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Abstract

We study the design of optimal monetary policy in an economy characterized by stag-

gered wage and price contracts together with limited asset market participation (LAMP).

We provide analytical conditions for the determinacy of the REE in a fourth order dynamic

system. We find that once nominal wage stickiness, an incontrovertible empirical fact, is

considered optimal simple interest rate rules are active for any plausible degree of LAMP.

Further we show that, in response to shocks, LAMP has just minor effects on the dynamics

of welfare relevant variables under Ramsey optimal monetary policy. For these reasons we

argue that LAMP does not fundamentally affect the design of optimal monetary policy.
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1 Introduction

This paper studies the implications of limited asset market participation for the conduct of

monetary policy. In particular, it investigates the dynamic properties of interest rate rules and

optimal monetary policy in an economy characterized by staggered wage and price contracts

together with limited asset market participation (LAMP henceforth).

Wage and price stickiness arises from the Calvo-type mechanism. As in Galì et al. (2004,

2007), Bilbiee (2008) and in a number of recent studies, we model LAMP assuming that a

portion of agents face a liquidity constraint such that they spend their current labor income

in each period.

The remaining households hold assets and smooth consumption. This heterogeneity be-

tween households breaks the Ricardian Equivalence. For this reason in the remainder of the

paper we refer to liquidity constrained agents as to non-Ricardian consumers and symmetri-

cally we define other agents as Ricardian consumers.1

The resulting framework nests two popular environments in the optimal monetary policy

literature: Bilbiie (2008) and Erceg et al. (2000). The former studies determinacy properties

of simple interest rate rules and optimal monetary policy in a NK economy with LAMP and

a frictionless labor market. The latter develop a full participation NK model characterized

by both staggered prices and wages which features an endogenous trade-off between the sta-

bilization of the output gap, price inflation and wage inflation. Hence, Bilbiie (2008) features

sticky prices and LAMP, but not sticky wages; Erceg et al. (2000), instead, features sticky

prices and wages, but not LAMP. We find that the results in Erceg et al. (2000) are robust to

the introduction of LAMP, while Bilbiie’s (2008) findings are sensitive to the introduction of

wage stickiness. As a consequence, our analysis suggests that once wage stickiness is taking

into account LAMP do not substantially affect the functioning of monetary policy.

The tractable nature of our encompassing framework allows us to establish a series of

analytical results, thus providing a clear economic intuition for our main findings. We take

the reader to subsequent analytical steps that shed lights, first, on the transmission mechanism

of monetary policy and then on the featurs of optimal monetary policy in this setting.

As a first step, we show that in a model with staggered wages and LAMP, the real wage

gap, defined as the gap between the actual and the efficient equilibrium real wage, affects the IS

curve.2 As it will be clear in the text, Non-Ricardian households’ consumption is determined

1This modelling choice was originally adopted by Mankiw (2000) to account for the empirical relationship

between consumption and disposable income, which seems to be stronger than suggested by the permanent

income hypothesis.
2We follow the common practice in the optimal policy literature and linearize our model equations around

the efficient steady state. Our linearized economy reduces to a system of four equations in terms of aggregate

variables only.
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by labor income only. As a result, deviations of the real wage from its efficient counterpart lead

to deviations of aggregate demand from the efficient level. For this reason LAMP implies that

the wage gap affects the IS curve. Thus, while the supply side of the model is isomorphic to

that of a fully Ricardian economy with sticky prices and wages, the demand side, represented

by the IS equation, is affected by the degree of asset market participation.

Second, we analyze the implications of the degree of LAMP on the IS equation. This is

important since monetary policy affects the model economy through the IS equation which

contains the monetary policy instrument, i.e., the interest rate. We thus identify the factors

that lead to the inversion of the slope of IS curve. In this respect we can compare our results

to those in Bilbiie (2008), who considers a model with flexible wages. Bilbiie (2008) finds

that, when asset market participation is restricted beyond a certain threshold, the slope of

the IS curve may turn positive leading to what he calls and Inverted Aggregate Demand Logic

(IADL). In the parameter space where the IADL holds, aggregate demand increases with the

real interest rate. The inversion of the slope of the IS curve requires an inversion of the Taylor

Principle for monetary policy to support a unique rational expectation equilibrium (REE,

henceforth). We show that when the wage gap appears into the IS curve, the degree of wage

stickiness affects the slope of the IS curve, severely restricting the parameter space where the

IADL holds.

As a third step, we recover analytical conditions for the determinacy of the REE in a fourth

order dynamic system characterized by both predetermined and forward looking variables. As

far as we know, this is a novel analytical approach and we regard our analytical solution as

a methodological contribution. We show how to use Hurwitz polynomials to transform the

polynomial derived from the characteristic equation, as in Felippa and Park (2004), to deal

analytically with the conditions for the determinacy. We then prove analytically that LAMP

does not invalidate the Taylor Principle: for any plausible share of non-Ricardian agents an

active interest rate rule ensures the uniqueness of the rational expectation equilibrium.

Finally, and most importantly, to the best of our knowledge, this paper is the first to derive

analytically the Central Bank welfare-loss function by taking a second order approximation to

a weighted average of households’ lifetime utilities in a model with LAMP and staggered price

and wages and to study optimal monetary policy. We find that the central bank loss function

is characterized by the presence of the real wage-gap besides the terms identified by Erceg et

al. (2000), i.e. the output-gap and price and wage inflation. The wage gap enters the loss

function for the same reasons it appears into the IS equation (20), namely because deviations

of the real wage from its efficient counterpart lead to deviations of aggregate demand from

the efficient level.

With all these analytical insights, we then can proceed to study numerically the optimal
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monetary policy under commitment and optimal simple rules. We find that none of them are

affected by LAMP. Erceg et al (2000) argue that the trade-off faced by monetary policy when

trying to minimize its welfare loss originates entirely from the supply side of the economy.

More precisely in a social optimum the real wage should follow one-to-one the marginal pro-

ductivity of labor, however this is not possible if the variance of both price and wage inflation

is stabilized. Thus the Central Bank must trade-off between the competing distortions due

to sticky prices and sticky wages. As described above, the supply side of the economy is

not affected by LAMP. For this reason LAMP does not change the trade-offs faced by mon-

etary policy when trying to minimize the welfare loss. It follows that the optimal response

of welfare relevant variables to a shock is just marginally affected by LAMP. What LAMP

does affect, through the IS curve, is the optimal path of the nominal interest rate required to

implement the optimal path of welfare-relevat variables. Furthermore, differently from Bilbiie

(2008), optimal inflation targeting rules, contemporaneous or forward looking, are restored to

be strongly active if wages are sticky, as in the standard NK model. Finally, as in Erceg et al.

(2000), we find that price inflation targeting may cause relevant welfare costs. Price inflation

targeting leads to higher welfare with respect to wage inflation targeting just in the case in

which asset market participation is restricted to an implausible extent.

The intuition for our results is the following. Variations in the real wage lead to variations

in profits and hence in the dividend income of Ricardian agents. This has wealth effects that

can overturn the standard impact of changes in the real interest rate on aggregate demand.

Specifically, when asset market participation is restricted beyond a certain extent, the slope

of the IS curve could turn positive leading to an inversion in the standard principles for the

conduct of monetary policy. Wage stickiness dampens the changes in the real wage, and thus

in profits, in response to variations in economic conditions. This prevents the reversal of

the slope of the IS curve that could obtain under wage flexibility, restoring standard policy

prescriptions for the monetary authority.

Several authors analyze the implications of LAMP for monetary policy in NK models.

A paper closely related to ours is Colciago (2011). In particular, Colciago (2011) shows

numerically that wage stickiness helps restoring the standard Taylor Principle as a necessary

condition for determinacy in the presence of LAMP. We show analytically that the finding in

Colciago (2011) is due to wage stickiness preventing the inversion of the slope of the IS curve

in the relevant parameter space. This allows us to provide a neat economic intuition of the

result and to find analytical conditions for determinacy of alternative interest rate rules for an

arbitrary degree of asset market participation. Furthermore, we also study the determinacy

properties of the optimal simple rules and the features of optimal monetary policy. The latter

analysis is neglected by Colciago (2011), who deals with a positive analysis of the NK model
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with LAMP and does not draw any optimal policy implications. Indeed, the focus is the main

difference between Colciago (2011) and our paper. While the former focuses on fiscal policy

issues, studying the response of private consumption to a government spending shock in the

presence of LAMP and nominal rigidities, this paper analyses the implications of LAMP for

the design of optimal monetary policy in a NK model with price and wage stickiness.

Galì et al. (2004) study determinacy properties of interest rate rules in a sticky-price econ-

omy with a fraction of non-Ricardian consumers and capital accumulation. They show that if

the share of non-Ricardian agents is sufficiently large and prices are sticky enough, determi-

nacy of the REE requires that the central bank adopts a Reinforced Taylor Principle, whereby

the inflation coefficient response is considerably larger than unity. Amato and Laubach (2003)

model non-Ricardian behavior as a consumption habit and show that the optimal interest rate

becomes more inertial as the fraction of non-Ricardian consumers increases. Di Bartolomeo

and Rossi (2007) show that monetary policy effectiveness increases with the degree of LAMP.

Most of the works mentioned so far are characterized by a frictionless labor market.3 The

few papers which consider the interactions between a non-Walrasian labor market and LAMP

focus on fiscal policy issues. This is motivated by recent VAR evidence suggesting that an

innovation in government spending causes a persistent rise in private consumption. This

evidence cannot be easily addressed resorting to fully Ricardian business cycle models. For

this reason, Galì et al. (2007) study the effect of government spending shocks in a model with

LAMP. They show that an imperfectly competitive labor market is a fundamental ingredient to

obtain the crowding-in of consumption in response to an expansionary government spending

shock identified, inter alia, by Blanchard and Perotti (2002) and Fatàs and Mihov (2001).

Colciago (2011) and Furlanetto (2007) extend the analysis in Galì et al. (2007) to the case

of nominal wage stickiness.4 Forni et al. (2009) build a medium-scale NK model with LAMP

and a rich description of the fiscal side. They use Bayesian techniques to estimate the effects

of innovations in fiscal policy variables in the Euro area, finding only mild Keynesian effects

of public expenditure, but a large fraction of non-Ricardian agents, close to 40%.5 Motta and

Tirelli (2012 a,b) study the stabilizing properties of fiscal rules in a medium scale business

cycle model characterized by LAMP.

This paper bridges these strands of the literature by providing an exhaustive analysis of

3Sveen and Weinke (2007) find that in the presence of firms specific capital a NK model with both staggered

price and wages may generate multiple equilibria. Flaschel et al. (2008) analytically studies the determinacy

properties of the model in the Erceg et al. (2000). However these papers consider a model with full asset

market participation.
4 In a similar framework, Furlanetto and Seneca (2012) concentrate their analysis on the dynamics of hours

worked in response to a productivity shocks.
5Di Bartolomeo et al. (2010)estimate a NK model with external habits in consumption and LAMP for the

G7 countries. They report an average fraction of non-Ricardian agents of about 26%.
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the implications of LAMP for the design of optimal monetary policy in a NK model with price

and wage stickiness.

2 The Model

2.1 Households

There is a continuum of households indexed by i ∈ [0, 1]. Households in the interval [0, λ]

consume their available labor income in each period and do not hold assets. Households in the

interval (λ, 1] hold assets and smooth consumption. The period utility function is common

across households and it has the following separable form:

Ut = Ψtu [Ct (i)]− v [Lt (i)] , (1)

where Ct(i) is agent i’s consumption and Lt(i) are hours worked. The functions u and v satisfy

the usual properties,6 while Ψt is a taste shock. We assume a continuum of differentiated labor

inputs indexed by j ∈ [0, 1]. As in Schmitt-Grohe and Uribe (2005), agent i supplies each

possible type of labor input. Wage-setting decisions are made by labor type specific unions

indexed by j ∈ [0, 1]. Given the wageW j
t fixed by union j, agents stand ready to supply as many

hours to the labor market j, Ljt , as required by firms, that is: Ljt =
�
W j
t

Wt

�−θw
Ldt , where θw is

the elasticity of substitution between labor inputs. Here Ldt is aggregate labor demand andWt

is an index of the wages prevailing in the economy at time t. Formal definitions of labor demand

and of the wage index can be found in the section devoted to firms. Agents are distributed

uniformly across unions; hence aggregate demand for labor type j is spread uniformly across

the households.7 It follows that the individual quantity of hours worked, Lt (i), is common

across households, and we denote it as Lt. This must satisfy the time resource constraint

Lt =
� 1
0 L

j
tdj. Combining the latter with labor demand we obtain Lt = L

d
t

� 1
0

�
W j
t

Wt

�−θw
dj.

The labor market structure rules out differences in labor income between households without

the need to resort to contingent markets for hours. The common labor income is given by

Ldt
� 1
0 W

j
t

�
W j
t

Wt

�−θw
dj.8 Notice that each union pools the labor income of agents, leading

6The function u is increasing and concave and the function v is increasing and convex.
7Thus a share λ of the members of each union are non-Ricardian consumers, while the remaining portion is

composed of Ricardian agents.
8Our assumption is similar to Woodford (2003) among others, but different from the one in Erceg et al.

