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1. Introduction 

While forward guidance, together with Quantitative Easing, has been at the forefront of practical 

(and largely successful) innovations in recent monetary policy, the existing literature on forward 

guidance has been, at least so far, limited, mostly restricted to a few specific problems or 

circumstances, and mainly of an empirical content.
2
  

Part of the problem is that forward guidance has been seen in terms of controllability (the ability 

to reach or regain certain target values) rather than stabilizability (its ability to return an 

economy to a steady state growth path, following an arbitrary shock and at a chosen speed). This 

paper removes that constraint by making the policy rules themselves forward looking. In the 

jargon of the literature, this is just a question of using Odyssean rather than Delphic forward 

guidance.
3
 

At the theoretical level, some attention has been given to the issues of the limits to stabilizability 

when the horizon of forward guidance is not long enough to let private sector expectations 

adjust, or where there are bounds to legitimate policy action (Evans, 2012, Gavin et al, 2013, 

Woodford, 2013). We deal with both issues by noting that, under stabilization, the policy horizon 

is large (effectively infinite) and repeatable. This implies that stabilizability is unconditional. 

That in turn means, as we show, that time inconsistency is not an issue for stabilizability since 

there is always time to achieve the desired goals (in expectation) – unless there are further 

shocks to respond to (a shift in information) or a change in the desired speed of absorbing them 

(a change in preferences). Neither of those two can be properly classified as time inconsistency. 

                                                 
2
 See, e.g., Kool and Thornton (2012), Del Negro et al (2013), Filardo and Hofmann (2014). 

3
 Delphic guidance is guidance defined in terms of intended/expected outcomes without specific commitments: for 

example “low inflation”, “interest rates lower for longer”, “inflation of 2% or a little less”. Odyssean guidance is 

guidance offered as a commitment to specific policies or (contingent) policy rules defining how the authorities will 

react to certain conditions (Den Haan, 2013). See Hughes Hallett and Acocella (2015) for a formal statement of this 

distinction.  
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Thus, the two cases of apparent time inconsistency commonly considered in the literature – that 

outcomes better than expected will require policymakers to retain their previous policies in order 

to maintain (time consistent) credibility, and that worse outcomes will persuade them to speed up 

the return to their equilibrium path
4
 – never arise in the stabilizability case.

5
 

The contribution by Levin et al (2010) is of specific relevance here, since they warn that the 

economy’s stability may be at risk if there are physical or formal bounds to policies that can be 

implemented. If that is the case, forward guidance can be used to stabilize the system only when 

shocks are moderately negative. When negative shocks are large (such as would appear in a big 

recession or in a serious deflation), they conjecture forward guidance will be unable to take them 

into account and ensure economic stability. This contrasts with the theory of dynamic 

controllability and stabilizability which, as demonstrated below, shows that stabilization is 

always possible when the private sector has forward looking expectations, even when coping 

with large shocks. The explanation is that Levin et al did not consider the possibility that their 

results might depend on the choice of insufficiently responsive policy rules, or on an 

inappropriate type of forward guidance. These results are of particular significance for the Euro 

zone as it contemplates expanding quantitative easing in the face of accelerating deflationary 

pressures; and also for the US and UK as they try to avoid inflationary pressures in their exit path 

from quantitative easing and unusually low interest rates. In this paper we show that, in the 

presence of rational expectations, stabilizability can always be ensured by forward guidance, 

independently of the size of shocks, if an appropriate policy rule is chosen, even if the economy 

is at or near the zero lower bound. Such rules are always feasible. 

                                                 
4
 See Krugman (1998) or den Haan (2013); and Plosser (2013) or Buiter (2013) respectively. 

5
 Praet (2013) underlines this point, by arguing that to exploit good fortune or to speed the return to stability is to 

reaffirm the policymakers objectives, not suspend them. 
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The paper is organized as follows. The next section presents our policy model with forward 

looking expectations. Section 3 deals with the concepts of stabilizability and dynamic 

controllability. Section 4 investigates the issue of stailizability under all sizes of shock. Section 5 

deals more specifically with the impact of zero lower bound constraints. Section 6 concludes.  

2. A Generic Dynamic Model with Forward Expectations 

Without loss of generality, we can write the standard linear RE model in its reduced form for a 

single policy authority, as follows: 

(1)    for t = 1,…,T. 

where  denotes the mathematical expectation of  conditional on , an 

information set common to all agents at t, and ut is a vector of m control variables in the hands of 

the policymakers. Matrices A, C and B are constant and of order S, S, and S m, respectively, and 

have at least some elements which are nonzero. In this representation, y0 is a known initial 

condition, and  is a known, assumed or expected terminal condition (most likely one that 

describes the economic system’s long run equilibrium state
6
). Both are part of the information set 

t. But the values in ut are not part of  t  since they are determined by the policy makers. Finally 

 is a vector of exogenous shocks and other influences on yt with a known mean but from an 

unspecified probability distribution. Notice that the policy authority may have only q ≤ S explicit 

targets, but the m instruments are assumed to be linearly independent. 

