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Abstract

In this paper, we develop an overlapping generations growth model, where the govern-
ment follows a �scal rule inspired by the empirical estimation conducted by Bohn (1998),
to control the level of public debt. We study the determinants of the sustainable level of
debt, the e¤ects of di¤erent strategies to reduce the public debt and the stability of the
long-run equilibrium. We show that although countries have the same structural para-
meter (for instance, the Southern European countries), they have to abobt di¤erent �scal
policies subject to their initial position in economic development and their historical levels
of debt. Moreover, we show what has to be the dynamic responsiveness of government
expenditures and taxation to the level of debt and output in order to shape a dynamic
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1 Introduction

Over the last 5 years, particularly in Europe, we have witnessed a shift to de�cit reducing
policies and austerity measures to target the sustainability of public debt. The International
Monetary Fund, the European Central Bank, and the European Commission in an e¤ort to
help European countries to overcome situations of exploding debt have focused on policies
that �rstly, target a minimum level of de�cit and secondly, place some level of �scal austerity
(taxation) subject to the volume of debt of each country. However, we have witnessed that those
policies are continuously re-optimized due to failure of the countries under austerity measures
in achieving their targets. Such variation in the dynamic adjustment of policy instruments have
resulted in an uncertain economic environment raising the need of imposing a stable dynamic
�scal policy rule for debt and taxation.1

In this paper, we build up a theoretical framework where productive government expen-
ditures are �nanced though taxation and public debt. In particular, we extend the work of
Chalk (2000), by considering a policy rule that not only depends on the need for a structural
de�cit to �nance public expenditures but also takes care the way taxation (austerity) has to
dynamically adjust in order to place the economy in a regime with sustainable debt. To this
end, we introduce the empirical �scal policy rule of Bohn (1998) and Gali et al. (2007) and
we study its theoretical properties. We �rst �nd that there exists not only a limit on the level
of structural de�cit (as in Chalk, 2000) but also a limit on the volume of austerity in order
to guarantee an sustainable equilibrium in the economy. Interestingly, we show that although
countries can have the same structural parameters, they have to adobt di¤erent �scal policies
for sustainable debt subject to their level of economic development and their historical debt
levels. Moreover, we show what has to be the responsiveness of government expenditures and
taxation in changes to the level of debt in order to shape a dynamic path with stable income
and debt. We provide numerical examples to our theoretical results.
Our paper is related to the literature on �scal consolidation and debt sustainability. Sargent

and Wallace (1981) state that there is a ceiling on government indebtedness and that permanent
de�cits will eventually need to be monetised. Darby (1985) has argued that if the interest rate
is less than the growth rate it becomes more pleasant since the economy can simply outgrow its
liabilities. However, �rstly, countries that belong to a monetary union are constrained to use
monetary policy. Secondly, the growth rate in economic crisis periods seems to be lower than
the interest rate (also the growth rate can be negative), and, in turn, the usual transversality
conditions on in�nitely lived agents models can be violated. To this end, we build an overlapping
generations framework that can allow the possibility of a debt bubble (Tirole, 1985) but with
a consistent �scal plan that can allow for de�cits in the short-run. This happens as the policy
rule allows the dynamic adjustment of taxation to the level of debt so as to place the economy
to an equilibrium path of sustainable debt. In other words, our contribution relies on the two
separate features of the policy rule. Interestingly, due to the presence of multiple equilibria, the
procyclicality feature of the policy rule to the level of output helps a country to escape from
an unstable dynamic path (creating "instability" to escape from an unstable environment). On
the �ip side, the "austerity" (increase in taxation) feature of the rule controls the level of debt
from not entering into a "bubble" area.

1For instance, De Grauwe and Yuemei (2013) show that the fragility of the government bond markets to
self-ful�lling liquidity crises in the Eurozone driven by negative market sentiments.
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We relate our analysis to the discussion about the derivation of policy prescriptions for
countries with unsustainable debt. According to Washigton Consencus (Washigton, 1989) and
the Maastricht criteria for entry into EMU, usually there is a ceiling on the overall de�cit
in order for it to be considered acceptable and sustainable. All those rules imply the same
criteria for each country under the assumption that the structural characteristics are the same.
Following Azariadis and Stachuzski (2005) and recent empirical evidence by De Grauwe and
Yuemei (2013), we show that multiple equilibria can arise and although countries have similar
characteristics (e.g. Spain, Italy, and Greece), they may face divergent paths in debt and
income, observed in reality. In particular, we show that the �nal position of economies depends
on the initial conditions of physical capital stock and the historical levels of debt independed
of the structural characteristics. As a result, initial conditions are important in determining
the sustainability of a country�s �scal policy. An economy endowed with a relatively high
outstanding stock of debt, inherited from a lack of �scal discipline in the past, will simply not
be able to run the same policies as a low debt economy. Indeed, highly indebted economies
may have no choice but to run substantial primary surpluses. As such, large current de�cits
not only lead to the potential of an explosive growth in the debt to output ratio today but also
substantially restrict the latitude for future administrations to engage in de�cit �nancing in
the future. In addition to Chalk (2000) we contribute by showing the joined determination of
structural de�cit and taxation that can place the economy in a sustainable equilibrium subject
to the initial level of income and debt.
The rest of the paper is structured as follows. Section 2 sets-up the theoretical model.

Section 3 derives the dynamic properties of equilibria. Section 4 derives the e¤ects of policy
instruments in the long-run and simulates the dynamics numerically. Section 5 concludes the
paper.