(2000). As in most of the literature on sticky wages, Erceg et al. (2000) assume that each agent is the

monopolistic supplier of a single labor input. In this case, only households providing the same labor type will

exhibit the same labor income. However, the assumption of complete markets and full insurance against the

risk associated to labor income fluctuations, rule out differences in income between households. In our model

this framework would imply a tractability problem, because non-Ricardian agents do not participates in the

asset market, and thus cannot share the risk associated to labor income fluctuations.
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Ricardian and non-Ricardian households to work for the same amount of time. This implies

that under flexible wages the model does not fully nest Bilbiie (2008), where Ricardian and

non-Ricardian agents are free to make different labor choices. In the on-line Appendix we

investigate an alternative labor market arrangement where the wage depends solely on the

preferences of Ricardian households, and agents are not forced to work for the same amount

of time. In that case the model fully nests Bilbiie (2008), but our results are not affected, and,

if anything, strengthened. So our findings do not depend on the chosen structure of the labor

market.9

2.1.1 Ricardian Households

Ricardian agents face the following flow budget constraint in nominal terms :

EtΛt,t+1Xt+1 +ΩS,t+1Vt≤Xt + L
d
t

� 1

0
W j
t

�
W j
t

Wt

�
−θw

dj +ΩS,t (Vt + PtDt)− PtCS,t. (2)

In each period t, Ricardian agents (indicated with the subscript S) can purchase any desired

state-contingent nominal payment Xt+1 in period t+1 at the dollar cost EtΛt,t+1Xt+1. The

variable Λt,t+1 denotes the stochastic discount factor between period t+1 and t. A Ricardian

agent has labor income Ldt
� 1
0 W

j
t

�
W j
t

Wt

�−θw
dj and holds a share ΩS,t of the stock market value,

Vt, of firms producing intermediate goods. Nominal dividends received for the ownership of

firms are denoted by PtDt. Combining the FOCs with respect to CS,t,ΩS,t and Xt+1 together

with the arbitrage condition on asset markets, i.e. EtΛt,t+1 ≡ (1 + it)
−1 we find the Euler

equation for Ricardian agents:

1

1 + it
= Et

�
β
Ψt+1uc (CS,t+1)

Ψtuc (CS,t)

Pt
Pt+1

�
. (3)

2.1.2 Non-Ricardian Households

Non-Ricardian agents (indicated with the subscript H) do not enjoy firms’ profits in the form

of dividend income and cannot trade in the financial markets. The nominal budget constraint

of a typical non-Ricardian household is thus simply given by:

PtCH,t = L
d
t

� 1

0
W j
t

�
W j
t

Wt

�
−θw

dj. (4)

Agents belonging to this group consume disposable income in each period and delegate wage

decisions to unions. For these reasons there are no first order conditions with respect to

consumption and labor supply.

9The on-line Appendix is available at the web page of the authors. We take the framework spelled out in

the text as the baseline because we regard it as a more rigorous microfoundation.
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2.2 Wage Setting

Nominal wage rigidities are modeled according to the Calvo (1983) mechanism. In each period

a union faces a constant probability 1− ξw of being able to reoptimize the nominal wage. As

in Colciago (2011) the nominal wage newly reset at t, 	Wt, is chosen to maximize a weighted

average of agents’ lifetime utilities. The weights attached to the utilities of Ricardian and

non-Ricardian agents are (1− λ) and λ, respectively. The union problem is

max
�Wt

Et

∞


k=0

(ξwβ)
k {[(1− λ)u (CS,t+k) + λu (CH,t+k)]− v (Lt+k)}

subject to Lt =
� 1
0 L

j
tdj, (2) and (4). The FOC with respect to 	Wt is

Et

∞


s=0

(βλw)
t+sΦt,t+s

��
λ

1

MRSH,t+s
+ (1− λ)

1

MRSS,t+s


 	Wt
Pt+s

− µw

�
= 0 (5)

where Φt,t+s = vL (Lt+s)L
d
t+sW

θw
t+s and µw = θw

(θw−1)
is the, constant, wage mark-up in the

case of wage flexibility. The variables MRSH.t and MRSS,t denote the marginal rates of sub-

stitution between labor and consumption of non-Ricardian and Ricardian agents respectively.

2.3 Firms

In each period t, a final good Yt is produced by perfectly competitive firms combining a

continuum of intermediate inputs Yt (z) according to the following standard CES production

function: Yt =

�� 1
0 Yt(z)

θp−1

θp dz

� θp

θp−1

, with θp > 1. The competitive final good producers’

demand of the intermediate good z and the price of the final good are thus equal to: Yt(z) =�
Pt(z)
Pt

�
−θp
Yt and Pt =

�� 1
0 Pt(z)

1−θpdz
� 1
1−θp .

Intermediate inputs are produced by a continuum of monopolistic firms indexed by z ∈

[0, 1] . The production technology is simply linear in labor services, Lt (z) :

Yt (z) = AtLt (z) , (6)

where At represents, exogenous, technology.

The labor input is defined as Lt (z) =

�� 1
0

�
Ljt (z)

� θw−1
θw dj

� θw
θw−1

. Firm’s z demand for

labor type j and the aggregate wage index are then respectively: Ljt (z) =
�
W j
t

Wt

�−θw
Lt (z) and

Wt =

�� 1
0

�
W j
t

�1−θw
dj

�1/(1−θw)
. Finally, given that the production function has constant

return to scale, the nominal marginal cost, MCt, is common across producers.

2.4 Price Setting

Intermediate producers set prices according to the same mechanism assumed for wage setting.

Firms in each period have a fixed chance 1− ξp to re-optimize their price. A price setter takes
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into account that the choice of its time t nominal price, �Pt, might affect not only current but

also future profits. The FOC for price setting is:

Et

∞


k=0

�
βξp

�k
γt+kP

θp
t+kYt+k

�
�Pt − (1 + µp)MCt+k

�
= 0, (7)

which has the usual interpretation.10 Notice that µp = (θp − 1)−1 represents the net markup

over the price which would prevail in the absence of nominal rigidities.

2.5 Aggregation and Market Clearing

Aggregate consumption is given by

Ct = λCH,t + (1− λ)CS,t. (8)

The variable Ωt = (1− λ)ΩS,t represents aggregate asset holdings. In equilibrium Ωt = 1,

thus each Ricardian agent has asset holdings equal to 1
1−λ . The clearing of good and labor

markets requires:

Yt(z) =
�
Pt(z)
Pt

�
−θp
Y dt ∀z Y dt = Yt; (9)

Ljt =
�
W j
t

Wt

�−θw
Ldt ∀j Lt =

� 1
0 L

j
tdj (10)

where Y dt = Ct represents aggregate demand, Ljt =
� 1
0 L

j
t (z) dz is total aggregate demand of

labor input j and Ldt =
� 1
0 Lt (z)dz denotes firms’ aggregate demand of the composite labor

input Lt.

2.6 Pareto-efficient Equilibrium

For comparability with Bilbiie (2008) and Erceg et al. (2000), we follow the bulk of the litera-

ture (see Woodford, 2003) and impose an efficient steady state. To induce equality between the

steady state marginal product of labor and the steady state marginal rate of transformation

we assume that the Government subsidies firms by means of a constant employment subsidy,

τ . Firms are also taxed through a constant lump-sum tax which leads to zero steady state

profits. This device allows to study the welfare properties of the economy without resorting

to a full second order approximation to the model equations. We assume a period utility of

the form
ΨtC

1−σ
i,t

1−σ −
L1+φt

1+φ for i = S,H, where σ is the relative risk aversion (and the inverse

intertemporal elasticity of substitution), while φ is the elasticity of marginal disutility of labor.

Next, we define the equilibrium of the model under flexible prices and wages. Appendix

A.1 shows that the log-deviations from the efficient steady state of the efficient output, the

10The variable γt is the lagrange multiplier on Ricardian househols nominal flow budget constraint. Thus γt

represents the value of an additional dollar for ricardian households, who own the firm shares.
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efficient real wage and the efficient real rate of interest are respectively given by:11

yEfft =
1+ φ

σ + φ
at +

1

(σ + φ)
ψt, (11)

ωEfft = at, (12)

rEfft = σ

�
1 + φ

σ + φ
∆at+1 −

φ

σ (σ + φ)
∆ψt+1

�
. (13)

Assuming an AR(1) process for the logarithms of the exogenous state variables

at = ρaat−1 + ε
a
t (14)

ψt = ρψat−1 + ε
ψ
t (15)

fully specifies the dynamics of the log-deviations from the efficient equilibrium.

2.7 The Log-linear model

The following equations summarize log-linear equilibrium dynamics:

(M1) πt = βEtπt+1 + κpω̃t NKPC

(M2) πwt = βEtπwt+1 + κw[(σ + φ)xt − ω̃t] Wage Inflation Curve

(M3) ω̃t = ω̃t−1 + π
w
t − πt −∆ωEfft Real Wage Gap

(M4) xt = Etxt+1 −
1
σEt

�
it − πt+1 − r

Eff
t

�
− λ

(1−λ)Et∆ω̃t+1 IS curve

Equation (M1) is the NKPC obtained from the firms’ price setting problem. The variable

ω̃t = ωt −ω
Eff
t represents the real wage gap, which is defined as the gap between the current

and the efficient equilibrium real wage. Given the linear in labor production function it follows

that mct = ωt − yt + lt = ωt − at = ω̃t, i.e. the real wage gap is equal to the log-deviations

of the real marginal cost from the efficient steady state. For this reason ω̃t appears on the

RHS of equation (M1). The real wage gap in the NKPC identifies a labor demand gap being

equal to the difference between the current wage and the marginal productivity of labor. The

parameter κp =
(1−βξp)(1−ξp)

ξp
is the slope of the NKPC. Equation (M2) is a wage inflation

curve, similar to that in Erceg et al. (2000) with slope κw = (1−βξw)(1−ξw)
ξw

. Symmetrically

to the NKPC, the term [(σ + φ)xt − ω̃t] in (M2) identifies a labor supply gap being equal to

the difference between the average (across agent types) marginal rate of substitution between

labor and consumption and the real wage. Given the period utility, the production function,

the market clearing and the definition of efficient output, it follows that:

(1− λ)mrsS,t + λmrsH,t − ωt

= [(σ + φ) yt − φat − ψt]− ωt = (σ + φ)xt − ω̃t, (16)

11We denote log-deviations by lower case letters, and ω stands for the log-deviation of the real wage.
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where xt = yt − y
Eff
t denotes the output gap, i.e. the gap between actual output and the

efficient output. The parameters φ and σ are respectively the elasticity of intertemporal

substitution in labor supply and in consumption. Equation (M3) simply provides the definition

of the real wage gap in terms of wage and price inflation and ∆ωEfft = ωEfft − ωEfft−1 .

Equations (M1)− (M3) are identical to those which would characterize a fully Ricardian

NK model with price and wage stickiness, as in Erceg et al. (2000).12 Notice that the

heterogeneity between households does not affect wage inflation dynamics.13

Aggregating the Euler equation of Ricardian agents with the budget constraint of non-

Ricardian agents delivers the IS curve, equation (M4).14 The latter differs from a standard

IS equation because of the extra term λ
1−λEt∆ω̃t+1, which represents the expected growth of

the real wage gap. The wage gap affects aggregate demand relative to the efficient allocation

through the consumption of non-Ricardian consumers and for this reason appears in the IS

curve.

Note that our framework encompasses the models in Erceg et al. (2000) and Bilbiie (2008).

Indeed, the extra term in the IS disappears if the model is fully Ricardian (i.e. if λ = 0) as in

Erceg et al. (2000). Further, under nominal wage flexibility the labor supply gap is nil and

equation (16) implies a strict proportionality between the wage gap and the output gap given

by:

ω̃t − (σ + φ)xt = 0. (17)

By substituting the latter into equation M4 the IS curve can be rewritten solely in terms

of the output gap, as in Bilbiie (2008).

It is worth stressing that the supply side of the model, constituted by equations (M1)−

(M3), is isomorphic to that of a fully Ricardian economy with sticky prices and wages. On

the contrary the demand side of the model, represented by equation (M4), is affected by the

degree of asset market participation and hence characterizes a LAMP economy with sticky

wages and prices.

To close the model the behavior of the nominal interest rate needs to be specified. To this

end we will consider both interest rate rules and a welfare maximizing policy. We will show

that, in both cases, the presence of non-Ricardian agents does not fundamentally alter the

design of monetary policy once nominal wage stickiness is considered.

12The only minor difference with Erceg et al. (2000) is in the expression for κw. This is due to the different

assumption regarding the labor market explained in footnote 8.
13As emphasized in Colciago (2010), the is due to the fact that the union maximizes a weighted average of

agents utilities.
14Please see Appendix A.2 for analytical details
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3 Slopes of the IS curve and the determinacy properties of

simple interest rate rules

In this section we explore the role played by nominal wage stickiness for the dynamics of the

model and for the determinacy properties of simple interest rate rules.

We will naturally compare our results to those in Bilbiie (2008), who considers a model

with flexible wages. The aforementioned author shows that, when asset market participation

is restricted beyond a certain threshold, the slope of the IS curve may turn positive leading to

what he calls and Inverted Aggregate Demand Logic (IADL). In the parameter space where the

IADL holds, aggregate demand increases with the real interest rate. Importantly, the inversion

of the slope of the IS curve requires an inversion of the Taylor Principle for monetary policy

to support a unique REE. Thus, given a simple policy rule as

it = φπEtπt+1, (18)

in the IADL region the inflation response coefficient, φπ, must be less than 1 to induce equi-

librium uniqueness. In Leeper’s (1991) words, monetary policy should be passive. Moreover,

Bilbiie (2008) claims that the IADL case is empirically relevant and proposes an intriguing

reinterpretation of the great inflation versus great moderation debate on the basis of the

Inverted Taylor Principle.

In the remainder of this section, we show that in a model with nominal wage rigidity most

of these results are overturned. In particular wage stickiness confines the IADL to extreme

parameterizations, re-establishing the relevance of the Taylor Principle for the conduct of

monetary policy.

3.1 The slope of the IS curve

To make our point fully transparent we consider three alternative scenarios resulting from

polar parameterization of the model: 1) flexible prices and sticky wages ; 2) flexible wages and

sticky prices; 3) sticky prices and wages.

1. Flexible Prices and Sticky Wages. In this case, given that firms’ are always on

their labor demand schedule, ωt = at, the real wage-gap is zero. Hence, there is no NKPC,

i.e. equation (M1). As a result the IS curve, equation (M4), coincides with the standard

one. It does not depend on λ, ruling out the possibility of the inversion of the slope of the IS

curve. The intuition for this result is as follows. Under flexible prices firms’ price markup, real

marginal costs and profits are constant. Thus, consumption of both agents deviates from the

efficient steady state only because of fluctuations in labor income. Since the latter is common

across households and consumption of Ricardian agents must obey an Euler equation, the

11



resulting setup is isomorphic to a fully Ricardian framework.15

2. Flexible Wages and Sticky Prices. This case amounts to that considered by Bilbiie

(2008). Appendix A.2.1 shows that the IS equation can be expressed as:

xt = Etxt+1 −

�
δfw

�−1

σ
Et
�
it − πt+1 − r

Eff
t

�
(19)

where δfw = 1 − λ(σ+φ)
1−λ .