                                                 
6
There is no indeterminacy here. The dynamic conditions which guarantee the existence of a solution are auto-

matically satisfied, given any particular information set, if the inverse in (2) exists – which we show to be the case in 

Hughes Hallett et al (2012b). Given such an inverse, Hughes Hallett and Fisher (1988) show that the saddle point 

property (that the system has the correct number of stable and unstable roots to ensure a solution; Blanchard and 

Khan, 1980) is satisfied. It then no longer matters what the value of the terminal condition is, or if none is specified, 

if the policy horizon is far enough away (T  ). But indeterminacy may follow if the y(T+1|1) values cannot be 

specified. 

1 1|t t t t t ty Ay Bu Cy v    

 1| 1 |t t t ty E y   1ty  t



1|1Ty 

tv
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This model can now be solved from the perspective of any particular period, say t = 1, by putting 

it into final form conditional on the information set available in that period: 

(2)     

Although equation (1) has been solved from the point of view of Ω1, it must be understood that it 

could have been solved for each Ωt, t = 1,...,T in turn, where 𝑦𝑗|𝑡 = 𝐸𝑡(𝑦𝑗)  if 𝑗 ≥ 𝑡, but 𝑦𝑗|𝑡 = 𝑦𝑗 

if 𝑗 < 𝑡; similarly for u and v.  

The structural equation to which (2) is the solution makes it clear that neither policymakers, nor 

the private sector are required to make expectation errors for the policies to work as planned. In 

fact, those expectations are exactly matched, aligned and consistent with what the private 

sector/policymakers expect/intend the outcomes to be (given the model and information set in 

use). It then only remains to determine if it is really possible to shift expectations in such a way 

that the economy’s outcomes reach certain specified target values at certain points of time. 

It is easy to show that this final form model always exists since the inverse matrix in (2) is well 

defined provided the matrix product AC does not contain a unit root (see Hughes Hallett et al, 

2012a,b for an explicit proof).
7
  

3. Controllability and Stabilizability  

Controllability  

                                                 
7
The no unit root condition is equivalent to specifying that the feed-forward and feedback dynamic elements do not 

cancel each other out. 

1
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In previous papers (Hughes Hallett et al, 2012b, Hughes Hallett and Acocella, 2015) we were 

able to show that the model discussed in Section 2, containing not only backward-looking but 

also forward-looking effects, has interesting controllability properties. Given that the inverse in 

(2) above exists, 𝑇𝑇
−1, we can write (2) as 𝑦 = 𝑅𝑢 + 𝑏, where R is defined as 𝑇𝑇

−1(𝐼 ⊗ 𝐵) and 

contains both the conventional policy multipliers in the sub-matrices 𝑅𝑡,𝑗  where 𝑡 ≤ 𝑗 and 𝑗 =

1 … 𝑇  for each 𝑡; and multipliers that define the anticipatory effects of announced or anticipated 

policy changes 𝑢𝑗|1  to be made at various points in the future in sub-matrices 𝑅𝑡,𝑗 where 𝑡 > 𝑗. 

Finally the external information required is contained in 𝑏 = 𝑇𝑇
−1{𝐸(𝑣|Ω1 + (𝐴′: 0)′𝑦0 +

(0: 𝐶′)′𝑦𝑇+1|1}. 

Multi-period static controllability defines the set of conditions which must hold if an arbitrary set 

of target values is to be achieved for the endogenous targets in each period. Under REs, as in any 

conventional backwards looking model, a single policy maker will achieve this type of 

controllability when he possesses as many independent policy instruments as target variables in 

each time period.  

A model is dynamically controllable, however, if a sequence of instrument values  exists 

that will reach arbitrary values, , for the target variables in period t (in expectation) given any 

starting point .0y  The economy represented by (1) is dynamically controllable over the interval 

(1, t), when T ≥ S and t < T, if in the t-th row block of R, r[Rt,1….Rt,S]=S. This is a sufficient 

condition for dynamic controllability. Necessary conditions may involve smaller subsets of Rt,j 

having full rank depending on how many policy instruments are available.  The conditions for 

dynamic controllability stated here contain an important generalization over the traditional case. 

In this case, policymakers can use policy announcements, in addition to instrument interventions, 

to guide the course of the economy. This is true even at t = 1: the targets are controllable from 

1,..., tu u

ty
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the first period, even if there are insufficient instruments, provided that the conditions in the 

theorem are satisfied and credible announcements are made about anticipated future actions.  

It is important to note that time inconsistency will not appear here, so credibility is no restriction 

if the no unit root condition (eq. (1) possesses a solution) and the rank condition apply at t<T. 

Policymakers are of course free to set ut|t ≠ ut|1. But they would never do so because is the first 

best value, and is reachable given no further information changes or unforeseen shocks. Hence, 

to assert time inconsistency is to claim that rational policymakers would choose to make them-

selves worse off than they need to be: a contradiction.  

