers -
more than 90 days past due. Second, the main advantage of tobit model is that its outcome is
the whole distribution of overdue, which enables to test the performance also on other overdue
classes, like 30, 60, 90, 180 and 360 days past due. Lastly, we compare the models’ ability to
predict the transition to default - ≤90 days overdue in t− 1, >90 days overdue in time t. In all
the cases the predicted indicator is equal one if the predicted probability of state or transition
probit models bridges the 0.5 cut-off, whereas for the tobit models it is equal one if its predicted
overdue is above a certain threshold, like 90 days.

5For yearly varying regressors the mean is calculated by taking into account only one observation per year. In
this way we avoid possible miscalculations for those firms that enter the dataset in the middle of the year.

6An alternative way of defining this is to use the loss function proposed by Alessi and Detken (2011) and Sarlin
(2013), where different weights are placed on type I and type II error.
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Table 4: Contingency matrix

Actual (Iit = 1) Actual (Iit = 0)

Predicted (Pit = 1) True positive (TP) False positive (FP)
Predicted (Pit = 0) False negative (FN) True negative (TN)

True positive rate =
TP

TP + FN
True negative rate =

TN

FP + TN

False positive rate =
FP

FP + TN
False negative rate =

FN

TP + FN

Accuracy =
TP + TN

TP + FP + FN + TN

4. Results

Table 5 presents the estimated coefficients of all the models. In addition to the variables
that are shown in the table, all the models also include controls for unobserved heterogeneity as
presented in section 3.2. Most of the coefficients for these controls are statistically significant,
which indicates that it is indeed important to control for these effects in order to achieve consistent
estimates.

Lagged default indicator in dynamic probit model has, as expected, highly statistically sig-
nificant positive effect on current value of indicator. This indicates that the default status, 0
or 1, is highly persistent. Being zero in previous quarter, it is very likely it stays zero also in
current period. On the other hand, once a firm is more than 90 days overdue it is not likely to
become performing in the next quarter. Similarly, the positive effect of the dependent variable is
also found in dynamic tobit model, which shows that the overdue is expected to increase in time.
Past information on overdue is also included in dynamic PD model in the form of dummies for
different classes of days past due (dummy for 0 days past due is excluded). It can be seen that
higher overdue in previous quarter adds more to the default probability. All these results are in
line with the findings presented in section 2.

Table 5 also reveals the importance of using the model specification that takes into account
the mixed frequency structure of the data. Most of the interaction terms between quarterly
dummies and firm specific variables are statistically significant, especially so for static version
of the models. This indicates that the effect of yearly-observed variables on default probability
or days past due is indeed heterogeneous across quarters. It is expected that the shorter the
information lag, the more informative are the variables about credit default indicators. It is
exactly what we find in our estimates. The majority of statistically significant coefficients can
be found for the first quarter (the terms that are not pre-multiplied with quarterly dummy in
Table 5), where the information lag to the observed firm-specific variables is only one quarter.

We now turn our attention to prediction accuracy of the models. Table 6 presents the
classification accuracy of probit and tobit models in predicting non-performing borrowers. It
can be seen that the dynamic specification of the models significantly improves the performance,
especially for the probit model where the true positive rate increases by more than 30 percentage
points comparing to static version of the model. Tobit model has even better performance.
Static tobit achieves more than 33 percentage points higher true positive rate than static probit
model, whereas dynamic tobit adds additional 3 percentage points to the classification accuracy
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Table 5: Estimated coefficients

Static Dynamic Static Dynamic Static Dynamic
probit probit tobit tobit PD PD

I(> 90)it/ I(> 90)it/
Dependent variable I(> 90)it I(> 90)it Overdueit Overdueit (≤ 90)it−1 (≤ 90)it−1

