Home sweet home: bank lending characteristics and the impact of the recent global financial crisis

Burietz, A. and Ureche-Rangau, L.

December 11, 2014

The objective is to study the evolution of the credit supply and its determinants after the collapse of Lehman Brothers. In this paper, we built an original handmade database of syndicated loans granted by banks located in four European countries, *i.e.* France, Germany, Italy and Spain, to jointly estimate the spread and the amount of each loan. Our conclusions highlight a significant impact of the subprime crisis on bank lending behaviour, and even more precisely, a flight-to-home effect for banks located in France and Germany. In addition, the results show a significant sectoral bias for banks located in Germany while banks located in France highlight a preference for portfolio diversification, granting loans with better terms to companies that belong to industries they are not used to lending to. Finally, we find that banks with strong balance sheets are more able to support the credit supply following the subprime crisis promoting the implementation of banking regulations such as Basel III.

Keywords: Credit supply, financial crisis, home bias, syndicated loan market

1 Introduction

Following the 2008 financial institutions crisis, bank lending activity in the US and Europe decelerated (Panetta et al. (2009)). Two major reasons may explain this trend. First, the financial institutions crisis deeply affected the confidence both in the functioning of financial markets and among investors, leading to banks becoming reluctant to lend money (supply effect). Second, the credit risk of companies and households increased, leading to a drastic reduction of their demand for funds (demand effect) (Panetta et al. (2009)). The three main questions addressed in this paper investigate the potential shifts in banks' lending behaviour in the crisis period.

First, we aim at checking for a potential home and/or industry bias in bank lending after the collapse of Lehman Brothers. Giannetti and Laeven (2012) have argued that banks located in a country which experiences a banking crisis extend loan origination more to domestic borrowers disregarding their credit level (flight-to-home effect) and the quality of domestic financial institutions.

Second, we analyse the mechanisms and circumstances which affect the bank lending behaviour and contribute to the flight-to-home effect and/or to the sectoral reorientation of bank lending. Previous work suggests that lender characteristics such as their financial position or the macroeconomic context of the country they are located in may explain their credit policy.

Third, we assess to what extent the flight-to-home effect and its determinants may be generalized to explain bank lending behaviour in a country which suffers from a banking crisis. We investigate whether the geographical location of banks may be an explanation of the similarities and/or differences in bank lending behaviour.

These questions are addressed using an original, handmade database on the syndicated loan market of four European countries, namely France, Germany, Italy and Spain, between 2005 and 2013. The methodology developed by Calomiris and Pornrojnangkool (2009) is applied to simultaneously assess the supply and the demand effects on bank lending, by controlling for loans' characteristics, borrower and lender's financial position in addition to the relationship that may exist between them. It also integrates a variable that proxies the impact of government interventions on banks' behaviour following the collapse of Lehman Brothers. Finally, the list of variables is completed

with several indicators that allow capturing the home and the sectoral biases in bank lending.

During the financial institutions crisis, bank lending behaviour tends to be associated with home bias, *i.e.* an increase of the share of domestic loans in banks' portfolios, especially for international banks with weak financial positions (Giannetti and Laeven (2012)). The results we obtain in this paper on the supply side of banking activities provide evidence that after the collapse of Lehman Brothers all banks tend to increase the loan's spread in general, regardless of the nationality of the borrower. However, French, German and, to a lower extent, Italian banks grant domestic companies with lower spreads and more favourable lending conditions. As such, borrowing money from domestic banks in a context of crisis seems to be less costly for domestic firms compared to foreign firms. This lending behaviour may thus finally lead to an increase in the share of domestic loans, resulting in a flight-to-home effect.

Regarding the sectoral bias, our results point out that banks tend to decrease the loan's cost when they lend to companies that belong to an industry they are specialized in. This trend can be observed in France before the crisis and in Germany after the collapse of Lehman Brothers. Previous evidence (*e.g.* Calomiris and Pornrojnangkool (2009) among others) has already underlined that when a bank is used to lending to a specific industry, the loan can benefit from more competitive terms. However, the result for France does not hold after the collapse of Lehman Brothers. On the contrary, the share of loans in bank's specialized industry tends to decrease after the collapse of Lehman Brothers. This result may be explained by diversification reasons: French banks may want to diversify their portfolio of loans by decreasing the share of loans in their specialized industry, increasing their spread. The analysis does not highlight significant trends for Italy and Spain.

Our empirical evidence also points out that, in general, banks with a strong financial position are able to provide better lending conditions to companies which want to borrow funds. A bank with a high level of capital and liquidity is able to decrease the loan's spread even after the collapse of Lehman Brothers, facilitating the access to credit and reducing the effect of credit crunch.

With respect to the demand effect on bank lending, the loan's characteristics in addition to the borrower's situation (financial and geographical) are particularly significant. The loan demand fluctuates according to the type of loan and its objective. The demand is significantly higher in the four countries for loans devoted to finance takeovers. In addition, after the collapse of Lehman Brothers, the loan demand of European companies, with large amounts of assets or highly levered increases.

This paper is structured as follows. The next section is dedicated to the literature on bank lending determinants. Section 3 presents the data and is followed by section 4 which describes the methodology. Section 5 provides the results and their interpretation while section 6 concludes.

2 Bank lending determinants: an overview

The collapse of Lehman Brothers in September 2008 and the following financial institutions crisis have initiated a global update of the literature on bank lending activities. The academic community has largely contributed to develop this literature, confirming several previous results but also highlighting new ones. From the standpoint of measuring the lending supply shock following a banking crisis, six main categories of determinants have been considered in the literature. First, during banking crises, global risk aversion and funding pressures increase, leading to credit crunch (Dell' Ariccia et al. (2007); Claessens et al. (2010) among others). Sometimes, this credit crunch can be associated to a flight-to-home effect (Cetorelli and Goldberg (2011a); Giannetti and Laeven (2012); Cerutti (2013)). In the context of a banking crisis, banks become reluctant to lend money, especially to companies located in foreign countries. Hence, the decrease in credit supply can be associated to a reorientation of the loans to the benefit of domestic companies. Second, the lending supply shock depends on the asymmetry of information between the lender and the borrower. Third, the quality of the bank's balance-sheet will affect bank's reaction in times of crisis. Fourth, the relationship established over time between the lender and the borrower may impact the access to credit and the terms of the loan. Fifth, the loan's characteristics may also affect the lending supply. Finally, the country's authorities, such as regulators or the government, may interfere in banks' lending activities.

One approach to describe the lending supply shock during a banking crisis investigates the geographical distribution of new loans. Giannetti and Laeven (2012) use data on the syndicated loans market to analyse the lending behaviour of banks located in 55 countries hit by a crisis. They provide evidence that after the collapse of Lehman Brothers, the occurrence of credit crunch is mainly due to a home bias in bank lending. Loan origination to domestic firms is more significant regardless of the firm's credit quality. They show that the flight-to-home effect is more significant when the bank does not benefit from stable sources of funding. Hence, during a banking crisis, banks tighten their credit offer, especially via a raise in costs or tougher requirements (Panetta et al. (2009)) while they also express the need to decrease risks by giving priority to domestic companies (Giannetti and Laeven (2012)).

An alternative approach to understanding the effects of a banking crisis on the credit supply focuses on cross-border lending. Cetorelli and Goldberg (2011a) examine the international transmission of a financial institutions crisis occurring in 17 developed countries to 24 emerging markets. They highlight a flight-to-home effect during the financial institutions crisis which started in 2008. They identify two main channels of transmission: following the collapse of Lehman Brothers, banks in the developed countries impacted by the crisis decrease their lending supply to emerging markets both directly, through cross-border loans, and indirectly through their branch located in those emerging markets. In other words, when a bank is affected by a crisis, it exhibits a flight-to-home effect through the reduction of cross-border loans. One potential explanation of the home bias, developed by Epstein (2001), is the concept of "ambiguity aversion" when banks allocate more resources to domestic companies because they are more able to quantify the risk of domestic assets.

However, De Haas and Van Horen (2011) argue that the conclusions on crossborder lending cannot be generalized to all banks. They observe that despite the crisis, cross-border lending in some countries can be stable. They find that this lending behaviour is related to bank's access to borrower information (Hubbard et al. (2002); De Haas and Van Horen (2011); De Haas and Van Horen (2012)). Hence, when the information asymmetry is important, banks are unable to assess the credit risk of the firm and thus become more reluctant to lend. For example, Hubbard et al. (2002) and Chakravarty and Yilmazer (2009) highlight significant relationships between the financial position of small business and the constraints they experience when getting access to credit. Moreover, the financial position of the borrower influences its access to credit and the terms of its loans (Hubbard et al. (2002); Brick and Palia (2007); Chakravarty and Yilmazer (2009)). The better the borrower's financial position is, the lower the loan rate is.

A third approach considers banks' financial fragility during a crisis and liq-

uidity shocks to measure the impact of a banking crisis on banks' lending behaviour. Kapan and Minoiu (2013) aim at quantifying the relation between the quality of a bank's balance-sheet and its lending supply during the recent financial turmoil. They use micro-data on the syndicated loan market provided by more than 800 financial institutions for a large number of both developed and emerging countries over the period 2006-2010. To run their analysis, they have to disentangle demand and supply effects to isolate the crisis effect on credit supply. This challenge, which is also taken into account in our work, is highly significant in the literature because both demand and supply can affect bank lending in times of crisis (Calomiris and Pornrojnangkool (2009); Panetta et al. (2009); Cetorelli and Goldberg (2011a)). They find that a bank with a strong balance sheet, a large capital of high quality and which is highly liquid is more able to maintain the lending supply. It is now well established by the literature that banks' characteristics represent significant determinants of the lending supply (Beltratti and Stulz (2009)). In line with the CAMEL¹ bank model, a bank which is wellcapitalized, liquid, with high-quality assets, large earnings, stable funding sources, independent managers and supervisors, performs better and is able to support lending during a crisis (Hubbard et al. (2002); Gambacorta (2008); Beltratti and Stulz (2009); Popov and Udell (2010); Altunbas et al. (2011); Cetorelli and Goldberg (2011a); Cetorelli and Goldberg (2011b); De Haas and Van Horen (2011); Fahlenbrach and Stulz (2011); De Haas and Van Horen (2012); Fahlenbrach et al. (2012); Giannetti and Laeven (2012); Kapan and Minoiu (2013)). Moreover, De Haas and Van Horen (2012) exploit banks' funding characteristics and their balance-sheet constraints as another determinant of the flight-to-home effect. They conclude that shocked banks with significant funding constraints have more difficulties in sustaining the credit offer to other countries and especially to small borrowers. Moreover, the decision to maintain cross-border lending also depends on the pre-crisis lending experience the bank has in a specific country.

A fourth approach to understand the lending supply shock during a banking crisis considers the relationship that may exist between the lender and the borrower. De Haas and Van Horen (2011) and De Haas and Van Horen (2012) insist on the role of this relationship. They show that banks maintain lending in countries which are geographically closer and where they have established networks with domestic banks. Indeed, the flight-to-home effect

¹CAMEL stands for Capital adequacy, Asset quality, Management, Earnings and Liquidity and is used by regulators to assess banks (Wheelock and Wilson (2000); Bongini et al. (2002)).

is even more significant when the firm is located far abroad, compared to a domestic firm, because getting information becomes more challenging and costly. In addition, Calomiris and Pornrojnangkool (2009) argue that an investment bank will charge less for a loan which follows an equity underwriting, highlighting the significant role of the relationship between a bank and its borrower. Finally, Brick and Palia (2007) show how a firm can benefit from a long-term relationship with its lender to have a better access to credit with lower fees and without the obligation of posting collateral (Jiangli et al. (2008); Chakravarty and Yilmazer (2009)).

A fifth approach measures the impact of loan's characteristics on bank lending. Brick and Palia (2007) contribute to the debate on using collateral to reduce moral hazard. They show evidence that a loan with collateral can be associated with higher risk, leading to an increase of the loan rate. Moreover, when a loan is quoted against prime rate, borrowers pay a higher rate (Beim (1996); Hubbard et al. (2002); Calomiris and Pornrojnangkool (2005); Brick and Palia (2007)). Indeed, over the recent years, the prime rate has usually been associated to low-quality corporate loans while high-quality loans are based on other rates such as the London Inter-Bank Offer Rate (LIBOR) (Beim (1996)). Other characteristics such as the type of loan or its objective may also impact the credit terms (Hubbard et al. (2002); Calomiris and Pornrojnangkool (2005)).

Finally, bank lending depends on regulators' and government's intervention. First, bank regulation such as the implementation of Basel III agreements signed on December 16, 2010 which aim at controlling credit supply and bank risk and its differences among countries may alter bank lending. Aiyar et al. (2012) study banks' response to tighter capital requirements in the UK over the period 1998-2007. They highlight a significant difference between domestic-regulated banks and foreign-regulated ones with a branch in the UK. Following an increase in capital requirements, domestic banks decrease the credit supply while foreign banks located in the UK increase it. They conclude that regulation can efficiently affect lending supply but its effect is limited to domestic banks if there is no coordination with other countries. In another study, Acharya et al. (2006) discuss the "focus versus diversification" debate. They investigate to what extent a bank's strategy in terms of lending may affect its performance. On one side, when providing a loan, a bank may select firms in industries which the bank knows very well, to save monitoring costs. On the other side, for diversification reasons, the bank may decide to provide funds to firms it has never lent before. This lending strategy may be affected by regulation and may lead to a sectoral bias. In the Basel III agreements, the new definition of core capital requires banks to improve the quality of their balance-sheet. In addition, new liquidity ratios are settled to allow banks to face significant liquidity crises. Hence, banks may have an incentive to focus on less-risky assets to fulfil the regulatory requirements in terms of capital (Demirgüç-Kunt et al. (2006)).

In addition, government interventions which are sometimes implemented after a banking crisis occurs to restore confidence on the markets and to support financial institutions, can also impact the lending supply, providing banks with additional funds and/or guarantees to maintain the credit supply (De Haas and Van Horen (2011); Acharya and Steffen (2013)). Laeven and Valencia (2013) analyse the shock of the financial institutions crisis and its subsequent recapitalization measures on credit supply. They find a significant disruption in credit supply compensated by bank recapitalization measures which helped supporting bank lending.

This paper contributes to this literature on the flight-to-home effect in bank lending during a financial institutions crisis. Based on a different methodology, it aims at reassessing the former results provided by the literature. In addition, it introduces the sectoral bias in the credit supply, taking into account the incentive for banks to lend more to firms in industries they are specialized in. This idea is barely explored in the literature; we thus propose to analyse the significance of the borrower's industry in banks' lending strategies, especially in times of crisis.

The methodology used is introduced by Calomiris and Pornrojnangkool (2009) and allows integrating two major insights that result from previous literature: first, the importance to disentangle between demand and supply effects on bank lending (Panetta et al. (2009); Cetorelli and Goldberg (2011a)) and second, the importance to jointly determine the price and the quantity of loans (Brick and Palia (2007); Jiangli et al. (2008); Chakravarty and Yilmazer (2009)). This methodology is innovative in dealing with the flight-to-home effect. Previous studies focus on the geographical distribution of loans and try to explain it mainly with indicators of banks' financial position and variables describing the economic context (Cetorelli and Goldberg (2011a); Giannetti and Laeven (2012)). In our approach, the analysis of loan's terms, *i.e.* the rate of the loan and the associated amount, allows identifying the differences in the credit supply after the collapse of Lehman Brothers, depending on the industry and the geographical position of the

borrower. The results are in line with the literature, highlighting a significant home bias in the credit supply during the financial institutions crisis which started in 2008.

This paper also contributes to the literature on bank's characteristics and their impact on credit offer. The assessment of pre-crisis banks' balancesheets is highly important to define relevant regulation aiming at reducing the risk of such crises and their effects on bank lending. More precisely, good capital and liquidity ratios significantly contribute to support credit supply by banks following a financial institutions crisis.

To assess the credit supply shock after 2008, five databases are used to build a rich set of variables for four European countries over the period 2005-2013. The objective is to study the syndicated loan markets of France, Germany, Italy and Spain to investigate the bank lending activity before the crisis, its evolution after the collapse of Lehman Brothers and to identify common and/or unique trends among these four countries. The modelling framework includes many control variables to integrate the results highlighted by the literature. In addition, several different tests are run to assert that the results are robust and do not depend on the selection of variables.

3 Database: sources and construction

This paper aims at studying the evolution of credit supply and its determinants during the financial institutions crisis, more specifically in terms of geographical and sectoral orientation. Hence, a dataset of variables, combining five databases, is built up for four European countries, namely France, Germany, Italy and Spain over the period 2005-2013.

3.1 Loan's characteristics: Dealscan database

First, Dealscan is used to get information on all syndicated loans provided by financial institutions located in the four countries mentioned above, between 2005 and 2013. A syndicated loan is a financial transaction between one company and one bank or a syndicate (group of banks)². In line with Lim et al. (2012), this analysis only considers bank-type institutions, *i.e.* commercial banks, investment banks and thrift institutions³. Then, each bank is assigned

 $^{^2 {\}rm In}$ the Dealscan database, the terms used to refer to the loan, the company and the bank are respectively facility, borrower and lender.

³In Dealscan, we started by filtering data to keep only the three categories we are interested in and which are clearly defined in the database. Then, we manually checked

to one of the four countries under study, using the following procedure. First, only banks with an ultimate parent belonging to France, Germany, Italy or Spain are selected. Over the period under study, several banks have merged or have been reorganized. As such, identifying and studying the bank holding structure over time becomes challenging. Hence, following the methodology proposed by Calomiris and Pornrojnangkool (2009), one unique ID is created to refer to each ultimate parent bank and this ID is assigned to all the banks and subsidiaries which belong to the same holding structure. In addition, each time the bank holding structure is modified, the ID is updated to reflect this information. Second, for each country, the geographical location of the bank itself (both parents and subsidiaries) is considered and is classified in three categories: national, European and international branches. In the present study, only the first category with national banks and subsidiaries, grouped under the same ID of the ultimate parent is employed and this national group of banks is filtered to keep only banks which lend money on the syndicated loan market between 2005 and 2013. Finally, loans provided by these national banks with information on bank allocation are selected while all the others are removed. Hence, Dealscan provides information on the borrowing company and the name(s) of bank(s) which allocate(s) the loan as well as additional loan's characteristics such as the country where the borrower is located and the industry it belongs to.

3.2 Bank's characteristics: Bankscope database

According to the list of banks established previously, Bankscope is then used to identify and collect their financial characteristics. A manual look for each bank in Bankscope is required to select only lenders with available data and update the list of loans according to the new list of banks. This database also provides the financial history of each bank to identify mergers occurring during the period under study and to adjust the sample over time.

3.3 Borrower's characteristics: Compustat, Orbis and Diane databases

First, from the updated list of loans established thanks to Dealscan, the list of borrowing companies is extracted. To collect the borrower's characteristics, one has to combine three different but complementary databases, namely

for the Standard Industrial Classification (SIC) code of each remaining financial institution and selected only the appropriate one (falling within the 6011-6082, 6211, 6712 and 6719 categories).

Compustat, Orbis and Diane in order to obtain the most complete sample possible. Compustat mainly provides data on listed companies from all over the world with a significant part located in North America. To combine the Dealscan and Compustat databases, one has to start by using the file built by Chava and Roberts (2008). In this file, they match information available in the two databases using the GVKEY which is the unique ID used in Compustat. More precisely, to each company in Dealscan is assigned a unique GVKEY in Compustat. Hence, if a company makes more than one loan, the same GVKEY will be used. However, the link file is established at one point in time at the then current state of the market. In other words, if two companies merge when the file is built, they will have the same GVKEY even if in the past they were two separate entities. As an example, if each of these two companies made a loan before the merger, these two loans would present the same GVKEY despite the fact that they were made by two distinct companies. Therefore, to ensure a correct match between Dealscan and Compustat, one has to combine at the same time the loan ID and the borrower ID from Dealscan with the unique GVKEY. Then, we controlled for the loan's date to get the relevant information about the borrower at the time the loan was made. Regarding companies which cannot be matched automatically following this process, we had to manually look for them in Compustat using their name. For the remaining unmatched companies, two other databases are used, namely Orbis for European companies and Diane that mainly focuses on the French market. One advantage of combining these three databases is that selection bias is limited as focusing on Compustat only would have led to a focus mainly on North American companies⁴.