For example, suppose low interest rates in a recession had been promised for a period of time but 

the economy starts to recover in that period. Policymakers clearly have an incentive to break 

their promise and raise interest rates early. Knowing that policymakers can reach their ultimate 

objectives, the private sector can see this rise coming and will factor in revised outcomes with 

the result that an early rise in interest rates would have no additional effect. Knowing that, policy 

makers won’t make the change. 

Stabilizability 

The controllability properties of an economy with REs through forward guidance are important 

as they rule out one of the more frequent obstacles against use of this type of policy, time 

inconsistency, if there are enough instruments or sufficient time periods (that is, if the rank 

condition above is satisfied). Another obstacle however can be occurrence of shocks. These 

could be such as to lead the economy towards an unstable path, thus making it uncontrollable. 

We now show that this is not the case, since any economy hit by a shock of any size can be 

stabilized to an arbitrary degree under rational, forward looking expectations if it is also 

dynamically controllable. An arbitrary degree of stabilization means that rules can be found to 

ty
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make the economy follow an arbitrarily stable path, based on an arbitrary set of eigenvalues, 

such that it returns to the original path following a shock. Theorem 1 is the Rational Expectations 

analogue of the standard stabilizability theorem for backward looking, physical systems.
8
 

Theorem 1 (stabilizability under REs). For any economy represented by (1), with arbitrary 

coefficient matrices A, B and C, we can always find a series of dynamic but forward-looking 

policy rules, 𝑢𝑡|1 = ∑ 𝑦𝑗−1|1
𝑇
𝑗=1 + 𝑘𝑡|1,

9
 such that the controlled economy is stabilizable up to an 

arbitrary set of eigenvalues, if that economy is dynamically controllable. 

Proof. (see Hughes Hallett and Acocella, 2015; reproduced here for convenience): 

Equation (1), with arbitrary coefficient matrices A, B and C, can be reduced to its final form (2). 

Substituting the policy rule  for each t = 1,…,T shows that the controlled 

economy will behave similarly to 𝑦 = 𝑅𝑢 + 𝑏,:  

(3)  

where  and . Rewriting (3), we now have 

(4)           

where  is the stacked vector on the left of (3).  

The economy will now be stable (that is stabilized by the policy rule above for 𝑢𝑡|1) if the 

iteration matrix, RK, has its roots inside the unit circle (Wonham, 1974). But we can go further. 

                                                 
8
 See Wonham (1974). 

9
 Note: this control rule, for use in period t<T, employs actions and anticipated actions up to the end of period T. 
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Any particular 
 
will follow an arbitrarily stable path if we can pick tTt KK .....1  

to generate an 

arbitrary set of eigenvalues for that matrix for each t. Suppose we want to choose iteration matrix 

, where   is a diagonal matrix of the desired eigenvalues, and Z is a matrix of   

corresponding eigenvectors. Then, as long as T>S and the matrix R has full rank ST (i.e., m ≥ S, 

so that static controllability applies), we can calculate the required K from . But if 

m<S and dynamic controllability applies (as in the theorem), then we can use a generalized left-

inverse instead:  with  as one obvious possibility. This generalized 

inverse always exists, given dynamic controllability, since  has full rank with r[R]= mT by 

Sylvester’s inequality. To see this, recall  where  is a square STxST matrix of 

full rank and  is a block diagonal matrix with rank mT. Hence, by Sylvester’s inequality, 

r[R]≥ ST+mTST = mT. But if m<S, then  cannot be greater than mT by definition. 

Hence r[R]=mT, which means that exists and this value of  is always available. ■ 

Corollary: Hence a RE model that is dynamically controllable at t = 1 is also stabilizable from t 

= 1. Theorem 1 generalizes Wonham’s original theorem.  

Intuition: The policy rules described in Theorem 1 are both forward and backward looking in 

that they react to expected future developments, including the effects of these rules applied in the 

future, and to feedback from past outcomes (past “failures”) – in exactly the same way as the 

private agents in the economy have been assumed to do. The practical implication is that the 

constrained (policy) optimization problem no longer satisfies the Markov property with respect 

to time, which means that traditional optimization techniques like dynamic programming cannot 

|1ty
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be used
10

 – at least, not without the risk of creating time inconsistent decisions as policymakers 

exploit their opportunity to re-optimize to improve successive outcomes. 

The lesson here is that in models with forward looking behavior, the closed loop (as opposed to 

simple feedback) characteristics of our policy rules are of special importance. Closed loop means 

reacting to changes in expectations of future events as they appear, in addition to past outcomes 

as they deviate from plan. In backward looking models, future events are represented by (fixed) 

future exogenous variables. As a result, the distinction between closed loop and feedback rules 

will be ignored as if it were unimportant. But given forward looking markets, where current 

behavior and outcomes depend on expectations of the future, and expectations of the future 

depend on current outcomes, the distinction can be large (Hughes Hallett et al, 2012a). 