Dependent var.it−1 2.096*** 1.067***

log(Total sales)it−1 -0.182*** -0.056*** -81.820*** 1.369* 0.033** 0.004
Ageit−1 0.267*** 0.133*** 60.193*** 11.249*** 0.107*** 0.038***
Quick ratioit−1 -0.023*** -0.014*** -1.368*** -1.249*** -0.018*** -0.006
Debt-to-assetsit−1 0.005* 0.002 2.954*** 0.802*** -0.003 -0.002
Cash flow ratioit−1 -0.011 -0.018 -8.654*** -7.447*** -0.045** -0.025
Asset t. ratioit−1 -0.263*** -0.149*** -26.766*** -22.156*** -0.209*** -0.076***
No. of days bl. ac.it−1 0.017*** 0.010*** 2.805*** 1.053*** 0.012*** 0.006***
No. of relationsit−1 0.345*** 0.198*** 69.505*** 29.457*** 0.241*** 0.050***

d2*log(Total sales)it−1 0.026*** 0.019*** 2.980*** -0.449 0.026*** -0.001
d2*Ageit−1 -0.003 -0.002 -0.040 -0.524*** -0.002 0.003
d2*Quick ratioit−1 0.019*** 0.011* 0.123 0.269 0.016** 0.007
d2*Debt-to-assetsit−1 0.006* 0.006 0.750 -0.072 0.008 0.003
d2*Cash flow ratioit−1 -0.050*** -0.027 -1.355 1.759 0.003 -0.001
d2*Asset t. ratioit−1 -0.007 -0.010 5.392** 7.079*** -0.023 -0.005

d3*log(Total sales)it−1 0.053*** 0.037*** 2.529*** -0.793* 0.045*** 0.032***
d3*Ageit−1 -0.005*** -0.003 0.743** -0.238 -0.004* -0.001
d3*Quick ratioit−1 0.019*** 0.008 1.381*** 1.294*** -0.000 -0.001
d3*Debt-to-assetsit−1 0.008** 0.008* 1.332** -0.113 0.009 0.004
d3*Cash flow ratioit−1 -0.054*** -0.021 -10.257*** 0.531 -0.011 -0.008
d3*Asset t. ratioit−1 0.002 0.001 1.306 5.449*** -0.005 -0.023

d4*log(Total sales)it−1 0.057*** 0.022*** 5.843*** -0.651 0.029*** 0.026***
d4*Ageit−1 -0.007*** -0.003 0.099 -0.783*** -0.003 -0.000
d4*Quick ratioit−1 0.019*** 0.007 1.360*** 1.256*** -0.020* -0.015
d4*Debt-to-assetsit−1 0.007** 0.005 1.634*** -0.226 0.009 0.009
d4*Cash flow ratioit−1 -0.056*** -0.020 -12.949*** 1.365 -0.029 -0.033
d4*Asset t. ratioit−1 0.028** 0.031** 4.097* 9.355*** 0.038** 0.012

Overdue 0-5it−1 1.095***
Overdue 5-10it−1 1.352***
Overdue 10-20it−1 1.533***
Overdue 20-30it−1 1.840***
Overdue 30-60it−1 2.290***
Overdue 60-90it−1 2.716***

Constant -10.629*** -7.002*** -824.385*** -190.530*** -2.164*** -2.546***

Observations 517964 517964 517964 517964 487969 487969

Source: Bank of Slovenia, AJPES, own calculations.
* p < 0.10, ** p < 0.05, *** p < 0.01
Notes: The table reports the coefficients for all the estimated models. The dependent variable for static and
dynamic probit is an indicator I(> 90)it that is equal one if firm i is more than 90 days past due in time t and
zero otherwise. For both PD models, the dependent variable is defined as transition to default (≤90 days over-
due in time t− 1, >90 days overdue in time t). No. of days bl. ac. measures number of days a firm has blocked
account. No. of relations is number of relationships between each firm and banks. d2 to d4 are dummy vari-
ables from second to fourth quarter. Overdue 0-5 to Overdue 60-90 are dummy variables for number of days a
firm is past due. In addition to the variables that are shown in the table, the models also include controls for
unobserved heterogeneity as described in section 3.2.
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of defaulters. Importantly, this high prediction accuracy of defaulters is not on a cost of issuing
too many false alarms. Tobit model has slightly higher false positive rate, but these are still very
low values, especially in the case of dynamic model. Comparing to the gain in true positive rate,
the loss in terms of false alarms is relatively minor.