3.4 Additional characteristics

According to the literature review, the relationship between the company and the bank(s) may impact the credit terms (De Haas and Van Horen (2011) among others). In line with Calomiris and Pornrojnangkool (2009), when a bank provides more than one loan to the same company over a certain period of time, a relationship can be established. The variable PL1 (Previous Lending) is introduced in the model as a dummy which takes the value one if within a year before the loan under consideration, another loan has been contracted with the same bank. Moreover, a second dummy variable, MCS(Multiple Credit Sources), is introduced to consider the opportunity for the borrower to have more than one available credit sources. In their study,

⁴An additional robustness test has been run to control for the potential influence of a selection bias by removing the US borrowers from the sample. The regression results are available in Appendix E and remain unchanged.

Chakravarty and Yilmazer (2009) show that such a variable has an impact on loan's spread for small businesses.

In addition, previous literature underlines the role of government intervention and its impact on bank lending (Laeven and Valencia (2013)). To integrate this information in the model, the database developed by Ureche-Rangau and Burietz (2013) and described in the following paper is used. In this database, we use capital injections and guarantees provided by European governments to explain the increase in spreads of sovereign debt using a monthly database on government interventions. Hence, according to this dataset, a dummy variable is built and is equal to one when the government of each of the four countries under study intervenes after the collapse of Lehman Brothers.

Table 1 presents a description of the sample for the four countries under study. Specifically, loans are grouped according to different criteria, namely the bank which grants the loan, the type of loan and its objective, the currency and the maturity of the loan in addition to the country of the borrower and its industry, over the period 2005-2013. For each category, the number of loans as a percentage of all the loans provided by the banks in the sample is provided. In this table, only the number of loans for which data is available in Compustat, Orbis or Diane is reported.

We can observe that each market is mainly dominated by two banks, namely BNP Paribas and Crédit Agricole in France, Deutsche Bank AG and Commerzbank AG in Germany, Intesa Sanpaolo SpA and Unicredit SpA in Italy and Banco BVA and Banco Santander in Spain.

Regarding the loan's characteristics, the revolver and term loans are the most frequent, mostly dedicated to corporate purposes and debt repayment. Respectively, the market share for the last category significantly decreases after the collapse of Lehman Brothers, while the share of loans for corporate purposes increases to more than half of the sample, up to 80% for Italy and Spain.

When one looks at the loans' currency, the US dollar denomination is significantly dominant for all countries except for Spain, with an increase during the financial institutions crisis to the detriment of loans in other currencies in Germany and Italy. The Spanish market highlights a specific trend with banks providing more loans denominated in Euro, especially after the collapse of Lehman Brothers, when the market share reaches 90%.

 Table 1: Sample description

			Fran	ce						
Number of loans (% of Total)	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
		Loans	classifie	ed by b	ank					
Société Générale	20	24	20	24	31	27	19	22	33	23
Dexia	2	3	2	7	1	1	1	0	0	2
BNP Paribas	71	67	63	68	57	70	70	63	64	67
Natixis	26	22	19	24	26	28	20	23	33	24
Crédit Agricole	47	36	39	28	37	45	40	39	40	40
	1	Loans cl	assified	by loa	n type					
Revolver $\geq =1$ year (YR)	59	44	44	35	48	58	64	61	55	52
Term	23	36	39	43	35	32	25	22	22	31
364-day	5	9	6	9	6	3	2	4	3	5
Term>B	6	5	3	0	3	3	5	8	9	5
Bridge	1	1	3	6	2	1	2	2	4	2
_	Loa	ans class	sified by	y loan c	bjective	Э				
Corp. purpose	31	28	32	39	42	56	54	65	58	41
Debt repayment	30	26	17	9	24	9	16	9	8	19
Working Capital	14	17	20	16	15	12	7	4	5	13
Takeover	6	5	7	5	2	4	6	6	9	6
Acquisition line	3	4	5	7	3	4	4	3	7	4
CapEx	3	4	6	6	4	4	3	2	5	4
Project Finance ^c	4	3	3	10	3	5	3	1	6	4
Loans classified by loan currency										
Euro	29	21	13	13	14	15	14	27	32	20
US Dollar	59	61	73	75	63	77	74	68	60	67
Others	12	18	13	12	23	8	12	5	8	13
	\mathbf{Lo}	ans clas	sified by	y loan r	naturity	7				
ST (<=1YR)	9	14	14	20	12	8	7	11	8	11
MT (1YR <> 5YR)	21	27	25	43	72	64	37	29	30	35
LT (>=5YR)	70	59	61	36	15	28	57	60	62	53
_	Loans	s classifi	ed by b	orrowe	r's coun	try	-			_
France	12	8	5	5	2	3	2	6	17	7
Germany	2	2	0	0	2	3	2	8	2	2
Italy	1	1	1	0	2	1	0	1	3	1
Spain	6	6	4	5	4	4	6	10	8	6
Europe	15	8	4	5	8	9	6	8	9	9
North America	39	33	39	38	45	51	51	50	44	42
Asia	19	30	. 37	32	31	. 19	27	13	13	26
A	Share	of loan	s in spe	cialized	i indust:	ries	00	0.4	00	80
Average Société Cénérale	94	92	81	88	90	80	90	84	80	89
Dorrio	88 00	93 75	88 50	89	80 100	() 100	88 100	80	66	01
Dexia DND Daribag	92	(D) 02	00	93	100	100	100	0	01	83 00
DINF FAIDDAS	97	93	92 95	92 76	91	02 96	93	04 07	91	92
Crédit Agricole	93 04	94	00 97	10	00	00 Q/	09 97	01 89	94	09 00
Tetal number of loons	54	90 966	01 997	94 991	90 155	04	270	171	90	2406
Local number of loans	ə41	366	327	221	199	253	270	171	102	2406

^a A bridge loan is a short-term (up to one year) loan used by individuals and companies to meet current obligations by providing immediate cash flow. ^b Loans to finance Capital Expenditures. ^c Loans to finance company's projects.

			Germa	any						
Number of loans (% of Total)	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
		Loans	classifi	ed by b	ank					
Commerzbank AG	48	40	23	31	25	17	27	19	16	30
Deutsche Bank AG	57	40	37	36	62	80	72	82	91	60
LB Hessen-Thuringen	5	5	0	3	5	7	3	5	2	4
NordLB Group	0	5	3	6	3	2	1	2	0	2
LB Baden-Wurttemberg	6	12	14	12	5	3	5	9	5	8
BayernLB	20	30	25	16	6	11	6	8	5	16
DZ Bank AG	4	9	9	13	6	5	7	9	9	7
HSH Nordbank AG	6	9	0	12	2	0	1	1	0	4
Portigon AG	29	22	16	19	24	11	7	6	0	17
	1	Loans cl	assified	by loar	ı type					
$\text{Revolver} \ge 1 \text{YR}$	66	49	43	29	46	63	68	62	61	56
Term	16	33	40	50	30	24	22	20	15	27
364-day	7	11	9	8	7	3	2	3	4	6
Term>B	6	2	4	3	4	7	5	9	12	6
Bridge	1		2	5	2	2	2	2	3	2
C	Loa	ans class	sified by	loan o	bjective	9	60	70	F7 1	40
Corp. purpose	39	38	31	34	58	63	60 10	70	71	49
Debt repayment	27	21	10	11	8	3 10	10	7	9	14
Working Capital	12	10	20		7	12	12		9	13
Lakeover	D A	9	11	0	2	(0	0	0	1
Acquisition line	4	3	6	7	3	2	2	2	1	3
Ship Finance	1	3	3	2	2	0	1	1	2	1
Project Finance	3	1	2	8	3	4	2	2	1	3
	Lo	ans clas	sified by	y loan c	urrency	7	10	01	22	10
Euro	28	20	15	11	14	20	12	21	22	19
US Dollar	63	69	70	80	68	75	80	74	75	72
Others	9	11	15	9	17	5	8	5	3	9
ST(< -1VD)	10	ans clas	sined by	y loan r	naturity	7 7	0	10	0	19
$SI (\langle = III \rangle)$	10	19	17	19	19		9	10	9	10
MI (IYK < > 5YK) $IT (> -5YD)$	23	20 57	20	40		00	38 52	33 57	20 65	34 E 9
L1 (>= 51 K)	U0 Loone		$\frac{39}{\text{od by b}}$	40	22	21	55	57	05	
France	Loans 8	9 Classin	eu by b	1	r s coun 3	1 1	3	2	5	3
Cermany	4	4	3	2	4	1	4	4	3	4
Italy	1	-1 0	3	1	- -	1		1	1	1
Spain	6	5	3	4	7	6	3	10	10	6
Furope	17	15	13	13	12	9	5	6	3	11
North America	48	38	42	30	56	64	68	63	67	52
Asia	9	26	27	31	17	5	15	10	3	16
1.010	Share	of loan	s in spe	cialized	indust	ries	10	10		
Average	95	90	- 92	81	77	88	90	93	89	90
Commerzbank AG	98	91	98	83	61	88	92	97	89	92
Deutsche Bank AG	99	93	94	98	81	88	93	99	89	93
LB Hessen-Thuringen	95	100	0	75	80	100	100	90	100	95
NordLB Group	0	79	100	25	33	100	100	67	0	71
LB Baden-Wurttemberg	100	100	92	69	100	100	91	56	100	89
BayernLB	92	96	85	90	100	100	85	93	100	92
DZ Bank AG	100	96	100	82	86	67	71	71	100	87
HSH Nordbank AG	92	78	0	81	50	0	67	100	0	83
Portigon AG	96	96	84	92	100	86	94	42	0	91
Total number of loans	389	259	264	129	111	194	234	195	116	1891

^d Loans to finance industrial ship owners.

Italy										
Number of loans (% of Total)	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
		Loans	classifie	ed by b	ank					
Banca MPS	8	100	13	11	12	13	5	9	0	11
Intesa Sanpaolo SpA	69	0	0	78	97	75	71	37	71	65
Unicredit SpA	43	0	87	39	21	33	42	68	54	44
Loans classified by loan type										
Revolver $>=1YR$	59	27	53	24	44	54	75	47	71	53
Term	22	55	40	67	29	33	16	37	8	31
364-day	8	0	7	7	9	6	7	4	0	6
	Loa	ans clas	sified by	y loan o	bjective	Э				
Corp. purpose	30	45	40	52	50	68	71	63	83	52
Debt repayment	38	36	27	6	12	4	5	4	0	17
Working Capital	9	0	7	7	9	9	7	2	0	7
Takeover	4	0	0	2	9	6	11	7	13	6
Project Finance	4	0	0	6	6	4	0	0	4	3
Loans classified by loan currency										
Euro	48	73	27	20	44	25	25	46	29	37
US Dollar	44	27	60	74	32	70	69	47	71	55
Others	8	0	13	6	24	6	5	7	0	8
	Loa	ans clas	sified by	y loan r	naturity	7				
ST (<= 1 YR)	10	0	20	15	24	14	15	12	4	13
MT(1YR < 5YR)	15	45	27	44	59	45	25	39	25	32
LT (>=5YR)	76	55	53	41	18	41	60	49	71	55
,	Loans	classifi	ed by b	orrowe	r's coun	try				
France	13	9	13	0	9	- 3	9	4	13	8
Germany	5	0	7	0	9	1	5	14	8	5
Italy	5	36	0	15	9	3	2	4	4	6
Spain	14	27	0	7	15	7	5	23	0	11
Europe	13	0	7	15	3	14	18	5	0	11
North America	29	9	7	9	32	45	44	35	67	32
Asia	12	27	33	30	24	9	7	9	0	14
	Share	of loan	s in spe	cialized	indust	ries				
Average	85	27	67	83	74	71	84	54	67	75
Banca MPS	83	27	100	83	100	100	67	0	0	67
Intesa Sanpaolo SpA	87	0	0	90	76	73	87	67	65	81
Unicredit SpA	89	0	62	81	71	65	87	56	46	74
Total number of loans	143	11	15	54	34	69	55	57	24	462

Spain										
Number of loans (% of Total)	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
		Loans	classifi	ed by b	ank					
CA del Mediterraneo	0	17	6	0	22	12	0	0	0	6
Bankinter SA	0	8	13	2	15	13	9	35	18	12
La Caixa	11	14	38	19	27	42	53	64	73	36
Banco de Sabadell SA	0	31	23	13	18	39	33	52	45	28
Caixa Catalunya	2	22	21	4	5	14	0	7	0	9
Banco BVA	95	92	68	46	67	61	46	28	35	63
Banco Santander SA	25	43	62	71	95	84	61	68	84	62
Grupo Banco Popular	2	12	19	13	33	43	21	38	41	23
Developer N 1VD	L	Joans cl	assified	by loai	1 type	20	40	05	25	90
Revolver $>=1$ Y R	03	37	34	21	25	39	42	25	35	38
lerm	13	40	45	63	49	49	31	50	53	42
364-day	9	7	9	2	2	0	17	1	2	4
Term>B	11	(0	4	-	5	17	1	4	7
Bridge	<u> </u>	2	2	8	$\frac{7}{1}$	4	0	2	0	3
Comp. mump.coo	L08	ans class	sined by	y loan o	bjective	e 57	E A	79	20	47
Corp. purpose	32	32	21	33	47	٦ <i>١</i>	54	(3	80	47
Debt repayment	38	20	0	2	0	1	2	1	0	11
Lakeover	8	8	30	21	Э г	0	2	4	0	9
Leveraged Buy-Out (LBO)	0	14	10	0	5	10	0	0	0	3
Project Finance			19	21	22	13	15	0	0	12
P		ans clas	sined by	y loan c	urrency	7 70	70	01	00	F 1
Euro	49	61 20	64	69	75	70	78	91	90	71
US Dollar Othere	40	29	28	25	10	29	22	(0	24
Others	II	10	9	0	11	1	0	1	4	0
ST(< -1VD)	10 10	ans clas	sinea bi	y loan r	naturity	7 7	6	10	6	10
MT (1VD <> 5VD)	12	12	10	15	9	1	24	10	49	10
$\frac{MI}{(IIR < >3IR)}$	11	20	40	51	44	40	54 61	32	45	54 57
$L1 (>=31 \mathrm{K})$	Loona		$\frac{40}{\text{od by h}}$	00	41	41	01	30	51	51
Franco	Loans 25		ed by b	13	r's coun		6	5	8	9
Cormony	∠ə 9	ა ი	0	10	0 0	4 9	U 9	0 5	0	0
Italy	3 1	9 1	6	0	9 5	ა 1	ა 1	0 1	U 9	4
Spain	4	1 50	55	16	0 60	E0	1	70	4 70	 ₹9
Span	9	92	19	40	11	10	07	19	10	10
North America	20	ن 10	10	11	11	10	11	2	4	10
Asia	23	10	6	4	י ס	10	11	2 1	2 4	14
ASIa	Share	ofloan	$\frac{0}{100}$	4	- indust	rice	1	1	4	<u> </u>
Average	511are 70	06	s in spe sa	50 50	03	1105 8/1	70	81	80	89
CA del Mediterraneo	19	100	100	02	100	78	19	04	00	05
Bankinter SA	0	100	100	100	100	100	63	89	100	92
La Caiva	90	100	80	78	100	94	74	88	78	86
Banco de Sabadell SA	0	100	100	67	100	97	72	74	73	85
Caixa Catalunya	100	100	100	100	100	100	0	67	15	96
Banco BVA	81	98	91	77	100	91	93	100	88	91
Banco Santander SA	83	95	100	50	92	86	03	84	76	85
Grupo Banco Popular	100	100	100	67	100	88	79	87	90	89
Total number of loans	95	100	47	48	55	76	89	81	49	640

Regarding loan's maturity, we observe on average a shift to medium-term (MT) loans during the crisis, while the share of long-term (LT) loans is significantly larger at the beginning and at the end of the period under study. This may be a sign of banks' difficulties to evaluate risks during the crisis period. Short-term (ST) loans remain relatively stable over time.

Regarding the geographical repartition, and due to data availability, loans to US companies represent almost half of the sample, a figure that remains stable over time for France and Germany while it increases for Italy. However, despite this observation, we can already observe that during the financial institutions crisis, the market share of loans attributed to domestic companies increases in France while it remains stable in Germany and decreases in Italy. The conclusion does not hold when one has a look at the Spanish market where the most significant share of loans is provided to Spanish companies.

Finally, the share of loans provided by banks to companies in the industries they are specialized in decreases on average over the period except for Spanish banks, for which the trend is less obvious.

4 Methodology

The methodology introduced by Calomiris and Pornrojnangkool (2009) is developed here to measure the lending supply shock during the banking crisis by isolating the supply effect from the demand effect on bank lending activity. The following system of two equations is jointly estimated with the loan spread for the supply equation (Eq. 1) and the loan amount for the demand equation (Eq. 2) as dependent variables. The three-Stage-Least-Squares (3SLS) approach is applied to estimate the system over the period 2005-2013⁵. In addition, two tests are run to distinguish two sub-periods, *i.e.* the period before the banking crisis and the period after the collapse of Lehman Brothers which is our breaking point (Laeven and Valencia (2010)).

 $LNSPRD_{i} = \alpha^{S} + \beta_{1}^{S}FAC_{i} + \beta_{2}^{S}BOR_{i} + \beta_{3}^{S}LEN_{i} + \beta_{4}^{S}REL_{i} + \theta^{S}GEO_{i} + \gamma^{S}SUP_{i} + \delta^{S}LNAMT_{i} + \varepsilon_{1i}$ (1) $LNAMT_{i} = \alpha^{D} + \beta_{1}^{D}FAC_{i} + \beta_{2}^{D}BOR_{i} + \beta_{3}^{D}LEN_{i} + \beta_{4}^{D}REL_{i} + \theta^{D}GEO_{i} + \gamma^{D}DEM_{i} + \delta^{D}LNSPRD_{i} + \varepsilon_{2i}$ (2)

⁵The same two equations were also estimated separately, using two-Stage-Least-Squares (2SLS) and the Generalised Method of Moments (GMM). The results are highly similar and are available in Appendices C and D.

where, for each loan i:

- LNSPRD is the natural logarithm of the loan all-in-spread, a Dealscan measure which includes all the interest payments and fees of a loan;
- -LNAMT is the natural logarithm of the loan amount;
- FAC, BOR, LEN are vectors of respectively loan's, company's and bank's characteristics that may affect both credit supply and demand;
- *REL* is a vector of two variables describing the relationship that may exist between the bank and the company and which may affect both credit supply and demand;
- *GEO* is a vector of variables indicating the country of the borrower and affecting both credit supply and demand;
- SUP is a vector of two determinants of loan supply, unrelated to loan demand, and;
- DEM is a vector of two determinants of loan demand, unrelated to loan supply.

In this modelling framework, the two dependent variables, *i.e.* LNSPRD and LNAMT, are endogenous due to a simultaneity causality bias (Calomiris and Pornrojnangkool (2009)). Hence, an appropriate identification of the two equations is required in order to be able to estimate the system. In other words, one has to define two sets of instruments, SUP and DEM, for LNSPRD and LNAMT respectively, that are relevant and exogenous⁶, *i.e.* uncorrelated respectively with ε_{2i} and ε_{1i} ⁷. In the supply equation (1), the vector of instruments for LNAMT, namely DEM, contains two variables. First, the sales growth of the borrower, SG, which may affect its demand for credit (Calomiris and Pornrojnangkool (2009)). Second, a dummy variable, F20, which is equal to one if the borrower contracts different types of loans at the same time (Calomiris and Pornrojnangkool (2009)). These two variables are expected to be unrelated to the credit supply. Regarding the set of instruments SUP for LNSPRD in the demand equation (2), two variables

⁶Several specification tests are run to ensure that the instruments are relevant and exogenous. These tests are displayed at the end of each table of results.