2 The model

2.1 Supply Side

We consider an overlapping generations model with government debt and physical capital as
advanced by Diamond (1965) and Tirole (1985). There are Nt consumers who each live for two
periods and we assume zero population growth. They choose their consumption Ct, dt+1 to
maximize their discounted logarithmic utility function,

U = lnCt + � ln dt+1 (1)

where � is the weight that agents place in their second period utility. In the �rst period of
their life, agents inelastically supply labour and they receive a wage rate, wt which is taxed by
� t. Some of their income is consumed in the �rst period and the rest is saved for the second
period. When old, the agents consume their savings and they receive a return on their savings,
rt+1. By solving their intertemporal problem, the savings of each individual are positively
determined by the after tax wage rate and their savings propensity, s = �

1+�
. Thus, savings, S,

are given by,

S(wt; rt+1) = s(1� � t)wt (2)
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. Since savings are not a¤ected by the real interest rate, we have assumed without lost of gen-
erality that the government taxes only wages. We want to re�ect the idea that the government
can only use distortionary taxation.

2.2 Demand Side

In the demand side, there exists a continuum of �rms that produces output, Yt, using capital,
kt, labour, lt, and public good supplied by the government gt,

Yt = Ak
�
t l
1��
t g
t �+ 
 < 1 (3)

The wage rate and return on capital, using labour market clearing condition, lt = 1, are
determined by

wt = (1� �)Ak�t g
 (4)

Rt = �Ak
��1
t g
t (5)

2.3 Government

Regarding the government, we assume that the supply of public capital is determined by a
Samuelson Rule, which states that the marginal income generated by public capital must be
equal to the marginal cost of producing public capital given by:

gt = (
Ak
�
t )

1
1�
 (6)

From the Samuelson�s rule, we can express the aggregate production function in the following
way:

Akag
 = Aka (
Ak�)



1�
 = 




1�
A
1

1�
 k
�

(1�
) = ~Ak

�

(1� 
) (7)

where ~A � 




1�
A
1

1�
 . Since, we have assumed that �+
 < 1, following standard growth literature, the
marginal productivity of capital is decreasing,

�

(1� 
) < 1: Now, we can compute the equilib-
rium wages and real interest using the aggregate production function as follows:

w(kt) = (1� �)Ak�t g


t = (1� �) ~Ak

�

(1� 
)
t (8)

R(kt) = �Ak
��1
t g
t = � ~Ak

�
1�
�1
t (9)

Further, we assume that the government �nances public expenditures not only from taxation
but also by using government debt. The budget constraint of the government is given by

Bt+1 = RtBt + gt � � twt (10)
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Following the �scal rule estimated by Bohn (1998) and used by Gali et al. (2007), we assume
that the primary surplus/de�cit is a function of the level debt and income determined by the
�scal policy parameters, b > 0 and a > 0 given by

gt � � twt = �aBt + byt (11)

Policy parameter a states what the responsiveness of the de�cits to the level of debt (the higher
the debt the lower the de�cit so as to stabilize debt) and parameter b states the responsiveness
of de�cit in the level of income (higher income, more de�cit to �nance public spending).2Thus,
this rule places some level of �scal discipline, "austerity", as given by a, in the sense that under
an increase of debt, taxation has to increase so as to reduce de�cit and, in turn, public debt. On
the �ip side, as the economy develops policy parameter b allows for higher structural de�cit in
order to �nance public spending. Interestingly, as we are going to show later on, the procyclical
role of b places some level of instability in the economy which can be useful for the economy in
order to escape from an unstable dynamic path. At the same time, "austerity" (parameter a)
helps to ensure sustainability in public debt.

3 Equilibrium dynamics

Using the factor payments and quantities from the maximization problem of agents and �rms
into the dynamic equations of capital stock and debt, after some algebra (see Appendix 1), the
dynamic equilibrium in the market is determined by following dynamical system of equations

kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt (12)

Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt) (13)

We will �rst analyze the existence and uniqueness of steady-state equilibrium and, then, we
will analyze the stability of equilibrium and the dynamic behavior of capital and debt. The
steady-state of capital stock and debt level in the economy is that bundle, (k�; b�) such that
kt+1 � kt = 0 and Bt+1 �Bt = 0 simultaneously.

Proposition 1 (Existence and Uniqueness). For (i) (s(1 � �) + s(b � 
) � b > 0 and (ii)
a < �

(1�s)(s(1��)�(1�s)b�s
) � a
max there exist two non-trivial equilibrium steady states, klowss > 0

and khighss > 0 where klowss < khighss .
Proof. Appendix 2.

Proposition 2 (Stability) Both steady-states are stable. The lower equilibrium, klowss , is saddle-
path stable and the higher equilibrium, khighss , is a stable node.
Proof. Appendix 3.

Proposition 1 shows that if the saving propensity and the responsiveness of the structural
de�cit to the level income, b, are such that the investment on capital positively e¤ects the
accumulation of capital (condition (i)) and, if the response of the tax rate on the level of

2Note that in the case that a = 0 and b = 0 the government balances the budget public capital and is equal
to gt = � twt.
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debt, a, is not high enough (limits for austerity as given by condition (ii)), then there exist
two strictly positive equilibrium steady-states. Proposition 2 shows that both equilibria are
stable, the relatively lower one displays saddle-path stability and relatively higher one is a
stable node. Given the overlapping generations framework (which relaxes the hypothesis of
Ricardian equivalence and allows for the presence of bubbles), the dynamical system does
not have a jump variable, thus, the only meaningful equilibrium, is the equilibrium that its
stability is a node (Azariadis and Stachuzski, 2005). Following that, Proposition 1 together
with Proposition 2 imply that the initial conditions, i.e. the historical levels of debt, determine
the long-run position of the economy even the structural parameters of the economy can be the
same. In particular, for high initial volume of debt and low initial capital stock the economy
can be in a position of exploding debt leading to a debt bubble and a poverty trap. While,
after a threshold level of initial capital stock and volume of debt the economy will converge to
an equilibrium level of high capital stock and sustainable debt.3 The threshold levels for the
initial conditions of capital and debt above (below) them sustainability (unsustainability) for
the long-run position of debt exist, depend on the strictness of the policy rule determined by
a and b. In the next section, we show how government can a¤ect the dynamics of economies
with high debt and place them in a sustainable regime.