16 The slope of the IS becomes positive if δfw < 0 which requires

λ > λ̄
fw

= 1
1+σ+φ .

3. Sticky Prices and Sticky Wages. The counterpart of equation (19) is:

xt = Etxt+1 −
(δsw)−1

σ
Et
�
it − πt+1 − r

Eff
t

�
+

λ

1− λ

(δsw)−1

1 + β + κw
Et
�
∆πwt+1 −∆ω̃t+1 − β

�
∆ω̃t+1 +∆πwt+2

��
(20)

where δsw = 1− λ(σ+φ)
1−λ

κw
1+β+κw

. Note that under flexible wages, i.e., ξw = 0, then κw → ∞,

and δsw → δfw. Equation (20) thus collapses to (19). We state the main finding of this section

in Proposition 1.

Proposition 1: The slope of the IS curve. Under sticky prices and wages the slope of

the IS curve, i.e., δsw:(i) is always larger than the one under flexible wages, i.e. δfw;

(ii) it increases with the degree of wage stickiness; (iii) it turns positive if λ > λ̄
sw

=

1
1+(σ+φ) κw

1+β+κw

, where the threshold value λ̄
sw
increases with the degree of wage stickiness.

Proof See Appendix A.2.2.

As in the flexible wages case there exists a threshold value λ̄
sw
∈ [0, 1] such that we can

define a region where the IADL holds. Only in the limiting case in which wages are fixed (i.e.,

ξw → 1 =⇒ κw → 0) the slope of the IS schedule never changes sign, regardless of the value of

λ. Importantly, the value λ̄
sw

increases as the average duration of wage contract gets longer.

Proposition 1 leads to the following corollary.

Corollary 1: The IADL region. Nominal wage stickiness severely restricts the IADL re-

gion, and confines it to extreme parameterizations.

Our baseline calibration implies a threshold value λ̄
sw

= 0.7117. The IADL holds if the

share of non-Ricardian agents is larger than 71%. Compared to some empirical evidence

15This result does not rely on the assumption of an efficient steady state. If steady state profits are non zero,

agents have different steady state levels of consumption. In this case the IS curve would be affected by the

share of non-Ricardian consumers, but it can be shown that the interest rate elasticity of aggregate demand

cannot turn positve.
16The expression is slightly different from Bilbiie (2008) again because of our assumption on the labor market.
17Section 4.2 reports the baseline calibration. Throughout the current section, as in the coming Figures, we

will use the parameters’ values reported there.
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by Campbell and Mankiw that places this at around 40—50% for the US economy for data

running up to the mid eighties, or to data from the 1989 Survey of Consumer Finances which

shows that 59% of US population had no interest-bearing financial assets, this value seems

implausibly large.18 Notice that under flexible wages λ̄
fw

= 0.17, i.e. 4 and half times smaller.

3.2 Intuition and the role of the labor market

Rearranging equation (M2) delivers the wage schedule

WSsw : ωt = Γκw(σ + φ)lt +ΓΥt + Γκw

�
1 + (σ + φ)

�
1−

1 + φ

σ + φ

�

at

where Γ = ξw
1+βξ2w

and Υt = [ωt−1 − πt + βEtωt+1 + βEtπt+1]. Notice that the product Γκw =
(1−βξw)(1−ξw)

1+βξ2w
is decreasing in the degree of wage stickiness and equals 1 in the case of flexible

wages. In the latter case, the wage schedule reduces to

WSfw : ωt = (σ + φ)lt +

�
1 + (σ + φ)

�
1−

1 + φ

σ + φ

�

at

As expected, wage stickiness dampens the sensitivity of the real wage to changes in hours.

Also, the coefficient on hours increases linearly with the elasticity of marginal disutility of

labor. Figure 1 depicts curvesWSsw andWSfw in the space (Lt, ωt), where we also represent

labor demand. For the reasons mentioned above, the wage schedule is flatter under wage

stickiness. To see how the interaction between non Ricardian agents and wage stickiness

affects the slope of the IS curve consider the following mental experiment, which builds on

Bilbiie (2008).

Consider an increase in the interest rate. Ricardian agents reduce their demand, while

firms which cannot change price reduce labor demand. This is depicted in Figure 1, where the

labor demand curve shifts inward in Ld2 (we assumed that inflation and expectations of future

variables, i.e. the variable Υt, remain unchanged in the face of the change in the interest

rate). Under flexible wages this translates into a large reduction in the real wage and to a

modest change in hours, and the more so the higher the elasticity of the marginal disutility

of working, φ, and the inverse intertemporal elasticity of substitution in consumption, σ.

The decrease in the real wage depresses demand by non-Ricardian agents and reinforces the

effects on aggregate demand due to the initial increase in the real interest rate. However, as

emphasized by Bilbiie, this effect is not monotonic in λ.

The sizeable decrease in the real wage, and hence in marginal costs, together with the

small change in hours, and hence in output and sales, imply a potential increase in profits.

18Note that we are choosing a parameterization against our argument, since we assume high values for σ = 2

and φ = 3, and an average duration of wage contracts of 3 quarters. By choosing a rather standard alternative

calibration, as log-utility in consumption and labor, and an average duration for wage contracts of 4 quarters,

then λ̄
sw

would have been equal to 0.92.

13



Figure 1: The wage schedule under sticky wages (WSsw) and flexible wages (WSfw) and the

equilibrium in the labor market.

This leads, in turn, to a positive income effect on Ricardian agents. The latter is stronger the

larger λ, since Ricardian agents would obtain a higher individual dividend income.

If asset market participation is restricted enough (λ > λfw), the positive income effect

may counteract the substitution effect induced by the interest rate change and finally lead to

an increase in aggregate demand.19 As a result labor demand would shift rightward, in Ld3,

leading to an equilibrium with higher-that-initial real wage and output, i.e. where the initial

interest rate increase is associated with higher aggregate demand.

Consider now the case of sticky wages. The inward shift in labor demand due to the

reduction in consumption by Ricardian agents, results in a large response in hours worked

together with a modest reduction in the real wage. The potential negative wealth effect is

thus less likely and, however, dampened with respect to the case of flexible wages. For this

reason, under wage stickiness the inversion of the IS curve requires a much larger share of non

Ricardian agents (λ > λsw) to magnify the, eventual, wealth effect at the individual level. To

see the link between the labor market and the likelihood of an inversion of the slope of the IS

curve, notice that

δsw = 1−
λ

1− λ
Γκw(σ + φ)� �� �

slope of wage schedule

For any given share of non Ricardian agents, the inversion of the slope of the IS curve

becomes more likely as wages become more flexible, i.e. as Γκw approaches one. Notice that

19Notice that λfw is lower the steeper the wage schedule, i.e. the higher are σ and φ, as emphasized above.
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our results do not depend on having a union which prevents Ricardian agents from substituting

labor intertemporally. As mentioned earlier, in the on-line Appendix we propose an alternative

labor market structure where the real wage depends solely on the preferences of asset holders

and agents are free to make different labor choices. In this case changes in the interest rate or

in dividend income affect the willingness to supply labor by Ricardian consumers, reinforcing

the link between the asset and the labor market. Nevertheless, we show that the area where

the IADL holds is further restricted with respect to that we obtain under the baseline design

of the labor market.

3.3 Determinacy analysis

In this section, we prove analytically the condition for the determinacy of the REE, despite

the dynamic system is 4th order.20 As in Bilbiie (2008), sticky prices lead to the inversion

of the Taylor principle in the IADL region of the parameter space. Similarly to the section

above, with staggered wages the inversion of the Taylor principle is confined to implausible

parameterizations.

3.3.1 Forward Looking Rule

It is instructive to start with same the polar case of sticky wages and flexible prices.

Proposition 2: Flexible prices and sticky wages. Under flexible prices and sticky wages,

and the policy rule (18) the rational expectation equilibrium is unique iff φπ ∈
�
1, 1 + 2σ(1+β)

κw(σ+φ)

�
,

i.e. iff the Taylor Principle is satisfied.

Proof See Appendix A.3.1.

As expected from the discussion in the previous section, this case is isomorphic to a fully

Ricardian economy, there is no inversion of the IS slope and hence the standard Taylor principle

applies.

The following proposition holds, instead, in the case of both sticky wages and sticky prices.

Propositon 3: Forward-looking price inflation targeting rule. Let it = φππt+1. The

REE is determinate iff:

1) either φπ ∈
�
1; φ̄

FR
π

�
if φ̄

FR
π > 1 ;

2) or φπ ∈
�
φ̄
FR
π ; 1

�
if φ̄

FR
π < 1;

where φ̄
FR
π = 1+

2σ(1+β)[2(1+β)+κp+κw− λ
1−λ

κw(σ+φ)]
κwκp(σ+φ)

.

20We follow the strategy of transforming the polynomial derived from the characteristic equation (see Samuel-

son, 1941, and section 4 in Felippa and Park, 2004 ).

15



Proof. See Appendix A.3.3.

A necessary condition for the inversion of the Taylor principle it is thus given by φ̄
FR
π < 1,

since otherwise the standard Taylor principle applies. The condition φ̄
FR
π < 1, however, defines

a threshold value λ̄
FR
, since:

φ̄
FR
π ≶ 1⇔ λ̄

FR
≷

2(1 + β) + κw + κp
κw(σ + φ) + 2(1 + β) + κw + κp

. (21)

Figure 1 depicts determinacy areas in the space (λ, φπ). The solid curved line represents

the threshold value φ̄
FR
π described in Proposition 3 as a function of λ. Note that φ̄

FR
π decreases

with the degree of LAMP, λ.

If λ = 0, φ̄
FR
π > 1, and the standard Taylor principle holds. As λ increases, however, φ̄

FR
π

decreases, and the interval for φπ described in case 1) of Proposition 3 shrinks and eventually

becomes empty when λ = λ̄
FR
. As λ increases further, then, condition 2) applies and the

interval for φπ in the inverted Taylor principle case enlarges, becoming φπ ∈ (−∞; 1) at the

limit when λ→ 1.

Moreover, wage stickiness shifts to the right the φ̄
FR
π curve, because ∂φ̄

FR
π

∂κw
< 0.21 Hence,

the threshold value λ̄
FR

increases with the degree of wage stickiness. As κw tends to 0, i.e.

with fix wages, then φ̄
FR
π −→ ∞, and the Taylor principle is restored, because Proposition 3

guarantees determinacy if and only if φπ ∈ (1;∞). Indeed, in the limiting case of fix wages

the slope of the IS schedule does not change sign for any value of λ ≤ 1. In the case of flexible

wages, instead, (κw −→∞), the threshold value becomes λ̄
FR,fw

= 1
σ+φ+1 , that is lower than

λ̄
FR

and coincides with λ̄
fw

, i.e., the threshold value for the inversion of the slope of the IS

curve and, hence, for the definition of the IADL region.

Furthermore, since ∂λ̄
FR

∂κp
> 0, the threshold value, λ̄

FR
decreases with the degree of price

stickiness (lower κp). In the limiting case of fully flexible prices (κp −→ ∞), φ̄
FR
π −→ 1 +

2σ(1+β)
κw(σ+φ)

and Proposition 3 collapses to Proposition 2.

Corollary 2: Numerical results. Let it = φππt+1. Under sticky wages and sticky prices

the Taylor Principle is a necessary condition for equilibrium determinacy for all the

plausible parameterizations of the share of non-Ricardian agents.

To give a quantitative flavour of Proposition 3, Figure 2 depicts indeterminacy regions in

the parameter space (φπ, λ), obtained by numerical simulations. Panel (i) displays the case

of flexible wages. A share of non-Ricardian agents larger than 0.167 requires the inverted

Taylor Principle to ensure equilibrium uniqueness. Thus, "the inverted Taylor principle holds

‘generically’ (i.e., if we exclude some extreme values for some of the parameters)"(Bilbiie,

2008, p. 180). Panel (ii) refers to the case of sticky wages, with an average duration of wage

21Recall that the higher the degree of stickiness in wages, the lower is κw.
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contracts equal to three quarters.22 Unless the share of non-Ricardian consumers assumes

values which are not compatible with any possible estimate, the Taylor Principle leads to

equilibrium determinacy. Thus, wage stickiness "generically" restores standard determinacy

conditions. The intuition for this result is straightforward. When the relationship between

aggregate demand and the real interest rate has the conventional sign, a real interest rate

increase is required to rule out increase in aggregate demand generated by sunspot variations

in output.

Finally, it is worth to notice that numerically the curve that defines φ̄
FR
π in the space

(φπ, λ) is almost horizontal at λ̄
FR
, meaning that the Taylor principle (i.e., the condition

φπ ≷ 1) is what really matters to define the uniqueness of the REE, while φ̄
FR
π numerically

matters only in determining λ̄
FR
, i.e., the threshold value for λ where the inversion of the

Taylor principle occurs.

3.3.2 Contemporaneous Rules

We now consider the contemporaneous rule it = φππt.

Proposition 4: Current price inflation targeting rule. Let it = φππt. The REE is de-

terminate iff:

1) either φπ > max
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
;

2) or φπ < min
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
;

where φ̄
a,CR
π = −1−

2σ(1+β)[2(1+β)+(κp+κw)− λ
1−λ

(σ+φ)κw]
(σ+φ)κpκw

and φ̄
b,CR
π =

σ(1−β)[ λ
1−λ

(σ+φ)κw−(κp+κw)]
(σ+φ)κpκw

.

Proof. See Appendix A.3.5.23

This case is different from the previous one. Figure 3 visualizes the determinacy regions

in the (φπ, λ) space. Note that the two curves defining φ̄
a,CR
π and φ̄

b,CR
π are now both in-

creasing, rather than decreasing, in λ. The two cases 1) and 2) in proposition 4 characterize

two frontiers: max
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
and min

�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
, respectively. Determinacy,

thus, occurs below the lower frontier (max
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
) and above the upper frontier

(min
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
). In this case, it is impossible to define an "inversion of the Taylor

principle". On the one hand, for each value of λ, there exist two values of φπ, such that the

22To understand that Figure 1 and panel (ii) of Figure 2 are equivalent, recall that Proposition 3 only focuses

on the necessary and sufficient conditions for determinacy of the REE, and do not consider the difference

between indeterminacy and instability whenever the REE is not unique. Moreover, given our calibration, the

curve that defines φ̄
FR

π in the space (φπ, λ) is almost horizontal at λ̄
FR

and it bends only for extreme values of

λ (or φπ).