⁷Delis and Kouretas (2011) explain that a good instrument is strongly correlated with the endogenous regressor but weakly correlated with the dependent variable. Hence, a correlation table of both LNSPRD and LNAMT with all the variables in the system is used to determine the most relevant instruments for the two endogenous regressors. The correlation table is available in the Appendix A.

are also defined, namely GI and CLS. GI is a dummy variable and equals one during the period after the collapse of Lehman Brothers, when the national governments intervene to support the credit supply of their banking systems. CLS, standing for lender's speciality after the collapse of Lehman Brothers, is defined as the natural logarithm of the total amount lent by the bank during the previous year to companies that belong to the same industry as the borrower of the loan under study (Calomiris and Pornrojnangkool (2009)). The objective is to focus only on the period after the collapse of Lehman Brothers to control for a potential sectoral bias in credit supply. These two variables are supposed to be unrelated to credit demand.

The estimated model also includes the vector GEO containing dummies that account for the country of the borrower after the collapse of Lehman Brothers. Hence, one is able to observe if there is a home bias in the credit supply. The four countries under study, *i.e.* France (CFR), Germany (CGE), Italy (CIT) and Spain (CSP) are studied separately. In addition, three additional dummy variables are introduced to take into account Europe (CEUR) (excluding the four previous countries), North America (CNOAM) and Asia (CASIA).

Regarding the bank's characteristics, the objective is to identify those categories of banks that are the most affected by the banking crisis. Hence, a vector of seven explanatory variables that are in line with both the CAMEL model and the Basel regulation is used. First, to account for bank's capital, we use the Tier 1 ratio of common equity and retained earnings to risky weighted assets, T1, in line with a large strand of literature (Gambacorta (2008); Acharya and Steffen (2013); Drechsler et al. (2013); Kapan and Minoiu (2013)). For the asset quality, the ratio of loan loss reserve to gross loans, LLR, as provided by Bankscope is employed. To measure the management aspects of the bank, the variable TL, standing for Total Lending, is built as the natural logarithm of the total amount lent by the lead lender⁸, the previous year (Calomiris and Pornrojnangkool (2009)). It proxies the lender's reputation and a potential size effect. Two variables, namely the interest income as a percentage of total interest income, II, and the Return-On-Assets, (ROA) of the bank, proxy the level of bank's earnings.

⁸To determine if the bank is a lead lender, the methodology developed in Calomiris and Pornrojnangkool (2009) is applied. In the Dealscan database, each bank is classified with respect to its role in the loan syndication. Hence, a bank is considered as a lead lender if it belongs to one of the following categories: lender, arranger, or if it has the agent title in the loan syndication documentation of Dealscan.

Finally, two measures, IB and LA, account for bank's liquidity. IB is the interbank ratio of the lender, of what is due from banks to what is due to banks. LA is a proxy of the liquid assets ratio and equals the liquid assets as a percentage of deposits and short-term funding. As mentioned previously, the model is run on the syndicated loan market. Hence, several banks may be involved in the same loan. Therefore, for each loan with more than one lender, the average of each financial characteristic of all lenders involved in the loan is computed and used⁹. Moreover, this vector is built on a yearly basis. As such, when a loan is signed at time t, one has to take into account the data at time t-1. All coefficients are expected to be negatively correlated with the loan spread in the first equation of the model except for the asset's variable, LLR (Hubbard et al. (2002); Gambacorta (2008)).

In line with previous literature, the model also controls for borrower's and loan's characteristics in addition to the relationship that may exist between the bank and the borrower. First, in the vector BOR, four yearly determinants are included to assess the financial position of the borrower: the natural logarithm of total assets (TA), the natural logarithm of its long-term debt (LTD), its Return-On-Equity (ROE) and the ratio of its fixed assets as a percentage of total assets (PPE). Similar to the procedure used for the lender's characteristics, one has to consider data for the year preceding the loan. These variables are expected to have a negative impact on loan's spread, except for the long-term debt (Hubbard et al. (2002); Brick and Palia (2007); Chakravarty and Yilmazer (2009)). A borrower with a better financial position should be able to get a lower spread on its loan. Second, six variables are used to describe the loan's characteristics in the vector FAC: the natural logarithm of its maturity (MAT), a dummy equal to one if the loan is denominated in Euro (CRCY), a dummy equal to one if the loan is secured (SEC), a dummy equal to one if the loan is indexed to prime rate (PRIME), its type $(F8 \text{ to } F12)^{10}$ and its objective $(F13 \text{ to } F19)^{11}$. The last two categories are in line with the literature (Calomiris and Pornrojnangkool

⁹To control for this decision of using the average of lenders' characteristics, several robustness tests are also run, considering each bank separately. The results are available in Appendix F. Some banks are excluded due to the low number of loans over the period. The conclusions are similar and may sometimes be influenced by the lack of observations for a standalone bank.

¹⁰Types of loans (F8 to F12): respectively revolver loan with a maturity higher than one year; term loan; 364-day loan; term loan (>B); bridge loan.

¹¹Loans' objective (F13 to F19): respectively Corporate purpose; Debt repayment; Working Capital; Takeover; Acquisition line; Capital Expenditure; Finance. One exception is to be noticed, *i.e.* F18 which aims at financing ship owners in Germany and LBO in Spain.

(2009)) and describe the characteristics of the syndicated loan market of each of the four countries between 2005 and 2013. Based on previous literature, SEC and PRIME are expected to be positively correlated with the loan spread. Finally, two dummy variables are included in vector REL, *i.e.* PL1 and MCS, (as described above) to account for the potential influence of a relationship developed between the bank and its customers. Table 2 provides the descriptive statistics for all the variables used in the estimations¹².

¹²The definitions of all the variables are available in Appendix B.

	France									
Variable	25th pct	Median	75th pct	Mean	Std	Count	Min	Max		
Endogeno	ous regress	sors								
LNSPRD	3.81	4.61	5.30	4.51	0.95	2406	1.39	6.80		
LNAMT	19.04	19.97	20.72	19.85	1.32	2406	15.37	23.84		
Loan's ch	aracteristi	ics (vector	r FAC)							
MAT	3.58	4.09	4.09	3.79	0.63	2406	1.10	5.80		
SEC				0.24						
CRCY				0.20						
PRIME				0.32						
F8				0.52						
F9				0.31						
F10				0.05						
F11				0.05						
F12				0.02						
F13				0.41						
F14				0.19						
F15				0.13						
F16				0.06						
F17				0.04						
F18				0.04						
F19				0.04						
Borrower	's characte	eristics (v	ector BOF	<u>2)</u>						
ТА	14 76	16.22	17 53	16.31	2.41	2406	6 64	25.36		
LTD	12.98	14 51	16.13	14.08	3.88	2406	0	24.05		
BOE	7.09	12.87	19.87	13.81	26.67	2406	-216 24	336.37		
PPE	13 46	35.92	63.88	39 79	29.01	2406	0	99.63		
Lender's	characteri	stics (vec	tor LEN)	00.10	20.01	2100	0	00.00		
LLR	2.65	3.22	3.74	3.21	0.92	2406	0.19	7.22		
T1	8 10	8.50	10.30	9.15	1.62	2406	6.62	14 90		
ROA	0.22	0.38	0.50	0.35	0.21	2406	-0.58	0.64		
IB	52.00	63 35	70.43	61 44	1473	2406	20.03	106 29		
LA	56.70	88.99	125 51	92 70	35.80	2400	19.48	177.43		
II	24.03	34.63	51 53	34.07	25.00	2400	-64 36	232.00		
TI.	24.05	04.00	01.00	5 59	20.00	2400	-04.50	202.00		
Belations	bin's char	octoristics	vector F	2EL)	10.02		0	24.24		
PL1	mp s char			0.15						
MCS				0.10						
Borrower	's country	(vector (FO)	0.00						
CFR	y	(0.02						
CGE				0.01						
CIT				0.00						
CSP				0.02						
CEUB				0.02						
CNOAM				0.00						
CASIA				0.20						
LNSPRD	Instrume	nts (vecto	r SUP)	0.03						
GI	insti une			0.07						
CLS	0	0	18.75	6.86	9.45		0	22.72		
LNAMT	Instrumer	ts (vector	· DEM)	0.00	0.10		5			
SG	0.90	10.55	26.17	23.56	84.25	2406	-221.74	1348.92		
F20	0.00	10.00		0.41	01.20	- 100		1010.02		

Table 2: Summary statistics of variables

			Ge	ermany				
Variable	25th pct	Median	75th pct	Mean	Std	Count	Min	Max
Endogene	ous regress	sors						
LNSPRD	3.81	4.70	5.30	4.53	0.97	1891	1.39	6.91
LNAMT	19.11	20.03	20.93	20.01	1.34	1891	13.50	23.90
Loan's ch	aracterist	ics (vector	r FAC)					
MAT	3.58	4.09	4.09	3.77	0.62	1891	1.10	5.80
SEC				0.24				
CRCY				0.20				
PRIME				0.39				
F8				0.56				
F9				0.27				
F10				0.06				
F11				0.06				
F12				0.02				
F13				0.49				
F14				0.14				
F15				0.13				
F16				0.07				
F17 F18				0.03				
F18				0.01				
<u>F 19</u>	la abana at	anistias (r	anton DOI	0.05				
TA	14 01	$\frac{16.97}{1}$	17 27	16.97	2.06	1901	7 59	95.15
	14.91	14.60	15.06	10.27	2.00	1801	1.58	20.10
BOE	7 14	13.04	10.30	14.10 13.71	0.00 06.45	1801	431.80	23.00
PPE	638	28 32	19.59	2/ 21	20.45	1801	-451.89	238.30
Lender's	characteri	stics (vect	tor LEN)	04.01	20.00	1001	0	33.00
LLR	1 14	1 66	2.48	1.81	0.85	1891	0.72	4 35
T1	7 75	8.60	12.30	9.73	2.50	1891	5.60	15 20
BOA	0.07	0.21	0.29	0.15	0.21	1891	-1.55	0.50
IB	75.13	96.08	199.83	121.66	72.55	1891	11.48	274.32
LA	59.86	81.56	92.50	77.06	22.59	1891	17.08	139.58
II	44.25	51.04	59.67	39.33	115.12	1891	-1944.07	197.95
TL	0	0	0	5.30	9.82		0	23.97
Relations	hip's char	acteristics	(vector F	REL)				
PL1	-			0.10				
MCS				0.41				
Borrower	's country	v (vector C	GEO)					
CFR				0.01				
CGE				0.02				
CIT				0.00				
CSP				0.03				
CEUR				0.03				
CNOAM				0.29				
CASIA				0.05				
LNSPRD	Instrume	ents (vecto	or SUP)					
GI	_			0.06			_	
CLS	0	0	19.44	7.91	9.70		0	22.26
	Instrume	nts (vector	r DEM)	10.00	F 4 0 F	1001	140.49	1040 50
SG	0	8.38	22.89	18.28	74.27	1891	-140.43	1246.56
F'20				0.41				

	Italy										
Variable	25th pct	Median	75th pct	Mean	Std	Count	Min	Max			
Endogeno	us regress	ors									
LNSPRD	3.81	4.50	5.16	4.46	0.94	462	1.61	6.63			
LNAMT	19.42	20.39	21.42	20.29	1.42	462	16.06	23.84			
Loan's ch	aracteristi	cs (vector	· FAC)								
MAT	3.58	4.09	4.09	3.79	0.62	462	2.08	5.70			
SEC				0.19							
CRCY				0.37							
PRIME				0.18							
F8				0.53							
F9				0.31							
F10				0.06							
F13				0.52							
F14				0.17							
F15				0.07							
F16				0.06							
F19				0.03							
Borrower	's characte	ristics (v	ector BOB	2)							
ТА	15.37	16.69	17.93	16.62	2.05	462	8.04	23.69			
LTD	13.49	14.91	16.30	14.32	3.85	462	0	22.54			
BOE	8.04	13.95	20.72	14.19	20.43	462	-68.88	141.62			
PPE	12.39	26.04	48.84	31.39	23.56	462	0	94.17			
Lender's	characteris	tics (vect	or LEN)	01100	20.00	102	Ŷ	0 1111			
LLR	3 87	4 66	6.06	4 83	1 17	462	2.94	6.83			
T1	7.10	8 40	9.32	8.42	1 41	462	6.10	12 10			
ROA	0.31	0.47	0.75	0.41	0.65	462	-1.94	1 28			
IB	50 75	83.97	90.42	71.82	2475	462	20.07	104 86			
LA	30.82	36.12	40.57	36.16	7 97	462	20.07 20.07	61.38			
II	57.98	65.25	68 54	64 19	6.64	462	53 70	80.92			
	0	0	0	1 10	4.81	102	0	23.60			
Belations	hin's chars	octoristics	(vector B	(FL)	1.01		0	20.00			
PL1	mp s chare			0.06							
MCS				0.00							
Bonnouron	a countrue	(water C		0.50							
CED	s country	(vector C	EO)	0.02							
CCE				0.03							
CIT				0.04							
CSP				0.02							
CEUP				0.00							
CNOAM				0.05							
CASIA				0.22							
	Instruct	ata (rt	- CUD)	0.05							
LINSPRD	Instrume	nts (vecto	r SUP	0.07							
GI	0	0	19.90	0.07	0.17		0	01 59			
	U T	U + - (+	18.20 DEM)	0.87	9.17		U	21.03			
LINAMT	instrumen	ts (vector	DEM)	10 72	00 0 -	460	100.00	207.00			
SG	-0.37	7.32	20.62	12.73	33.37	462	-100.00	307.96			
F'20				0.41							

	Spain										
Variable	25th pct	Median	75th pct	Mean	Std	Count	Min	Max			
Endogenc	us regress	ors	1								
LNSPRD	3.87	4.94	5.62	4.71	1.09	640	1.39	6.51			
LNAMT	17.83	19.56	20.92	19.29	2.13	640	13.72	23.84			
Loan's ch	aracteristi	cs (vector	r FAC)								
MAT	3.58	4.09	4.28	3.92	0.76	640	0.69	5.98			
SEC				0.29							
CRCY				0.71							
PRIME				0.08							
F8				0.38							
F9				0.42							
F10				0.04							
F11				0.07							
F12				0.03							
F13				0.47							
F14				0.11							
F16				0.09							
F18				0.03							
F19				0.12							
Borrower	's characte	eristics (v	ector BOF	()							
TA	13.01	15.76	17.41	15.25	2.91	640	6.64	23.13			
LTD	10.88	14.22	16.20	13.40	3.80	640	0	21.94			
ROE	4.59	13.34	20.83	12.94	23.09	640	-69.20	179.05			
PPE	18.38	41.42	63.31	42.65	27.25	640	0.02	99.12			
Lender's	characteris	stics (vec	tor LEN)								
LLR	2.00	2.32	2.67	2.52	0.97	640	1.48	7.90			
T1	7.72	8.75	9.97	8.89	1.32	640	6.80	12.80			
ROA	0.58	0.87	0.99	0.77	0.37	640	-0.75	1.61			
IB	35.30	48.54	69.09	58.45	38.58	640	22.82	386.11			
LA	16.95	25.17	29.02	23.08	7.36	640	5.64	34.28			
II	56.41	61.26	66.35	61.53	4.98	640	53.50	72.75			
TL	0	0	0	0.61	3.68		0	23.73			
Relations	hip's chara	acteristics	s (vector R	REL)							
PL1	-			0.07							
MCS				0.65							
Borrower	's country	(vector 0	GEO)								
CFR	U U	,	,	0.03							
CGE				0.02							
CIT				0.01							
CSP				0.37							
CEUR				0.05							
CNOAM				0.04							
CASIA				0.01							
LNSPRD	Instrume	nts (vecto	or SUP)								
GI			,	0.09							
CLS	0	0	18.85	8.65	9.47		0	21.79			
LNAMT	Instrumen	ts (vector	r DEM)								
SG	-5.93	5.09	18.12 [′]	6.57	24.03	640	-100.00	86.92			
F20				0.58							

5 Results and interpretation

5.1 Results for the whole time period, 2005-2013

Table 3^{13} presents the results of the 3SLS estimation over the whole period, *i.e.* 2005-2013. This technique provides consistent estimates for the COVAR matrix of equations disturbances, based on the residuals of the 2SLS estimation of each equation. Moreover, it allows a jointly estimation of a system of two equations, one for the price of the loan (*LNSPRD*) and one for its amount (*LNAMT*). Specification tests are reported at the end of the table and assess the relevance and exogeneity of the instruments. Both equations are over-identified. This allows running the over-identification test to assess the validity of the instruments. As mentioned previously, the instruments for the loan supply equation are *SG* and *F*20. As shown in Table 3, we cannot reject the null hypothesis that the instruments are exogenous. In addition, a second specification test is run on the significance of the instruments and shows that they are relevant¹⁴. The same conclusions can be reached for the loan demand equation. The two instruments used for *LNSPRD*, *i.e. GI* and *CLS*, are exogenous and relevant¹⁵.

In the system, and more specifically in the loan supply equation (1), the coefficient of LNAMT is negative but not significant for all countries, thus questioning a potential simultaneity bias. However, in the credit demand equation (2), the coefficient for LNSPRD is as expected, *i.e.* negative and significant¹⁶. When the spread of the loan increases, the amount borrowed by the company decreases.

The credit supply equation

Controlling for credit demand effects enables to set forth a significant impact of the banking crisis on the credit supply. First, despite the intervention of national governments, the loan price significantly increases after the collapse of Lehman Brothers highlighting a confidence issue. This result holds regardless of the nationality of the borrower or of the bank. However, the

 $^{^{13}\}mathrm{In}$ this table, $*/^{**}/^{***}$ indicates when a coefficient is significant at the 10/5/1% conventional level.

¹⁴The same conclusions are reached with the 2SLS and the GMM estimations of each equation, as shown in Appendices C and D respectively.

 $^{^{15}{\}rm One}$ exception has to be noticed, namely the demand equation for Italy where the instruments do not seem to be relevant.

¹⁶The coefficient is not significant for Germany and Italy.