4 Policy e¤ects and implications

In this section, we analyze the e¤ect of the responsiveness of taxation to the level debt, a and
to the level of structural de�cit, b, on the long-run position of the economy, the dynamics and
we discuss the policy implications.

4.1 The e¤ects of "Austerity" in steady-state and dynamics

Proposition 3 The policy parameter, a, negatively a¤ects the relatively lower steady state,
klowss , and, positively, a¤ects the higher steady-state equilibrium.
Proof. Appendix 4.

Proposition 3 states that the equilibria we derived in Proposition 1 display di¤erent proper-
ties. An increase in austerity parameter, a, negatively a¤ects the relatively lower steady-state
of the capital stock while it positively a¤ects the relatively higher steady-state capital stock.
In other words, the higher the responsiveness of the tax rate to the level of debt, the higher the
gap between the two equilibria. Once the stability of the high capital stock is a stable node
this gives more space for an economy with low level of capital stock and moderate level of debt
to stabilize its level of debt and converge to the relatively higher level of capital stock. The
interesting implication of this theoretical property is that the government by placing higher
austerity can help economies with high level of initial debt and relatively low capital stock
to enter to the area of sustainability. The rule can be clever in the sense that, dynamically,
taxation will increase in economies with high initial level of debt and relatively low level of
capital stock but once the capital stock achieves a certain threshold, taxation will dynamically
reduce so as to avoid a huge crowding out e¤ect.

3Those threshold levels are determined on Appendix 2 and 3.
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To better illustrate this theoretical outcome we provide a numerical example. Assume
two economies, country A (for instance, Italy) and country B (for instance, Greece). Assume
that, both countries have the same structural characteristics such as total factor productivity,
A = 8, the share of physical capital on the production function, � = 0:25, same productivity in
government expenditures, 
 = 0:15, same time preference (savings propensity), � = 0:098 and
both follow the same rule with the same weights, a = 0:5 and b = 0:013 (followed by Bohn,
1998 and similar to Gali et al., 2007). Also, both countries are developed in the sense that both
belong to the area of low interest rates (see Appendix 3 for areas stability). The countries only
di¤er in their initial level of public debt and physical capital stock. Country B has relatively
lower initial capital stock and higher initial level of debt than country A. Lets assume the
country�s B initial capital stock is, KB

0 = 0:5 and the initial level of debt is BB0 = 0:5 while
for County A we assume that KA

0 = 3 and B
A
0 = 0:3. The numerical exercise we pursue is by

setting those di¤erent initial conditions but setting the same structural and policy parameters
to allow both economies dynamics to proceed. Our simulations in Table 1 show that Country
A will display sustainable debt and development (it will reach the high steady-state of capital
stock and stable steady-state level of debt). While as it is shown in Table 2, Country B will end
up in a situation of exploding debt and sharp reduction of capital stock entering to an area of a
poverty trap and result to zero capital stock. Thus, as Proposition 1 and 2 imply although the
countries can have the same structural characteristic and follow the same policy rule, they will
display di¤erent dynamics and steady-states just by starting with di¤erent initial conditions.

Table 1
Country A: Dynamic adjustment towards the stable steady-state

with a = 0:5 and b = 0:013
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Table 2
Country B: Dynamic adjustment towards the stable steady-state

with a = 0:5 and b = 0:013

The policy implication that can be derived from this result is that the policy rule and the
level of austerity has to adjust not only to the fundamentals but also to the initial state of the
economy. So, in cases of exploding debt, following Proposition 3, countries have to increase
the response of de�cit (taxation) to the level of debt ("austerity"), a, so as to expand the area
of sustainability. For this reason, in Table 3 we provide the dynamic path of Country B by
changing the level of "austerity" from 0:5 to 0:8.

Table 3
Country B: Dynamic adjustment towards the stable steady-state

with a = 0:9 and b = 0:013
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According to Table 3, with higher a, the policy rule can place Country B to a stable path
for the capital stock and sustainable long-run level of debt. An interesting outcome of the
simulation results is the non-monotonic dynamics of the tax rate. The tax rate increases at low
levels of capital stock so as to decrease de�cit and stabilize the level of debt. As debt falls and
the economy starts to develop, then taxes fall in order to boost savings that will form a higher
capital stock and a higher tax base to �nance government expenditures. In other words, the
two features of the rule work as follows. From one hand, we need austerity in order to put the
economy in a stable equilibrium path ( policy parameter a ), from the other hand, and in line
with the optimal Samuelson rule for the provision of public services, we need some structural
de�cit in order to �nance productive government spending (policy parameter, b). Di¤erently to
other policy rules (which work in environments of stable dynamic paths) and state that de�cits
have to decrease as output increases (for consumption smoothing) this rule goes the other way
and places some level of instability in the economy so as to be able to escape from the unstable
path but at the same time guarantees some level of �scal consolidation so as to avoid emergence
of debt bubbles.

4.2 Structural de�cits and long-run equilibrium

Last, the same work can be done (and has extensively analyzed by Chalk (2000) for the policy
instrument that controls the level of structural de�cit.

Proposition 4 The structural de�cit parameter, b, positively a¤ects the lower steady state klowss
and negatively a¤ects the higher, khighss , steady-state equilibrium.
Proof. Appendix 4.

Proposition 4 states that the equilibria display di¤erent properties also for the level of
structural de�cit. An increase in the level of structural de�cit positively a¤ects the low steady-
state while an increase in the level of structural de�cit negatively a¤ects the high steady-state.
This theoretical result conforms with the result of Chalk (2000). A decline in the level of
structural de�cit positively a¤ects the level of high capital stock and increases the probability
that a country can escape from a poverty trap as it can increase the gap between the two
equilibria and, in turn, increase the area with stable node dynamics.