23The Appendix shows that this Proposition assumes:
σ(1−β)[(σ+φ)κpκw+4σ(1+β)2]

(σ+φ)κpκwσ[1+3β]
< 1, that holds for value

of β sufficiently close to one and for our benchmark calibration.
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REE is unique: one satisfies the Taylor principle, while the other does not. On the other hand,

we can define threshold values for the share of non-Ricardian agents, such that: if λ < λ̄
a,CR

,

then φπ > 1 is a sufficient (but not necessary) condition for the uniqueness of the REE; if

λ > λ̄
b,CR

, then φπ < 1 is a sufficient (but not necessary) condition for the uniqueness of the

REE. These threshold values are given by the intersection between φπ = 1, and φ̄
a,CR
π and

φ̄
b,CR
π , respectively (see Appendix A.3.5).24

Moreover, wage stickiness shifts to the left both the φ̄
a,CR
π and the φ̄

b,CR
π curves in Figure

3, because ∂φ̄
a,CR
π

∂κw
< 0 and ∂φ̄

b,CR
π

∂κw
< 0. Hence, both the threshold values λ̄

a,CR
and λ̄

b,CR

increase with the degree of wage stickiness. Again as κw tends to 0 (limiting case of fix wages),

Proposition 4 collapses to the standard Taylor principle (φπ > 1), because φaπ and φbπ tend to

(−∞) .

Furthermore, both λ̄
a,CR

and λ̄
b,CR

are decreasing with the degree of price stickiness (i.e.,

increases with κp). In the limiting case of fully flexible prices (κp −→∞), Proposition 4 defines

the following condition for determinacy: either φπ > 1 or φπ < −1 − 2σ(1+β)
(σ+φ)κw

. Thus, as in

the case of a forward rule, in an economy with flexible prices and sticky wages, the degree of

LAMP has no effect on the shape of the determinacy regions, and the Taylor principle holds,

at least for positive values of φπ.

It is worth noting that if β ∼= 1, then φ̄
b,CR
π

∼= 0, so that the standard Taylor principle

holds for positive values of φπ, because the REE is always indeterminate for 0 < φπ < 1, as

in the standard case.

Finally, if there are no non-Ricardian consumers, i.e., λ = 0, then both φ̄
a,CR
π and φ̄

b,CR
π

are negative, so that case 1) in Proposition 4 restores the standard Taylor principle for positive

value of φπ.

To sum up, our analysis shows that, given a contemporaneous inflation targeting rule, it

is not appropriate to refer to an "inversion of the Taylor principle". First, for each value of λ,

there exist two values of φπ, such that the REE is unique: one satisfies the Taylor principle,

while the other is negative. Second, if the share of non-Ricardian agents is lower than a certain

threshold, i.e., λ̄
a,CR

, then φπ > 1 is a sufficient condition for the uniqueness of the REE.

From a numerical point of view, Figure 4 shows that the result in the Corollary 2 is

confirmed also in the case of contemporaneous rule: under sticky wages, the Taylor principle

is a necessary and sufficient condition for the uniqueness of the REE, for all the plausible

values of λ (abstracting from highly negative values of φπ). This is not the case instead when

wages are flexible, since the φ̄
a,CR
π curve shifts downward. Indeed, λ̄

a,CR
= 0.831, given our

24Depending on parameter values λ̄
a,CR
π can be larger or smaller than λ̄

b,CR
π . In general, λ̄

a,CR
π ≶ λ̄

b,CR
π iff

(1−β)(1+β)2

β
≶

(σ+φ)κpκw
σ

. Hence for values of β sufficiently close to 1, then λ̄
a,CR
π < λ̄

b,CR
π , as in Figure 3.
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standard calibration, and it lowers to 0.197 in the case of flexible wages.25

In a model that features both sticky wages and sticky prices, it is natural to consider also

a monetary policy rule that targets both price and wage inflation, as it = φππt+φπwπ
w
t . Both

Erceg et al. (2000) and Galí (2008) numerically study the properties of such a rule. Galí

(2008) numerically shows that, for φπ, φπw ∈ (0,∞), the condition φπ + φπw > 1 is necessary

and sufficient (see also Flaschel et al., 2008) for the uniqueness of the REE. Proposition 5

shows analytically that such a condition is still crucial in a model with LAMP.

Proposition 5: Price Inflation and Wage Inflation Targeting Rule Let it = φππt +

φπwπ
w
t . A necessary condition for the REE to be determined is either (φπ + φπw) >

max
�
1, φ̄π,πw

�
or (φπ + φπw) < min

�
1, φ̄π,πw

�
where

φ̄π,πw = −1−
2σ(β+1)[2(β+1)+(κp+κw)− λ

1−λ
(σ+φ)κw+

1
σ
(σ+φ)κwφπw ]

(σ+φ)(1+φπ+φπw )κpκw
.

Proof. See Appendix A.3.6.

The conditions in Proposition 5 refers now to the sum (φπ+φπw). φ̄π,πw is increasing in λ.

Thus, it is possible to define a threshold for the share of non-Ricardian agents, such that if λ

is lower than this threshold, then (φπ+φπw) > 1 is a necessary condition for the uniqueness of

the REE for positive values of φπ and φπw . This is always true for either fix wages or flexible

prices.

4 Optimal Monetary Policy

In this section we look at the optimal policy problem, cast in the standard linear quadratic

framework (see Woodford, 2003). First, we derive the welfare loss function and describe the

relevant trade-offs faced by the monetary authority. Next, we characterize optimal monetary

policy under full commitment, which we take as a benchmark for the remainder of the analysis.

Finally, as in Erceg et al. (2000), we consider strict targeting rules, i.e. rules which fully close

one of the gaps in the welfare loss, and optimal simple interest rate rules a là Schmitt-Grohé

and Uribe (2007).

4.1 The Welfare Loss Function

We assume that the central bank maximizes a convex combination of the utilities of two types

of households, as in Bilbiie (2008). Weights correspond to the relative importance of agents’

groups in the economy. In this case the period welfare function is given by:

Wt = Ψt [λu (CH,t) + (1− λ)u (CS,t)]− v (Lt) (22)

25Moreover, similarly to the case of the forward-looking rule, Figure 4 reveals that the curve φ̄
a,CR

π is flat at

λ̄
a,CR

, given our standard calibration.
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Proposition 6: The aggregate welfare loss function. The aggregate welfare loss func-

tion approximated at second-order around the efficient steady state is given by:

L = −
1

2

∞


t=0

βt
�
(σ − 1)λ

1− λ
ω̃2t + (σ + φ)x2t +

θw
κw

(πwt )
2 +

θp
κp
π2t

�
(23)

Proof. See Appendix A.4.

The interaction between nominal wage stickiness and non-Ricardian agents implies that the

loss function is characterized by the additional term (σ−1)λ
1−λ ω̃

2
t with respect to the loss function

of a fully Ricardian model. The wage gap enters the loss function for the same reasons it

appears into the IS equation (20): deviations of the real wage from its efficient counterpart

lead to deviations of aggregate demand from the efficient level.26Note that when λ = 0 the

welfare loss function reduces to that in Erceg et al. (2000).

When wages are flexible, wage inflation does not affect welfare. Moreover, the labor supply

gap is nil, because the real wage equals the average marginal rate of substitution between

consumption and labor. In this case equation (17) holds and by closing the output gap the

central bank automatically closes the wage gap. Further note that substituting (17) into (23),

the loss function reduces to (see Appendix A.4.1 for details)

L = −
1

2

∞


t=0

βt
�
(σ + φ)

�
1 +

(σ − 1) (φ+ σ)λ

1− λ

�
x2t +

θp
κp
π2t

�
, (24)

which has a form similar to that in Bilbiie (2008), and collapses to the standard text-book

welfare-loss for λ = 0.

How monetary policy should be conducted in the LAMP economy with price and wage

stickiness? Let us consider the trade-offs faced by monetary policy in the aftermath of a tech-

nology shock. We consider technology shocks since preference shocks do not imply any trade-

off for the monetary authority. Price-wage stickiness induces an endogenous inflation-output

trade-off for monetary policy. Given (M1) and (M2) monetary policy should contemporane-

ously close the wage and the output gap to fully stabilize wage and price inflation. However

this is unfeasible since after a technology shock, that affects ∆ωEfft , price and wage inflation

should jointly move according to (M3). The intuition is also straightforward: in the social

optimum the real wage follows one-to-one the marginal productivity of labor (at), but this is

simply not possible if the variance of both price and wage inflation is stabilized. Importantly,

26The wage gap terms disappears from the loss function also when σ = 1. This is for purely technical reasons.

The term (σ − 1) is due to two different approximations applied to U(C) : 1) σ derives from the second-order

approximation of the utility function; 2) 1 is instead the curvature of the logarithmic function used to transform

C into log deviations from steady state.
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this trade-off originates entirely from the supply side of the model and therefore it is not

affected by LAMP. As a result LAMP does not change the trade-offs faced by the monetary

authority. However , LAMP alters the IS curve and the welfare loss function, thus it may

affect the optimal response to shocks. Nevertheless, in the next section we show that, once

nominal wage stickiness is brought into the picture, LAMP has only marginal quantitative

effects on the optimal path of the main macro-variables in response to a technology shock.

4.2 Commitment

Model Calibration. Given that our results are partly numerical, we detail the baseline

calibration of the model. Time is measured in quarters. The discount factor β is set to 0.99,

so that the annual interest rate amounts to 4%. The utility parameters σ and φ are equal

to 2 and 3, respectively. According to the estimates in Basu and Fernald (1997) the value

added mark-up of prices over marginal cost is around 20%, for this reason we set θp to 6.

We assign an identical value to the elasticity of substitution between labor inputs, θw. We

set ξp = ξw = 0.75, which implies an average duration of price and wage contracts of one

year, a value which is in compatible with most available empirical estimates (see for example

Smets and Wouters 2003 and Levine et al. 2005). However, we evaluate the dependence of

our results on the average duration of wage contracts which is a fundamental magnitude in

our analysis.

We draw the autoregressive coefficient and the standard deviation of the technology shock

from Schmitt-Grohé and Uribe (2007), while for what concerns the preference shock we refer

to the estimates by Galí and Rabanal (2004). Selected values are ρa = 0.855, σa = 0.0064,

ρψ = 0.93 and σψ = 0.025. Notice that we assume that the technology and the preference

shock are independent from each other.

Optimal Monetary policy in response to technology shocks. In the presence of

a credible commitment, the central bank minimizes the welfare loss function (23) subject

to (M1) − (M3), taking ω̃t−1 as given. Then, the IS curve determines the optimal path

of the nominal interest rate, while the resource constraint of non-Ricardian agents and the

definition of aggregate consumption determine the sharing of resources between agents. Figure

5 depicts the optimal deviations from the efficient steady state of the main macroeconomic

variables in response to a persistent technology shock. We consider alternative degrees of asset

market participation. Consider the fully Ricardian case (λ = 0). Since the monetary policy is

endowed with a single instrument, it must trade-off between the competing distortions due to

sticky prices and sticky wages. The resulting optimal dynamics feature a persistent reduction

in inflation and a prolonged adjustment of the output gap. Remarkably, in response to an

increase in productivity, hours worked fall. The contraction in hours following a positive
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productivity shock is in line with recent U. S. evidence (see, for example, Galì and Rabanal,

2004).

Restricting asset market participation has just quantitative implications on the optimal

IRFs. This does not come as a surprise since, as discussed above, LAMP does not affect the

trade-offs faced by the Central Bank in response to a technology shock. Specifically, restricting

asset market participation (i.e. higher λ) amplifies the propagation of the technology shock to

the economy. The intuition for this outcome is as follows. The rise in technology leads to lower

marginal costs and higher output which translate into an increase in total profits. This has

a positive income effect on Ricardian households. The latter gets stronger as the portion of

non-Ricardian agents enlarges, resulting into a more pronounced reaction of Ricardian agents’

consumption to the shock. To support such an outcome the Euler equation requires lower

asset market participation to be associated with more aggressive cuts of the nominal interest

rate. Because of price stickiness firms satisfy higher demand of the final good via an increase in

labor demand. This ultimately affects the real wage and hours worked and thus consumption

of non-Ricardian agents.

The main point, however, is that the effect of LAMP on welfare relevant variables such as

gaps and inflation rates are minor also from a quantitative point of view. The optimal policy

response of a NK model with price and wage stickiness is, therefore, only marginally affected

by the LAMP assumption.27

Moreover, when σ = 1, the LAMP hypothesis has no effect at all on the optimal monetary

policy response. In this case, neither the objective function (23) nor the constraints, (M1)−

(M3) , depend on the share of non-Ricardian agents. Thus, in response to shocks, the optimal

policy implements the same equilibrium path for the welfare relevant variables as in a full

participation economy. In this case, society welfare will not be affected by the presence of

non-Ricardian agents and just the interest rate will be affected by LAMP assumption through

the IS curve.

To conclude this section we report in Table 1 the unconditional welfare loss under full

commitment as a function of the share of non-Ricardian agents and the average durations of

wage contracts (i.e., (1− ξw)
−1). The unconditional welfare loss is expressed as a percentage

of aggregate consumption at the efficient steady state . As well known, in the case of flexible

wages (i.e., ξw = 0 => (1− ξw)
−1 = 1) the monetary authority faces no trade-off at stabilizing

welfare relevant variables in response to a technology shock, for this reason the welfare loss

in nil. As expected, the welfare loss increases with the magnitude of the two distortions

considered.

27The response of the efficient level of output is somewhat in between the responses in the top left panel

of Figure 5. Hence the output gap switches sign from negative to positive as λ changes, but this effect is

quantitatively negligible.

22



4.3 Strict targeting rules

In this section we consider policy rules aimed at fully stabilizing, at each date and state, one of

the welfare relevant variables, that is either one between ω̃t, πt, π
w
t , or xt. These rules are often

defined as strict targeting rules. The next proposition provides a general result concerning

LAMP and strict targeting policies.