		Fra	ince		
	Loan supply	regression (LNSPRD)		Loan demar	d regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	6.4571	0.9019***	CONSTANT	19.2154	1.6838***
LNAMT	-0.0110	0.0562	LNSPRD	-0.5581	0.2500^{**}
MAT	0.0182	0.0323	MAT	0.3351	0.0457***
SEC	0.4553	0.0349***	SEC	0.0449	0.1301
CRCY	-0.1970	0.0415***	CRCY	0.0755	0.0855
PRIME	0.0731	0.0423*	PRIME	0.3843	0.0633***
F8	-0.2180	0.0792***	F8	0.6474	0.1240***
F9	-0.0438	0.0636	F9	0.0985	0.1081
F10	-0.5217	0.1039***	F10	0.6890	0.2037***
F11	0.1676	0.0842**	F11	0.3802	0.1480^{***}
F12	0.0503	0.1473	F12	1.6579	0.1914***
F13	-0.1889	0.0521***	F13	0.1685	0.0969*
F14	-0.1922	0.0537***	F14	0.0169	0.1033
F15	-0.0898	0.0579	F15	0.0117	0.1008
F16	0.0685	0.0882	F16	1.1051	0.1183***
F17	-0.0745	0.0780	F17	0.3448	0.1302***
F18	0.0252	0.0777	F18	-0.3108	0.1308**
F19	-0.1351	0.0790*	F19	-0.2432	0.1387*
TA	-0.0896	0.0119***	ТА	0.0930	0.0265***
LTD	0.0150	0.0049***	LTD	0.0280	0.0089***
BOE	-0.0005	0.0005	ROE	0.0004	0.0008
PPE	0.0039	0.0005***	PPE	0.0006	0.0012
LLR	-0.0016	0.0172	LLR	-0.0817	0.0283***
T1	-0.0001	0.0170	T1	0.0358	0.0229
ROA	-0.8023	0.0823***	ROA	-0.2131	0.2656
IB	-0.0013	0.0011	IB	-0.0085	0.0018***
LA	-0.0040	0.0006***		-0.0059	0.0014***
II	-0.0002	0.0007	II	0.0003	0.0012
\mathbf{TL}	0.0023	0.0016	\mathbf{TL}	0.0100	0.0026***
PL1	-0.2926	0.0371***	PL1	-0.1094	0.0959
MCS	-0.0763	0.0354**	MCS	0.4121	0.0493***
CFR	0.3156	0.1144***	CFR	0.1504	0.2303
CGE	0.4747	0.1271***	CGE	0.7942	0.2622***
CIT	0.3663	0.1901*	CIT	0.5287	0.3513
CSP	0.9512	0.1042***	CSP	0.9537	0.3360***
CEUR	0.5586	0.0981***	CEUR	1.0037	0.2366***
CNOAM	0.4605	0.0691***	CNOAM	0.6295	0.1947***
CASIA	0.5920	0.0725***	CASIA	0.4596	0.2317**
GI	0.1945	0.0707***	F20	-0.4715	0.0459***
CLS	0.0132	0.0025***	SG	-0.0004	0.0003
R^2	0.6061		R^2	0.4033	
Ν	2406		Ν	2406	
Specification t	ests				
Test for signifi	icance of instr	uments in first-stage reg	ression		
Jointly	F(2, 2365)	52.78***	,	F(2, 2365)	22.61***
Over-identific:	ation test for	validity of instruments (H0: instruments	s are exogeno	us)
Jointly	Chi-sq(1)	0.5990		Chi-sq(1)	Ó.0001
~	• • • •			• • • •	

Table 3: 3SLS results for the period 2005-2013

Germany								
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)			
	Coefficient	Standard Error		Coefficient	Standard Error			
CONSTANT	5.6041	1.1240***	CONSTANT	14.5277	1.7243***			
LNAMT	-0.0081	0.0819	LNSPRD	-0.2175	0.2839			
MAT	0.0284	0.0492	MAT	0.4862	0.0556***			
SEC	0.5366	0.0445^{***}	SEC	-0.1771	0.1700			
CRCY	-0.1655	0.0512^{***}	CRCY	0.2390	0.0929***			
PRIME	0.0502	0.0436	PRIME	0.2824	0.0644^{***}			
F8	-0.3664	0.0899^{***}	F8	0.4594	0.1725^{***}			
F9	-0.1257	0.0771	F9	-0.0907	0.1391			
F10	-0.6630	0.1367^{***}	F10	1.0111	0.2658^{***}			
F11	-0.0667	0.0965	F11	0.3420	0.1640^{**}			
F12	-0.2755	0.1837	F12	1.4129	0.2477***			
F13	-0.2939	0.0535^{***}	F13	0.1189	0.1211			
F14	-0.2904	0.0612^{***}	F14	-0.0982	0.1348			
F15	-0.1916	0.0617^{***}	F15	-0.0363	0.1192			
F16	-0.0338	0.1141	F16	1.1991	0.1251^{***}			
F17	-0.1718	0.1005^{*}	F17	0.5501	0.1649^{***}			
F18	-0.4124	0.1374^{***}	F18	-0.6225	0.2401^{***}			
F19	-0.1348	0.1084	F19	-0.4170	0.1816**			
TA	-0.0907	0.0177***	ТА	0.1549	0.0315***			
LTD	0.0123	0.0061^{**}	LTD	0.0363	0.0100***			
ROE	0.0007	0.0006	ROE	0.0022	0.0009**			
PPE	0.0029	0.0005^{***}	PPE	0.0022	0.0012^{*}			
LLR	-0.0764	0.0257***	LLR	0.0026	0.0541			
T1	0.0624	0.0155^{***}	T1	0.0910	0.0253***			
ROA	-0.3732	0.0896***	ROA	-0.0456	0.2197			
IB	-0.0005	0.0004	IB	-0.0026	0.0006***			
\mathbf{LA}	-0.0007	0.0009	$\mathbf{L}\mathbf{A}$	0.0030	0.0014**			
II	-0.0004	0.0001^{***}	II	-0.0002	0.0002			
\mathbf{TL}	-0.0001	0.0016	\mathbf{TL}	0.0035	0.0027			
PL1	-0.5535	0.0480***	PL1	-0.1081	0.1795			
MCS	0.0103	0.0420	MCS	0.3621	0.0549^{***}			
CFR	0.1104	0.1560	CFR	0.6671	0.2618**			
CGE	0.4372	0.1290***	CGE	0.1939	0.2736			
CIT	0.9650	0.2611***	CIT	0.9683	0.5376*			
\mathbf{CSP}	0.9508	0.1307***	CSP	-0.4455	0.3740			
CEUR	0.4400	0.1083***	CEUR	0.6016	0.2500**			
CNOAM	0.6257	0.0752^{***}	CNOAM	0.3911	0.2664			
CASIA	0.6787	0.0954^{***}	CASIA	-0.0377	0.2977			
GI	0.4551	0.0845***	F20	-0.3724	0.0516***			
\mathbf{CLS}	0.0064	0.0031^{**}	\mathbf{SG}	0.0001	0.0003			
R^2	0.6216		R^2	0.4195				
Ν	1891		Ν	1891				
Specification t	ests							
Test for signifi	cance of instr	uments in first-stage reg	ression					
Jointly	F(2, 1850)	24.13***		F(2, 1850)	17.80***			
Over-identifica	tion test for	validity of instruments (1	H0: instruments	s are exogeno	us)			
Jointly	Chi-sq(1)	0.0028		Chi-sq(1)	0.8338			

		Ita	aly		
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	6.8563	1.3896***	CONSTANT	6.3805	10.6002
LNAMT	-0.0244	0.1124	LNSPRD	0.6371	1.6163
MAT	-0.1035	0.0647	MAT	0.0888	0.2093
SEC	0.4933	0.0817^{***}	SEC	-0.4430	0.8439
CRCY	-0.1370	0.0974	CRCY	0.5787	0.2963*
PRIME	0.2054	0.1075^{*}	PRIME	0.2979	0.3341
F8	-0.3782	0.1136^{***}	F8	0.4286	0.6601
F9	-0.0113	0.1126	F9	-0.2499	0.2139
F10	-0.8258	0.1666^{***}	F10	0.5944	1.3870
F13	-0.1586	0.0964^{*}	F13	0.3865	0.3229
F14	-0.2288	0.1125**	F14	0.3424	0.4180
F15	-0.2468	0.1384*	F15	-0.1848	0.4533
F16	-0.1315	0.1793	F16	1.1240	0.3587***
F19	0.0548	0.1758	F19	-0.3062	0.3516
TA	-0.1380	0.0419***	TA	0.3796	0.2392
LTD	0.0254	0.0130*	LTD	-0.0424	0.0493
ROE	0.0001	0.0015	ROE	0.0038	0.0027
PPE	0.0018	0.0013	PPE	0.0006	0.0035
LLR	-0.0763	0.0461*	LLR	0.2102	0.1516
T1	-0.0062	0.0472	T1	0.2354	0.0777***
ROA	-0.0882	0.0867	ROA	0.3341	0.2082
IB	-0.0002	0.0021	IB	0.0129	0.0031***
$\mathbf{L}\mathbf{A}$	-0.0160	0.0048***	$\mathbf{L}\mathbf{A}$	0.0138	0.0304
II	0.0240	0.0075***	II	-0.0041	0.0462
\mathbf{TL}	-0.0009	0.0069	\mathbf{TL}	0.0293	0.0112***
PL1	-0.7809	0.1226***	PL1	0.7948	1.2896
MCS	-0.2236	0.0678***	MCS	0.2203	0.3952
CFR	0.2996	0.1904	CFR	0.5919	0.5911
CGE	0.5742	0.1904***	CGE	0.5535	0.9989
CIT	0.8164	0.2231***	CIT	-0.5415	1.4736
CSP	0.9142	0.1599***	CSP	-0.2452	1.5609
CEUR	0.5289	0.1562***	CEUR	0.3456	0.8686
CNOAM	0.5628	0.1200***	CNOAM	0.0318	0.9450
CASIA	0.5251	0.1634***	CASIA	-0.4487	0.9455
GI	0.1290	0.1576	F20	-0.5149	0.1125***
CLS	0.0037	0.0044	SG	0.0029	0.0021
$\frac{B^2}{R^2}$	0.6317	0.0011	$\frac{BG}{R^2}$	0.4100	0.0021
N	462		N	462	
Specification t	ests		1,	102	
Test for signifi	cance of instr	uments in first-stage reg	ression		
I contly	F(2 425)	19 40***	1 0001011	F(2 425)	0.60
Over-identifier	1(2, 420)	validity of instruments (1	HO. instrumente	1(2, 420)	0.00 us)
Jointly	Chi cq(1)	1 4909	i.o. mstruments	Chi cq(1)	1 7704
Jointry	$\operatorname{Sq}(1)$	1.4202		$\operatorname{Sq}(1)$	1.1104

Spain								
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)			
	Coefficient	Standard Error		Coefficient	Standard Error			
CONSTANT	2.9998	1.2034**	CONSTANT	15.9912	1.9163***			
LNAMT	-0.0847	0.0748	LNSPRD	-1.1948	0.5123**			
MAT	0.1503	0.0475***	MAT	0.4050	0.1181***			
SEC	0.3006	0.0714^{***}	SEC	0.0609	0.2337			
CRCY	0.0619	0.0846	CRCY	0.4614	0.1758***			
PRIME	0.2611	0.1354*	PRIME	1.1965	0.2711^{***}			
F8	-0.1658	0.1043	F8	0.0125	0.2608			
F9	-0.0127	0.0989	F9	0.1035	0.2266			
F10	-0.3931	0.1661^{**}	F10	0.1643	0.4421			
F11	0.0893	0.1336	F11	0.4560	0.3051			
F12	0.3809	0.1912**	F12	0.6654	0.4805			
F13	-0.2971	0.0707***	F13	-0.1169	0.2238			
F14	-0.4233	0.0991***	F14	-0.4055	0.3096			
F16	0.1661	0.1399	F16	1.4729	0.2462***			
F18	0.3103	0.1747*	F18	-0.4734	0.4214			
F19	-0.4280	0.1241^{***}	F19	-1.0844	0.3261^{***}			
TA	-0.0504	0.0315	TA	0.2161	0.0612***			
LTD	0.0261	0.0130**	LTD	0.0356	0.0335			
ROE	-0.0004	0.0011	ROE	0.0017	0.0026			
PPE	0.0002	0.0011	PPE	0.0047	0.0022**			
LLR	0.0303	0.0417	LLR	-0.0822	0.0942			
T1	0.2243	0.0417***	T1	0.2164	0.1157*			
ROA	-0.0877	0.1470	ROA	0.1791	0.3342			
IB	-0.0004	0.0008	IB	-0.0010	0.0017			
$\mathbf{L}\mathbf{A}$	-0.0102	0.0063	$\mathbf{L}\mathbf{A}$	0.0290	0.0138^{**}			
II	0.0203	0.0076^{***}	II	0.0038	0.0188			
\mathbf{TL}	-0.0094	0.0072	\mathbf{TL}	-0.0392	0.0161^{**}			
PL1	-0.4506	0.0977^{***}	PL1	-0.3525	0.3163			
MCS	0.0955	0.0666	MCS	0.3393	0.1554^{**}			
\mathbf{CFR}	0.1130	0.2062	\mathbf{CFR}	1.4819	0.3984^{***}			
CGE	0.1639	0.2142	\mathbf{CGE}	0.9997	0.4859^{**}			
CIT	0.6269	0.2665^{**}	CIT	1.3880	0.7452^{*}			
\mathbf{CSP}	0.5162	0.1375^{***}	\mathbf{CSP}	0.4552	0.5123			
CEUR	0.4666	0.1666^{***}	CEUR	1.3890	0.4762^{***}			
CNOAM	0.4701	0.1796^{***}	CNOAM	1.6323	0.4663^{***}			
CASIA	0.3646	0.2736	CASIA	1.6438	0.6354^{***}			
GI	0.4599	0.1237^{***}	F20	-0.6258	0.1225^{***}			
CLS	-0.0010	0.0039	SG	-0.0010	0.0022			
R^2	0.7102		R^2	0.6005				
Ν	640		Ν	640				
Specification tests								
Test for signifi	cance of instr	uments in first-stage reg	ression					
Jointly	F(2, 601)	19.04***		F(2, 601)	9.45***			
Over-identifica	ation test for	validity of instruments (1	H0: instruments	are exogenor	us)			
Jointly	Chi-sq(1)	2.0118		Chi-sq(1)	0.2047			

hypothesis of a flight-to-home effect can only be confirmed for French and German banks because the increase of the spread for domestic companies is the lowest one, albeit statistically significant. For example, when one considers the loans provided by French banks, the increase of the spread for the French firms is lower than 32%, while the spread increase for foreign companies goes from 36% to almost 100%. In Germany, the spread is higher by less than 44% after the collapse of Lehman Brothers while it is above this threshold for all the other foreign companies. This may signal banks' willingness to ease the access to credit for domestic companies, in order to facilitate the credit risk assessment of the borrowers (Epstein (2001)). More broadly, the currency of the loan may also give an indication about banks' preference. The results show that, between 2005 and 2013, loans expressed in Euro benefit from a decrease in the spread. While this goes in line with the idea of a home bias, a deeper analysis is nevertheless required to distinguish between the two periods, *i.e.* before and after the collapse of Lehman Brothers.

The results are different for Italy and Spain. We observe an increase in the spread by more than 50% for all the borrowers, regardless of their home country, following the financial institutions crisis. This may be explained either by a reduced number of observations or by the consequences of the sovereign debt crisis occurring in Europe, following the financial institutions crisis. At that time, the two countries were considered as high risk sovereign borrowers. In this context of sovereign debt crisis, banks may have been reluctant to lend money even to domestic companies. These results are coherent with the conclusion that may be drawn regarding the currency of the loan. The coefficient is insignificant for both Italy and Spain compared to France and Germany, emphasizing the lack of home-bias effect after the collapse of Lehman Brothers for these two countries, especially for Spain, where the market share of loans to domestic companies is the largest one over the period.

Regarding the role of the bank's speciality on credit terms, we observe a positive and significant coefficient for France and Germany while the same coefficient is not significant for the two other countries. This result indicates that after the collapse of Lehman Brothers, banks apply a higher spread for companies which belong to industries they are specialized in. Combining this result with the observation that the share of loans in specialized industries decreases after the collapse of Lehman Brothers, we may conclude that banks are willing to diversify their portfolios. Regarding banks' characteristics and their influence on loan pricing, all the significant variables have the expected sign¹⁷. Hence, a bank which is capitalized appropriately, with a strong liquidity position and high quality assets is able to offer better credit terms and to maintain bank lending. This result supports the implementation of the Basel regulatory framework aiming at increasing the requirements for banks in terms of capital and liquidity. The distinction between the period before and after the collapse of Lehman Brothers will enable us to assess if this result still holds.

When one considers the financial characteristics of the borrower, the results are in line with the literature. A company with a high level of assets is able to get better credit terms while a higher level of long-term debt makes the spread increase. Surprisingly, the share of fixed assets as a percentage of the net total assets is significant for France and Germany but positively correlated to loan's spread. This may be related to the liquidity fear of the bank regarding the borrower's capacity to meet short-term deadlines. With respect to the characteristics of the loan, the results confirm the hypotheses previously developed in the literature. More specifically, a secured loan or indexed to prime rate is associated to an increase in the loan spread in the four countries. Finally, the relationship that may exist between the bank and its borrowers seems to impact the credit offer and contributes to a decrease of the loan spread regardless of the country under consideration. Thanks to this relation, a company with a good credit history may enjoy a lower loan price.

The credit demand equation

The variable $F20^{18}$, used as demand shifter, is significant and with the expected sign. The demand of a company that is engaged in several loans at the same time tends to be lower per bank. Looking at the different types of loans, the demand is significantly higher for the four countries for loans aiming at financing takeovers. Regarding the borrower's characteristics, companies with large amounts of assets or highly levered, express a higher demand for

¹⁷This conclusion does not hold for the variables related to capital and assets in Germany, the variables related to assets and earnings in Italy and the variables related to capital and earnings in Spain. As for the "currency" variable, a deeper analysis is required to distinguish between the two periods, *i.e.* before and after the collapse of Lehman Brothers.

 $^{^{18}}$ As a reminder, F20 is a dummy variable which equals one when several types of loan are contracted at the same time, by the same company.

credit¹⁹. Finally, the demand for loans after the collapse of Lehman Brothers seems to be higher, disregarding the country of the borrower.

5.2 Comparison of the results on two sub-periods: before and after the collapse of Lehman Brothers

Table 4^{20} provides the results when the model is estimated over the two subperiods. The two equations are jointly determined and specification tests are also reported at the end of the table. Several variables are adapted in order to perform these new estimations. First, regarding the list of instruments, as GI is irrelevant before the crisis, it was replaced by SEC for both periods²¹. In addition, the lender's speciality is considered according to the period under study, not only after the collapse of Lehman Brothers. Second, regarding the vector GEO, the same considerations than the ones for LSfor each country have been taken into account. Hence, one can only make a comparison between the entire period and the period after the collapse of Lehman Brothers for the LS variable and the vector GEO.

The credit supply equation

The comparison between the two sub-periods allows us to confirm the hypothesis of a flight-to-home effect for both France and Germany²². Before the crisis, in these two countries, the spread for all the European borrowers is decreasing while it increases for North American and Asian ones. This result is consistent with the insights previously suggested by the variable "currency" which highlights a significant decrease in the spread when the loan is expressed in Euro.

After the collapse of Lehman Brothers, better credit terms are offered by French and German banks to their domestic companies, and the conclusion is statistically significant, while the spread increases for the foreign borrowers. Moreover, the coefficient associated to the currency is still negative but not significant for France. This may be related to the European sovereign debt

¹⁹These results do not hold for Italy which does not highlight any significant coefficient for this category.

 $^{^{20}\}mathrm{In}$ this table, */**/*** indicates when a coefficient is significant at the 10/5/1% conventional level.

 $^{^{21}}$ The correlation table is used to determine the most relevant instrument for LNSPRD (Delis and Kouretas (2011)).

 $^{^{22} \}rm One$ should be aware that, when considering the sub-periods, the number of loans per country, per period is significantly lower.