4. Stabilisability and the size of shocks. 

The clear implication of Theorem 1 is that an economy subject to forward looking expectations 

is always stabilizable if a suitably chosen policy rule is applied together with forward guidance - 

defined here as planned outcomes yj|1 applied to ut for j ≥ t+1. This result has been challenged by 

Levin et al (2010), who assert that such models may be stabilizable if the shocks are small; but 

not if they are large, such as those in the 2008-12 recession. This section reconciles the results 

above with that assertion and explains the source of the difference.  

In this section we show that any economy remains stabilizable, irrespective of the size or type of 

shock, if the stabilization rule contains forward looking elements
11

; if the policy interventions are 

endogenized (specifically the forward looking elements, which means that there is an articulated 

                                                 
10

 Bellman (1961) 

11
 To be fair, Levin et al (2010) conjecture that forward guidance might be a way to resolve the potential instabilities 

remaining in their model. But the two further properties noted in this sentence are not present in the Levin et al 

analysis. They turn out to be necessary components for achieving stability – as shown below. 
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exit strategy even if current policies are stuck at their zero lower bound); and if the parameters of 

the stabilization rule are chosen to be strong enough to make the policy interventions effective. 

To demonstrate these results, we take the same model as in the Levin et al analysis. First, there is 

a standard forward looking New Keynesian Philips curve to explain inflation πt: 

(5)                                   πt=𝛽𝐸𝑡(𝜋𝑡+1) + 𝑘𝑥𝑡 

where β ∈ [0,1]  measures the sensitivity of current inflation to expectations of future inflation; 

and k > 0 is the corresponding sensitivity (elasticity) of inflation to changes in the existing 

output gap xt. Second, a forward looking IS curve to explain the output gap (unused spare 

capacity) in the economy: 

(6)                                 𝑥𝑡 = 𝐸𝑡(𝑥𝑡+1) − 𝜎𝐸𝑡(𝑖𝑡 − 𝜋𝑡+1 − 𝑟𝑡
𝑛) 

where it is the short term interest rate (policy rate), 𝑟𝑡
𝑛 is the long run equilibrium interest rate, 

σ > 0 is the interest rate elasticity of aggregate demand (output), and Et(.)=𝐸𝑡(. |Ωt). 

The general solution to this model, eliminating xt from (5), is: 

(7)                        (
𝜋𝑡

𝑥𝑡
) = [

𝑘𝜎 + 𝛽 𝑘
𝜎 1

] (
𝜋𝑡+1|𝑡

𝑥𝑡+1|𝑡
) + 𝜎 (

𝑘
1

) (𝑟𝑡
𝑛 − 𝐸𝑡𝑖𝑡). 

If we are stuck at the zero lower bound for the interest rate, then it = 0; otherwise we operate 

with equation (7) as it is. Notice, if policy is not constrained to its zero lower bound, then the 

natural effects of expectations and dynamics can be offset by policy or guidance:𝐸𝑡𝑖𝑡 ≠ 0. This 

confirms our earlier stabilization results, whatever the shocks may be. The question is, can it still 

be done if Etit has to be nonnegative?  

The eigenvalues controlling the dynamics of (7) can be obtained from the iteration matrix: 

(8)                          𝜆1,2 =  ½{𝛽 + 𝑘𝜎 + 1 ± √(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽}. 
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Stability here requires both eigenvalues outside the unit circle because (7) is an exclusively 

forward looking dynamic equation.
12

 The problem with (8) is that the positive root lies outside 

the unit circle, but the negative root lies inside. That means we are condemned to suffer some 

form of instability unless β and either k or σ are equal to zero.
13

 To see this, we first check 

that 𝜆1,2 are real. That requires 

(9)             (𝛽 + 𝑘𝜎 + 1)2 > 4𝛽     or     (𝛽 − 1)2 + 2𝑘𝜎(1 + 𝛽) > 0 

which is evidently true since β, k and σ are all nonnegative. This then implies the negative root is 

inside the unit circle, |𝜆2| < 1, but the positive root is outside, λ1>1, as demonstrated in 

Appendix A at the end of the paper. 

The clear implication of these results is that the model at (7) is inherently unstable, whether or 

not monetary policy is stuck at its zero lower bound, unless β = 0 and either k or σ are zero; or 

the stabilizing interventions follow a policy rule of the type used in Theorem 1. These results are 

the first extension of the Levin et al analysis.  

Next, this tendency to instability gets worse the larger is output sensitivity with respect to interest 

rates, σ; the larger is the sensitivity of inflation to output, k; and the greater is the impact of 

inflation expectations on current inflation: β. One could expect these parameters to be rather 

small near the zero lower bound if there is excess capacity in the economy. But otherwise, 

stabilizing policies will have to work harder to achieve their aims; or the forward guidance 

announcements will have to have a lot of credibility. Conversely, if those three parameters are 

small (σ because of the liquidity trap effect; k because there is excess capacity; and β because 

                                                 
12

 Renormalising on variables indexed by t+1 gives the conventional result; stability follows if the eigenvalues of the 

inverse of the iteration matrix in (7) are inside the unit circle, meaning λ1,2 have to be outside. Having one root 

inside and one outside is not the usual saddle point property, in the sense of Blanchard and Khan (1980), since in 

this case there are no lag terms in the model. 
13

 This is the particular case that Levin et al were actually concerned with. 
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there is a fear of deflation, and no fear of inflation), forward guidance and policy interventions 

will not have to work so hard. That is the second extension of the Levin et al results.  