Proposition 7: LAMP and strict targeting rules. Under a strict targeting rule (what-

ever the target among (ω̃t, πt, πwt , xt)) the path {ω̃t, πt, πwt , xt}
∞

t=0 is not affected by

LAMP. As a consequence the unconditional variances of welfare relevant variables do not

depend on λ. The path of the instrument, {it}
∞

t=0, required to implement the allocation

depends, instead, on the degree of asset market participation.

Proof. This follows from the fact that the supply side of the model does not depend on the

degree of asset market participation, λ. Once either one between ω̃t, πt, πwt , xt is set

equal to zero, equations (M1) − (M3) are sufficient to generate the path of the other

three variables. Since λ enters only in the IS equation, its value only matters for the

behavior of it, but not for the allocation of welfare relevant variables.

We can further specialize the previous proposition showing that strict price inflation tar-

geting and strict wage gap targeting amount to the same policy.

Proposition 8: LAMP, strict price inflation and real wage-gap targeting. Strict price

inflation targeting and strict real wage gap targeting are implemented by the same path

of the policy instrument {it}
∞

t=0. They also deliver the same welfare loss given by

W = σ2a
2κ2w(σ+φ)

�
1

1−ρ2a
((ρa − 1) (1− βρa))

2 + (1− β(ρa − 1))2
�
+ θw

κw(1+ρa)
σ2a which: (i)

is independent of the degree of asset market participation, (ii) tends to zero in the case

of flexible wages and (iii) increases with the average duration of wage contracts.

Proof See Appendix A.4.2

The intuition for this result is straightforward. The NKPC implies that whenever πt = 0

it has to be the case that ω̃t = 0 and vice-versa. In this case the extra term in the IS curve

vanishes and the path of the interest rate needed to implement the allocation is the same, and

it is independent of the share of non-Ricardian agents. Since both policies lead to the same

path for welfare relevant variables, and in particular imply that ω̃t = 0 at all t, the welfare

loss is also independent of λ. Price inflation targeting gets more costly as the mean duration

of wage contracts gets longer. Finally, we consider the case of strict wage inflation targeting.

Proposition 9: LAMP and strict wage inflation targeting. Under strict wage inflation

targeting the wage gap is proportional to the output gap. The path {πt, ω̃t}
∞

t=0 is indepen-

dent of the degree of asset market participation, while the path of the instrument needed
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to implement the equilibrium does depend on it. The unconditional welfare loss increases

with the degree of LAMP.

Proof. Equation (M2) implies that (σ + φ)xt = ω̃t. In this case equations (M1) and (M3)

suffice to determine the path {πt, ω̃t}
∞

t=0. The latter is independent of the degree of asset

market participation. Equation (M4) suggests, instead, that the path of the instrument

required to implement this policy depends on λ. Since the coefficient on the wage gap

variable, (σ−1)λ
1−λ , in the welfare loss function (23) is increasing in the share of non-

Ricardian agent, society’s welfare loss get larger as asset market participation becomes

more restricted.

Finally, we compare the welfare performance of strict targeting rules. As a Corollary to

Proposition 8 and Proposition 9 we can state the following.

Corollary 3. Under nominal wage stickiness, there exist a threshold value λ̃, such that for

λ > λ̃ wage inflation targeting delivers a higher society’s welfare loss with respect to

price inflation targeting.

LAMP could overturn the optimality of strict wage inflation targeting over strict price

inflation targeting emphasized by Erceg et al. (2000) in a full participation framework. For

any empirically relevant degree of asset market participation, however, the Erceg et al. (2000)

result holds. This is evident from Figure 6 that depicts welfare losses under strict wage

inflation targeting and strict price inflation (or wage gap) targeting. The latter is shown for

two alternative mean durations of wage contracts.

4.4 Optimal simple rules

To conclude our analysis we evaluate how the interaction between LAMP and wage stickiness

affects the design of optimal simple Taylor-type interest rate rules. Motivated by the analysis

in Bilbiie (2008) we initially consider two pure inflation targeting rules, where the interest

rate responds solely to current and expected inflation, respectively. Next, as in Erceg et al.

(2000), we consider a hybrid rule where the interest rate reacts to current price inflation

and to the deviations of output from the steady state. Finally, we consider a hybrid rule in

which the interest rate is a function of current price and wage inflation. Following Schmitt-

Grohé and Uribe (2007), we require the simple rules described above to be implementable

and optimal. The implementability condition requires policies to deliver local uniqueness of

the REE. Optimality requires, instead, selecting policy coefficients in order to minimize the

unconditional expectation of the welfare loss function (23). We search for optimal policy

coefficients numerically. In doing this we limit attention to the interval [-10, 10] for each
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coefficient. Notice that larger coefficients response would fall out of any plausible estimate

and would have little credibility. We evaluate the performance of each rule for a range of

values of the two relevant parameters: λ and ξw.
28

In the remainder we state two main results. Result 1 refers to pure inflation targeting

rules, while Result 2 to hybrid rules.

Result 1. Pure inflation targeting rules In the case of pure inflation targeting rules the

optimal rule calls for a strong response of monetary policy. LAMP makes the optimal

rule highly passive if wages are flexible. However, if wages are sticky, the optimal rule

is restored to be highly active, as in the standard NK model.

Table 2 reports optimal policy coefficients and the associated welfare loss for the con-

temporaneous and forward-looking inflation targeting rules. Consider the current pure in-

flation targeting rule (Panel A). In a fully Ricardian economy (λ = 0) with flexible wages

((1− ξw)
−1 = 1) the optimal response coefficient implies a strong anti-inflationary stance.

The reason is that in the absence of a trade-off between inflation and the output gap, stabi-

lizing inflation also results in output stabilization.

In our exercise, thus, the inflation coefficient hits the upper bound (i.e. φπ = 10). Removing

the upper bound on policy parameters would result in an unbounded inflation coefficient

response and zero welfare loss. The optimal rule is extremely effective, as it delivers a welfare

loss equal to 0.002 % of steady state consumption. These results resembles those in other

studies such as Schmitt-Grohé and Uribe (2007).

Introducing LAMP in this environment has dramatic consequences for the design of optimal

interest rate rules. The optimal contemporaneous rule turns passive and features a strongly

negative inflation response, indeed φπ hits the lower bound equal to -10. We are in the IADL

region implying that the relationship between aggregate demand and the real interest rate is

reversed with respect to the standard case. It is worth emphasizing that the negative inflation

coefficient obtained under LAMP and flexible wages does not merely serve the purpose of

ensuring the uniqueness of the REE. Under the contemporaneous rule also a very strong

increase in the real interest rate in response to a positive change in inflation would, in fact,

guarantee determinacy in the LAMP economy (See Figure 4). However, it would deliver a

lower welfare with respect to the passive rule considered here.

Even a very low, and below estimates, degree of wage stickiness restores the optimality of

an active rule for any empirically plausible share of non-Ricardian agents. Moreover, when the

degree of wage stickiness assumes values compatible with the empirical evidence, the optimal

28To facilitate understanding we report in the tables below the average duration of wage contracts:

(1− ξw)
−1
.The latter is expressed in quarters.
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policy is highly active no matter the extent to which we limit asset market participation.

Again, wage stickiness limits the likelihood of a reversal in the slope of the IS curve and it

restores standard policy prescriptions. In other words, once wage stickiness is considered,

LAMP has just minor quantitative implications for the design of optimal simple rules. In

particular, the optimal policy calls for a stronger reaction to inflation as the share of non-

Ricardian agents increases.

Similar considerations extend to the forward looking inflation targeting rule in Table 2

(Panel B). As in a standard economy, the simple rules considered here perform quite well in

terms of welfare even in the presence of non-Ricardian agents. The welfare loss gets large just

in the case where wage stickiness is coupled with an implausibly large share of non-Ricardian

consumers. However, this is partly due to the fact that we restrict the interval of admissible

values for φπ. We next turn to the second result, concerning hybrid rules.

Result 2. Hybrid Rules In the case of hybrid rules (i) Result 1 is confirmed: nominal

wage stickiness makes the optimal rule active; (ii) a rule targeting both price and wage

inflation delivers the best performance in terms of welfare; (iii) responding to output

only marginally improves the performance of a pure inflation targeting rule.

Table 3 reports the performance of the hybrid rules we consider. Results 1 is confirmed:

nominal wage stickiness makes the optimal policy strongly active, no matter the degree of

LAMP. In line with Erceg et al. (2000), a rule responding to both price and wage inflation

substantially reduces the welfare loss with respect to a pure price inflation targeting rule.

The relative magnitude of the optimal coefficients on price and wage inflation depends on

the relative degree of stickiness between prices and wages. The larger between the two coef-

ficients is the one multiplying the inflation of the stickier variable. Further, both coefficients

are increasing in the degree of LAMP and are generally very large (possibly unbounded in the

case of wage inflation targeting for high degree of wage stickiness). It follows that for realistic

values of the degree of wage stickiness, this rule calls for complete wage stabilization.

5 Conclusions

We design a model to study monetary policy in an economy characterized by staggered wage

and price contracts and by an arbitrary degree of asset market participation. Our model nests

two widely used framework for the analysis of monetary policy. The LAMP model by Bilbiie

(2008) and the sticky prices-sticky wages model by Erceg et al. (2000).

We find that wage stickiness fundamentally affects results obtained by the first author,

while LAMP leaves the main results in Erceg et al. (2000) unchanged. In particular, deter-

minacy and welfare properties of simple interest rules and the design of optimal monetary
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policy differ from those observed in a full participation model just in the case in which asset

market participation is limited to an empirically implausible extent. For values of the share of

non-Ricardian agents consistent with the empirical estimates, monetary policy prescriptions

are isomorphic to those which characterize a standard NK model with no LAMP.

This suggests that reappraisals of the conduct of monetary policy in specific past periods,

such as that of the Great Inflation, based on the presence of non-Ricardian agents cannot

neglect nominal wage stickiness, which is, in fact, an incontrovertible empirical fact.

Our analysis is conducted in the context of a highly stylized economy. For instance, as in

Bilbiie (2008), we assume that the government has access to a subsidy, financed with lump-sum

taxes, which offset the distortions introduced by imperfect competition in the product and

factor markets. Also we neglect the role of capital accumulation. These assumptions allow to

obtain many of our results analytically, but they are empirically unrealistic. An extension of

our analysis would be that of considering a larger scale business cycle model similarly to those

in Christiano et al. (2005) or Smets and Wouters (2003). While this would add in terms of

realism, we believe that it would not alter the main message of this paper.
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A Technical Appendix

A.1 The Efficient Steady State and the Efficient Equilibrium Output

As in Bilbiie (2008) society’s welfare loss will be represented by a second order approximation

to a weighted average of households lifetime utilities, where weights are given by the relative

importance of agents’s groups in the economy. In order to study the welfare properties of

the economy without resorting to a full second order approximation to the model equations,

we assume an efficient steady state of the economy. More precisely, we assume that the

government imposes a lump sum tax, T , on firms such that steady state profits are zero. The

tax proceeding are then used by the government to subsides steady state firms’ labor demand

at the constant rate τ.29 In this case steady state profits read as

D = Y −
(1− τ)W

P
L− T, (25)

where T = τWP L. Profit maximization implies

W

P
=

1�
1 + µp

�
(1− τ)

MPL

where MPL is the steady state marginal product of labor. Given steady state profits are

zero it follows that CS = CL = C and, thus, that agents have a common marginal rate of

substitution between labor and consumption, denoted by MRS. As a consequence the steady

state wage set by unions reads as

W

P
= (1 + µw)MRS.

The steady state labor market equilibrium implies

1�
1 + µp

�
(1− τ)

MPL = (1 + µw)MRS. (26)

Given the selected production function, and normalizing labor productivity to unity, at the

efficient steady state it has to be the case that

MPL =MRS = 1, (27)

From equation (26), the latter condition is satisfied if

τ = 1−
1�

1 + µp
�
(1 + µw)

(28)

As argued above the implied value of τ leads to zero steady state profits

D = Y −
(1− τ)W

P
L− T = Y −

Y
�
1 + µp

�2
(1 + µw)

−

�
1−

1
�
1 + µp

�2
(1 + µw)

�
Y = 0

29Out of steady state taxes are zero: τ = T = 0. This allows to preserve inequality between agents out of

the steady state and at the same time delivers steady state equality. Since the focus of the paper is not on the

long-run differences across households, we view this devise as innocuous.
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Next, we solve the Social Planner problem (SPP). The equilibrium output which solve the

SPP corresponds to efficient equilibrium output. The SPP reads as

max
{CH,t,CS,t,Lt}

λ
ΨtC

1−σ
H,t

1− σ
+ (1− λ)

ΨtC
1−σ
S,t

1− σ
− λ

L1+φH,t

1 + φ
− (1− λ)

L1+φS,t

1 + φ
(29)

s.t. Ct = Yt = AtLt = λCH,t + (1− λ)CS,t = At (λLH,t + (1− λ)LS,t)

Writing the Lagrangian L,and taking the first order condition with respect to CH,t, CS,t, LH,t

and LS,t we find

CH,t = CS,t = Ct (30)

LH,t = LS,t = Lt. (31)

In short, at the efficient equilibrium the economy behaves as if there was a representative agent

with marginal rate of substitution between consumption and hours given by Ψ−1t C
σ
t L

φ
t . The

social planner sets the latter equal to the marginal product of labor, At , which also represents

the equilibrium real wage, (W/P )Efft . Using the relationship just described, imposing the

market clearing condition Yt = Ct and using the production function, delivers the efficient

level of output as

Y Efft = A
1+φ
σ+φ

t Ψ
1

σ+φ

t (32)

Log-linearizing and considering that Ψ = 1 delivers the log-deviations of the efficient level

of output from the efficient steady state as in equation (11) in the main text. In the efficient

equilibrium the Euler equation for Ricardian must be satisfied. Since the consumption is equal

for the two class of agents, then the Euler equation must be satisfied by output. The natural

rate of interest is equal to the one specified in equation (13) of the main text.