Table 6: Performance of probit and tobit model in predicting performing and non-performing borrowers

Probit Tobit
Static Dynamic Static Dynamic

True positive rate 0.356 0.663 0.688 0.714
True negative rate 0.990 0.993 0.947 0.991
False positive rate 0.010 0.007 0.053 0.009
False negative rate 0.644 0.337 0.312 0.286
Accuracy 0.949 0.972 0.930 0.973

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the classification performance of probit and
tobit models in predicting performing and non-performing borrowers
(more than 90 days past due). See section 3.3 for the description of
classification accuracy measures.

Table 7 shows the classification accuracy of dynamic probit and dynamic tobit model in
predicting non-performing firms where we let the autoregressive process to proceed four quarters
ahead. These are still the in-sample predictions, with the only difference that instead of actually
observed values of lagged dependent variable its predictions are taken, which are obtained by
recursively running the predictions four times. The results show that tobit is the superior model
also on a longer horizon. Its true positive rate is expectedly decreasing on longer forecast horizon,
but it stays above the performance of the probit model. Dynamic probit achieves slightly higher
overall accuracy, but this is only due to better prediction of non-defaulters. False positive rate
still stays very low for both models.

Table 7: Performance of dynamic probit and tobit model in predicting performing and non-performing borrowers
from one to four quarters ahead

Dynamic probit Dynamic tobit
1q 2q 3q 4q 1q 2q 3q 4q

True positive rate 0.663 0.571 0.505 0.454 0.714 0.603 0.544 0.508
True negative rate 0.993 0.992 0.993 0.993 0.991 0.987 0.986 0.986
False positive rate 0.007 0.008 0.007 0.007 0.009 0.013 0.014 0.014
False negative rate 0.337 0.429 0.495 0.546 0.286 0.397 0.456 0.492
Accuracy 0.972 0.964 0.959 0.954 0.973 0.962 0.956 0.952

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the classification performance of dynamic probit and dynamic tobit
model in predicting performing and non-performing borrowers (more than 90 days past due) one
to four quarters ahead. See section 3.3 for the description of classification accuracy measures.

Tobit model enables to form the predictions for different overdue classes. Table 8 shows the
classification accuracy results of static and dynamic tobit model for five thresholds of days past
due. All the classes are defined in the same way: when overdue or prediction is above a certain
threshold the indicator is equal one, otherwise it is zero. It can be seen that in the case of
static model, true positive rate is decreasing with higher overdue threshold. The model correctly
classifies 85% of firms with overdue above 30 days, but only 39% of firms with overdue higher
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than 360 days. The performance of the dynamic model is much more stable and its true positive
rate is fluctuating around 75%. Static model outperforms the dynamic one in terms of true
positive rate for 30 and 60 days class. It, however, also has significantly higher false positive
rate, which is for the 30-days class equal to 20%, comparing to only 3% of the dynamic model.
The results presented in Table 8 thus reveal, that both, static and dynamic tobit model, are
quite successful in classifying borrowers to different classes of overdue, but the dynamic version
of the model is shown to be the superior one.

Table 8: Classification accuracy of static and dynamic tobit model across different groups of overdue

Static tobit Dynamic tobit
Overdue threshold 30 60 90 180 360 30 60 90 180 360

True positive rate 0.854 0.752 0.688 0.561 0.390 0.746 0.720 0.714 0.733 0.774
True negative rate 0.800 0.918 0.947 0.973 0.987 0.972 0.986 0.991 0.997 0.998
False positive rate 0.200 0.082 0.053 0.027 0.013 0.028 0.014 0.009 0.003 0.002
False negative rate 0.146 0.248 0.312 0.439 0.610 0.254 0.280 0.286 0.267 0.226
Accuracy 0.805 0.906 0.930 0.953 0.967 0.952 0.967 0.973 0.984 0.991

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the performance of static and dynamic tobit model in classifying borrowers into differ-
ent groups of days past due. In all the cases an indicator is equal one if overdue is above certain threshold (30, 60,
90, 180 or 360 days past due) and zero if it is equal or below that threshold. See section 3.3 for the description
of classification accuracy measures.