The parameters of the policy rule therefore matter: offsetting large negative shocks requires less 

effort near the zero lower bound; but elsewhere (i.e. before the recession has fully taken hold), it 

will require considerably more effort (a stronger rule or stronger forward guidance). 

 5. Stabilisability at the Zero Lower Bound. 

The next step is to determine if stabilizability and policy is still possible when the zero lower 

bound constraint is taken into account. Theorem 1 states that any economy such as (1), with (11) 

as a special case, is in general stabilizable; but not that it is stabilizable without cost [in the sense 

that the policy instruments might need to take values that are undesirable, if not infeasible]. We 

need to check if stabilization is still possible when interest rates are required to respect their zero 

lower bound: it ≥ 0 but 𝐸𝑡(𝑖𝑡+1) > 0, representing a possible zero lower bound restriction and a 

requirement to announce an exit strategy, respectively, in a two period problem. 

The model: to examine such a case, consider an economy represented by the following model 

(10)         ttttttttt EiEyy    )()( 111  

(11)    

Equation (10) is an elaboration of the standard model which has been part of the theory of 

monetary policy since the Barro-Gordon model. It consists of a short run Phillips curve with 

persistence ( ), set within a standard forward looking Lucas supply function (a vertical long 

run Phillips curve) and extended to include the effect of real interest rate changes on output. It 

can therefore be interpreted as either a dynamic open economy Phillips curve; or as a forward 

0 1 2( )t t t ti c c c y      

0 



14 

 

looking New Keynesian IS curve with dynamics. In that case,  is the output gap; 
t is the rate 

of inflation; Et𝜋𝑡+1 the private sector’s current expectation for inflation;   is the policymaker’s 

target for inflation; and  is the nominal rate of interest. We define as a supply shock and a 

monetary shock, both with mean zero and constant variance. All parameters are positive. 

The only policy instrument in this example is  Policy therefore follows a Taylor rule:  is an 

exogenous term incorporating the equilibrium rate of interest 𝑟𝑡
𝑛;  are possible control errors; 

and determinacy (the Taylor principle) suggests  

To obtain a reduced form for (10)-(11), we renormalize (11) on πt, set ut= 𝜋∗ − 𝑐1
−1(𝑐0 − 𝑣𝑡), 

and then solve for yt and πt.This transforms our system to: 

(12)      

where Δ = (1 + αc1
-1

𝑐0). This form of model does not permit static controllability since the 

coefficient matrix multiplying it is singular. However, the two-period policy problem is: 

(13)       

where A, B, C are the first, second and third coefficient matrices in (12), and correspond to 

equation (1). The policy multiplier matrix for this model is then: 
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 (14)       

where  This model therefore tells us that ),( 11  tty  are both controllable 

using current policies and announcements or projections of future actions, because the lower 2x2 

partition of the multiplier matrix in (14) is non-singular.
14

 Policies to achieve stabilized values of 

(0,π*) for ),( 11  tty  , defined for some point in the future, would therefore be: 

(15)   = 
Φ

𝐷
. [

1 + 𝛽𝑐2 −𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2)𝑐1 + (𝛼 − 𝛽𝑐1)Φ 𝑐1Δ⁄

𝑐2𝑐1
−1𝜌(𝛼 − 𝛽𝑐1) 𝜌(𝛼 − 𝛽𝑐1)

] [
0

𝜋∗] 

where  D = ρ(α-βc1){(1 + 𝛽𝑐2)Δ + 𝑐2𝑐1
−1[𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2) + (𝛼 − 𝛽𝑐1)Φ] Δ⁄ }. 

i) Policy Analysis: To simplify the discussion, suppose that β > α: that is, interest rate policy has 

more impact on the economy than inflation surprises (but not necessarily more than inflation 

itself). This implies Φ > 0. As a consequence we will also assume that (α-βc1) < 0 and hence 

that D < 0. Last but not least, recall that Δ > 0. Equation (15) now implies we need to set 

(16)                   it = −
𝜋∗Φ

𝐷
.

𝜌(𝛽−𝛼)(1+𝛽𝑐2)+(𝛼−𝛽𝑐1)Φ

𝑐1Δ
  ≥ 0,      and  

 

(17)           𝐸𝑡𝑖𝑡+1 =
𝜋∗Φ

𝐷
. 𝜌(𝛼 − 𝛽𝑐1)  

                         =  
𝜋∗Φ

{(1+𝛽𝑐2)Δ+𝑐2𝑐1
−2[𝜌(𝛽−𝛼)(1+𝛽𝑐2)+(𝛼−𝛽𝑐1)Φ]/Δ}

 > 0 

                                                 
14 Unless the underlying parameters satisfy α = βc1 exactly. Since we are free to choose c1, we may assume α ≠βc1. 
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in order to achieve our targets, and hence stability, without breaching the lower bound constraint.  

ii) Responses to inflation. The weak inequality in (16) depends on our choice of 𝑐1. It requires 

(18)                        𝑐1 ≤ β-1[𝛼 + 𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2)/Φ] 

to hold. This upper bound exceeds α
β⁄ , unless α = β (in which case any c1≤ 1 value will do). 