A.2 Derivation of the IS curve

Log-linearization of the Euler equation of Ricardian agents leads

cs,t = Etcs,t+1 −
1

σ
Et (it − πt+1)−

1

σ
∆ψt+1 (33)

while from the consumption function of non-Ricardian consumer we get:

cH,t = lt + ωt. (34)

Aggregate consumption is

ct = (1− λ) cs,t + λcH,t (35)

combined with the Euler equation:

ct = Et (ct+1 − λ∆cH,t+1)−
(1− λ)

σ
Et (it − πt+1)−

(1− λ)

σ
∆ψt+1. (36)
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Substituting for ct = yt, for Et∆cH,t+1 = Et (∆lt+1 +∆ωt+1) and for lt = yt − at we get

yt = Etyt+1 +
λ

1− λ
Et∆at+1 −

λ

1− λ
Et∆ωt+1 −

1

σ
Et (it − πt+1)−

1

σ
∆ψt+1 (37)

rewriting equation (37) in terms of output gap from the efficient equilibrium output (xt =

yt−y
Eff
t ), considering that rEfft = σ∆yEfft+1 −∆ψt+1 and given the definition of the real wage

gap ω̃t = ωt − ω
Eff
t , we can finally write the IS as

xt = Etxt+1 −
1

σ
Et
�
it − πt+1 − r

Eff
t

�
−

λ

1− λ
Et∆ω̃t+1. (38)

A.2.1 The slope of the IS curve

Flexible wages In the case of flexible wages the real wage is given by

ωt = σct + φlt − ψt, (39)

mct = ωt − (yt − lt) = ωt − at = (σ + φ)xt. (40)

Hence ∆ω̃t+1 = (σ + φ)∆xt+1 +∆at+1. Substitute in (38) to get

xt = Etxt+1 −

�
δfw

�−1

σ
Et
�
it − πt+1 − r

Eff
t

�
(41)

where δfw = 1− λ
1−λ (σ + φ) .

Sticky wages In the case of sticky wages the real wage is given by

ωt =
1

1 + β + κw
[wt−1 − pt] +

β

1 + β + κw
Et (wt+1 − pt) +

κw
1 + β + κw

((σ + φ)xt + at) (42)

This is a weighted average between: (i) the past nominal wage at current prices; (ii) the future

nominal wage at current prices; (iii) the flexible wage (mc+ a). Note that as ξw −→ 0, then

κw −→∞, and this expression collapses to the usual flexible wage case. Then

∆ω̃t+1 = ̥+
κw

1 + β + κw
((σ + φ)∆xt+1 +∆at+1) (43)

where ̥ = 1
1+β+κw

[∆wt −∆pt+1] +
β

1+β+κw
Et (∆wt+2 −∆pt+1)

Substituting (43) into (38) we get

xt = Etxt+1 −
(δsw)−1

σ
Et (it − πt+1)−

(δsw)−1

σ
∆ψt+1 + (δsw)−1∆yEfft+1 +

λ

1− λ

(δsw)−1

1 + β + κw

�
(1 + β)Et∆at+1 −Et

�
(πwt − πt+1) + β

�
πwt+2 − πt+1

���
(44)

where δsw = 1− λ
1−λ

κw(σ+φ)
1+β+κw

, which is equivalent to (20) in the main text.

32



A.2.2 Proof of Propositions 1

When wages are flexible ξw = 0 ,which implies that κw → ∞, and δsw → δfw = 1− λ(σ+φ)
1−λ ,

where δfw defines the slope of the IS curve in the case of flexible wages.30 Notice that

δsw − δfw = λ(σ+φ)
1−λ

�
1− κw

1+β+κw

�
= λ(σ+φ)

1−λ
1+β

1+β+κw
> 0 which proves (i). Moreover ∂δsw

∂ξw
=

∂δsw

∂κw
∂κw
∂ξw
. Since ∂δsw

∂κw
= −λ(σ+φ)1−λ

1+β

(1+β+κw)
2 < 0 and ∂κw

∂ξw
= −κw+β(1−ξw)+(1−βξw)ξw

< 0, it follows

that ∂δsw

∂ξw
> 0 which proves (ii). Since δsw < 0 ⇔ λ > λ̄

sw
= 1

1+(σ+φ) κw
1+β+κw

, and ∂λ̄
sw

∂ξw
=

∂λ̄
sw

∂κw
∂κw
∂ξw

= −
�
1 + (σ + φ) κw

1+β+κw

�
−2

1+β

(1+β+κw)
2
∂κw
∂ξw

> 0. It follows that (iii) is also proved.

A.3 Determinacy analysis

A.3.1 Proof of Propositions 2: Flexible prices and sticky wages

Define, as in Bilbiie (2008), dt =
Dt
Y as the deviation of profits’ share over output from its

(zero) steady state level. Deviations of consumption of Ricardian agents from the efficient

steady state can thus be written as 1
Y cS,t = WL

Y (ωt + lt) +
1
1−λdt, while consumption of

non-Ricardian agents reads as 1
Y cH,t =

WL
Y (ωt + lt). Also notice that dt = −mct. Under

flexible prices mct = 0, implying dt = 0. In this case cS,t = cH,t = ct, i.e. up to a log-linear

approximation the economy behaves as if there was a representative agent. Price flexibility

implies that the supply side of the model is defined solely by equation M2. Further, since

the wage gap is nil, it follows that the extra term in the IS curve, λ
1−λEt∆ω̃t+1 vanishes.

Equilibrium dynamics are thus given by the system

(M2fp) πwt = βEtπ
w
t+1 + κw(σ + φ)xt�

M4fp
�

xt = Etxt+1 −
1
σEt

�
it − πt+1 − r

Eff
t

�

where the superscript fp stands for flexible prices. The latter is independent of the share

of non-Ricardian agents. As a consequence when monetary policy is conducted according to

policy rule (18) the requirement for determinacy is also isomorphic to that to be imposed on

a fully Ricardian model. To see this notice that πwt = πt +∆ωefft = πt +∆at in this case the

system (M2fp)−
�
M4fp

�
in matrix form reads as

A0


 πt
xt


 = A1


 πt+1
xt+1


 (45)

Where A0 =


 1 −κw(σ + φ)

0 1


 and A1 =


 β 0

1
σ (1− φπ) 1


. Defining B = A−10 A1, con-

ditions for having two roots within the unit circle are: 1) detB < 1,2) trB − detB < 1

and 3) trB + detB > −1. Given Det (B) = β condition 1 is always satisfied. Trace (B) =

β− 1
σκw (φπ − 1) (σ + φ) + 1, thus condition 2 is satisfied if φπ > 1. If condition 2 is satisfied,

condition 3 imposes an upper bound on the value of φπ, i.e. φπ < 1 + 2σ(1+β)
(σ+φ)κw

. QED

30Notice also that under flexible wages the second lines in (20) vanishes.
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A.3.2 Determinacy Analysis of the full 4X4 system

To obtain analytical results regarding the stability properties of the dynamic system resulting

from the model equations, we follow the strategy of transforming the polynomial derived from

the characteristic equation (see, Samuelson, 1941, and more recently section 4 in Felippa and

Park, 2004). More formally, as explained in Felippa and Park (2004), given the characteristic

polynomial

PA(γ) = γ
4 + a1γ

3 + a2γ
2 + a3γ + a4, (46)

the stability properties would depend on the location of the root inside the unit circle |γ| < 1

(such a polynomial is known in the literature as amplification polynomial). One can transform

this polynomial in an Hurwitz polynomial, PH(s), whose stability properties would depend on

the location of the roots in the left-hand plane ℜ(s) ≤ 0. To pass from PA(γ) to PH(s), one

uses the conformal involuntary transformation

γ =
1+ s

1− s
. (47)

Given (47), it is easy to check that |γ| ≶ 1⇔ s ≶ 0.

In our case, the fourth order characteristic (amplification) polynomial can be transformed

into the Hurwitz polynomial by using γ = 1+s
1−s

P̃H(s) =

�
1 + s

1− s

�4
+ a1

�
1 + s

1− s

�3
+ a2

�
1 + s

1− s

�2
+ a3

1 + s

1− s
+ a4. (48)

Expanding the polynomial, one obtains a quotient of two polynomials: P̃H(s) =
PH(s)
QH(s)

where

the roots of P̃H(s) are the roots of PH(s). Hence one needs to study the stability properties

of the following Hurwitz polynomial:

PH(s) = ã4����
a1+a2+a3+a4+1
a2−a1−a3+a4+1

+ s ã3����
2(2+a1−a3−2a4)

a2−a1−a3+a4+1

+ s2 ã2����
2(3a4−a2+3)

a2−a1−a3+a4+1

+ s3 ã1����
2(a3−a1−2a4+2)

a2−a1−a3+a4+1

+ s4 (49)

A.3.3 Forward Rule: Proof of Propositions 3

We consider the following policy rule

it = φππt+1. (50)

So the system is in matrix formulation (where λ
1−λ = χ) :




πwt+1

πt+1

xt+1

ω̃t+1



=




1
β 0 − 1

βκw(σ + φ) − 1
βκw

0 1
β 0 − 1

βκp
1
βχ

1
σ
1
β (φπ − 1)− χ 1β 1− χ 1βκw(σ + φ) χ 1β (κw + κp)−

1
σ
1
β (φπ − 1)κp

1
β − 1

β − 1
βκw(σ + φ) 1 + 1

β (κw + κp)







πwt

πt

xt

ω̃t




(51)
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The the coefficient of the characteristic polynomial are

a1 = −γ1 − γ2 − γ3 − γ4 = −trace(J0)(= − sum of the principal first-order minors of Jo)

a2 = γ1γ2+ γ1γ3+ γ1γ4+ γ2γ3+ γ2γ4+ γ3γ4 = sum of the principal second-order minors

of Jo

a3 = −γ1γ2γ3 − γ1γ2γ4 − γ1γ3γ4 − γ2γ3γ4 = − (sum of the principal third-order minors

of Jo)

a4 = γ1γ2γ3γ4 = det(J0) (= principal of fourth-order).

The characteristic polynomial is then equal to

p(γ) = γ4 +

�
1

β
[−2− 2β − (κw + κp) + χκw(σ + φ)]



γ3

+

�
1

β
(κp + κw + β + 1)−

1

β
κw (σ + φ)

�
χ

�
1 +

1

β

�
+

1

σβ
κp (φπ − 1)

�

+
1

β2
(1 + 3β + κw + κp)



γ2

+

�
−

1

β2
(2 + 2β + κw + κp − χκw (σ + φ))



γ +

1

β2

Applying the above transformation in (49) to get the Hurwitz polynomial, it yields

− 1
σκwκp (σ + φ) (φπ − 1)

D� �� �
ã4

+s
2 (β − 1) [−κw − κp + χκw(σ + φ)]

D� �� �
ã3

+s2



4β2 + 4− 8β + 2 (1 + β) [−κp − κw + κw (σ + φ)χ] + 2

σκw (σ + φ)κp (φπ − 1)

D� �� �
ã2




+s3



−8 + 8β2 + 2(1− β) [− (κw + κp) + χκw(σ + φ)]

D� �� �
ã1


+ s4 (52)

where

D = 4β2 + 4 + 8β + 2 [β + 1] (κp + κw)−
1

σ
κwκp (σ + φ) (φπ − 1)− 2 (1 + β)χκw(σ + φ).

Note there should be 3 positive roots and 1 negative root for the REE to be unique. It

follows that a necessary condition must be that ã4 < 0. Proof strategy: we look at the signs

of the coefficients ãi, and we exploit the Decartes’ rule of sign.

Look separately at the case when φπ > 1 and when φπ < 1.

Case φπ > 1.
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ã4) In this case the numerator of ã4 (i.e., Nã4)
31 is negative, hence the denominator must

be positive. For D to be positive, the following restriction must hold:

φπ < 1 +
4σβ2+4σ+8σβ+2σ(1+β)([κp+κw−χκw(σ+φ)]

κwκp(σ+φ)
.

ã3) Then, since D > 0, there are two cases:

i) Nã3 > 0 => ã3 > 0, that happens for low values of χ, more precisely when

χ <
κw+κp
κw(σ+φ)

.

Note that in this case
4σβ2+4σ+8σβ+2σ(1+β)([κp+κw−χκw(σ+φ)]

κwκp(σ+φ)
+ 1 > 1 and so the set is non

empty. Moreover Nã1 = −8 + 8β2 + 2 (1− β) [− (κw + κp) + χκw(σ + φ)] < 0 => ã1 < 0.

Whatever the sign of ã2, the signs of the coefficients in (52) are: -,+,?,-,+. By Decartes’

rule of sign, PH(s) then admits then 1 or 3 positive roots. However, PH(−s) = +,-,?,+,+,

and hence there can be only one negative root. It follows that under the above conditions

2σ(1+β)[2(1+β)+κp+κw−χκw(σ+φ)]
κwκp(σ+φ)

+ 1 > φπ > 1

χ <
κw+κp
κw(σ+φ)

the REE is determinate.

ii) Nã3 < 0 => ã3 < 0, that happens for high values of χ, more precisely when

χ >
κw+κp
κw(σ+φ)

. In this case, however, the set
2σ(1+β)[2(1+β)+κp+κw−χκw(σ+φ)]

κwκp(σ+φ)
+1 > φπ > 1 is non

empty iff χ < κp+κw
κw(σ+φ)

+ 2(1+β)
κw(σ+φ)

. Hence now we are looking at values of χ such that

κp + κw
κw(σ + φ)

+
2(1 + β)

κw(σ + φ)
> χ >

κw + κp
κw(σ + φ)

(53)

Since the first two coefficients (ã4, ã3) are negative and the last is positive, it must be that

ã2 > 0 and ã1 < 0 to have three signs inversions. This is always true if φπ > 1 and (53) hold.

It follows that under the above conditions

2σ(1+β)[2(1+β)+κp+κw−χκw(σ+φ)]
κwκp(σ+φ)

+ 1 > φπ > 1
κp+κw
κw(σ+φ)

+ 2(1+β)
κw(σ+φ)

> χ > κw+κp
κw(σ+φ)

the REE is determinate.