France									
	Loan supply regression (LNSPRD)					Loan demand regression (LNAMT)			
	Before crisis		After crisis			Before cris	sis	After crisis	
	Coef	Std Err	Coef	Std Err		Coef	Std Err	Coef	Std Err
CONST	8.2667	1.2543***	8.5293	1.2046^{***}	CONST	18.8687	1.2591^{***}	25.4590	2.9901***
LNAMT	0.0357	0.0692	-0.1277	0.0787	LNSPRD	-0.2384	0.1180^{**}	-1.5961	0.4232^{***}
MAT	0.0449	0.0393	0.0691	0.0462	MAT	0.2928	0.0523***	0.3212	0.0959***
CRCY	-0.1137	0.0737	-0.0446	0.0831	CRCY	-0.1025	0.1124	-0.3997	0.1734^{**}
PRIME	-0.1332	0.0711^{*}	0.1557	0.0462^{***}	PRIME	0.0865	0.1074	0.2216	0.1272^{*}
$\mathbf{F8}$	-0.4113	0.0881^{***}	0.0715	0.1253	$\mathbf{F8}$	0.2184	0.1389	0.9533	0.2021^{***}
F9	-0.1795	0.0817^{**}	0.1128	0.1031	F9	-0.1167	0.1258	0.6333	0.2047^{***}
F10	-0.6997	0.1157^{***}	-0.0845	0.1666	F10	0.2822	0.1919	0.8621	0.3094^{***}
F11	0.0529	0.1163	0.3438	0.1291^{***}	F11	-0.2196	0.1715	1.1918	0.2771^{***}
F12	-0.1340	0.1639	0.4591	0.2319^{**}	F12	0.9685	0.2251^{***}	2.3880	0.3635^{***}
F13	-0.2474	0.0661^{***}	-0.2135	0.0739^{***}	F13	0.1478	0.1054	-0.1525	0.2001
$\mathbf{F14}$	-0.1492	0.0680^{**}	-0.1243	0.0908	F14	0.2134	0.1034^{**}	0.0702	0.2148
F15	-0.0716	0.0726	-0.1636	0.0892^{*}	F15	0.0542	0.1109	-0.1660	0.2158
F16	0.1637	0.1037	-0.1050	0.1283	F16	0.9574	0.1339^{***}	0.5829	0.2620^{**}
F17	-0.1454	0.1030	-0.0622	0.1120	F17	0.4457	0.1490^{***}	0.2324	0.2510
F18	0.0493	0.0976	0.0140	0.1157	F18	0.0732	0.1479	-0.1570	0.2593
F19	-0.0087	0.1064	-0.1614	0.1139	F19	-0.2960	0.1578^{*}	-0.3797	0.2592
TA	-0.1212	0.0158***	-0.0499	0.0178***	TA	0.1180	0.0240***	0.0661	0.0428
\mathbf{LTD}	0.0207	0.0073^{***}	0.0074	0.0059	\mathbf{LTD}	0.0297	0.0112^{***}	0.0181	0.0133
ROE	-0.0011	0.0007^{*}	-0.0001	0.0006	ROE	-0.0004	0.0010	0.0012	0.0013
PPE	0.0041	0.0007^{***}	0.0027	0.0006^{***}	PPE	-0.0022	0.0011^{*}	0.0042	0.0019^{**}
LLR	0.0388	0.0193**	0.0361	0.0481	\mathbf{LLR}	-0.0443	0.0287	-0.0762	0.1063
T1	-0.3253	0.0463^{***}	-0.0467	0.0197^{**}	T1	-0.0929	0.0780	-0.0376	0.0499
ROA	-1.3540	0.1795^{***}	-0.3239	0.1444^{**}	ROA	0.1100	0.3206	-0.0196	0.3437
IB	0.0063	0.0016^{***}	-0.0039	0.0020^{**}	IB	-0.0074	0.0025^{***}	-0.0081	0.0046^{*}
$\mathbf{L}\mathbf{A}$	-0.0021	0.0007^{***}	0.0009	0.0013	\mathbf{LA}	-0.0031	0.0011^{***}	0.0000	0.0029
II	-0.0019	0.0016	0.0007	0.0012	II	-0.0039	0.0024	0.0021	0.0028
\mathbf{TL}	0.0046	0.0022^{**}	0.0012	0.0020	\mathbf{TL}	0.0049	0.0034	0.0036	0.0044
PL1	-0.2694	0.0491***	-0.2326	0.0558^{***}	PL1	0.1277	0.0782	-0.3642	0.1556^{**}
MCS	-0.1005	0.0492^{**}	-0.0230	0.0474	MCS	0.4942	0.0548^{***}	0.3161	0.0827^{***}
FR	-0.1851	0.1076^{*}	-0.2222	0.1287^{*}	\mathbf{FR}	-0.4002	0.1614**	-0.0295	0.3157
\mathbf{GE}	-0.0912	0.1677	0.0062	0.1440	\mathbf{GE}	0.3609	0.2516	0.7872	0.2994^{***}
IT	-0.0382	0.1884	0.0401	0.1853	\mathbf{IT}	0.9378	0.2731^{***}	0.6621	0.3978^{*}
\mathbf{SP}	-0.2288	0.1086^{**}	0.4625	0.1246^{***}	\mathbf{SP}	0.2551	0.1678	1.3658	0.2839^{***}
\mathbf{EUR}	-0.2057	0.0901^{**}	0.2231	0.1035^{**}	\mathbf{EUR}	0.2514	0.1370^{*}	0.9157	0.2040^{***}
NOAM	0.1053	0.0927	0.1010	0.0890	NOAM	0.2184	0.1409	0.6258	0.1816^{***}
ASIA	0.0235	0.0994	0.0495	0.0845	ASIA	-1.0135	0.1079^{***}	-0.1491	0.1785
SEC	0.5786	0.0462***	0.1667	0.0496***	F20	-0.5363	0.0552***	-0.3539	0.0847***
\mathbf{LS}	-0.0049	0.0030^{*}	0.0040	0.0019^{**}	\mathbf{SG}	-0.0003	0.0003	-0.0005	0.0003^{*}
R^2	0.4772		0.3732		R^2	0.4923		0.2642	
Ν	1430		976		Ν	1430		976	
Specification tests									
Test for si	gnificance o	of instrumer	nts in first-s	stage regres	sion				
Jointly	F(2, 1390)	42.06***	F(2, 936)	19.85***		F(2, 1390)	83.02***	F(2, 936)	12.66***
Over-iden	tification te	st for validi	ty of instru	iments (H0:	instrument	s are exoger	nous)	())	
Jointly	Chi-sq(1)	0.0004	Chi-sq(1)	0.3035		Chi-sq(1)	3.3914^{*}	Chi-sq(1)	0.1360

Table 4: 3SLS results for the two sub-periods

Germany									
	Loan sup	oply regressi	on (LNSPI	RD)		Loan demand regression (LNAMT)			
	Before crisis		After crisis			Before crisis		After crisis	
	Coef	Std Err	Coef	Std Err		Coef	Std Err	Coef	Std Err
CONST	5.5688	1.8496***	7.1308	0.9161***	CONST	18.0390	1.2131***	16.4810	1.7891***
LNAMT	0.0736	0.1195	-0.0346	0.0786	LNSPRD	-0.4459	0.1382^{***}	-0.8303	0.2237***
MAT	0.0887	0.0524*	-0.0518	0.0621	MAT	0.2351	0.0738***	0.5457	0.0866***
CRCY	-0.0790	0.0844	-0.3229	0.0875^{***}	CRCY	-0.1835	0.1213	-0.6548	0.1796^{***}
PRIME	-0.1167	0.0893	0.0988	0.0415^{**}	PRIME	0.1670	0.1225	0.0130	0.0878
$\mathbf{F8}$	-0.6275	0.1213^{***}	-0.0873	0.0986	F8	-0.0889	0.1946	0.4634	0.1838^{**}
F9	-0.3199	0.1178^{***}	0.1244	0.0943	F9	-0.2498	0.1803	0.3809	0.1914^{**}
F10	-0.7891	0.1536^{***}	-0.4893	0.1690^{***}	F10	0.0671	0.2378	1.0286	0.2903^{***}
F11	-0.1731	0.1498	0.0605	0.1119	F11	-0.0746	0.2175	0.6090	0.2211^{***}
F12	-0.4601	0.2203^{**}	-0.0583	0.2477	F12	0.4105	0.2999	2.2062	0.3328^{***}
F13	-0.2849	0.0751^{***}	-0.2025	0.0688^{***}	F13	-0.1497	0.1201	0.0322	0.1526
$\mathbf{F14}$	-0.1962	0.0828^{**}	-0.1331	0.0976	$\mathbf{F14}$	-0.1201	0.1248	0.1770	0.2034
F15	-0.1672	0.0888^{*}	-0.1581	0.0838^{*}	F15	-0.2083	0.1303	0.0254	0.1767
F16	-0.0561	0.1536	-0.1077	0.1065	F16	1.0962	0.1525^{***}	0.4757	0.2139^{**}
F17	-0.2254	0.1220^{*}	-0.0941	0.1521	F17	0.0982	0.1754	0.7898	0.2874^{***}
F18	-0.2969	0.1840	-0.1487	0.2023	F18	-0.6602	0.2495^{***}	0.0164	0.4162
F19	0.0170	0.1524	-0.2113	0.1339	F19	-0.3578	0.2112^{*}	-0.4088	0.2729
TA	-0.1280	0.0269^{***}	-0.0660	0.0256^{***}	TA	0.1317	0.0291^{***}	0.2205	0.0346^{***}
\mathbf{LTD}	0.0136	0.0086	0.0081	0.0070	\mathbf{LTD}	0.0248	0.0125^{**}	0.0302	0.0136^{**}
ROE	-0.0006	0.0010	0.0009	0.0006^{*}	ROE	0.0002	0.0015	0.0025	0.0011^{**}
PPE	0.0024	0.0009^{***}	0.0019	0.0006^{***}	PPE	0.0051	0.0013^{***}	0.0007	0.0014
\mathbf{LLR}	0.0794	0.0447^{*}	-0.1704	0.0496^{***}	\mathbf{LLR}	-0.0390	0.0639	-0.1510	0.1097
T1	-0.1471	0.0530^{***}	0.0055	0.0212	T1	0.0022	0.0813	0.0893	0.0397^{**}
ROA	0.0590	0.1950	-0.2981	0.1001^{***}	ROA	-0.2223	0.2787	-0.0749	0.2044
IB	-0.0027	0.0007^{***}	-0.0012	0.0006^{**}	IB	-0.0026	0.0011^{**}	-0.0035	0.0012^{***}
$\mathbf{L}\mathbf{A}$	0.0048	0.0016^{***}	0.0041	0.0015^{***}	$\mathbf{L}\mathbf{A}$	0.0041	0.0025	0.0082	0.0030^{***}
II	-0.0005	0.0002^{**}	-0.0002	0.0002	II	-0.0001	0.0003	-0.0002	0.0004
TL	0.0013	0.0026	0.0005	0.0019	\mathbf{TL}	0.0011	0.0037	0.0016	0.0039
PL1	-0.4628	0.0689^{***}	-0.5260	0.0690^{***}	PL1	-0.1870	0.1177	-0.1175	0.1813
MCS	0.0262	0.0553	-0.0131	0.0492	MCS	0.2874	0.0675***	0.3510	0.0857***
\mathbf{FR}	-0.3641	0.1940^{*}	-0.1251	0.1597	FR	0.9994	0.2144^{***}	1.0045	0.2847^{***}
GE	-0.0344	0.1730	0.2420	0.1411*	GE	0.8033	0.2178^{***}	0.9756	0.2718^{***}
IT	-0.2350	0.2637	0.7115	0.2416***	IT	1.4422	0.3011***	1.9195	0.4556***
SP	-0.0109	0.1469	0.6886	0.1214***	SP	0.6076	0.1961***	0.7146	0.2657***
EUR	-0.1857	0.1098*	0.1359	0.1069	EUR	0.4086	0.1425***	0.8523	0.1925***
NOAM	0.1885	0.1200	0.1686	0.0846**	NOAM	0.6243	0.1555***	0.6180	0.1666***
ASIA	0.0734	0.1234	0.1418	0.1111	ASIA	-0.6531	0.1349***	-0.4515	0.2006**
SEC	0.6072	0.0657***	0.3668	0.0501***	F20	-0.3911	0.0656***	-0.4447	0.0749***
<u>LS</u>	-0.0062	0.0040	-0.0066	0.0028**	SG	0.0000	0.0005	-0.0004	0.0004
R ²	0.4179		0.4769		<i>R</i> ²	0.4571		0.5268	
IN O 10	1031		860		IN	1031		860	
Specification tests									
lest for si	gnificance	of instrume	nts in first	-stage regre	ssion	$\Gamma(2,001)$	FC 00***	$\mathbf{D}(\mathbf{a}, \mathbf{a}, \mathbf{c})$	20 01 ***
Jointly	F(2, 991)	15.28***	F(2, 820)	18.79***	,	F(2, 991)	56.29***	F(2, 820)	39.61***
Over-iden	tification t	est for valid	ity of instr	uments (H0	: instrumen	ts are exog	enous)	(1)	0.0000
Jointly	Chi-sq(1)	0.4231	Chi-sq(1)	3.7469^{*}		Chi-sq(1)	0.0104	Chi-sq(1)	0.8626

Italy									
	Loan sup	ply regressi	on (LNSPI	RD)		Loan demand regression (LNAMT)			MT)
	Before crisis		After crisis			Before crisis		After crisis	
	Coef	Std Err	Coef	Std Err	-	Coef	Std Err	Coef	Std Err
CONST	11.5316	4.3646***	6.9258	3.7956^{*}	CONST	-0.9991	13.3379	31.2778	7.6690***
LNAMT	-0.0559	0.1250	0.0643	0.1316	LNSPRD	1.5622	0.7586^{**}	-1.6829	0.5155^{***}
MAT	-0.0354	0.0873	-0.0563	0.0841	MAT	-0.0052	0.2149	0.0530	0.1818
CRCY	-0.1257	0.1316	-0.5416	0.1533^{***}	CRCY	0.4683	0.3147	-0.5487	0.3794
PRIME	-0.2058	0.1875	0.4402	0.1122^{***}	PRIME	0.6886	0.4577	0.8866	0.3422^{***}
$\mathbf{F8}$	-0.4026	0.1563^{***}	-0.0827	0.1448	$\mathbf{F8}$	0.8627	0.5185^{*}	-0.7089	0.3094^{**}
F9	-0.1230	0.1581	-0.0052	0.1468	F9	0.3831	0.4020	-0.5056	0.3173
F10	-0.8303	0.2262^{***}	-0.3318	0.2209	F10	1.2437	0.8752	-0.8650	0.5114^{*}
F13	-0.1789	0.1237	-0.3037	0.1331^{**}	F13	0.7757	0.3585^{**}	-0.2461	0.3261
F14	-0.1607	0.1367	-0.0691	0.2431	F14	0.8825	0.3732^{**}	0.0701	0.5189
F15	-0.0942	0.1602	-0.3488	0.1916^{*}	F15	0.2950	0.4155	-0.8876	0.4525^{**}
F16	0.3839	0.2882	-0.1839	0.1887	F16	1.1355	0.5549^{**}	0.0982	0.4308
F19	0.4511	0.2033^{**}	-0.5066	0.2792^{*}	F19	-1.1298	0.6209^{*}	-1.1771	0.6150^{*}
TA	-0.2100	0.0571***	-0.1550	0.0511***	TA	0.7261	0.1939***	0.0737	0.1068
LTD	0.0700	0.0178^{***}	0.0074	0.0174	LTD	-0.1493	0.0646^{**}	-0.0402	0.0352
ROE	0.0024	0.0029	-0.0001	0.0016	ROE	0.0018	0.0066	0.0024	0.0034
PPE	-0.0007	0.0017	0.0024	0.0017	PPE	0.0076	0.0040*	0.0029	0.0042
LLR	0.1347	0.2406	0.0597	0.3003	LLR	0.0678	0.6095	-0.5802	0.6375
T 1	-0.4897	0.6189	-0.0514	0.0812	T1	0.3500	1.6013	0.2768	0.1590^{*}
ROA	0.2246	0.5006	-0.1085	0.0955	ROA	-0.5373	1.2415	-0.0373	0.2022
IB	0.0071	0.0202	0.0090	0.0049*	IB	0.0067	0.0501	0.0116	0.0116
$\mathbf{L}\mathbf{A}$	0.0002	0.0240	-0.0312	0.0103***	\mathbf{LA}	-0.0171	0.0596	-0.0223	0.0245
II	-0.0148	0.0365	0.0057	0.0271	II	0.0071	0.0923	-0.0335	0.0590
\mathbf{TL}	0.0039	0.0105	-0.0059	0.0078	\mathbf{TL}	0.0189	0.0242	0.0243	0.0140*
PL1	-0.3600	0.1595**	-0.9082	0.1561***	PL1	0.3993	0.4697	-1.0512	0.5703*
MCS	-0.3833	0.1036***	0.0662	0.1008	MCS	0.8854	0.3881**	0.3302	0.2202
FB	-0.3083	0.2052	-0.1827	0.2123	FB	1 4546	0 4984***	0.5544	0.4603
GE	0.3448	0.2002 0.2985	0.0082	0.2224	GE	0.7772	0.6594	1 1398	0.4417^{***}
IT	-0.0132	0.2087	0.5932	0.2221 0.2411**	IT	-0.3005	0 4995	0.9611	0.5407*
SP	-0.0973	0.1632	0.6759	0.2082***	SP	0.6366	0 4338	1.2467	0.4616***
EUR	-0.4178	0.1826**	-0.0914	0.1717	EUR	1 3979	0.5161***	0.4669	0.3621
NOAM	-0.0372	0.2056	-0.2017	0 1565	NOAM	1.0129	0.4321**	0.1110	0.3613
ASIA	-0.1441	0.1758	-0.0176	0.2167	ASIA	-1.0448	0.3705***	-0.6110	0.4337
SEC	0.3804	0.1329***	0.4522	0.1506***	F20	-0.6879	0 1994***	-0.5539	0.1567***
	-0.0034	0.0041	-0.0039	0.0036	SG	0.0023	0.0023	0.0059	0.0023**
$\frac{10}{R^2}$	0.6342	0.0011	0.5720	0.0000	$\frac{BQ}{B^2}$	0.2988	0.0020	0.2737	0.0020
N	223		239		N	223		239	
Specificat	ion tests		-00		- ·			-00	
Test for significance of instruments in first-stage regression									
Jointly	F(2, 187)	8.34***	F(2, 203)	9.82***	551011	F(2, 187)	4 40**	F(2, 203)	7 70***
Over-iden	(2, 107)	est for valid	(2, 200)	uments (Hf	• instrumen	(2, 101)	enous)	1 (2, 200)	1.10
Jointly	$Chi_{eq}(1)$	1 9884	$Chi_{eq}(1)$	0.1317	. maarumen	$Chi_{eq}(1)$	0.4031	$Chi_{sq}(1)$	0.2303
Jonny	Om-sq(1)	1.2004	Om-sq(1)	0.1011		$O_{\rm m-sq(1)}$	0.4001	Om-sq(1)	0.2000
Spain									
------------------------	--------------	----------------	--------------	----------------	------------------------	-------------	----------------	------------	---------
	Loan sup	ply regressi	on (LNSPI	RD)		Loan den	and regress	sion (LNAI	MT)
	Before cr	isis	After cris	sis		Before cr	isis	After cris	sis
	Coef	Std Err	Coef	Std Err	•	Coef	Std Err	Coef	Std Err
CONST	1.2644	4.1082	9.2462	1.4481***	CONST	21.3057	5.6698^{***}	70.8065	92.1237
LNAMT	-0.0484	0.1534	-0.0981	0.0830	LNSPRD	-1.0427	1.0325	-7.2176	11.3980
MAT	0.3299	0.0989***	0.0129	0.0476	MAT	0.7964	0.3609**	0.1018	0.3861
CRCY	0.1162	0.1267	0.1156	0.1318	CRCY	0.1894	0.2985	1.0777	0.9599
PRIME	-0.0755	0.2166	0.9687	0.2049^{***}	PRIME	0.6569	0.4203	7.0715	11.0298
$\mathbf{F8}$	-0.5450	0.1798^{***}	0.1106	0.1089	$\mathbf{F8}$	-0.0321	0.6833	0.7519	1.7171
F9	-0.3997	0.1591^{**}	0.2690	0.0986^{***}	F9	-0.1113	0.5264	1.9745	3.1757
F10	-0.1841	0.2757	-0.9757	0.2611^{***}	F10	0.9542	0.4839^{**}	-7.0366	11.1894
F11	-0.1939	0.2322	0.2743	0.1415^{*}	F11	0.7669	0.4971	1.9200	3.8249
F12	0.1366	0.3767	0.4161	0.2001^{**}	F12	1.4693	0.6205^{**}	3.0144	4.8532
F13	-0.3784	0.1112^{***}	-0.2056	0.0769^{***}	F13	-0.5955	0.4449	-1.3662	2.9787
$\mathbf{F14}$	-0.0337	0.1304	0.1415	0.2581	F14	-0.2761	0.2670	0.8110	3.1460
F16	0.2215	0.1978	-0.1697	0.1953	F16	1.3674	0.3274^{***}	-0.8530	3.7174
F18	0.5520	0.4112	0.1040	0.1961	F18	-1.3858	0.9521	0.5724	2.1596
F19	-0.2456	0.2683	-0.1286	0.1243	F19	-1.5105	0.3382^{***}	-0.9401	1.7286
TA	-0.0797	0.0466^{*}	-0.0317	0.0363	TA	0.1134	0.1309	-0.1214	0.8819
\mathbf{LTD}	0.0290	0.0220	0.0199	0.0128	LTD	0.0386	0.0589	0.1404	0.2952
ROE	-0.0048	0.0022^{**}	-0.0016	0.0012	ROE	-0.0057	0.0072	-0.0094	0.0262
PPE	-0.0013	0.0018	0.0003	0.0012	\mathbf{PPE}	0.0059	0.0036	0.0028	0.0089
LLR	-1.0301	0.2375^{***}	0.0486	0.0411	\mathbf{LLR}	-1.1983	1.1698	0.3190	0.7833
T1	-0.3853	0.1208^{***}	0.0324	0.0398	T1	-0.1877	0.5066	0.2196	0.4839
ROA	0.8316	0.2783^{***}	-0.2073	0.1641	ROA	1.7155	1.0431^{*}	-1.4021	2.7548
IB	-0.0037	0.0009^{***}	0.0021	0.0020	IB	-0.0022	0.0042	0.0128	0.0375
$\mathbf{L}\mathbf{A}$	0.0247	0.0180	-0.0023	0.0073	$\mathbf{L}\mathbf{A}$	-0.0119	0.0512	-0.0015	0.1139
II	0.1334	0.0386^{***}	-0.0361	0.0086^{***}	II	-0.0041	0.1669	-0.2659	0.3961
\mathbf{TL}	-0.0043	0.0077	-0.0336	0.0129^{***}	\mathbf{TL}	0.0004	0.0175	-0.2680	0.2996
PL1	-0.3681	0.1629^{**}	-0.5043	0.0981^{***}	PL1	0.0990	0.5097	-3.6439	5.9834
MCS	-0.0808	0.1402	0.0606	0.0863	MCS	0.5125	0.2586^{**}	0.4616	0.9596
FR	-0.3877	0.1983^{*}	-0.4124	0.1984^{**}	\mathbf{FR}	0.2086	0.5997	-2.6386	6.2605
\mathbf{GE}	-0.0848	0.2928	-0.3614	0.1998^{**}	\mathbf{GE}	1.1693	0.5282^{**}	-2.5251	4.6876
\mathbf{IT}	-0.4888	0.2818^{*}	0.0248	0.2367	\mathbf{IT}	0.3449	0.7414	0.3029	1.9961
\mathbf{SP}	-0.2994	0.1932	-0.0163	0.1755	\mathbf{SP}	-0.7359	0.4977	-0.2468	1.3264
\mathbf{EUR}	-0.3262	0.1600^{**}	0.0063	0.1600	\mathbf{EUR}	-0.3512	0.5262	0.2419	1.4850
NOAM	0.3294	0.1913^{*}	-0.1503	0.2190	NOAM	0.5623	0.5057	-0.6029	4.0170
ASIA	-0.3601	0.2240	-0.4702	0.2602^{*}	ASIA	-1.1303	0.5875^{*}	-3.0554	7.1339
SEC	0.2094	0.1069^{**}	0.0180	0.0825	F20	-0.4336	0.1628^{***}	-0.2068	0.9893
\mathbf{LS}	-0.0027	0.0042	0.0000	0.0017	\mathbf{SG}	0.0011	0.0035	-0.0026	0.0291
R^2	0.6594		0.5744		R^2	0.5791		-1.2249	
N	285		355		Ν	285		355	
Specificati	ion tests								
Test for si	gnificance	of instrume	nts in first	-stage regre	ssion				
Jointly	F(2, 247)	4.28^{**}	F(2, 317)	9.19^{***}		F(2, 247)	2.01	F(2, 317)	0.22
Over-iden	tification t	est for valid	ity of instr	uments (H0	: instrumen	ts are exog	enous)		
Jointly	Chi-sq(1)	0.6236	Chi-sq(1)	3.4547^{*}		Chi-sq(1)	0.0475	Chi-sq(1)	0.2507