Thus the current policy will be retained at its zero lower bound if c1 is chosen equal to its upper 

bound in (18), but will exceed zero if 𝑐1 is chosen smaller. However (18) is an approximation, 

chosen for the purposes of illustration only, since Φ depends on 𝑐1.  Substituting for Φ, the 

correct upper bound on 𝑐1 is given by: 

(19)              c1
2−ℎ𝑐1 −

𝜌(𝛽−𝛼)(1+𝛽𝑐2)

𝛽(1+𝛼2𝑐2
2)

 ≤ 0    where    h =
α

β
 + 

𝜌(𝛽−𝛼)(1+𝛽𝑐2)

𝛽[𝜌𝛽+(2−𝜌)𝛼]
  

which implies upper and lower bounds on 𝑐1 (they represent, respectively, sufficient conditions 

for (16), and more accurate restrictions when β – α is small) of: 

(20)                                   0 ≤ 𝑐1 ≤ ℎ. 

In other words, we need to choose the policy rule parameters correctly, but not too strong, if we 

wish to stabilize the economy. That remains true even when we are constrained to the zero lower 

bound. Hence the size and direction of the shocks have nothing to do with our ability to stabilize 

the economy. Equally the Taylor principle may or may not be desirable or possible (Appendix C 

resolves that question), but it plays no role so long as our assumptions on 𝛼, 𝛽 (or their 

replacements if β ≤ α) remain valid.  

iii) Responses to output: The forward guidance and exit strategy, as part of the stabilization 

package implicitly available to everyone (even if not preannounced), is bounded away from zero 
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if the parameters of the policy rule are chosen right. Inequality (17) then holds for any parameter 

values if c2  satisfies 

(21)              𝑐2  > 
−[(α-βc1) + 𝜌(𝛽−𝛼)]

𝜌𝛽(𝛽−𝛼)
. 

Inequality (21) is in fact a sufficient condition, the necessary condition being quadratic in c2 and 

more complicated.
15

 It implies any 𝑐2 ≤ 0 will do if (α-βc1) + 𝜌(𝛽 − 𝛼) ≥ 0; or that any 

positive 𝑐2 satisfying (21) will do even if we are currently constrained to be at the zero lower 

bound. Again the size and direction of shocks have nothing to do with it. Instead, with c2 values 

away from the bounds above, the trick is to choose the parameters in the policy rule correctly. 

Together with the constraints on c1 in (20), this has implications for “austerity”. In particular, it 

shows the relaxations of the Taylor principle which might be used to start a recovery, or to 

overcome the fear of deflation, or provide the ability to stabilize the economy. Such policies all 

require forward guidance to place greater emphasis on output stabilization and potential growth. 

In addition, the exit strategy would never have zero interest rates. These results are all further 

extensions to the Levin et al analysis. 

iv) Are these constraints on the policy rule compatible with the Taylor principle?  

Appendix B, part v), shows that the constraints on c1 and c2 above are mutually compatible for 

all admissible parameter values in the problem, whether or not policy is restricted to the zero 

lower bound in period t. That means we can pick any values of c1 and c2 that lie in the shaded 

area of Figure 1 (Appendix B). But do they also allow us to deploy the Taylor principle in the 

policy rule (11); and is anything lost if they do not?  Appendix C shows that the Taylor principle 

requires the following to hold: 

                                                 
15

 See appendix B, part ii) below. 
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(22)                  ρ > c1+αc2 + (αc2)2/c1 = c1 + αc1(1 + αc2/c1). 

This is certainly possible: especially if output inertia ρ  is, or can be made to be relatively strong; 

or if the impact of inflation surprises, 𝛼, is weak (this is likely at or near the zero lower bound); 

or if  c2 can be chosen to be rather small. That makes good intuitive sense. 

Thus, the stronger is output persistence, the stronger the reactions in the policy rule – and hence 

in the forward guidance or exit strategies – can and should be. On the other hand, (A20) also says 

that the Taylor principle can only be applied if 𝜌 > 1 can be chosen. This might be possible 

temporarily; but appears to involve an unlikely combination of parameter values (given their 

other restrictions) and implies a careful coordination of fiscal and monetary policies will be 

needed in any event.  