Putting together i) and ii), the equilibrium is determinate iff

2σ (1 + β) [2 (1 + β) + κp + κw − χκw(σ + φ)]

κwκp (σ + φ)
+ 1 > φπ > 1 (54)

and
κp + κw
κw(σ + φ)

+
2(1 + β)

κw(σ + φ)
> χ >

κw + κp
κw(σ + φ)

. (55)

Case φπ < 1.

ã4) Nã4 > 0, hence it must be that D < 0. For D to be negative, the following restriction

must hold: 2σ(1+β)[2(1+β)+κp+κw−χκw(σ+φ)]
κwκp(σ+φ)

+ 1 < φπ. In this case, however, the set

1 > φπ > 1 +
2σ (1 + β) [2 (1 + β) + κp + κw − χκw(σ + φ)]

κwκp (σ + φ)
(56)

31N stands for numerator, D for denominator and the pedix for the correspondent coefficient ãi.
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is non empty iff:

χ >
κp + κw
κw(σ + φ)

+
2(1 + β)

κw(σ + φ)
. (57)

ã3) Given (57), =⇒ Nã3 < 0 => ã3 > 0, since D < 0. In this case, since the first two

coefficients: ã4 < 0, ã3 > 0, and the last is positive, the only way to have three signs inversions

is that at least one between ã2 and ã1 is negative (in other words they cannot be both positive).

Condition for ã2 < 0 => Nã2 > 0 =>

φπ > 1−
σ (1 + β) [κw (σ + φ)χ− κp − κw]

κw (σ + φ)κp
−

2σ (1− β)2

κw (σ + φ)κp

which, if (56) holds, is satisfied iff:

χ <
κp + κw
κw(σ + φ)

+
4 (1 + β)

κw(σ + φ)
+

2 (1− β)2

κw(σ + φ) (1 + β)
. (58)

In other words, (58) guarantees that

1 + 2σ(1+β)[2(1+β)+κp+κw−χκw(σ+φ)]
κwκp(σ+φ)

> 1− σ(1+β)[κw(σ+φ)χ−κp−κw]
κw(σ+φ)κp

− 2σ(1−β)2

κw(σ+φ)κp
.

Condition for ã1 < 0 => Nã1 > 0 =>

χ >
4(1 + β) + κw + κp

κw(σ + φ)
. (59)

Note that: if (57) holds, at least one between (58) and/or (59) is satisfied, since
κp+κw
κw(σ+φ)

+
2(1+β)
κw(σ+φ)

< 4(1+β)+κw+κp
κw(σ+φ)

< κp+κw
κw(σ+φ)

+ 4(1+β)
κw(σ+φ)

+ 2(1−β)2

κw(σ+φ)(1+β)
. Hence (57) guarantees that at

least one between ã2 and ã1 is negative. Decartes’ rule of signs then implies 3 positive roots.

To conclude, in the case φπ < 1, the equilibrium is determinate iff

1 > φπ > 1 +
2σ (1 + β) [2 (1 + β) + κp + κw − χκw(σ + φ)]

κwκp (σ + φ)
(60)

and

χ >
κp + κw
κw(σ + φ)

+
2(1 + β)

κw(σ + φ)
. (61)

Putting together the two cases φπ > 1 and φπ < 1., it yields Proposition 3. QED

A.3.4 Contemporaneous Rule

We consider the following policy rule:

it = φππt + φπwπ
w
t (62)

The corresponding matrix formulation of our dynamic system is:




πwt+1

πt+1

xt+1

ω̃t+1



=




1
β 0 − 1

βκw(σ + φ) + 1
βκw

0 1
β 0 − 1

βκp
1
σφπw + 1

βχ
1
σφπ −

1
σ
1
β − χ

1
β 1− χ 1βκw(σ + φ) χ 1β (κw + κp) +

1
σ
1
βκp

1
β − 1

β − 1
βκw(σ + φ) 1 + 1

β (κw + κp)







πwt

πt

xt

ω̃t



.
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The coefficients of the characteristic polynomial are:

a1 = −trace(J0) = −
1

β
[2 (1 + β) + (κp + κw)− χκw (σ + φ)]

a2 = 1+
4

β
+

1

β2
+
1

β

�
1 +

1

β

�
(κp + κw)−

1

β

�
1 +

1

β

�
χκw (σ + φ)+

1

σβ

�
φπw +

1

β
κp

�
(φ+ σ)κw

a3 = −
2

β

�
1

β
+ 1

�
−

1

β2
(κp + κw)+

�
χ

β2
−

1

σβ2
(σ + φ)κpκw (φπ + φπw)−

1

σβ

�
1 +

1

β

�
φπw

�
(φ+ σ)κw

a4 =
1

β2

�
1 +

1

σ
(σ + φ)κwφπw

�
.

Repeating the steps above in (49), the Hurwitz polynomial is given by:

1
σ (1− (φπ + φπw)) (σ + φ)κpκw

D� �� �
ã4

+s
2 (1− β) [κp + κw − κw(φπw + (σ + φ)χ)] + 2

σκw [(σ + φ) (φπ + φπw)κp + (β − 1)φφπw ]

D� �� �
ã3

+s2
4 (1− β)2 − 2 (1 + β) [κp + κw − χκw (σ + φ)]− 2

σκw (σ + φ) [κp − (β − 3)φπw ]

D� �� �
ã2

+s3
8
�
β2 − 1

�
+ 2(β − 1) [κp + κw − (σ + φ)χκw]−

2
σ (φ+ σ)κw [(β + 3)φπw − κp (φπ + φπw)]

D� �� �
ã1

+s4 (63)

where

D = 2 (1 + β) [2 (1 + β) + (κp + κw)− (σ + φ)χκw]

+
2

σ
(β + 1) (σ + φ)κwφπw +

1

σ
(σ + φ) (1 + φπ + φπw)κpκw

Note there should be 3 positive roots and 1 negative root for the REE to be unique. It

follows that a necessary condition must be that ã4 < 0. As for the proof above in A.3.3, we

look at the signs of the coefficients ãi, and we exploit the Decartes’ rule of sign.

A.3.5 Proof of Propositions 4: Case φπw = 0

If φπw = 0, the Hurwitz polynomial is:
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1
σ (1− φπ) (σ + φ)κpκw

den� �� �
ã4

+

s
2 (1− β) [(κp + κw)− (σ + φ)χκw] +

2
σ (σ + φ)φπκpκw

den� �� �
ã3

+

s2
4 (1− β)2 − 2 (1 + β) [(κp + κw)− χκw (σ + φ)]− 2

σ (σ + φ)κpκw

den� �� �
ã2

+

s3
8β2 − 8 + 2 (β − 1) [(κp + κw)− (σ + φ)χκw]−

2
σκpκw (φ+ σ)φπ

den� �� �
ã1

+s4

where

den = 2 (1 + β) [2 (1 + β) + (κp + κw)− (σ + φ)χκw] +
1

σ
(σ + φ) (1 + φπ)κpκw

Look separately at the case when φπ > 1 and when φπ < 1.

Case φπ > 1.

ã4) In this case Nã4 < 0, hence D must be positive. For D to be positive, the following

restriction must hold:

φπ > −1−
2σ (1 + β) [2 (1 + β) + (κp + κw)− (σ + φ)χκw]

(σ + φ)κpκw
= φ̄

a,CR
π . (64)

ã3) Then, since D > 0, there are two cases:

i) Nã3 > 0 => ã3 > 0, that happens for:

φπ >
σ (1− β) [(σ + φ)χκw − (κp + κw)]

(σ + φ)κpκw
= φ̄

b,CR
π . (65)

Note that in this case ã1 < 0, since ã1 = −ã3 − 8(1− β2). It follows that, whatever the sign

of ã2, PH(s) exhibits three sign changes, while PH(−s) only one. So there will be 3 positive

roots and 1 negative root. This proves that if is φπ > max
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
, the REE is

determinate.

ii) Nã3 < 0 => ã3 < 0, that happens for: φπ <
σ(1−β)[(σ+φ)χκw−(κp+κw)]

(σ+φ)κpκw
= φ̄

b,CR
π .

Since anyway, it should be φπ > 1 and φπ > φ̄
a,CR
π , the condition φπ < φ̄

b,CR
π then requires

φ̄
b,CR
π > 1 and φ̄

b,CR
π > φ̄

a,CR
π to have an interval where the 3 conditions are all jointly satisfied.

This implies the following conditions:

χ >
κp

σ (1− β)
+

κp + κw
(σ + φ)κw

and

χ <
σ (κp + κw) [1 + 3β] + (σ + φ)κpκw + 4σ (1 + β)2

σ (σ + φ)κw [1 + 3β]
.
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Under this conditions, since the first two coefficients (ã4, ã3) are negative and the last is

positive, then it must be that ã2 > 0 and ã1 < 0 to have three signs inversions.

Condition for ã2 > 0 => Nã2 > 0 =>

χ >
κp

σ(1+β) −
2(1−β)
κw(σ+φ)

+
κp+κw
κw(σ+φ)

.

Condition for ã1 < 0 => Nã1 < 0 =>

φπ > φ̄
b,CR
π −

4σ(1−β2)
κpκw(φ+σ)

.

So determinacy can occur iff all the following conditions are jointly satisfied:





φπ > −1−
2σ(1+β)[2(1+β)+(κp+κw)−(σ+φ)χκw]

(σ+φ)κpκw
= φ̄

a,CR
π

φπ <
σ(1−β)[(σ+φ)χκw−(κp+κw)]

(σ+φ)κpκw
= φ̄

b,CR
π

φπ > 1

φπ > φ̄
b,CR
π −

4σ(1−β2)
κpκw(φ+σ)

χ >
κp

σ(1+β) −
2(1−β)
κw(σ+φ)

+
κp+κw
κw(σ+φ)

χ >
κp

σ(1−β) +
κp+κw
(σ+φ)κw

χ <
σ(κp+κw)[1+3β]+(σ+φ)κpκw+4σ(1+β)

2

σ(σ+φ)κw[1+3β]

It is easy to show that this case is extremely unlikely. First, since it should be φ̄
b,CR
π −

4σ(1−β2)
κpκw(φ+σ)

< φπ < φ̄
b,CR
π , then if β = 1 this case does not admit determinacy. More-

over, for β → 1, also the set that define the conditions on χ becomes empty. Second,

for our benchmark calibration for the conditions above that define the admissible values

of χ imply: χ > κp
σ(1+β) −

2(1−β)
κw(σ+φ)

+ κp+κw
κw(σ+φ)

= 0.42246; χ > κp
σ(1−β) +

κp+κw
(σ+φ)κw

= 9.3275;

χ < σ(κp+κw)[1+3β]+(σ+φ)κpκw+4σ(1+β)
2

σ(σ+φ)κw[1+3β]
= 4.8919, that can not be jointly satisfied.

Finally, φ̄
a,CR
π and φ̄

b,CR
π are equal for a value of χ that implies φ̄

a,CR
π = φ̄

b,CR
π

=
σ(1−β)[(σ+φ)κpκw+4σ(1+β)2]

(σ+φ)κpκwσ[1+3β]
. It is sufficient to assume that

σ(1−β)[(σ+φ)κpκw+4σ(1+β)2]
(σ+φ)κpκwσ[1+3β]

is less

than one to get rid of this case. So in what follows we will assume this mild condition, that is

very likely to be satisfied.

Case φπ < 1.

ã4) In this case Nã4 > 0, hence D must be negative. Thus:

φπ < −1−
2σ (1 + β) [2 (1 + β) + (κp + κw)− (σ + φ)χκw]

(σ + φ)κpκw
= φ̄

a,CR
π (66)

ã3) Then, since D < 0, there are two cases:

i) Nã3 < 0 => ã3 > 0, that happens for

φπ <
σ (1− β) [(σ + φ)χκw − (κp + κw)]

(σ + φ)κpκw
= φ̄

b,CR
π (67)

Note that in this case ã1 < 0, since ã1 = −ã3−8(1−β2). It follows that, whatever the sign

of ã2, PH(s) exhibits three sign changes, while PH(−s) only one. So there will be 3 positive

roots and 1 negative root. This proves that if is φπ > min
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
, the REE is

determinate.
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ii) Nã3 > 0 => ã3 < 0, that happens for: φπ >
σ(1−β)[(σ+φ)χκw−(κp+κw)]

(σ+φ)κpκw
= φ̄

b,CR
π .

Since anyway, it should be φπ < 1 and φπ < φ̄
a,CR
π , the condition φπ > φ̄

b,CR
π then requires

φ̄
b,CR
π < 1 and φ̄

b,CR
π < φ̄

a,CR
π to have an interval where the 3 conditions are all jointly satisfied.

This implies the following conditions:

χ >
κp

σ (1− β)
+

κp + κw
(σ + φ)κw

and

χ <
σ (κp + κw) [1 + 3β] + (σ + φ)κpκw + 4σ (1 + β)2

σ (σ + φ)κw [1 + 3β]
.

Under this conditions, since the first two coefficients (ã4, ã3) are negative and the last is

positive, then it must be that ã2 > 0 and ã1 < 0 to have three signs inversions.

Condition for ã2 > 0 => Nã2 < 0 =>

χ <
κp

σ(1+β) −
2(1−β)
κw(σ+φ)

+
κp+κw
κw(σ+φ)

.

Condition for ã1 < 0 => Nã1 > 0 =>

φπ < φ̄
b,CR
π −

4σ(1−β2)
κpκw(φ+σ)

.

This latter condition, however, contradicts the condition above that yields ã3 < 0, that is:

φπ > φ̄
b,CR
π . Hence this case does not admit determinacy of REE.

The two conditions that are necessary and sufficient for the determinacy of the equilibrium

are therefore: φπ > max
�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
or φπ < min

�
1; φ̄

a,CR
π ; φ̄

b,CR
π

�
. QED

A.3.6 Proof of Proposition 5: Case φπw �= 0

Let’s now consider the general case, where the Hurwitz polynomial is (63).

A first important result is that 1 = φπ + φπw identifies a zero root. This analytically

suggests that the numerical result in Galí (2008) regarding the model of Erceg et al. (2000)

still survives in a model with LAMP.

Here we are just looking for a necessary condition that involves φπ + φπw ≶ 1. We know

that a necessary condition is ã4 < 0. This is satisfied iff:

1) either Nã4 > 0, D < 0

2) or Nã4 < 0,D > 0.