crisis and the emergence of differences in terms of credit risk among the Eurozone members. After the banking crisis, banks may estimate that lending money to companies located in peripheral countries represents a higher risk, even if these countries belong to the Euro-zone and the loan is in Euro.

In Italy and Spain, the results show that banks offer better credit terms to all companies before the crisis, providing easy access to credit. The only exception is for loans allocated by Spanish banks to companies located in North America, for which the coefficient is positive and significant. This conclusion is in line with the previous result regarding the variable "currency" which is not significant when one considers the entire period and which is also insignificant before 2008.

However, during the financial institutions crisis, the two countries experience specific trends. The distinction between the two sub-periods enables to confirm the hypothesis of a home-bias in Italy. In this country, the spread on loans provided to Italian and Spanish companies significantly goes up but the increase is lower for Italian companies. On the other side, in Spain, better credit terms are offered to French and German companies while the two markets represent less than 10% of the volume of loans provided by Spanish banks after the collapse of Lehman Brothers²³. During this period, banks may attempt to reduce their exposure to credit risk by lending money to companies located in the core countries of the Euro-zone, highlighting first signs of flight-to-quality effect.

When one has a look at the lender's speciality, the coefficient is negative but only significant for France before the crisis. However, the coefficient becomes positive and significant after the collapse of Lehman Brothers, in line with the first estimation of the model over the entire period, highlighting the preference of French banks for portfolio diversification in times of crisis²⁴. In Italy and Spain, the coefficient remains insignificant for the two periods.

Regarding the bank's characteristics, they are strongly significant before the crisis with a larger number of variables significant compared to the entire period for all countries, except for Italy. They all have the expected sign indicating that a bank with a strong financial position is able to offer better

 $^{^{23}\}mathrm{The}$ highest decrease in spread is granted to domestic companies but the coefficient is not significant.

²⁴In Germany, the coefficient becomes negative and significant after the collapse of Lehman Brothers while it was positive and significant when considering the entire period.

credit terms²⁵. These conclusions hold when considering the period after the collapse of Lehman Brothers despite a lower number of significant variables. This result confirms that banks with better financial positions can support credit supply by decreasing the spread during a crisis time. The results for the other control variables, *i.e.* loan's, borrower's and relationship's characteristics, remain robust for all countries.

The credit demand equation

Before the crisis, most of the results regarding the instruments, the loan's objective and the characteristics of the borrower are similar. When one has a specific look at the demand per country, it fluctuates according to the nationality of the bank and the nationality of the borrower without any specific trend. However, after the collapse of Lehman Brothers, the demand for loans increases for all the borrowers and the coefficient becomes significant²⁶. Moreover, loans in Euro are associated to lower amounts. These conclusions hold with a higher demand for all types of loans in times of crisis in France and Germany while the demand decreases in Italy.

6 Conclusion

The aim of this paper is to measure the lending supply shock after the collapse of Lehman Brothers and the banking crisis of 2008. We analyse the credit supply of four European banking systems, France, Germany, Italy and Spain, in terms of geographical and industry repartition. Moreover, we investigate how banks' characteristics affect their capacity to support the credit supply, especially during a banking crisis. The approach to these questions is innovative and confirms previous results provided by the literature while also expand on a potential sectoral bias.

Combining five databases enables us to develop a rich dataset on the syndicated loans provided by banks located in the four European countries for the period 2005-2013. Information about the different stakeholders of these financial transactions, *i.e.* the bank, the borrowing company, their relationship, the loan itself and the macroeconomic context are collected. The modelling set-up consists in a system of two equations describing the credit terms of the

 $^{^{25}{\}rm The}$ only exception concerns one of the two liquidity measures in France and Germany and the assets and earnings measures in Spain.

 $^{^{26}{\}rm The}$ only exception concerns the loans provided by German banks to Asian companies. The coefficient is significantly negative.

loan, namely its spread and its amount. Including supply shifters in the first equation and demand shifters in the second enables us to distinguish between supply and demand effects on the evolution of bank lending. Moreover, the model is completed with information about the country where the borrowing company is located as well as its industry.

The results may be synthesized as follows.

First, the presence of a credit crunch phenomenon is highly significant. Following the banking crisis, banks increase spreads on loans, thus increasing companies' cost of capital (for the loans provided by French banks the spread goes from 81 basis points on average in 2005 to 125 basis points in 2008 and 288 basis points in 2009). Moreover, the number of loans provided by the banks from the four European countries in the sample significantly decreases over the period under study (from 541 in 2005 to 221 in 2008 for loans provided by French banks). Finally, at the end of the period, we observe that the loan's spread has been reduced to 198 basis points but the number of loans still decreased (from 221 in 2008 to 102 in 2013, for the loans provided by French banks). This result highlights a significant impact of the banking crisis on credit supply. All these conclusions hold for the four countries under study. The only exception is Spain, with a volume of loans relatively stable when comparing 2008 and 2013.

Second, the findings suggest that French and German banks prefer to lend to domestic companies after the collapse of Lehman Brothers, exhibiting a significant flight-to-home effect. Indeed, if we look at the estimations over the entire period, the increase in the spread after the collapse of Lehman Brothers is significant for all the companies but smaller for companies located in the same country as the bank. The conclusion does not hold when one has a look at Italy and Spain. However, the home bias is even more significant when one considers the second sub-period, *i.e.* after the collapse of Lehman Brothers. A home bias is identified for all countries except for Spain. Interestingly, Spanish banks tend to offer better credit terms to companies located in the core countries of the Euro-zone, highlighting thus a potential flight-to-quality effect.

Regarding the sectoral orientation of loans, we set forth banks' preference for diversification during the crisis. After the collapse of Lehman Brothers, the spread on loans to companies which belong to industries banks are specialized in increases. By increasing the loan's rate, banks may discourage these companies to borrow funds and, then, decrease the share of these specific loans in their own portfolio.

The analysis also supports evidence of bank's characteristics effects on credit supply. A bank is able to support its lending, even during distressed times, if it has a strong financial position. Variables related to its capital adequacy, its earnings and its liquidity are the most significant ones. They confirm the importance of implementing bank regulations, such as the Basel framework to limit the impact of a banking crisis on a country's economy. Access to more detailed information on the stakeholders involved in the financial transaction would enable to increase the size of the sample, to run the model bankby-bank and get even more clear-cut results regarding the impact of bank's characteristics on its capacity to lend during crisis times.

Further other developments of this analysis are required to get even more detailed conclusions. As an example, the inclusion in the sample of foreign branches of the lenders, located within and outside Europe, may provide additional evidence of the flight-to-home effect.

We can thus conclude that following the collapse of Lehman Brothers in 2008, banks with a weaker financial position tend to significantly decrease their credit offer mainly to foreign companies and to companies that belong to industries they usually lend to. The objective is two-fold: first, a better credit risk management (home bias) and second, the diversification of their portfolio (sectoral bias). Hence, the results confirm the hypothesis of a credit crunch associated to a flight-to-home effect and a sectoral bias in some countries. This credit crunch may also have an impact on the real economy of countries where the credit supply is lower because companies which cannot borrow money have to limit their investments. In specific situations, and to respond to these financial difficulties, the government may intervene to support financial institutions and reduce credit rationing. This will be the subject of the following paper of this dissertation.

Bibliography

- Acharya, V. V., I. Hasan, and A. Saunders (2006). Should banks be diversified? evidence from individual bank loan portfolios. *Journal of Busi*ness 79(3), 1355–412.
- Acharya, V. V. and S. Steffen (2013). Analyzing Systemic Risk of the European Banking Sector. Cambridge University Press.
- Aiyar, S., C. W. Calomiris, and T. Wieladek (2012). Does macropru leak? evidence from a uk policy experiment. Working Paper No. 445, Bank of England.
- Altunbas, Y., S. Manganelli, and D. Marques-Ibanez (2011). Bank risk during the financial crisis - do business models matter? Working Paper No. 1394, ECB.
- Beim, D. O. (1996). The prime premium: Is relationship banking too costly for some? Working Paper No. 96/22, Columbia University.
- Beltratti, A. and R. M. Stulz (2009). Why did some banks perform better during the crisis? a cross-country study of the impact of governance and regulation. Working Paper No. 15180, NBER.
- Bongini, P., L. Laeven, and G. Majnoni (2002). How good is the market at assessing bank fragility? a horse race between different indicators. *Journal of Banking & Finance 26*(2002), 1011–28.
- Brick, I. and D. Palia (2007). Evidence of jointness in the terms of relationship lending. *Journal of Financial Intermediation* 16(3), 452–76.
- Calomiris, C. W. and T. Pornrojnangkool (2005). Monopoly-creating bank consolidation? the merger of fleet and bankboston. Working Paper No. w11351, NBER.
- Calomiris, C. W. and T. Pornrojnangkool (2009). Relationship banking and the pricing of financial services. *Journal of Financial Services Research* 35(2009), 189–224.
- Cerutti, E. (2013). Drivers of cross-border banking exposures during the crisis. Working Paper No. 13/9, IMF.
- Cetorelli, N. and L. S. Goldberg (2011a). Global banks and international shock transmission: Evidence from the crisis. *IMF Economic Review*, *Palgrave Macmillan 59*(1), 41–76.

- Cetorelli, N. and L. S. Goldberg (2011b). Liquidity management of us global banks: Internal capital markets in the great recession. Staff report No. 511, Federal Reserve Bank of New York.
- Chakravarty, S. and T. Yilmazer (2009). A multistage model of loans and the role of relationships. *Financial Management* 38(4), 781–816.
- Chava, S. and M. R. Roberts (2008). How does financing impact investment? the role of debt covenants. *Journal of Finance LXIII*(5), 2085–121.
- Claessens, S., A. Kose, and M. E. Terrones (2010). The global financial crisis: How similar? how different? how costly? *Journal of Asian Economics* 21(3), 247–64.
- De Haas, R. and N. Van Horen (2011). Running for the exit: International banks and crisis transmission. Working Paper No. 124, European Bank for Reconstruction and Development.
- De Haas, R. and N. Van Horen (2012). International shock transmission after the lehman brothers collapse evidence from syndicated lending. American Economic Review Papers & Proceedings 102(3), 231–7.
- Delis, M. D. and G. P. Kouretas (2011). Interest rates and bank risk-taking. Journal of Banking & Finance 35(4), 840–55.
- Dell' Ariccia, G., E. Detragiache, and R. Rajan (2007). The real effect of banking crises. Journal of Financial Intermediation 17(1), 89–112.
- Demirgüç-Kunt, A., E. Detragiache, and P. Gupta (2006). Inside the crisis: An empirical analysis of banking systems in distress. *Journal of Interna*tional Money and Finance 25(2006), 702–18.
- Drechsler, I., T. Drechsler, D. Marques-Ibanez, and P. Schnabl (2013). Who borrows from the lender of last resort? Technical report, NYU and ECB.
- Epstein, L. (2001). Sharing ambiguity. American Economic Review 91(2), 45–50.
- Fahlenbrach, R., R. Prilmeier, and R. M. Stulz (2012). This time is the same: Using bank performance in 1998 to explain bank performance during the recent financial crisis. *The Journal of Finance LXVII*(6), 2139–85.
- Fahlenbrach, R. and R. M. Stulz (2011). Bank ceo incentives and the credit crisis. Journal of Financial Economics 99(1), 11–26.

- Gambacorta, L. (2008). How do banks set interest rates? European Economic Review 52(5), 792–819.
- Giannetti, M. and L. Laeven (2012). The flight home effect: Evidence from the syndicated loan market during financial crises. *Journal of Financial Economics* 104(1), 23–43.
- Hubbard, R. G., K. N. Kuttner, and N. P. Darius (2002). Are there bank effects in borrowers costs of funds? evidence from a matched sample of borrowers and banks. *Journal of Business* 75(4), 559–81.
- Jiangli, W., H. Unal, and C. Yom (2008). Relationship lending, accounting disclosure, and credit availability during the asian financial crisis. *Journal of Money, Credit & Banking* 40(1), 25–55.
- Kapan, T. and C. Minoiu (2013). Balance sheet strength and bank lending during the global financial crisis. Working Paper No. 13/102, IMF.
- Laeven, L. and F. Valencia (2010). Resolution of banking crises: The good, the bad, and the ugly. Working Paper No. 10/146, IMF.
- Laeven, L. and F. Valencia (2013). The real effects of financial sector interventions during crises. *Journal of Money, Credit & Banking* 45(1), 147–77.
- Lim, J., B. A. Minton, and M. Weisbach (2012). Syndicated loan spreads and the composition of the syndicate. Working Paper No. 18356, NBER.
- Panetta, F., T. Faeh, G. Grande, C. Ho, M. King, A. Levy, F. M. Signoretti, M. Taboga, and A. Zaghini (2009). An assessment of financial sector rescue programmes. Technical Report No. 48, BIS.
- Popov, A. and G. Udell (2010). Cross-border banking and the international transmission of financial distress during the crisis of 2007-2008. Working Paper No. 1203, ECB.
- Ureche-Rangau, L. and A. Burietz (2013). One crisis, two crises...the subprime crisis and the european sovereign debt problems. *Economic Modelling* 35(C), 35–44.
- Wheelock, D. C. and P. W. Wilson (2000). Why do banks disappear: The determinants of us bank failures and acquisitions. The Review of Economics and Statistics 82(1), 127–38.