5 Conclusion

In this paper we built a theoretical model that can allow the possibility of scenarios of un-
sustainable debt and self-ful�lling crises motivated by the recent debt crisis in Europe and
empirical justi�cation provided by De Grauwe and Yuemei (2013). To this end, we considered
the theoretical properties of a policy rule that has been empirically estimated by Bohn (1998)
but has not been used in a framework that can allow for the presence of debt bubbles and
multiple equilibria. Then, we analyzed how we can adjust the parameters of the policy rule
with the objective to �nd a way to place economies that face high debt, in an area of sustainable
debt and economic development.
We found that such a rule has to have two distinct features. First, it needs to have a

consistent �scal plan to allow for structural de�cits for the provision of government spending
(even with low productivity). At the same time, it needs to place some level of austerity to
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restrict the economy from falling in an area of exploding debt. Our contribution relies on
those two separate features of the policy rule we consider. We show that under the presence
of multiple equilibria, a procyclical policy rule to the level of output helps a country to escape
from an unstable dynamic path. At the same time, we show that the "austerity" (increase in
taxation) feature of the rule controls the level of debt from not entering into a "bubble" area.
According to our numerical simulations we higher austerity level and non-monotonic dynamic
adjustment of taxation (initially increase and then decrease) endogenously, a country with high
level of debt and moderate initial level of capital stock can enter to an area of sustainable debt
and achieve a stable high steady-state equilibrium for the capital stock.
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7 Appendix

Appendix 1: Derivation of the Dynamical System

The equilibrium in the market is determined by following equations:

Bt+1 = R(kt)Bt � aBt + byt

kt+1 +Bt+1 = s(1� �)w(kt)
The evolution of public debt is determined by the government budget constraint and �scal

rule eqs.(10)and (11). Given the government follows the Samuleson rule to determines the
public spending, the marginal needs to adjust to implement the �scal rule,
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gt � �w = �aBt + byt
b > 0 and a > 0

gt
yt
� � wt

yt
= �aBt

yt
+ b

Now, the marginal tax is equal to

�� = �aBt
yt
+ b� gt

yt

From the samuelson rule

gt
yt
= 


then, we have that

� �(kt; Bt)wt = �aBt + (b� 
)yt (14)

note that, we need to assume that �(kt; Bt) < 1; then we obtain the following expression for
ratio debt-GDP, use that wt=yt

�(kt; Bt)(1� �) = a
Bt
yt
� b+ 
 < 1 (15)

�(kt; Bt) = a
Bt

(1� �)yt
+
(
 � b)
1� � < 1 (16)

Bt
yt

<
1� �+ b� 


a
(17)

This expression is upper limit for debt, otherwise the government would need to force con�s-
catory taxation � > 1:We need to impose s
e restriction in the parameter, in order to get a
positive debt at steady state:

1� �+ b� 
 > 0
Then, we obtain the following dynamic system, given the equilibrium in the product goods

market (saving must be equal to investment in real capital and government bonds) and the
government budget constraint:

kt+1 = s(1� �(kt; Bt))wt(kt)� (Rt(kt)� a)Bt � by(kt)

Bt+1 = Rt(kt)Bt � aBt + by(kt)
We simplify the expression for kt+1 using eq. (14),
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kt+1 = swt(kt)� s�(kt; Bt)wt(kt)� (Rt(kt)� a)Bt � by(kt)
kt+1 = swt(kt) + s ((b� 
)yt � aBt)� (Rt(kt)� a)Bt � by(kt)
kt+1 = swt(kt) + s(b� 
)yt � saBt �Rt(kt)Bt + aBt � by(kt)
kt+1 = swt(kt) + s(b� 
)yt + (a� as�Rt(kt))Bt � by(kt)
kt+1 = swt(kt) + s(b� 
)yt + (a(1� s)�Rt(kt))Bt � by(kt)

:Then, evolution of capital and bond is determined by:

�Bt = Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt);

kt+1 = swt(kt) + s(b� 
)yt + (a(1� s)�Rt(kt))Bt � by(kt)

or note that in Cobb-Doulgas case labour share wt(kt)
y(kt)

= 1� �

kt+1 = (s(1� �) + s(b� 
)� b) y(kt) + (a(1� s)�Rt(kt))Bt
In the case of Cobb-Douglas, we express the dynamic system as function of the di¤erent para-
meters (to review and to be moved tot he Appendix)

�Bt+1 = Bt+1 �Bt = (� ~Ak
�
1�
�1
t � a� 1)Bt + b ~Ak

�

(1� 
)
t

kt+1 = (s(1� �) + s(b� 
)� b) ~Ak
�

(1�
)
t +

�
a(1� s)� � ~Ak

�
1�
�1
t

�
Bt

Appendix 2. Existence and Uniqueness

The change of capital stock and the debt level of the economy is determined by the following
dynamic system:

kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt

Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt)

We will �rst analyze the existence and uniqueness of steady-state equilibrium and then
we will analyze the stability of equilibrium and the dynamic behavior of capital and debt.
The steady-state of capital stock and debt level in the economy is that bundle, k; b, where
kt+1 � kt = 0 and Bt+1 �Bt = 0 simultaneously.

11



The locus where the change of debt is zero, Bt+1 �Bt = 0 is given by

B =
by(k)

(1 + a)�R(k) � �(k)

The properties of �(k) are the following:

1. lim
k!0

�(k) = 0 and lim
k!1

�(k) =1.