Banks and regulators are mostly concerned about predicting new non-performing borrowers.
PD as a measure of likelihood that a borrower will default on a certain horizon is also a key
credit risk parameter under the IRB capital regulation. Table 9 presents the performance of the
models in predicting the transition to default (≤90 days overdue in time t−1, >90 days overdue
in time t). Classical static PD model that is most frequently used in practice and where only
firm specific variables are used as regressors, is shown to have very low performance. It correctly
identifies only 5% of new defaults. Extending the model with dummies for different classes of
overdue in t − 1 significantly improves the performance to 27% true positive rate. This is to
be expected since, as we already presented in section 2, past information on days past due is
very informative about current default status. The higher the overdue in previous quarter, more
likely it is that the firm defaults in current period. A minor change in the model can thus lead
to much more accurate estimates of the default probability.

Table 9: Models’ performance in predicting transition to default

Static Dynamic Static Dynamic Static Dynamic
PD PD probit probit tobit tobit

True positive rate 0.047 0.274 0.150 0.045 0.501 0.139
True negative rate 0.997 0.997 0.991 0.997 0.950 0.995
False positive rate 0.003 0.003 0.009 0.003 0.050 0.005
False negative rate 0.953 0.726 0.850 0.955 0.499 0.861
Accuracy 0.983 0.986 0.979 0.983 0.943 0.983

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the performance of the estimated models in predicting the transi-
tion to default (≤90 days overdue in time t− 1, >90 days overdue in time t).

The performance in predicting new defaulters can also be calculated for the models where
either state of default or overdue is used as the dependent variable. It is interesting to find that
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any other version of the model outperforms the classical PD model. The only exception is the
dynamic probit model, where the autoregressive term leads to persistence of states and there
is thus not a lot of switching between performing and non-performing states. 7 As expected,
the dynamic tobit with lagged information about days past due is better able to capture the
transition to default, but however, is still performing worse than some other models. It seems
that the autoregressive component is not strong enough to lead to a sufficient increase of overdue
between two consecutive periods.

The best performing model for predicting transition to default is found to be the static
tobit. It achieves 50% classification accuracy of new defaulters and outperforms all other models
by a large margin. It also has the highest false positive rate (5%), which also explains lower
overall accuracy. This measure, however, is typically not of a primary interest in evaluating
the performance of default probability models and comparing to the gain in correctly identifying
defaulters, the loss of over-signalling is relatively small. We formally compare the performance of
the two best performing models, dynamic PD and static tobit, using the methodology proposed
by Alessi and Detken (2011). Applying equal weights on type 1 and type 2 error results in a loss
of 0.365 for dynamic PD and only 0.275 for static tobit. Given that regulators and banks are
typically more concerned about missing the defaulters than issuing false alarms, which would be
reflected in higher weight on type 1 error, places the static tobit model to even more superior
position.

Let us summarize our main results. We find two strong peace of evidence that the tobit
modelling technique of credit risk is the advantageous one. Dynamic tobit model is shown
to achieve the best classification accuracy of non-performing borrowers, whereas static tobit
outperforms all the other models in predicting new defaulters. The advantage of tobit model is
also that it enables classifying borrowers to different groups of overdue and thus get the whole
spectrum of riskiness of credit portfolio. We also show that the static PD model, that is widely
used by banks and regulators, actually has the worst classifying performance. Given the evidence
in our paper, it thus seems reasonable to upgrade credit risk modelling techniques, since these
lead to much more accurate predictions. We now check the robustness of our results.

5. Robustness checks

This section presents three sets of robustness checks. First, we show the out-of-sample per-
formance results. Second, we extend the horizon in PD models from one quarter to one year.
Third, we show the dynamic model predictions on a sub-sample of firms that are present at the
beginning of the sample.