Appendices

A Correlation table

	LNSPRD	LNAMT		LNSPRD	LNAMT
		Fra	nce		
MAT	0.1001	-0.0270	TA	-0.2767	0.2347
SEC	0.3671	-0.1180	\mathbf{LTD}	-0.1605	0.2428
CRCY	-0.0442	-0.0550	ROE	-0.1310	-0.0252
PRIME	0.0981	0.2294	\mathbf{PPE}	0.2555	-0.0034
GI	0.2784	-0.0259	\mathbf{SG}	0.0132	-0.0381
$\mathbf{F8}$	0.0200	0.2991	\mathbf{LLR}	0.0241	0.0948
F9	-0.0112	-0.2888	T1	0.3765	0.0880
F10	-0.2055	0.0652	ROA	-0.4173	0.0474
F11	0.1432	-0.0888	IB	0.0806	-0.0302
F12	0.0176	0.1309	$\mathbf{L}\mathbf{A}$	-0.3537	-0.1979
F13	0.0190	0.2012	II	0.3953	0.1461
$\mathbf{F14}$	-0.1740	-0.1063	\mathbf{TL}	0.1294	0.1876
F15	0.0172	-0.0128	\mathbf{LS}	-0.0662	-0.0296
F16	0.0457	0.1364	\mathbf{FR}	-0.0677	-0.1118
F17	0.0465	-0.0162	GE	0.0359	0.0146
F18	0.0107	-0.1151	\mathbf{IT}	-0.0089	0.0245
F19	0.0726	-0.1167	\mathbf{SP}	0.0364	-0.0112
F20	0.0017	-0.2078	\mathbf{EUR}	-0.0464	0.0917
PL1	-0.2303	0.0768	NOAM	0.1602	0.2973
\mathbf{MCS}	-0.1032	0.1845	ASIA	-0.1455	-0.3270
		Gerr	nany		
MAT	0.1248	0.0157	\mathbf{TA}	-0.2920	0.3457
\mathbf{SEC}	0.3679	-0.1846	\mathbf{LTD}	-0.1684	0.3113
CRCY	-0.0527	-0.0615	ROE	-0.1027	0.0819
PRIME	0.0872	0.1692	\mathbf{PPE}	0.1935	0.0125
GI	0.2971	-0.0744	\mathbf{SG}	-0.0215	0.0012
$\mathbf{F8}$	-0.0127	0.2408	\mathbf{LLR}	-0.2979	-0.1021
F9	0.0032	-0.2905	$\mathbf{T1}$	0.4521	0.1213
F10	-0.2189	0.0800	ROA	-0.2788	0.0743
$\mathbf{F11}$	0.1564	-0.0361	\mathbf{IB}	0.3092	0.0934
$\mathbf{F12}$	0.0081	0.1397	$\mathbf{L}\mathbf{A}$	-0.0006	0.1427
F13	0.0209	0.1248	II	-0.0447	0.0025
$\mathbf{F14}$	-0.1658	-0.191	\mathbf{TL}	0.0546	0.1113
$\mathbf{F15}$	-0.0067	-0.0413	\mathbf{LS}	-0.1304	0.0824
F16	0.0168	0.1955	\mathbf{FR}	-0.1366	0.1206
$\mathbf{F17}$	0.0159	0.0209	GE	0.0162	-0.0184
F18	0.0090	-0.0971	IT	-0.0228	0.0699
F19	0.0894	-0.1050	\mathbf{SP}	0.1262	-0.1399
F20	0.0731	-0.1573	\mathbf{EUR}	-0.1138	0.0416
PL1	-0.2721	0.0319	NOAM	0.1767	0.2479
MCS	-0.1863	0.1110	ASIA	-0.1527	-0.3011

 Table 5: Correlations

	LNSPRD	LNAMT		LNSPRD	LNAMT
		Ita	aly		
MAT	0.0245	-0.1247	PL1	-0.2378	0.1225
SEC	0.3125	-0.2115	MCS	-0.0490	0.1194
CRCY	-0.0548	0.0378	\mathbf{SG}	-0.0732	-0.0537
PRIME	0.0535	0.1894	\mathbf{LLR}	-0.0563	0.1810
\mathbf{GI}	0.2872	0.0755	T1	0.1304	0.2763
$\mathbf{F8}$	-0.1750	0.2341	ROA	-0.3740	-0.0212
F9	0.1979	-0.3069	\mathbf{IB}	-0.2103	0.1033
F10	-0.2076	0.0810	$\mathbf{L}\mathbf{A}$	-0.3056	-0.1200
F13	0.0394	0.1790	II	0.4622	0.1206
F14	-0.2450	-0.0773	\mathbf{TL}	0.0802	0.1372
F15	0.0064	-0.1163	\mathbf{LS}	-0.2317	0.1506
F16	0.0325	0.2380	\mathbf{FR}	-0.2086	0.1761
F19	0.0916	-0.0572	\mathbf{GE}	0.0822	0.0796
F20	0.0639	-0.1461	\mathbf{IT}	0.0197	-0.1897
$\mathbf{T}\mathbf{A}$	-0.2199	0.4322	\mathbf{SP}	0.1466	-0.1072
\mathbf{LTD}	-0.1428	0.3605	\mathbf{EUR}	-0.1199	0.1320
ROE	-0.1374	0.1638	NOAM	0.0254	0.2502
PPE	0.0592	-0.0415	ASIA	0.0139	-0.3399
		Spa	ain		
MAT	0.1218	-0.1207	LTD	-0.4080	0.5662
\mathbf{SEC}	0.1827	-0.2107	ROE	-0.1358	0.1654
CRCY	0.3669	-0.3483	\mathbf{PPE}	0.1997	-0.1920
PRIME	-0.1823	0.2721	\mathbf{SG}	-0.1790	0.1811
\mathbf{GI}	0.1793	-0.0396	\mathbf{LLR}	0.4391	-0.3372
$\mathbf{F8}$	-0.2403	0.2355	T1	0.5938	-0.2789
$\mathbf{F9}$	0.1934	-0.1792	ROA	-0.5429	0.4026
F10	-0.2476	0.1744	\mathbf{IB}	-0.2111	0.1553
$\mathbf{F11}$	0.1301	-0.1353	$\mathbf{L}\mathbf{A}$	-0.5971	0.5513
F12	0.0261	0.1090	II	0.5593	-0.2613
F13	0.0773	-0.0180	\mathbf{TL}	-0.0736	0.0618
$\mathbf{F14}$	-0.3218	0.1223	\mathbf{LS}	-0.0814	0.0328
$\mathbf{F16}$	-0.1037	0.3008	\mathbf{FR}	-0.2246	0.2638
F18	0.1402	-0.2170	GE	-0.0327	0.1036
F19	0.0144	-0.1100	IT	-0.0557	0.1517
F'20	0.2117	-0.3397	SP	0.4732	-0.5881
PL1	-0.1000	0.0794	EUR	-0.1014	0.1742
MCS	0.3272	-0.2894	NOAM	-0.2309	0.3205
TA	-0.5054	0.6771	ASIA	-0.2365	0.0096

B Definitions of Variables

Variable	Description
Endogeno	ous regressors
LNSPRD	Log of all-in-spread
LNAMT	Log of loan's amount
Loan's ch	aracteristics (vector FAC)
MAT	Log of loan's maturity
SEC	=1 if loan is secured
CRCY	=1 if loan in Euro
PRIME	=1 if loan is indexed to prime rate
$\mathbf{F8}$	=1 for revolver loan ≥ 1 vear
F9	=1 for term loan
F10	=1 for 364-day loan
F11	=1 for term loan with tranche higher than B^{a}
F12	=1 for bridge loan
F13	=1 if loan is for corporate purposes
F14	=1 if loan is for debt repayment
F15	=1 if loan is for working capital
F16	=1 if loan is for takeover
F17	=1 if loan is for acquisition line
F18	=1 if loan is for capital expenditure (FR), ship finance (GE) and LBO (SP)
F19	=1 if loan is for finance
Borrower	's characteristics (vector BOR)
ТА	Log of total assets
LTD	Log of long-term debt
ROE	Return-On-Equity
PPE	Ratio of plant, property equipment to total assets
Lender's	characteristics (vector LEN)
LLR	Ratio of loan loss reserve to gross loans
T1	Tier 1 ratio
ROA	Return-On-Assets
IB	Interbank ratio of due from banks to due to banks
LA	Ratio of liquid assets to deposits and short-term funding
II	Ratio of interest income to total income
TL	Last year log total lending
Relations	hip's characteristics (vector REL)
PL1	=1 if event is preceded by another loan within a year
MCS	=1 if the borrower has access to several credit sources
Borrower	's country (vector GEO)
CFR	=1 if the borrower is French after crisis
CGE	=1 if the borrower is German after crisis
CIT	=1 if the borrower is Italian after crisis
CSP	=1 if the borrower is Spanish after crisis
CEUR	=1 if the borrower is European after crisis
CNOAM	=1 if the borrower is North American after crisis
CASIA	=1 if the borrower is Asian after crisis
LNSPRD	instruments (vector SUP)
GI	=1 for the period of government interventions
CLS	Lender market share in 2-digit SIC sector after crisis
	Instruments (vector DEM)
SG	Past year sales growth
F'20	=1 if multiple types of loans are offered at the same time

 Table 6: Definitions of variables

 a A term loan is made by institutional investors with a floating rate. This rate is generally lower for term A and B lenders than for term C lenders and following.

C 2SLS estimations

	<u> </u>	Fra	ance	.	
	Loan supply	regression (LNSPRD)	-	Loan deman	d regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	6.4574	0.9148***	CONSTANT	19.2199	1.5359***
LNAMT	-0.0111	0.0583	LNSPRD	-0.5588	0.2262**
MAT	0.0182	0.0373	MAT	0.3352	0.0536^{***}
SEC	0.4553	0.0334***	\mathbf{SEC}	0.0449	0.1231
CRCY	-0.1970	0.0435^{***}	CRCY	0.0755	0.0870
PRIME	0.0731	0.0396^{*}	PRIME	0.3844	0.0584^{***}
F8	-0.2180	0.0844^{***}	F8	0.6474	0.1348^{***}
F9	-0.0438	0.0717	F9	0.0987	0.1202
F10	-0.5217	0.1146^{***}	F10	0.6888	0.2067***
F11	0.1676	0.0872^{*}	F11	0.3802	0.1691**
F12	0.0503	0.1481	F12	1.6583	0.2305***
F13	-0.1889	0.0543***	F13	0.1677	0.1033
F14	-0.1922	0.0576^{***}	F14	0.0164	0.1122
F15	-0.0898	0.0592	F15	0.0108	0.1074
F16	0.0685	0.0860	F16	1.1041	0.1484***
F17	-0.0745	0.0780	F17	0.3442	0.1270***
F18	0.0252	0.0805	F18	-0.3115	0.1293**
F19	-0.1351	0.0889	F19	-0.2440	0.1718
ТА	-0.0896	0.0140***	ТА	0.0929	0.0259***
LTD	0.0150	0.0055***	LTD	0.0280	0.0095***
BOE	-0.0005	0.0005	ROE	0.0004	0.0011
PPE	0.0039	0.0005***	PPE	0.0006	0.0012
LLR	-0.0016	0.0190	LLR	-0.0817	0.0280***
	-0.0010	0.0165		0.0360	0.0236
BOA	-0.0001	0.0853***	BOA	-0.2142	0.0200
IB	-0.0023	0.0012	IB	-0.0085	0.0018***
	0.0040	0.0006***		0.0050	0.0013***
	-0.0040	0.0008		-0.0039	0.0013
	-0.0002	0.0015		0.0003	0.0012
	0.0025	0.0013		0.0100	0.0022
	-0.2920	0.0254**		-0.1095	0.0000
	-0.0703	0.1012***	GED	0.4119	0.0473
CFR	0.3156	0.1213***	CFR	0.1511	0.2967
CGE	0.4747	0.1200	CGE	0.7949	0.2854
	0.3664	0.2601	CIT	0.5289	0.4478
CSP	0.9513	0.1051***	CSP	0.9546	0.3179***
CEUR	0.5586	0.0994***	CEUR	1.0040	0.2191***
CNOAM	0.4605	0.0730***	CNOAM	0.6296	0.1770***
CASIA	0.5920	0.0764***	CASIA	0.4598	0.2123**
GI	0.1943	0.0699***	F20	-0.4725	0.0479***
CLS	0.0132	0.0022***	SG	-0.0003	0.0002*
R^{2}	0.6061		R^{2}	0.4032	
N	2406		Ν	2406	
Specification t	ests				
Test for signifi	icance of instr	ruments in first-stage reg	gression		
0	F(2, 2365)	52.78***	-	F(2, 2365)	22.61***
Over-identifica	ation test for	validity of instruments (H0: instruments	s are exogeno	us)
	Chi-sq(1)	0.5991		Chi-sq(1)	0.0002
	• ()			• \ /	

Table 7:	2SLS	results	for	the	period	2005-2013

Germany							
Each equation is estimated separately using the 2SLS estimator.							
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)		
	Coefficient	Standard Error		Coefficient	Standard Error		
CONSTANT	5.5994	1.1386^{***}	CONSTANT	14.5276	1.7636^{***}		
LNAMT	-0.0078	0.0844	LNSPRD	-0.2175	0.2861		
MAT	0.0281	0.0528	MAT	0.4862	0.0634^{***}		
SEC	0.5367	0.0437^{***}	SEC	-0.1771	0.1755		
CRCY	-0.1655	0.0534^{***}	CRCY	0.2390	0.0968^{**}		
PRIME	0.0501	0.0418	PRIME	0.2824	0.0618^{***}		
F8	-0.3665	0.0911^{***}	F8	0.4594	0.1941^{**}		
F9	-0.1255	0.0798	F9	-0.0907	0.1632		
F10	-0.6634	0.1466^{***}	F10	1.0111	0.2814^{***}		
F11	-0.0668	0.0913	F11	0.3420	0.1771^{*}		
F12	-0.2760	0.1905	F12	1.4129	0.2707^{***}		
F13	-0.2939	0.0579^{***}	F13	0.1189	0.1302		
F14	-0.2905	0.0709^{***}	F14	-0.0982	0.1478		
F15	-0.1916	0.0659***	F15	-0.0363	0.1242		
F16	-0.0340	0.1151	F16	1.1991	0.1459***		
F17	-0.1721	0.1035^{*}	F17	0.5501	0.1988^{***}		
F18	-0.4123	0.1440***	F18	-0.6225	0.2695**		
F19	-0.1343	0.1152	F19	-0.4170	0.2172*		
TA	-0.0908	0.0194***	TA	0.1549	0.0335***		
LTD	0.0124	0.0063*	LTD	0.0363	0.0117***		
ROE	0.0007	0.0005	ROE	0.0022	0.0008***		
PPE	0.0029	0.0005***	PPE	0.0022	0.0012^{*}		
LLR	-0.0764	0.0276***	LLR	0.0026	0.0553		
T1	0.0626	0.0155***	T1	0.0910	0.0258^{***}		
ROA	-0.3730	0.0952***	ROA	-0.0456	0.2009		
IB	-0.0005	0.0004	IB	-0.0026	0.0007***		
LA	-0.0007	0.0010	$\mathbf{L}\mathbf{A}$	0.0030	0.0016^{*}		
II	-0.0004	0.0001^{***}	II	-0.0002	0.0002		
\mathbf{TL}	-0.0001	0.0015	\mathbf{TL}	0.0035	0.0028		
PL1	-0.5534	0.0579***	PL1	-0.1081	0.1835		
MCS	0.0103	0.0427	MCS	0.3621	0.0553***		
CFR	0.1106	0.1372	CFR	0.6671	0.2148***		
CGE	0.4387	0.1198***	CGE	0.1939	0.2873		
CIT	0.9658	0.2645***	CIT	0.9683	0.5342*		
CSP	0.9515	0.1294***	CSP	-0.4455	0.4087		
CEUR	0.4405	0.0957***	CEUR	0.6016	0.2649**		
CNOAM	0.6265	0.0753***	CNOAM	0.3911	0.2750		
CASIA	0.6797	0.0914***	CASIA	-0.0378	0.2990		
GI	0.4569	0.0783***	F20	-0.3724	0.0545***		
CLS	0.0063	0.0030**	SG	0.0001	0.0003		
R^2	0.6216		R^2	0.4195			
N	1891		Ň	1891			
Specification t	ests		- •	1001			
Test for signifi	cance of instr	uments in first-stage rog	ression				
Test IOI SIGIIII	F(2 = 1850)	24 13***	1 0331011	F(2 1850)	17 80***		
Over-identifica	1(2, 1000)	validity of instruments ()	H0: instrumente	1(2, 1000)	us)		
Ster facilitie	Chi-sq(1)	0.0031		Chi-sq(1)	0.8339		

Italy						
Each equation is	estimated sepa	rately using the 2SLS estimated	ator.			
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	6.7043	1.4369***	CONSTANT	7.3491	10.7696	
LNAMT	-0.0176	0.1172	LNSPRD	0.4817	1.6728	
MAT	-0.1072	0.0714	MAT	0.0692	0.2118	
SEC	0.4962	0.0848***	SEC	-0.3712	0.8716	
CRCY	-0.1425	0.0958	CRCY	0.5624	0.3112*	
PRIME	0.1932	0.1031*	PRIME	0.3313	0.3490	
F8	-0.3766	0.0955***	F8	0.3736	0.6712	
F9	-0.0061	0.1031	F9	-0.2472	0.2042	
F10	-0.8257	0.1617***	F10	0.4670	1.4175	
F13	-0.1604	0.0879*	F13	0.3571	0.3496	
F 14	-0.2308	0.1002**	F14	0.2997	0.4390	
F15	-0.2404	0.1232*	F15	-0.2250	0.4818	
F16	-0.1300	0.1582	F10	1.0933	0.3459	
F 19	0.0591	0.2290	F 19	-0.3058	0.4530	
	-0.1401	0.01228***		0.3567	0.2464	
	0.0260	0.0133**		-0.0382	0.0500	
ROE	0.0002	0.0017	ROE	0.0037	0.0024	
	0.0017	0.0013		0.0009	0.0036	
	-0.0791	0.0401		0.1970	0.1300	
	-0.0015	0.0423		0.2300	0.0694	
ID	-0.0830	0.0074		0.0213	0.2018	
	-0.0003	0.0024		0.0130	0.0029	
	-0.0101	0.0037		0.0112	0.0504	
11 TI	0.0246	0.0073	11 TT	0.0002	0.0004	
	0.7785	0.1861***	DI1	0.0292	1 3562	
MCS	-0.2244	0.0745***	MCS	0.0720	0.4153	
CFR	0.3014	0.1666*	CER	0.1072	0.4155	
CCF	0.5014	0.1000	CCF	0.0364	1.0058	
	0.3835	0.2023		-0.4094	1.50056	
CSP	0.0346	0.1505***	CSP	-0.4094	1.5102	
CEUR	0.5340	0.1335	CEUR	-0.0330	0.8503	
CNOAM	0.5400	0.1389***	CNOAM	0.4377	0.9462	
CASIA	0.5324	0.1693***	CASIA	-0.3623	0.9402	
	0.1412	0.1688	F20	0.4080	0.1065***	
CLS	0.1412	0.0046	SC SC	0.0034	0.1005	
$\frac{OLS}{B^2}$	0.6312	0.0040	$\frac{B^2}{B^2}$	0.0054	0.0021	
N	462		N	462		
Specification t	ests		11	102		
Test for signifi	$\frac{c_{313}}{c_{313}}$	uments in first-stage reg	ression			
rest for signin	F(2 425)	12 40***	1 0551011	F(2, 425)	0.60	
Over-identifies	1(2, 420)	validity of instruments (1	HO: instrumente	1(2, 420)	us)	
C . Ci - iu chillice	Chi-sa(1)	1.4049	iio. moti umenta	Chi-sa(1)	1.8925	
	Sm-54(1)	1.1010		Sm-94(1)	1.0020	

Spain							
Each equation is estimated separately using the 2SLS estimator.							
	Loan supply	regression (LNSPRD)		Loan demar	d regression (LNAMT)		
	Coefficient	Standard Error		Coefficient	Standard Error		
CONSTANT	3.1248	1.2269^{**}	CONSTANT	16.0607	1.9661***		
LNAMT	-0.0862	0.0761	LNSPRD	-1.1871	0.5680**		
MAT	0.1512	0.0558***	MAT	0.3937	0.1361***		
SEC	0.2988	0.0704^{***}	SEC	0.0522	0.2471		
CRCY	0.0621	0.0942	CRCY	0.4618	0.1871**		
PRIME	0.2633	0.1423*	PRIME	1.1887	0.2403***		
F8	-0.1682	0.1052	F8	0.0251	0.2891		
F9	-0.0148	0.1045	F9	0.1207	0.2482		
F10	-0.3947	0.1980**	F10	0.1660	0.4645		
F11	0.0879	0.1294	F11	0.4802	0.3297		
F12	0.3835	0.1779**	F12	0.6485	0.4682		
F13	-0.2967	0.0704^{***}	F13	-0.1176	0.2282		
F14	-0.4204	0.0948***	F14	-0.3975	0.3084		
F16	0.1703	0.1425	F16	1.4737	0.2287***		
F18	0.3072	0.1658^{*}	F18	-0.4777	0.5018		
F19	-0.4312	0.1199***	F19	-1.0949	0.3550***		
ТА	-0.0505	0.0314	ТА	0.2087	0.0647***		
LTD	0.0260	0.0118**	LTD	0.0390	0.0314		
ROE	-0.0003	0.0010	ROE	0.0016	0.0022		
PPE	0.0003	0.0010	PPE	0.0048	0.0023**		
LLR	0.0316	0.0334	LLR	-0.0787	0.0898		
T1	0.2186	0.0424***	T1	0.2172	0.1268*		
BOA	-0.0922	0.1393	ROA	0.1954	0.3167		
IB	-0.0022	0.0008	IB	-0.0011	0.0016		
I.A	-0.0104	0.0059*	LA	0.0288	0.0151*		
	0.0104	0.0033	II	0.0288	0.0204		
TI.	-0.003	0.0074	TI.	-0.0388	0.0204		
DI 1	0.4520	0.11/2***		0.3553	0.0104		
MCS	-0.4525	0.0754	MCS	-0.3333	0.1657**		
	0.0922	0.0734		1 4049	0.1057		
CFR	0.1008	0.2241	CCE	1.4942	0.5967		
CGE	0.1434	0.2046	CGE	1.0212	0.0575		
	0.0117	0.1495***	CII	1.3077	0.6951		
CSP	0.4968	0.1420	CSP	0.4581	0.5590		
CEUR	0.4508	0.0070**	CEUR	1.4050	0.4907		
CNOAM	0.4582	0.2278**	CNUAM	1.6646	0.4494		
CASIA	0.3483	0.2109*	CASIA	1.6761	0.4953***		
GI	0.4465	0.1385***	F20	-0.6256	0.1209***		
CLS	0.0012	0.0042	SG	0.0012	0.0024		
R^2	0.7102		R^2	0.6021			
N	640		N	640			
Specification t	ests						
Test for signifi	icance of instr	ruments in first-stage reg	ression				
	F(2, 601)	19.04***		F(2, 601)	9.45***		
Over-identifica	ation test for $Chi ca(1)$	validity of instruments (1	H0: instruments	s are exogeno	us)		
	Oni-sq(1)	2.0209		Oni-sq(1)	0.2090		