2. �(k) is discontinuous at k = �k where �k : (1 + a) � R(�k) = 0 Under the Cobb-douglas

function production function �k =
�
(1+a)

� ~A

� 1�

��1�


3. For 0 < k < �k then �(k) < 0 and for �k < k <1 then �(k) > 0:

Proof. Note that y(k) > 0 for any k and @((1+a)�R(kt))
@k

= � �R(kt) > 0 (monotonic function).
Also, lim

k!0
(1 + a) � R(kt) = �1 and lim

k!1
(1 + a) � R(kt) = (1 + a) > 0. This means that

for 0 < k < �k then (1 + a) � R(kt) < 0 and for �k < k < 1 then (1 + a) � R(kt) > 0 For

R(k) = � ~Ak
�
1�
�1 that is (1 + a)� � ~Ak

�
1�
�1 > 0) k̂ <

�
(1+a)

� ~A

� 1�

��1�


4. The limit behavior of �(k) from the left and the right of discontinuity is given by:
lim
k!�k�

�(k) = �1 and lim
k!�k+

�(k) =1:

5. The �rst order derivative �(k) is given by:
@�(k)
@k

= b
y
0
(kt)((1 + a)�R(kt)) + (R0(kt))y(kt)

((1 + a)�R(kt))2
which after simpli�cation (see footnote)4

@�(k)
@k

= b

�
(1+a)
(1�
) �

R(k)
�

�
R(k)

((1 + a)�R(kt))2

For 0 < k < �k then@�(k)
@k

< 0:

4""""""Simpli�cation of the numerator of �rst order derivative

�

(1� 
)
y(k)
k ((1 + a)�R(k)) + �( �

1�
 � 1)
y(k)
k2 y(k))�

1

(1� 
) ((1 + a)�R(k)) + (
�
1�
 � 1)

y(k)
k

�
�y(k)
k�

( (1+a)(1�
) �
R(k)
(1�
) ) + (

�
1�
 � 1)

R(k)
�

�
R(k)�

(1+a)
(1�
) �

R(k)
(1�
) +

�
1�


R(k)
� � R(k)

�

�
R(k)�

(1+a)
(1�
) �

R(k)
(1�
) +

R(k)
1�
 �

R(k)
�

�
R(k)�

(1+a)
(1�
) �

R(k)
�

�
R(k)

@�(k)
@k = b

�
(1+a)
(1�
) �

R(k)
�

�
R(k)

((1 + a)�R(kt))2
""""""""""
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This happens because 0 < k < �k , y
0
(kt)((1 + a) � R(kt)) < 0 and (R0(kt))y(kt) < 0 given

that y
0
(kt) > 0, (1 + a)�R(kt) < 0 and R0(kt) < 0 and y(kt) > 0:

De�nition 1 De�ne kmin �
�
(1+a)

(1�
) ~A

� 1�

��(1�
)

For �k < k <1 then,
(i) @�(k)

@k
< 0 for �k < k < kmin

(ii) @�(k)
@k

> 0 for kmin < k <1:

Proof. @�(k)
@k

< 0 if y
0
(k)((1 + a) � R(k)) + (R0(k))y(k) < 0 which following R(k) =

� ~Ak
�
1�
�1
t = � y(k)

k
andRk = �( �

1�
�1) ~Ak
�
1�
�2
t = �( �

1�
�1)
y(k)
k2
, y

0
(kt) =

�

(1� 
)
~Ak

�

(1� 
)�1
t =

�

(1� 
)
y(k)
k
we have

�

(1� 
)
y(k)
k
((1 + a)�R(k)) + �( �

1�
 � 1)
y(k)
k2
y(k) < 0)

�

(1� 
)((1 + a)�R(k)) + �(
�
1�
 � 1)

y(k)
k
< 0

�

(1� 
)((1 + a)� �
y(k)
k
) + �( �

1�
 � 1)
y(k)
k
< 0

(1 + a)
�

(1� 
) � �
�

(1� 
)
y(k)
k
+ � �

1�

y(k)
k
� � y(k)

k
< 0

(1 + a)
�

(1� 
) � �
y(k)
k
< 0

(1 + a)

(1� 
) �
y(k)
k
< 0

(1 + a)

(1� 
) �
R(k)
�
< 0) (1 + a)�� (1� 
)R(k) < 0 that is

(1 + a)� � (1 � 
)� ~Ak
�
1�
�1 < 0 ) k

�
1�
�1 > (1+a)

(1�
) ~A ) k <
�
(1+a)

(1�
) ~A

� 1
�
1�
�1 ) k <�

(1+a)

(1�
) ~A

� 1�

��(1�
) � kmin: The opposite otherwise.

b

�
(1+a)
(1�
) �

R(k)
�

�
R(k)

((1 + a)�R(kt))2
Second order derivative:

@2�(k)
@k2

= b

�
(1+a) �R
(1�
) �

2R �R
�

�
(1 + a�R)2 +

�
(1+a)
(1�
) �

R
�

�
R2 (1 + a�R) �R

(1 + a�R)4

taking common factor �R and eliminating (1 + a�R)

b �R

�
(1+a)
(1�
) �

2R
�

�
((1 + a)�R) +

�
(1+a)
(1�
) �

R
�

�
R2

(1 + a�R)3
=

13



b �R

�
(1+a)
(1�
) �

2R
�

�
((1 + a)�R) +

�
(1+a)2R
(1�
) �

2R2

�

�
(1 + a�R)3

= b �R

�
(1+a)
(1�
)(1 + a)�

2R
�
(1 + a)

�
�
�
(1+a)R
(1�
) �

2R2

�

�
+
�
(1+a)2R
(1�
) �

2R2

�

�
(1 + a�R)3

=

b �R(1+a)
(1�
)�

�(1 + a)� (1� 
)2R + �R
(1 + a�R)3

= b �R(1+a)
(1�
)�

�(1 + a)� (1� 
)2R + �R
(1 + a�R)3

=

@2�(k)

@k2
=

b �R

(1� 
)�
R(�� 2(1� 
)) + �(1 + a)

(1 + a�R)3

Analysis of @
2�(k)
@k2

: We analyze the case after the discontinuity, that is, for �k < k <1
Then, for �k < k <1 then 1 + a�R > 0 then @2�(k)

@k2
> 0 if R(�� 2(1� 
)) + �(1 + a) < 0

) R(2(1 � 
) � �) > �(1 + a) ) R > �(1+a)
2(1�
)�� ) k <

�
(1+a)

~A(2(1�
)��)

� 1�

��(1�
) � ~k . So, for

�k < k < ~k , @
2�(k)
@k2

> 0

We also, want to show that ~k is indeed above the discontinuity �k

First, we compare ~k with �k, we need ~k > �k )
�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
)

>
�
(1+a)