5.1. Out-of-sample performance

The classification accuracy results presented thus far are in-sample predictions. Models are
typically used to forecast credit default on a certain horizon. We therefore check the validity of
our results by also predicting out-of-sample. We do this by recursively estimating the models
and predicting the state of default or overdue one quarter ahead. For instance, we estimate
the models until 2010q4 and forecast 2011q1. We start the estimating process in 2008q4, such
that we get the estimates for all the coefficients, including the interactions between quarterly
dummies and firm specific variables. The applied estimating methodology, however, needs to
be simplified due to a large computational burden. Using random effects estimator, it took the

7As shown in Table 6, dynamic probit achieves a high accuracy in predicting non-performing borrowers, where
the persistence of both states is of a key importance.
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computer approximately 12 days to estimate all the models presented in Table 5. Given that
now all the estimates would need to be replicated 24-times, it would take a very long time to
estimate all the models. We therefore use pooled estimators, which proceed much faster. The
only difference comparing to random effects estimator is that the pooled version is less efficient,
since it does not take into account the autoregressive structure of the variance-covariance matrix.
Since we use an alternative methodology, the prediction accuracy of this procedure should not
be directly compared to the results presented in previous section.

Table 10 presents the out-of-sample performance in predicting non-performing borrowers.
Even though the estimation methodology is now different, the prediction accuracy is similar as
presented in Table 6 for in-sample predictions. Similarly, we also find that the dynamic version
of the models outperform the static ones. Dynamic probit achieves the highest classification
accuracy of defaulters (78%) with low false positive rate below 1%. This model, however, is not
able to break down firms to different overdue classes. Table 11 displays these results for static
and dynamic tobit. Similar as before, we find that the predictions of the dynamic model are
much more stable and accurate.

Table 10: Out-of-sample performance of probit and tobit model in predicting performing and non-performing
borrowers

Probit Tobit
Static Dynamic Static Dynamic

True positive rate 0.396 0.783 0.710 0.721
True negative rate 0.990 0.992 0.951 0.992
False positive rate 0.010 0.008 0.049 0.008
False negative rate 0.604 0.217 0.290 0.279
Accuracy 0.949 0.978 0.935 0.974

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the out-of-sample classification perfor-
mance of probit and tobit models in predicting performing and non-
performing borrowers (more than 90 days past due). See section 3.3
for the description of classification accuracy measures.

Table 11: Out-of-sample classification accuracy of static and dynamic tobit model across different groups of
overdue

Static tobit Dynamic tobit
Overdue threshold 30 60 90 180 360 30 60 90 180 360

True positive rate 0.887 0.777 0.710 0.592 0.427 0.751 0.725 0.721 0.739 0.780
True negative rate 0.776 0.923 0.951 0.975 0.988 0.975 0.988 0.992 0.997 0.998
False positive rate 0.224 0.077 0.049 0.025 0.012 0.025 0.012 0.008 0.003 0.002
False negative rate 0.113 0.223 0.290 0.408 0.573 0.249 0.275 0.279 0.261 0.220
Accuracy 0.786 0.911 0.935 0.955 0.969 0.955 0.968 0.974 0.983 0.991

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the out-of-sample performance of static and dynamic tobit model in classifying borrow-
ers into different groups of days past due. In all the cases an indicator is equal one if overdue is above certain
threshold (30, 60, 90, 180 or 360 days past due) and zero if it is equal or below that threshold. See section 3.3 for
the description of classification accuracy measures.

We now turn to out-of-sample prediction accuracy of new defaulters. The results presented
in Table 12 reveal that the prevailing modelling methodology, static PD model, performs very
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badly with true positive rate below 1%. The model is basically uninformative in identifying
transitions to default. The performance can be significantly improved by moving to dynamic
PD model and even more by using static tobit, which correctly classifies 53% of new defaulters.
Overall, we can conclude that the out-of-sample prediction results are totally in line with the
results obtained using in-sample predictions.

Table 12: Out-of-sample performance in predicting transition to default

Static Dynamic Static Dynamic Static Dynamic
PD PD probit probit tobit tobit

True positive rate 0.008 0.233 0.157 0.005 0.528 0.114
True negative rate 0.999 0.997 0.991 1.000 0.955 0.997
False positive rate 0.001 0.003 0.009 0.000 0.045 0.003
False negative rate 0.992 0.767 0.843 0.995 0.472 0.886
Accuracy 0.984 0.986 0.978 0.985 0.948 0.983

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the out-of-sample performance of the estimated models in predict-
ing the transition to default (≤90 days overdue in time t− 1, >90 days overdue in time t).