6. Conclusions 

i) Given the rank condition described for dynamic controllability with REs, forward guidance is 

necessary to secure controllability and stabilizability: that is, to secure the ability to reach and 

then stabilize around specified values for the target variables.  

ii) Without forward guidance, which provides the private sector with information about the 

policymaker’s future intentions, the economy will not in general be controllable with respect to 

any given set of target values; and it may not be stabilizable either. 

iii) The capacity to stabilize the economy in fact depends not on the size/direction of shocks, but 

on the parameters of the policy rule not being chosen inappropriately (outside the bounds 

indicated). Offsetting large shocks needs a stronger rule and more carefully designed forward 

guidance. The existence of these bounds may prevent the Taylor principle being applied in some 
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instances. But these are largely the cases close the zero lower bound where that principle is 

unlikely to be permissible anyway. 

iv) A functioning stabilization policy rule is always possible, even at the zero lower bound.  

v) These results highlight the tension between the needs of austerity vs. the needs of growth. It is 

clear that careful coordination between fiscal and monetary policies is always going to be 

necessary, not least in the forward guidance/exit strategy components, and that announcing the 

exact timing of the latter is (just about) everything. 
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Appendix A: Determinacy in the Levin model with endogenous policy rules 

Equation (8) gave the roots of the Levin et al. model of the economy as 

(A1)                           𝜆1,2 =  ½{𝛽 + 𝑘𝜎 + 1 ± √(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽}. 

Since both roots are real, (9), to demonstrate the negative root is inside the unit circle we must 

have: 

(A2)                          -1 < ½ {β + kσ + 1-√(β + kσ + 1)2-4β} < 1 

The right hand inequality holds if 𝛽 + 𝑘𝜎 − 1 < √(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽, i.e. if (on simplifying) 

(A3)                                      -4kσ < 0; 

which is true for all admissible values of  k and σ. Similarly, the left hand inequality holds if  

(A4)                      0 ≤ 𝛽 + 𝑘𝜎 + 1 − √(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽 

http://www.phila-/
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which is again true for all admissible values of 𝛽 since 4β > 0.  

To show that the other, positive, root 𝜆1 =  ½{𝛽 + 𝑘𝜎 + 1 + √(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽} lies outside 

the unit circle, note that λ1= 1 if (𝛽, 𝑘, 𝜎) = 0 - their lower bound values. Also that 

                           
∂λ1 

∂k 
 = ½𝜎{1 + [(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽]−½(𝛽 + 𝑘𝜎 + 1)} > 0, 

 (A5)                   
∂λ1 

∂σ 
 = ½k {1 + [(β + kσ + 1)2-4β]-½(β + kσ + 1)} > 0, 

                            
∂λ1 

∂β 
 = ½{1 + [(𝛽 + 𝑘𝜎 + 1)2 − 4𝛽]−½(𝛽 + 𝑘𝜎 + 1)} > 0. 

This means that 𝜆1 is increasing in 𝛽, 𝑘, 𝜎, from λ1= 1, for all admissible values of β, k, σ. It lies 

outside the unit circle therefore. 

Appendix B: is a policy rule of the form (11) always feasible? 

i) Derivation of (18): given Φ > 0, Δ > 0, 𝑐1 > 0 and D < 0, then i1≥ 0 in (16) requires 

(A6)                  [𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2) + (𝛼 − 𝛽𝑐1)Φ] ≥ 0. 

Solving for admissible values of  𝑐1 yields (18): 

(A7)                    c1≤ 𝛽−1 [𝛼 +
𝜌(𝛽−𝛼)(1+𝛽𝑐2)

Φ
] 

which exceeds α β⁄  > 0 unless α = β, in which the bound is 𝑐1 ≤ 1. 

 

ii) Derivation of (21) under the same conditions: Et𝑖𝑡+1 > 0 requires the following inequality 

(A8)          (1 + βc2)+
𝑐2[𝜌(𝛽−𝛼)(1+𝛽𝑐2)+(𝛼−𝛽𝑐1)Φ]

(𝑐1Δ)2 > 0 

to hold. This expression is quadratic in c2: 

(A9)          (
βρ(β-α)

(c1Δ)2 )𝑐2
2 + (𝛽 +

𝜌(𝛽−𝛼)+(𝛼−𝛽𝑐1)Φ

(𝑐1Δ)2 ) 𝑐2 + 1 > 0. 

Taking the positive root so that c2>0, the necessary and sufficient condition for Et𝑖𝑡+1 > 0 is: 

(A10)       𝑐2 >

−[𝛽+
𝜌(𝛽−𝛼)+(𝛼−𝛽𝑐1)Φ

(𝑐1Δ)
2 ]+√(𝛽+

𝜌(𝛽−𝛼)+(𝛼−𝛽𝑐1)Φ

(𝑐1Δ)
2 )

2

− 4
𝛽𝜌(𝛽−𝛼)

(𝑐1Δ)
2

2𝛽(𝜌𝛽−𝛼) (𝑐1Δ)
2

⁄
.       

That could be tested in any particular case. But an easier sufficient condition can be obtained 

from (A8): 

(A11)                𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2) > −(𝛼 − 𝛽𝑐1)Φ, 

which ensures that the denominator, and thus all of (17), remains positive. This yields: 

(A12)            𝑐2> 
−[𝜌(𝛽−𝛼)+(𝛼−𝛽𝑐1)Φ]

𝛽𝜌(𝛽−𝛼)
. 
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Hence any c2 > 0 will do, so long as 𝜌(𝛽 − 𝛼) + (𝛼 − 𝛽𝑐1)Φ  remains positive. Otherwise c2 

may have to be restricted from below. 

iii) Are the limits on 𝑐2still valid in the general case; i.e. when 𝑖𝑡 is not held at its lower bound? 