� ~A

� 1�

��1�
 )

(1+a)
~A(2(1�
)��) <

(1+a)

� ~A
)

� < (2(1� 
)� �)) 2� < 2(1� 
)) a� (1� 
) < 0 which holds.
Thus the function is convex for �k < k < ~k , @2�(k)

@k2
> 0 and concave for ~k < k < 1 ,

@2�(k)
@k2

< 0. Last, lim
k!1

@2�(k)
@k2

= 0

From the properties above the graph of the debt locus is given by:

For 0 < k < 5 (includes the discontinuity)

For 5 < k <1 (limiting behavior and the minimum. Better of the second part)

14



The locus where the change of capital stock is zero, Kt+1 �Kt = 0 is given by

�(k) =
(s(1� �)� (1� s)b� s
) y(k)� k

(R(k)� a(1� s))

where y(k) = ~Ak

�

(1� 
) and yk = ~A
�

(1� 
)k
�

(1� 
)�1 = �

(1� 
)
y(k)
k
and the limit behavior

is: lim
t!0

y(k) = 0, lim
t!1

y(k) =1 lim
t!0

yk =1 and lim
t!1

yk = 0

and
R(k) = � ~Ak

�
1�
�1
t = � y(k)

k
and Rk = �( �

1�
 � 1) ~Ak
�
1�
�2
t = �( �

1�
 � 1)
y(k)
k2
= ( �

1�
 � 1)
R(k)
k

1. lim
k!0

�(k) = lim
k!0

�(k) = 
y(0)�0
(R(0)�a(1�s)) = 0 and lim

k!1
�(k) =

@((s(1��)�(1�s)b�s
)y(k)�k)
@k

@((R(k)�a(1�s)))
@k

=

lim
k!1

(s(1��)�(1�s)b�s
)�y(k)�1
�R(k)

= lim
k!1

(s(1��)�(1�s)b�s
)y00 (k)
R00 (k)

=1

2. �(k) is discontinuous at k = k̂ where k̂ : R(k̂) � a(1 � s) = 0. Under a Cobb-douglas

production function k̂ =
�
a(1�s)
� ~A

� 1�

��(1�
)

Remark 1 We show that the discontinuity of the debt locus to be below the discontinuity of the

k locus. That is
�
(1+a)

� ~A

� 1�

��1�


<
�
a(1�s)
� ~A

� 1�

��(1�
) ) (1 + a) > a(1� s)) (1 + a) > a(1� s))

1 > �as where for a > 0 and � 2 (0; 1) this always holds.

Assumption 1 We assume a positive e¤ect of income (investment) on the accumulation of
capital stock which happens under the following condition (s(1� �) + s(b� 
)� b > 0

3. De�ne kAUT : (s(1� �)� (1� s)b� s
) y(kAUT ) � kAUT = 0 (in other words B = 0)

which in the Cobb-douglas case is given by: (s(1� �)� (1� s)b� s
) ~Ak
�� (1� 
)
(1� 
) � 1 =

0) kAUT =
�

1
~A(s(1��)�(1�s)b�s
)

� (1�
)
��(1�
)

:
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Assumption 2 Parametric condition such that: k̂ > kAUT is:
�
a(1�s)
� ~A

� 1�

��(1�
)

>
�

1
~A(s(1��)�(1�s)b�s
)

� (1�
)
��(1�
) )

a(1�s)
� ~A

< 1
~A(s(1��)�(1�s)b�s
) ) a(1� s)((s(1� �)� (1� s)b� s
)) < � which imposes limits on

austerity a < �
(1�s)(s(1��)�(1�s)b�s
) � a

max.

Later on I will show that with a more restrictive assumption we can guarantee concavity.
Then, because of concavity of y(k) it is easy to show that the value of �(k) is given by the

following remark.

Remark 2 (i) for 0 < k < kAUT then �(k) > 0 and R(k̂)� a(1� s) > 0
(ii) for kAUT < k < k̂ then �(k) < 0 and R(k̂)� a(1� s) > 0
(iii) for k̂ < k <1 then �(k) > 0 and R(k̂)� a(1� s) < 0

4. The limit behavior of �(k) at the discontinuity is given by:

lim
k!k̂�

�(k) = �1 and lim
k!k̂+

�(k) =1:

5. The �rst order derivative of �(k).

De�ne 
 � (s(1� �)� (1� s)b� s
)

@�(k)
@k

= (
yk�1)(R(k)�a(1�s))�(
y(k)�k)Rk
(R(k)�a(1�s))2 =

We then use the following equations

R(k) = � y(k)
k
, and Rk = �( �

1�
 � 1) ~Ak
�
1�
�2
t = �( �

1�
 � 1)
y(k)
k2

= ( �
1�
 � 1)

R(k)
k
; yk =

�

(1� 
)
y(k)
k
= 1

(1�
)R(k)

Then, the derivative gets: (we express everything in R(k))

@�(k)
@k

=
(
 1

(1�
)R(k)�1)(R(k)�a(1�s))�(

R(k)k
�

�k)( �
1�
�1)

R(k)
k

(R(k)�a(1�s))2 =

=
(
 1

(1�
)R(k)�1)(R(k)�a(1�s))�(

R(k)k
�

�k)( �
1�
�1)

R(k)
k

(R(k)�a(1�s))2 =

(

R(k)
(1�
) (R(k)�C)�(R(k)�C)�(


R(k)k
�

( �
1�
�1)

R(k)
k
�k( �

1�
�1)
R(k)
k
)

(R(k)�C)2 =

 R2

(1�
)�C

R

(1�
)�R+C�(

R2

�
( �
1�
�1)�(

�
1�
�1)R)

(R(k)�C)2 =


 R2

(1�
)�C

R

(1�
)�R+C�

R2

1�
 +

R2

�
+ �
1�
R�R

(R(k)�C)2 =


�
R2�(
a(1�s)��

(1�
) +2)R+a(1�s)
(R�a(1�s))2

@�(k)

@k
=



�
R2 � (
a(1�s)��

(1�
) + 2)R + a(1� s)
(R� a(1� s))2

De�ne A = 

�
, C = a(1� s) and � = (
C��

(1�
) + 2) = (
a(AC�1)
(1�
) + 2)

@�(k)

@k
=
AR2 � �R + C
(R(k)� C)2
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which is a quadratic equation with at most two roots.