5.2. Yearly horizon of default probability

Low prediction accuracy of static PD model could be the result of modelling the default
probability on quarterly horizon. The underlying default rate is a very volatile series and the
model may not be able to sufficiently capture all these dynamics. In addition, probabilities of
default are usually estimated on a one year horizon as is also suggested by BCBS (2001) to IRB
banks. Hence, to check the robustness of presented results, we re-estimate all our models using
only end-of-year data. Models’ specification is similar as before, with the only difference that the
interactions between quarterly dummies and firm specific variables are now dropped and instead
of one quarter lags, yearly lags of the dependent variables are used. Similarly, the dependent
variable for PD models is now defined as transitions to default on one year horizon.

The results of yearly estimates are presented in Table 13. As expected, the prediction accuracy
of static PD model is now improved. However, with 16% true positive rate it is still among the
worst performing. We again find that static tobit outperforms all the other models’ predictions by
a large margin. It correctly classifies 56% transitions to default, which is even slightly improved
comparing to quarterly estimates. Similar as we find before, static tobit issues more false alarms,
but the evaluation of a loss function is still considerably in favour of this modelling approach.

Table 13: Models’ performance in predicting yearly transition to default

Static Dynamic Static Dynamic Static Dynamic
PD PD probit probit tobit tobit

True positive rate 0.159 0.235 0.248 0.145 0.559 0.354
True negative rate 0.994 0.993 0.988 0.994 0.955 0.982
False positive rate 0.006 0.007 0.012 0.006 0.045 0.018
False negative rate 0.841 0.765 0.752 0.855 0.441 0.646
Accuracy 0.963 0.966 0.961 0.963 0.941 0.959

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the performance of the estimated models in predicting the yearly
transition to default (≤90 days overdue in time t− 1, >90 days overdue in time t).
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5.3. Dynamic model estimates on a sub-sample of firms

Wooldridge’s (2005) methodology, which we use to estimate the dynamic models, requires
that the estimates are performed on a balanced panel data.8 Due to the nature of the modelling
problem, our panel is unbalanced. Firms that become overdue on their credit obligation sooner
or later bankrupt and disappear from the sample. In addition, new firms are entering into the
sample. In applied work researchers usually estimate the dynamic models only on balanced part
of the data set (see for instance O’Neill and Hanrahan, 2011). In our case, however, this would
lead to serious sample selection bias. We would be mostly left with the firms that defaulted
during the last periods of the sample. We rely on the evidence provided by Akay (2009), who
shows by simulations that using Wooldridge’s (2005) methodology on unbalanced panel does not
lead to any serious bias. In addition, we also estimate our models on a sub-sample of firms
that are represented at the beginning of the sample. We therefore exclude all the firms that
subsequently enter the dataset. In this way we achieve that the initial values for all the firms
are taken from the same time period (2007q4).

Table 14 presents the performance results of dynamic probit and tobit models estimated
on a sample of firms present in 2007q4. As it can be seen, this only marginally changes the
classification accuracy results. We can still find that the dynamic models outperform the static
ones and that the dynamic tobit is the advantageous methodology for identifying non-performing
borrowers. Overall, the results are in line with the findings presented in section 4.

Table 14: Performance of the dynamic models estimated on a sub-sample of firms

Dynamic Dynamic tobit
probit 30 60 90 180 360

True positive rate 0.678 0.766 0.738 0.731 0.746 0.781
True negative rate 0.993 0.969 0.985 0.991 0.996 0.998
False positive rate 0.007 0.031 0.015 0.009 0.004 0.002
False negative rate 0.322 0.234 0.262 0.269 0.254 0.219
Accuracy 0.972 0.951 0.967 0.974 0.983 0.991

Source: Bank of Slovenia, AJPES, own calculations.
Notes: The table reports the performance of dynamic probit and tobit model es-
timated on a sample of firms present at the beginning of the sample (2007q4).
Dynamic probit performance is shown for the 90 days overdue threshold, whereas
dynamic tobit results are for different thresholds from 30 to 360 days.