In that case, the full denominator of (17) needs to remain positive: 

(A13)      (1 + βc2)𝛥2 + 𝑐2𝑐1
−1[𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2) + (𝛼 − 𝛽𝑐1)Φ] > 0.  This is quadratic in 𝑐2: 

(A14)         (
βρ(β-α)

(c1Δ)2 )𝑐2
2 + (𝛽 +

𝜌(𝛽−𝛼)+(𝛼−𝛽𝑐1)Φ

(𝑐1Δ)2 ) 𝑐2 + 1 > 0. 

Simple sufficient conditions to guarantee that (A14) holds are: 

(A15)         𝑐1 <
𝜌(𝛽−𝛼)

𝛽Φ
+

𝛼

𝛽
  from the middle term of (A14); or   c2 <

(𝑐1Δ)2

(𝛽𝑐1−𝛼)Φ
   

from the last two terms of (A14). It is always possible to satisfy these two inequalities, although 

the upper bound of the former may fall short of satisfying the Taylor principle in some cases. 

iv) Are these bounds on c2 still valid if policy is already constrained to its zero lower bound in 

period t? Inserting the equality for c1 from (A7) into (17) to get it=0, we find: 

(A16)          𝐸𝑡𝑖𝑡+1 = 𝜋∗𝛷
𝛥(1+𝛽𝑐2)

 . 

This is always positive for all admissible c2 values, so any c2≥ 0 will do. Moreover, Et𝑖𝑡+1is 

never zero in this case: policymakers will always need to deploy forward guidance and an exit 

strategy after it has been at or near its zero lower bound. 

v) Are the upper and lower bounds on 𝑐1 and 𝑐2 always mutually compatible? The slope of the 

constraint on 𝑐1 in (𝑐1, 𝑐2) space, taken from (16), is 𝜌(𝛽 − 𝛼) Φ.⁄  But that on c2 from (17) after 

renormalization to fit in the same parameter space, is identical. The two boundaries are therefore 

parallel: one an upper bound and one a lower bound. Their intercept terms however are different: 

𝑘1 = 𝛽−1[𝛼 + 𝜌(𝛽 − 𝛼)] for the upper bound on 𝑐1; and k2=−𝛽−1 [1 + 𝛼Φ
𝜌(𝛽 − 𝛼)⁄ ] for the 

lower bound on c2.  

 

Place fig. 1 about here 
 

Hence there is always an admissible parameter space between the two bounds, meaning that 

compatible choices of c1 and c2 are always available in the shaded area in figure 1. 

 

Appendix C: Can the Taylor Principle still be applied? 

In the general case, will the Taylor principle still be available as part of the monetary policy rule? 

Given availability, whether a value of c1>1 would be useful is quite another matter. Many would 

argue not in periods of deflation or serious recession when interest rates are already at their lower 

bound and cannot be reduced further. But in periods of deflation before the lower bound, or in 

normal times of positive inflation,  𝑐1 > 1 might well be desirable – particularly as part of 

forward guidance and exit strategy announcements.  

For the Taylor principle to be admissible, the upper bound on 𝑐1 in (18) must exceed 1; that is, 



23 

 

(A17)               β-1[𝛼 + 𝜌(𝛽 − 𝛼)(1 + 𝛽𝑐2)/Φ] > 1 

has to hold. Recasting (A17) in terms of 𝑐2 and then substituting for Φ, yields 

(A18)                𝑐2 >
Φ−𝜌

𝛽𝜌
=

Δ2𝑐1−𝜌+𝜌(𝛽−𝛼)𝑐2

𝛽𝜌
,    and thus  𝑐2 >

Δ2𝑐1−𝜌

𝛼𝜌
 

as the necessary condition for the Taylor principle to be feasible. Substituting again for Δ reduces 

that condition to the following inequalities: 

(A19)                 c2>[𝑐1 + 2𝛼𝑐2 + (𝛼𝑐2)2/𝑐1 − 𝜌],      or 

(A20)                  ρ > c1+𝛼𝑐2 + (𝛼𝑐2)2/𝑐1 = 𝑐1 + 𝛼𝑐1(1 + 𝛼𝑐2/𝑐1). 

It is certainly possible to attain these conditions, especially if: i) output inertia ρ is, or can be 

made to be, relatively strong; ii) if the impact of inflation surprises, 𝛼, is weak; this is likely at or 

near the zero lower bound; or iii) if a suitably small value of c2is chosen. Hence the applicability 

of the Taylor principle depends on the choice of the policy parameters relative to the persistence 

in output and its sensitivity to inflation expectations. It does not depend on the impact of 

expected real interest rates or activity levels. 
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Figure 1:  Compatible choices for policy rule parameters c1 and c2. 

 

 