5.1 (Limiting behavior) By applying the de hospital rule

lim
k!0

@�(k)

@k
=



�
> 0 and lim

k!1

@�(k)

@k
=

1

(a(1� s)) > 0

5.2 @�(k)
@k

> 0 if AR2��R+C > 0 and @�(k)
@k

< 0 for AR2��R+C < 0 which depends on
the number of roots.
Discriminant: �2 � 4AC = (a(AC�1)

(1�
) + 2)2 � 4AC = a2(AC2�2AC+1)
(1�
)2 + 4a(AC�1)

(1�
) + 4� 4AC =
a2(AC2�2AC+1)

(1�
)2 + 4a(AC�1)
(1�
) + 4(1� AC) =

6.(Second order derivatives)

The �rst order derivative is given by:

@�(k)
@k

= AR2��R+C
(R(k)�C)2

Taking the second order derivative we obtain that:
@2�(k)
@k2

= (A2R �R�� �R)(R�C)2�(AR2��R+C)(R(k)�C)2 �R
(R�C)4 =

�R (A2R��)(R�C)�(AR2��R+C)2
(R�C)3 =

�RA2R(R�C)��(R�C)�2AR2+2�R�2C)
(R�C)3 =

�R (A2RR�A2RC)��R+�C�2AR2+2�R�2C)
(R�C)3 =

�RA2R2�A2RC��R+�C�2AR2+2�R�2C
(R�C)3 =

�R�A2RC+�C+�R�2C
(R�C)3 =

�RR(��2AC)+C(��2)
(R�C)3 = �R

R(��2AC)+C((
C��
(1�
) )

(R�C)3 ) �R
R(��2AC)+C(�(



�C�1
(1�
) )

(R�C)3 =

@2�(k)

@k2
= �R

R(�� 2AC) + C(�AC�1
(1�
) )

(R� C)3

The derivative is negative until the discontinuity 0 < k < k̂ (R� C > 0) of the kk locus if:
R(�� 2AC) + C(�(AC�1

(1�
) ) > 0 because
�R < 0: Thus, we need that,

R >
�C(�(AC�1

(1�
) ))

(�� 2AC)

� ~Ak
��(1�
)
1�


t >
�C(�(AC�1

(1�
) ))

(�� 2AC)

k <

 
�C(�(AC�1

(1�
) ))

� ~A(�� 2AC)

! 1�

��(1�
)

� ~k

17



this is a necessary and su¢ cient condition for concavity. We now want to show if this is
true for 0 < ~k < k̂ ( ~k below the discontinuity k̂).�

�C(�(AC�1
(1�
) ))

(��2AC)

� 1�

��(1�
)

<
�
C
� ~A

� 1�

��(1�
)�

�C(�(AC�1
(1�
) ))

(��2AC)

�
>
�
C
� ~A

�
�
�(�(AC�1

(1�
) ))

(��2AC)

�
> 1

�(�(AC�1
(1�
) )) > (�� 2AC)

(�(AC�1
(1�
) )) < (�� 2AC)

Note that � = (
C��
(1�
) + 2) = (



�
C�1

(1�
) + 2) = (
�(


�
C�1)

(1�
) + 2) = (�(AC�1)
(1�
) + 2)

Substituting to the inequality (�(AC�1
(1�
) )) <

�(AC�1)
(1�
) +2� 2AC ) 0 < +2� 2AC ) 2AC <

2) AC < 1:Which holds from the assumption that limits austerity (see Remark) as we have

a(1�s)
�

< 1
(s(1��)�(1�s)b�s
) )

C
�
< 1



) 


�
< 1

C
) A < 1

C
) AC < 1.

Lemma 1 Under Remark 1, then �(k) is concave and inverse U-shaped for 0 < k < k̂ and
convex (U-shaped) for k̂ < k <1.

Properties of �rst and second derivative of �(k) and Remark 1.

The graph of the kk locus

Before the discontinuity

After the discontinuity
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The steady states are de�ned by the following expression

F (k) = �(k)� �(k)

F (k) =
(
) y(k)� k
(R(k)� C) �

by(k)

(1 + a)�R(k)
i. F (0) = 0

For 0 < k < �k; �(k) > 0 and �(k) < 0 thus, F (k) > 0. Also, lim
k!�k�

F (k) = +1

Then, lim
k!�k�

F (k) = �1 and lim
k!�k+

�F (k) > 0. So, just after the discontinuity of the debt

locus the F (k) function is increasing.
Also, lim

k!k̂�
F (k) = �1; lim

k!k̂�
�F (k) < 0:

So, F (k) is increasing from the discontinuity of the debt locus and it is decreasing at the
discontinuity of the capital stock locus.
Since, �k < k < k̂ the derivative changes sign, we are going to explore if the maximum of

the function is positive.