6. Conclusion

In this paper we evaluate the performance of several credit default models, which are com-
pared in their ability to correctly predict non-performing borrowers and transitions to default.
In addition to conventional static binary models, we also evaluate the performance of two novel
methodologies that, to our knowledge, have not yet been applied in modelling credit risk. Over-
due in loan repayment is already a risk measure and therefore it seems reasonable to estimate it
directly, using the tobit model methodology. In addition, state of default and overdue are highly
autoregressive processes. Overdue is expected to increase in time, whereas state of default shows
a lot of persistence. Estimating the dynamic probit and tobit model, where lagged dependent
variable is included among regressors, can significantly improve the performance of the model.

8Honoré (2002) shows that the initial conditions problem is especially problematic in unbalanced panels.

18



Same inputs are used in all the models, which means that the differences in classification accuracy
can be fully attributed to different functional forms (probit vs. tobit) and additional information
that enter the model in the form of lagged dependent variable.

We show that tobit modelling methodology outperforms all other methodologies. Dynamic
tobit model is shown to achieve the highest classification accuracy in predicting non-performing
borrowers. It correctly identifies more than 70% of defaulters and issues less than 1% of false
alarms. In addition, its prediction is number of days past due, which enables to form different
classes of overdue. This is a very valuable information, since it gives direct and easily interpretable
information on expected portfolio riskiness. We show that tobit model performance is very high
and stable across different overdue classes, from 30 to 360 days. High performance (66% true
positive rate) is also achieved by dynamic probit, which outperforms the static version by more
than 30 percentage points. This shows that the dynamic modelling methodology can significantly
improve the performance of credit default models.

Tobit model also has the highest prediction ability for explaining transitions to default. In
classifying firms into performing and non-performing class the dynamic structure of the model
plays a crucial role. When a certain overdue threshold is bridged, it is not very likely that
the borrower will become performing again. In explaining transitions to default, however, this
autoregressive process is too slow to sufficiently capture the increase of overdue from one quarter
to another. We therefore find the static tobit model to perform the best in terms of true positive
rate. It correctly classifies 50% of new defaulters and outperforms all other models by a large
margin. It also issues more false alarms, but as we show, the evaluation of loss function, which
takes into account type I and type II error, is much in favour of this model. On the other hand,
conventional PD model, that is typically used by banks and regulators, has very low performance.
It is able to correctly identify only 5% of transitions to default. A number of robustness checks
confirm the validity of our results.

The findings in this paper have several important implications for banks, banking regula-
tion and credit risk modelling practitioners. We show that the prevailing credit risk modelling
methodology, which is based on binary classifiers, can be significantly improved by including the
dynamics and choosing the tobit functional form of the model. In addition, we propose a model
specification to estimate credit risk on a quarterly basis, which enables much more frequent and
accurate monitoring of expected changes in credit portfolio.

A more important finding of our empirical analysis is very low prediction performance of
conventional static PD model. This type of model is usually used by banks to assess riskiness of
their portfolio and to determine one of the crucial parameters for calculating capital requirements
under IRB regulation - the probability of default. A simple upgrade of the model with dummies
indicating overdue in previous period significantly improves the performance. Even higher pre-
diction ability is achieved by static tobit model. Although the prediction of this model is not in
the form of default probability and can thus not be directly used in IRB formula, it seems very
useful for identifying new defaulters more accurately. This is important information for banks
and regulators, since knowing which borrowers are expected to default in next period they are
able to assess in advance the required loan loss provisions and capital to cover the losses. In
addition, IRB regulation (BCBS, 2001) requires from banks to form classes of default probability
and apply the same PD to all the firms within the class. Tobit predictions enable to form similar
riskiness classes based on days past due. Combining this predictions with the information about
default rate for each overdue class, one can, similarly as under IRB regulation, also attach default
probability to each class.
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