That implies:

1) either (φπ + φπw) < min
�
1, φ̄π,πw

�

2) or (φπ + φπw) > max
�
1, φ̄π,πw

�
.

QED

A.4 Proposition 6: derivation of the Welfare-based Loss Function

Remember that the steady state of our economy is efficient, therefore:

vL,H
uC,H

=
vL,S
uC,S

=
W

P
=
Y

L
= 1 (68)
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where LH = LS = L = Y and CH = CS = C = Y. The last equality in (68) holds since the

economy production function is: Yt = LtAt, where A = 1 in steady state.

As in Bilbiie (2008) we assume that the Central Bank maximizes a convex combination of

the utilities of two types of households, weighted by the mass of agents of each type, i.e.:

Wt = λ [u (CH,t)− v(LH,t)] + (1− λ) [u (CS,t)− v(LS,t)] (69)

we know that in our model, because of the presence of the union, LH,t = LS,t = Lt for each t,

this means that (69) can be rewritten as

Wt = λu (CH,t) + (1− λ)u (CS,t)− v (Lt) (70)

A second order approximation of λu (CH,t) and (1− λ)u (CS,t) delivers

λu (CH,t)− λu (CH) ≃ λuCHCH

�
ch,t +

1

2
(1− σ) c2h,t + ch,tψt

�
+ tip (71)

(1− λ)u (Cs,t)− λu (Cs) ≃ (1− λ)uCsCs

�
cs,t +

1

2
(1− σ) c2s,t + cs,tψt

�
+ tip (72)

Also a second order approximation to v (Lt) yields:

v (Lt)− v (L) ≃ vLL

�
lt +

1 + φ

2
l2t

�
(73)

Summing all the terms and considering steady state consumption levels of the two households

are identical

Wt −W = λuCC

�
ch,t +

1

2
(1− σ) c2h,t

�
+ uCCctψt

+(1− λ)uCC

�
cs,t +

1

2
(1− σ) c2s,t

�
− vLL

�
lt +

1+ φ

2
l2t

�
+ tip (74)

>From the economy production function we know that

lt = yt + dw,t + dp,t − at (75)

where dw,t = log
� 1
0

�
W j
t

Wt

�−θw
dj is the log of the wage dispersion and dp,t = log

� 1
0

�
P it
Pt

�
−θp
di

is the log of the price dispersion. Both terms are of second order and therefore they cannot

be neglected in a second order approximation. Notice that

l2t = (ŷt + dw,t + dp,t − at)
2 = y2t + a

2
t − 2ytat (76)

using (75), the efficient steady state condition uCC = vLL, the equilibrium condition ct = yt

we get:

Wt −W

uCC
= yt +

(1− σ)

2

�
λc2h,t + (1− λ) c2s,t

�
+ ctψt +

−

�
yt + dw,t + dp,t − at +

1+ φ

2
y2t − (1 + φ) ytat

�
+ tip (77)
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Next notice that cH,t = wt + lt,then

c2H,t = w2t + l
2
t + 2wtlt

= w2t + y
2
t + a

2
t − 2ytat + 2wtyt − 2wtat

= (yt − at)
2 +w2t + 2wtyt − 2wtat

and cS,t =
1
1−λct −

λ
1−λcH,t,thus

c2S,t =
1

(1− λ)2
c2t +

�
λ

1− λ

�2
c2H,t − 2

�
1

1− λ

��
λ

1− λ

�
ctcH,t

=
1

(1− λ)2
c2t +

�
λ

1− λ

�2 �
ŵ2t + l

2
t + 2ŵtlt

�
−

2λ

(1− λ)2
ct (ŵt + lt)

=
1

(1− λ)2
ŷ2t +

�
λ

1− λ

�2 �
ŵ2t + ŷ

2
t + a

2
t − 2ŷtat + 2ŵtŷt − 2ŵtat

�

−
2λ

(1− λ)2
�
ŷtŵt + ŷ

2
t − ytat

�

then

�
λc2H,t + (1− λ) c2S,t

�

= λ
�
y2t + a

2
t − 2ytat + ŵ

2
t + 2ŵtŷt − 2wtat

�
+

1

(1− λ)
ŷ2t +

λ2

(1− λ)

�
ŵ2t + ŷ

2
t + a

2
t − 2ŷtat + 2ŵtŷt − 2ŵtat

�
−

2λ

(1− λ)

�
ŷtŵt + ŷ

2
t − ytat

�

collecting terms and simplifying

�
λc2H,t + (1− λ) c2S,t

�
=

�
λ

(1− λ)

�
w2t + y

2
t +

λ

(1− λ)
a2t − 2

�
λ

(1− λ)

�
wtat

Using this results and considering that at is independent of policy the welfare function can

be rewritten as

Wt −W

uCC
=

1

2

�
(1− σ)λ

(1− λ)
w2t − (σ + φ) y2t − 2

(1− σ)λ

(1− λ)
wtat + 2ytψt + 2 (1 + φ) ytat




− (dw,t + dp,t) + tip

Next we have to rewrite some terms. Recall that (σ + φ) yEfft = (1 + φ) at + ψt, thus

(σ + φ) yty
Eff
t = (1 + φ) ytat + ytψt

and

(σ + φ)
�
yt − y

eff
t

�2
= (σ + φ)

�
y2t +

�
yefft

�2
− 2yty

eff
t

�

= (σ + φ)

�
y2t +

�
yefft

�2�
− 2 (σ + φ) yty

eff
t

substituting for the previous result

(σ + φ)
�
yt − y

eff
t

�2
= (σ + φ)

�
y2t +

�
yefft

�2�
− 2 (1 + φ) ytat − 2ytψt
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In this case

Wt −W

uCC
=

1

2

�
(1− σ)λ

(1− λ)

�
w2t − 2wtat

�
− (σ + φ)x2t



− (dw,t + dp,t) + tip

where xt =
�
yt − y

Eff
t

�
and given that yEfft is independent of policy. Also notice that

wefft = at, which is a term independent of policy. Multiplying wEfft by wt we get: wtw
eff
t =

wtat, and therefore

�
wt −w

eff
t

�2
= w2t +

�
wefft

�2
− 2wtw

eff
t = w2t − 2wtat +

�
wefft

�2

which implies

w2t − 2wtat =
�
wt −w

eff
t

�2
−
�
wefft

�2
= ω̃2t −

�
wefft

�2

Substituting the latter into the welfare loss function and considering that wefft is a term

independent of policy, we get

Wt −W

uCC
=

1

2

�
(1− σ)λ

(1− λ)
ω̃2t − (σ + φ)x2t



− (dw,t + dp,t) + tip

Using Woodford Lemma 1 and Lemma 2, we can finally write the present discounted value of

the Central Bank loss function as

L = −
1

2

∞


t=0

βt
�
(σ − 1)λ

(1− λ)
ω̃2t + (σ + φ)x2t +

θw
κw

(πwt )
2 +

θp
κp
π2t

�
+ tip

Notice that if σ < 1 deviation of the real wage from its efficient level leads to a lower society’s

loss.

A.4.1 Derivation of the welfare function under flexible wages

Remember that in the case in which wages are fully flexible, the labor supply is:

ωt = σct + φlt − ψt = (σ + φ) yt − φat − ψt − φdp,t (78)

hence, subtracting the efficient equilibrium to the LHS and the RHS of the previous equation

ω̃t = (σ + φ)xt − φdp,t (79)

where we use the fact that dp,t − d
Eff
p,t = dp,t (given that dEffp,t = 0). Moreover, we know

at = a
Eff
t and that ψt = ψ

Eff
t and terms multiplied by −φdp,t are terms higher than second

order. Then

ω̃2t = (σ + φ)2 x2t

this means that the welfare-loss can be re-written as follows:

L = −
1

2

∞


t=0

βt
�
(σ + φ)

�
1 + (σ − 1) (σ + φ)

λ

1− λ



x2t +

θp
κp
π2t

�
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Notwithstanding wage flexibility there is and additional term with respect to a fully Ricardian

framework, given by (σ+φ)(σ−1)λ
1−λ x2t . Two conditions are necessary for the presence of this

additional term. Once again this is due to the presence of rot agents and similarly it disappears

when σ = 1. Also, when σ < 1, the identified additional term leads to a reduction in society’s

welfare loss.

A.4.2 Proofs of Proposition 8

Given (M1) it follows immediately that strict price inflation targeting and strict wage gap

targeting are equivalent. Indeed, πt = 0, ∀t⇔ ω̃t = 0,∀t.In this case the model reduces to

(M2) πwt = βEtπ
w
t+1 + κw(σ + φ)xt

(M3) πwt = ∆ωEfft

(M4) xt = Etxt+1 −
1
σEt

�
it − r

Eff
t

�

from which we can determine the path {πt, π
w
t , xt}

∞

t=0 independently of λ. The loss function

also does not depend on λ. From (M3) and Given at = ρaat−1 + ε
a
t , then π

w
t = ∆ωEfft =

∆at = (ρa − 1)at−1 + ε
a
t . For ρa < 1

V ar(πw) = V ar(∆at) = (ρa − 1)2V ar(at) + σ
2
a =

2

1 + ρa
σ2a

Then substituting (M3) into (M2) :

πwt = βEtπ
w
t+1 + κw(σ + φ)xt

∆ωEfftt = βEt∆ω
Eff
t+1 + κw(σ + φ)xt

then assuming that at is known at t it follows that

xt =
1

κw(σ + φ)
[∆at − βEt∆at+1] =

1

κw(σ + φ)
[(ρa − 1) (1− βρa) at−1 + (1− β(ρa − 1)) εat ]

One can found a value for the variance of the output gap as

V ar (xt) =

�
(ρa − 1) (1− βρa)

κw(σ + φ)

�2 σ2a
1− ρ2a

+

�
1− β(ρa − 1)

κw(σ + φ)

�2
σ2a

Substitute the unconditional variances in unconditional expectation of the loss function to

get unconditional society’s loss.
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Figure 1. Determinacy and Indeterminacy regions when it = φππt+1
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Figure 2. Determinacy and Indeterminacy regions under the rule: it = φππt+1. Panel a):

flexible wages, Panel b): sticky wages
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Figure 3. Determinacy and Indeterminacy regions when it = φππt.
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Figure 4. Determinacy and Indeterminacy regions under the rule: it = φππt. Panel a):

flexible wages, Panel b): sticky wages.
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Figure 5. Impulse response function to a technology shock under full commitment for

alternative values of the share of non-Ricardian agents (λ)
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Figure 6. Unconditional welfare loss under strict wage inflation targeting and strict price

inflation targeting. The latter is reported for two alternative average durations of wage

contracts: 3 quarters (ξw = 2/3) and 4 quarters (ξw = 3/4).
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C Tables

Average duration

of wage contracts

(1−ξw)
−1

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75

Full Commitment

1 0 0 0 0

2 0.0046 0.0054 0.007 0.0108

3 0.0059 0.0066 0.008 0.0125

4 0.0066 0.0071 0.0084 0.0125

5 0.0069 0.0075 0.0086 0.0124

Table 1: Unconditional welfare loss under full commitment. We consider alternative parame-

terizations for the share of non-Ricardian consumers and alternative average duration of wage

contracts. The welfare loss is expressed as a percentage of the efficient steady state level of

consumption, while the average duration of wage contracts is expressed in quarters.
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Average duration

of wage contracts

(1−ξw)
−1

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75

A) it = φππt

1 10,0.03 -10,0.02 -10,0.02 -10,0.02

2 5,1.3 5.1,1.1 6.1,0.9 -10,4.8

3 4.3,2.1 4.5,1.9 5.4,1.6 10,1.4

4 4.3,2.8 4.6,2.5 5.4,2.1 9.6,1.9

5 4.4,3.5 4.8,3.2 5.6,2.8 9.4,2.4

B) it = φπEtπt+1

1 10,0.06 -5.2,0.1 -10,0.06 -10,0.06

2 7.8,1 8.4,0.9 10,0.8 -10,0.6

3 6.5,1.6 7.1,1.4 9.4,1.3 10,2.2

4 6.4,2.2 7.1,2 9,1.8 10,2.7

5 6.7,2.8 7.3,2.6 9.1,2.3 10,3.4

Table 2: Panel A: Optimal contemporaneuos inflation response coefficient (left), welfare loss

(right). Panel B: Optimal expected inflation response coefficient (left), welfare loss (right).

The welfare loss is expressed as a fraction of the efficeint steady state consumption multiplied

by one hundred. The average duration of wage contracts is expressed in quarters
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Average duration

of wage contracts

(1−ξw)
−1

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75

A) it = φππt + φyyt

1 10,0.05,0.04 -10,0.04,0.03 -10,0.05,0.03 -10,0.05,0.03

2 5.5,0.2,1.2 5.6,0.16,1.1 6.45,0.08,0.9 -10,-1.3,3.4

3 4.42,0.15,1.9 4.7,0.12,1.8 5.59,0.07,1.5 10,-0.07,1.4

4 4.8,0.2,2 5.04,0.17,1.8 5.8,0.1,1.5 9.5,-0.04,1.8

5 5.05,0.2,3.2 5.37,0.18,3 6.5,0.13,2.7 9.4,-0.01,2.4

B) it = φππt + φππ
w
t

1 10,-0.006,0.04 -10,-0.13,0.02 -10,-0.11,0.03 -9.2,0.5,0.04

2 10,7.24,0.4 10,6.13,0.5 10,4.18,0.6 -10,-10,0.7

3 6.75,10,0.6 7.9,10,0.7 10,10,0.8 10,7.8,1.2

4 4.33,10,0.7 5.2,10,0.8 7.2,10,0.9 10,10,1.2

5 3.3,10,0.8 4.12,10,0.8 5.82,10,0.9 10,10,1.3

Table 3: Panel A: Optimal inflation response coefficient (left), optimal output response co-

efficient (center), welfare loss (right). Panel B: Optimal inflation response coefficient (left),

optimal wage inflation response coefficient (center), welfare loss (right). The welfare loss is

expressed as a fraction of the efficeint steady state consumption multiplied by one hundred.

The average duration of wage contracts is expressed in quarters
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