�F (k) = @�(k)
@k

� @�(k)
@k
; @�(kmax)

@k
� @�(kmax)

@k
= 0) AR2��R+C

(R(k)�C)2 �
�
(1+a)
(1�
) �

R
�

�
R = 0

AR2 � �R + C �
�
(1+a)
(1�
) �

R(k)
�

�
R(k) (R(k)� C)2 = 0

AR2 � �R + C �
�
(1+a)
(1�
) �

R
�

�
R (R2 � 2RC + C2) = 0

AR2 � �R + C �
�
(1+a)�(1�
)R

(1�
)�

�
(R3 � 2R2C +RC2) = 0

AR2 � �R + C � R3(1+a)
(1�
)� +

2R2C(1+a)
(1�
)� � RC2(1+a)

(1�
)� + R3(1�
)R
(1�
)� � 2R2C(1�
)R

(1�
)� + RC2(1�
)R
(1�
)� = 0

F
00
(k) = �R

R(�� 2AC) + C(�AC�1
(1�
) )

(R� C)3
� b �R

(1� 
)�
R(�� 2(1� 
)) + �(1 + a)

(1 + a�R)3
:

Because we proved that �R
R(��2AC)+C(�AC�1

(1�
) )

(R�C)3 < 0 after the discontinuity of the debt locus and

between the k austerity, then, for concavity of F (k) we need b �R
(1�
)�

R(�� 2(1� 
)) + �(1 + a)
(1 + a�R)3

>

0 which from the analysis of the debt locus after the discontinuity hold for R(� � 2(1� 
)) +

�(1 + a) < 0) k <
�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
) � ~k. Thus, for k < ~k then F 00

(k) < 0. Thus, if that ~k

is below the discontinuity of the k-locus k̂ =
�
a(1�s)
� ~A

� 1�

��(1�
)

.

Thus, a su¢ cient parametric condition for concavity of F (k) in the area between the dis-
continuities, �k < k < k̂, is that ~k < k̂ that is�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
)

<
�
a(1�s)
� ~A

� 1�

��(1�
) ) (1+a)

~A(2(1�
)��) >
a(1�s)
� ~A

) (1 + a)� > a(1 � s)(2(1 �

)� �):
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Lemma 2 If (1 + a)� > a(1 � s)(2(1 � 
) � �) then in the area between the discontinuities
�k < k < k̂; F

00
(k) < 0:

This proposition means that if an equilibrium exists will be multiple (except the knife edge
tangency condition). Furthermore,the debt locus will be convex at the tangency and k locus
concave.

Another possible a su¢ cient parametric condition for concavity of F (k) is to look at the are
between the discontinuities of debt locus and the kAUT (because in the area between kAUT and
the discontinuity of k-locus the debt is negative and no equilibrium can exist). So, in this case
a su¢ cient condition is ~k < kAUT .�

(1+a)
~A(2(1�
)��)

� 1�

��(1�
)

<
�

1
~A(s(1��)�(1�s)b�s
)

� (1�
)
��(1�
) ) (1+a)

(2(1�
)��) >
1

(s(1��)�(1�s)b�s
) ) (1 +

a) (s(1� �)� (1� s)b� s
) > (2(1� 
)� �).

If (1 + a) (s(1� �)� (1� s)b� s
) > (2(1� 
)� �) then in the area between the �k < k <
kAUT ; F

00
(k) < 0:

Appendix 3. Stability

In this section, we are going to analyze the stability properties and the type of each equi-
librium. We are going to construct the phase diagram and analyze the arrows of motion.
The dynamic equation for debt is given by
Bt+1 �Bt = (R(kt)� a� 1)Bt + by(kt)
Remind that, for �k < k < 1 then (1 + a) � R(k) > 0. Then, for Bt+1 � Bt > 0, R(kt) �

a� 1)Bt + by(kt) > 0 that is Bt < by(kt)
(1+a)�R(k) . Thus, for any Bt lower then the �(k) locus and

because �(k) is convex, the debt is decreasing (increasing under the �(k) locus).
The dynamic equation for the capital stock is given by
kt+1 � kt = (s(1� �) + s(b� 
)� b) y(kt)� kt + (a(1� s)�Rt(kt))Bt

For kt+1�kt > 0 if (s(1� �) + s(b� 
)� b) y(kt)�kt+(a(1� s)�Rt(kt))Bt > 0: Remind
that, for �k < k < kAUT then �(k) > 0 and R(k̂) � a(1 � s) > 0. Dividing the inequality by
R(k̂) � a(1 � s) > 0 we get (s(1��)+s(b�
)�b)y(kt)�kt

R(k̂)�a(1�s) � Bt > 0 ) Bt <
(s(1��)+s(b�
)�b)y(kt)�kt

R(k̂)�a(1�s) )
Bt <

(s(1��)+s(b�
)�b)y(kt)�kt
R(k̂)�a(1�s) ) Bt < �(k). Because �(k) is a concave function, for every B

below the �(k) locus the capital stock is increasing and below the �(k) locus, it is decreasing.
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According to this analysis, the phase diagram and the arrows of motion are given by:

From the above diagram we can deduct that there are two stable equilibria. The lower
equilibrium is saddle-path stable and the second equilibrium is stable node.

Appendix 4. Steady-State E¤ects of Policy Parameters

The equilibrium steady-state of capital is given by:

F (k) =
(
) y(k)� k
(R(k)� C) �

by(k)

(1 + a)�R(k)
where 
(b) � (s(1� �)� (1� s)b� s
) ; C(a) � a(1� s)

We �rst want to examine the e¤ect of austerity parameter on steady-state capital stock.
From the implicit function theorem we have:

@k
@a
= �

@F (k)
@k

@F (k)
@a

@F (k)
@a

= (
y(k)�k)
(R(k)�C)2 +

by(k)

((1 + a)�R(k))2
> 0 from 0 < k < kAUT .

@F (k)
@k

> 0 from 0 < k < kmax and
@F (k)
@k

< 0 from kmax < k < kAUT .

Given that the one equilibrium, klowss is below kmax and the other, khighss , above kmax display
di¤erent properties resulting to Proposition 3.
Secondly, we examine the e¤ect of structural de�cit parameter on steady-state capital stock.

From the implicit function theorem we have:

@k
@b
= �

@F (k)
@k

@F (k)
@b

(s(1� �)� (1� s)b� s
)

@F (k)
@b

= �(1�s)
(R(k)�C) �

y(k)

(1 + a)�R(k)
We know that for 0 < k < kAUT ; R(k̂) � C > 0 and for �k < k < 1; (1 + a) � R(k) > 0.

Thus, in the area we are interested �k < k < kAUT we have:

@F (k)
@b

< 0; for �k < k < kAUT , thus, resulting to Proposition 4.
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