D GMM estimations

France						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	6.4273	0.9142^{***}	CONSTANT	19.2171	1.5298***	
LNAMT	-0.0096	0.0583	LNSPRD	-0.5584	0.2254**	
MAT	0.0175	0.0374	MAT	0.3352	0.0536^{***}	
SEC	0.4552	0.0334^{***}	\mathbf{SEC}	0.0447	0.1225	
CRCY	-0.1972	0.0435^{***}	CRCY	0.0755	0.0870	
PRIME	0.0726	0.0396^{*}	PRIME	0.3844	0.0583^{***}	
F8	-0.2191	0.0844^{***}	$\mathbf{F8}$	0.6476	0.1345***	
F9	-0.0436	0.0718	F9	0.0987	0.1202	
F10	-0.5245	0.1146***	F10	0.6892	0.2061***	
F11	0.1709	0.0872**	F11	0.3803	0.1691**	
F12	0.0467	0.1481	F12	1.6582	0.2305***	
F13	-0.1901	0.0543***	F13	0.1678	0.1032	
F14	-0.1932	0.0576***	F14	0.0165	0.1121	
F15	-0.0899	0.0592	F15	0.0109	0.1073	
F16	0.0676	0.0861	F16	1 1043	0 1482***	
F17	-0.0750	0.0780	F17	0 3443	0.1260***	
F18	0.0750	0.0806	F18	-0.3114	0.1203	
F10	0.1344	0.0800	F10	0.2440	0.1235	
	0.0001	0.0140***		0.0020	0.0250***	
	-0.0901	0.0140		0.0929	0.0259	
	0.0150	0.005		0.0280	0.0095	
NUE	-0.0005	0.0005	NUE	0.0004	0.0011	
	0.0039	0.0005		0.0006	0.0012	
	-0.0015	0.0190		-0.0817	0.0279***	
	0.0005	0.0165		0.0360	0.0234	
ROA	-0.7979	0.0852***	ROA	-0.2139	0.2427	
IB	-0.0013	0.0012	IB	-0.0085	0.0018***	
	-0.0040	0.0006***		-0.0059	0.0013***	
11	-0.0002	0.0008	11	0.0003	0.0012	
TL	0.0023	0.0015	TL	0.0100	0.0022***	
PL1	-0.2920	0.0404^{***}	PL1	-0.1094	0.0887	
MCS	-0.0765	0.0354^{**}	MCS	0.4119	0.0472^{***}	
\mathbf{CFR}	0.3151	0.1212^{***}	\mathbf{CFR}	0.1504	0.2952	
CGE	0.4755	0.1200^{***}	CGE	0.7948	0.2853***	
CIT	0.3667	0.2605	CIT	0.5287	0.4477	
\mathbf{CSP}	0.9513	0.1052^{***}	CSP	0.9541	0.3169^{***}	
CEUR	0.5592	0.0995***	CEUR	1.0035	0.2175***	
CNOAM	0.4588	0.0730***	CNOAM	0.6292	0.1761^{***}	
CASIA	0.5935	0.0764^{***}	CASIA	0.4593	0.2108**	
GI	0.1995	0.0696***	F20	-0.4725	0.0479***	
CLS	0.0132	0.0022***	\mathbf{SG}	-0.0003	0.0002*	
R^2	0.6057		R^2	0.4033		
Ν	2406		Ν	2406		
Specification t	ests					
Test for signifi	icance of instr	ruments in first-stage reg	ression			
rest for signin	F(2 2365)	59 78***	1 0001011	F(2, 2365)	99 61***	
Over-identifier	1(2, 2000)	validity of instruments (HO. instruments	1(2, 2000)	22.01 us)	
J ver-identifica	$Chi_{eq}(1)$	0.5745	110. mot uments	$Chi_{sq}(1)$	0.0001	
	Ulli-sq(1)	0.0140		Uni-sq(1)	0.0001	

Table 8: GMM results for the period 2005-2013

Germany							
Each equation is estimated separately using the GMM estimator.							
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)		
	Coefficient	Standard Error		Coefficient	Standard Error		
CONSTANT	5.5954	1.1363***	CONSTANT	14.4398	1.7628***		
LNAMT	-0.0076	0.0843	LNSPRD	-0.1908	0.2857		
MAT	0.0279	0.0527	MAT	0.4751	0.0629***		
SEC	0.5368	0.0436^{***}	SEC	-0.2006	0.1750		
CRCY	-0.1654	0.0534^{***}	CRCY	0.2399	0.0970**		
PRIME	0.0500	0.0418	PRIME	0.2771	0.0617^{***}		
F8	-0.3667	0.0910^{***}	F8	0.4632	0.1938^{**}		
F9	-0.1256	0.0798	F9	-0.0852	0.1628		
F10	-0.6639	0.1463^{***}	F10	1.0113	0.2809***		
F11	-0.0668	0.0912	F11	0.3495	0.1767**		
F12	-0.2767	0.1900	F12	1.4128	0.2696***		
F13	-0.2938	0.0579^{***}	F13	0.1373	0.1300		
F14	-0.2903	0.0709^{***}	F14	-0.0795	0.1477		
F15	-0.1915	0.0659***	F15	-0.0212	0.1241		
F16	-0.0341	0.1151	F16	1.2119	0.1458^{***}		
F17	-0.1722	0.1035^{*}	F17	0.5466	0.1989***		
F18	-0.4119	0.1439***	F18	-0.6026	0.2693**		
F19	-0.1340	0.1151	F19	-0.4035	0.2170*		
TA	-0.0908	0.0194***	ТА	0.1527	0.0335***		
LTD	0.0123	0.0063*	LTD	0.0388	0.0116***		
ROE	0.0007	0.0005	ROE	0.0022	0.0008***		
PPE	0.0029	0.0005***	PPE	0.0022	0.0012*		
LLR	-0.0764	0.0275***	LLR	0.0085	0.0553		
T1	0.0626	0.0155***	T1	0.0908	0.0258^{***}		
ROA	-0.3729	0.0952***	ROA	-0.0231	0.2010		
IB	-0.0005	0.0004	IB	-0.0026	0.0007***		
\mathbf{LA}	-0.0007	0.0010	\mathbf{LA}	0.0030	0.0016*		
II	-0.0004	0.0001^{***}	II	-0.0003	0.0002		
\mathbf{TL}	-0.0001	0.0015	\mathbf{TL}	0.0038	0.0028		
PL1	-0.5534	0.0579***	PL1	-0.0906	0.1832		
MCS	0.0101	0.0424	MCS	0.3540	0.0553***		
CFR	0.1105	0.1372	CFR	0.6506	0.2156***		
CGE	0.4387	0.1198***	CGE	0.1956	0.2869		
CIT	0.9654	0.2644^{***}	CIT	0.9737	0.5402^{*}		
\mathbf{CSP}	0.9518	0.1292***	CSP	-0.4194	0.4073		
CEUR	0.4405	0.0957***	CEUR	0.5442	0.2626**		
CNOAM	0.6268	0.0751^{***}	CNOAM	0.3644	0.2747		
CASIA	0.6797	0.0914^{***}	CASIA	-0.0785	0.2981		
GI	0.4569	0.0783***	F20	-0.3873	0.0539***		
CLS	0.0063	0.0029**	\mathbf{SG}	0.0001	0.0003		
R^2	0.6215		R^2	0.4183			
Ν	1891		Ν	1891			
Specification t	ests						
Test for signifi	cance of instr	uments in first-stage reg	ression				
0	F(2, 1850)	24.13***		F(2, 1850)	17.80***		
Over-identifica	tion test for	validity of instruments (1	H0: instruments	are exogeno	us)		
	Chi-sq(1)	0.0031		Chi-sq(1)	0.8351		

Italy					
Each equation is	estimated sepa	rately using the GMM estin	nator.		
	Loan supply	regression (LNSPRD)		Loan deman	nd regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	6.4004	1.4188^{***}	CONSTANT	12.0054	9.7479
LNAMT	-0.0001	0.1169	LNSPRD	-0.2543	1.5308
\mathbf{MAT}	-0.1153	0.0710	MAT	-0.0354	0.1846
SEC	0.4937	0.0855^{***}	\mathbf{SEC}	-0.0072	0.7920
CRCY	-0.1299	0.0956	CRCY	0.4667	0.2903
PRIME	0.1912	0.1035*	PRIME	0.5044	0.3091
F8	-0.3884	0.0941^{***}	F8	0.0786	0.6194
F9	0.0037	0.1020	F9	-0.2523	0.1984
F10	-0.8452	0.1605^{***}	F10	-0.2086	1.2623
F13	-0.1535	0.0884^{*}	F13	0.2058	0.3122
F14	-0.2411	0.1056^{**}	F14	0.1210	0.4096
F15	-0.2280	0.1222^{*}	F15	-0.3806	0.4319
F16	-0.1472	0.1583	F16	1.0133	0.3097^{***}
F19	0.0412	0.2298	F19	-0.1800	0.4221
TA	-0.1414	0.0429***	TA	0.2558	0.2253
LTD	0.0258	0.0131**	LTD	-0.0216	0.0467
ROE	-0.0003	0.0016	ROE	0.0038	0.0021*
PPE	0.0016	0.0013	PPE	0.0022	0.0032
LLR	-0.0868	0.0458*	LLR	0.1368	0.1400
T1	0.0011	0.0425	T1	0.2240	0.0630***
ROA	-0.0908	0.0878	ROA	0.2817	0.1873
IB	-0.0007	0.0024	IB	0.0129	0.0028***
\mathbf{LA}	-0.0147	0.0056***	\mathbf{LA}	-0.0020	0.0293
II	0.0253	0.0073***	II	0.0235	0.0464
\mathbf{TL}	-0.0022	0.0059	\mathbf{TL}	0.0264	0.0082***
PL1	-0.7970	0.1881***	PL1	0.0851	1.2308
MCS	-0.2333	0.0743^{***}	MCS	0.0196	0.3792
CFR	0.2723	0.1669	CFR	0.9072	0.5428*
CGE	0.5600	0.2019***	CGE	1.0749	0.8904
CIT	0.8331	0.2041***	CIT	0.1260	1.4104
\mathbf{CSP}	0.9158	0.1582^{***}	CSP	0.5898	1.4343
CEUR	0.5144	0.1421***	CEUR	0.7888	0.7790
CNOAM	0.5732	0.1385^{***}	CNOAM	0.5349	0.8551
CASIA	0.5145	0.1699^{***}	CASIA	0.0110	0.8600
GI	0.1384	0.1689	F20	-0.5348	0.0995***
CLS	0.0002	0.0046	\mathbf{SG}	0.0027	0.0021
R^2	0.6280		R^2	0.5330	
Ν	462		Ν	462	
Specification t	ests				
Test for signifi	cance of instr	uments in first-stage reg	ression		
0	F(2, 425)	12.40***		F(2, 425)	0.60
Over-identifica	tion test for	validity of instruments (1	H0: instruments	are exogeno	us)
	Chi-sq(1)	1.1923		Chi-sq(1)	2.4070
	• ` ` /			• 、 /	

Spain							
Each equation is estimated separately using the GMM estimator.							
	Loan supply	regression (LNSPRD)		Loan demar	d regression (LNAMT)		
	Coefficient	Standard Error		Coefficient	Standard Error		
CONSTANT	2.9021	1.2142**	CONSTANT	16.0339	1.9487***		
LNAMT	-0.0699	0.0754	LNSPRD	-1.1559	0.5610**		
MAT	0.1442	0.0553***	MAT	0.3852	0.1346***		
SEC	0.3076	0.0702***	SEC	0.0356	0.2444		
CRCY	0.0473	0.0934	CRCY	0.4534	0.1855**		
PRIME	0.2601	0.1421*	PRIME	1.1902	0.2376***		
$\mathbf{F8}$	-0.1678	0.1056	F8	0.0409	0.2872		
F9	-0.0211	0.1048	F9	0.1297	0.2468		
F10	-0.3896	0.1987**	F10	0.1835	0.4605		
F11	0.0915	0.1296	F11	0.5051	0.3268		
F12	0.3697	0.1767**	F12	0.6304	0.4641		
F13	-0.3021	0.0703***	F13	-0.1126	0.2257		
F14	-0.4075	0.0947***	F14	-0.3915	0.3060		
F16	0.1565	0.1424	F16	1.4748	0.2278***		
F18	0.3176	0.1651*	F18	-0.4935	0.4985		
F19	-0.4066	0.1190***	F19	-1.0713	0.3516***		
ТА	-0.0584	0.0310*	ТА	0.2130	0.0642***		
LTD	0.0260	0.0119**	LTD	0.0356	0.0311		
BOE	-0.0001	0.0010	BOE	0.0015	0.0022		
PPE	0.0002	0.0010	PPE	0.0049	0.0023**		
LLR	0.0301	0.0335	LLR	-0.0831	0.0894		
	0.0001	0.0419***	T1	0.2091	0.1254*		
BOA	-0 1124	0.1380	ROA	0.2001	0.3147		
IB	-0.0004	0.0008	IB	-0.0011	0.0016		
	0.0108	0.0050*		0.0011	0.0140**		
	-0.0108	0.0033		0.0292	0.0145		
11 TT	0.0207	0.0075		0.0027	0.0202		
DI 1	0.4472	0.1152***		0.3285	0.3281		
MCS	-0.4472	0.0750	MCS	-0.3285	0.5261		
	0.0805	0.0750		1 5411	0.1040		
CFR	0.0344	0.2200	CCE	1.0411	0.5920***		
CGE	0.1034	0.2010	CGE	1.0100	0.0012		
	0.5808	0.1418***		1.3313	0.6900*		
CSP	0.4852	0.1413***	CSP	0.4357	0.5532		
CEUR	0.4223	0.1683**	CEUR	1.3761	0.4492***		
CNOAM	0.4356	0.2282*	CNOAM	1.6324	0.4432***		
CASIA	0.3075	0.2084	CASIA	1.6681	0.4931***		
GI	0.4721	0.1365***	F20	-0.6405	0.1190***		
CLS	0.0020	0.0041	SG	0.0013	0.0024		
R^2	0.7112		R^2	0.6065			
N	640		N	640			
Specification t	ests						
Test for signifi	icance of instr	uments in first-stage reg	ression				
	F(2, 601)	19.04^{***}		F(2, 601)	9.45***		
Over-identifica	Chi-sc(1)	validity of instruments (1	H0: instruments	s are exogenor	us) 0.2538		
	Um-sq(1)	2.1001		Uni-sq(1)	0.2000		

E 3SLS estimations without US companies

France					
The system is jo	intly estimated	using the 3SLS estimator. U	S companies have	e been removed	from the sample.
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	7.3619	1.0098***	CONSTANT	17.1301	1.7510***
LNAMT	-0.1105	0.0598*	LNSPRD	-0.0895	0.2972
MAT	0.1101	0.0360^{***}	MAT	0.2742	0.0598^{***}
\mathbf{SEC}	0.3350	0.0514^{***}	\mathbf{SEC}	0.0283	0.1376
CRCY	-0.1809	0.0508^{***}	CRCY	0.3430	0.1079^{***}
PRIME	-0.0734	0.1730	PRIME	0.6093	0.3006**
$\mathbf{F8}$	-0.1083	0.0893	F8	0.7196	0.1454^{***}
F9	-0.0291	0.0737	F9	0.1994	0.1287
F10	-0.4238	0.1296^{***}	F10	0.6918	0.2634^{***}
F11	0.1729	0.1127	F11	-0.0749	0.2036
F12	0.1981	0.1674	F12	1.3819	0.2497***
F13	-0.2818	0.0728***	F13	0.4429	0.1563^{***}
F14	-0.3023	0.0703***	F14	0.3820	0.1601**
F15	-0.3155	0.0895***	F15	0.0921	0.1864
F16	0.1216	0.1165	F16	1.3242	0.1636^{***}
F17	-0.2537	0.1107**	F17	0.6565	0.2131***
F18	-0.1261	0.0870	F18	-0.1318	0.1596
F19	-0.2302	0.0874^{***}	F19	-0.1577	0.1700
ТА	-0.0585	0.0123***	TA	0.0936	0.0268***
LTD	0.0154	0.0061^{**}	LTD	0.0266	0.0109**
ROE	-0.0004	0.0007	ROE	0.0006	0.0012
PPE	0.0037	0.0007***	PPE	0.0024	0.0016
LLR	0.0202	0.0242	LLR	-0.1113	0.0415***
T1	0.0187	0.0228	T1	0.0200	0.0332
ROA	-0.8204	0.1072***	ROA	0.1235	0.3415
IB	-0.0007	0.0014	IB	-0.0086	0.0024***
LA	-0.0046	0.0007***	LA	-0.0052	0.0018***
II	-0.0003	0.0009	II	-0.0026	0.0015*
TL	0.0078	0.0065	TL	0.0141	0.0117
PL1	-0.3040	0.0539***	PL1	0.1075	0 1334
MCS	-0.0614	0.0440	MCS	0.4528	0.0734***
CFR	0.1608	0.1270	CFR	0.0542	0.2401
CGE	0.3988	0 1382***	CGE	0.6880	0.2745**
CIT	0.2347	0.2043	CIT	0.3784	0.3729
CSP	0.2541	0.1148***	CSP	0.0104	0.3626
CEUR	0.5282	0 1081***	CEUR	0.4555	0.2515***
CASIA	0.0202	0.0838***	CASIA	0.7525	0.2432
CI	0.1285	0.0990	F20	-0.5937	0.0651***
	0.1285	0.0037***	SC	-0.3937	0.0005
	0.0190	0.0037	<u></u> <u></u> <u></u>	-0.0003	0.0003
N	1305		N	1305	
Specification +	1090		1 N	1999	
Test for simil	cata	umonto in fuct ato	nogaion		
rest for signifi	$E_{(2, 1255)}$	uments in nrst-stage reg	ression	E(9, 1955)	16 56***
Own identifier	F(2, 1355)	40.01 and in at more set of the	IO. in at muse	г (2, 1355)	10.30
Over-identifica	Chi ar(1)	o 2567	no: instruments	Chi ar(1)	us <i>j</i>
	Oni-sq(1)	0.0007		Oni-sq(1)	0.3049

Table 9: 3SLS results for the period 2005-2013 (without US companies)

Germany						
The system is jointly estimated using the 3SLS estimator. US companies have been removed from the sample.						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
CONCEANE	Coefficient	Standard Error	CONGELNE	Coefficient	Standard Error	
CONSTANT	8.3740	1.6342***	CONSTANT	9.1790	2.4242***	
LNAMT	-0.2439	0.1169**	LNSPRD	0.8680	0.4535*	
MAT	0.2802	0.0714***	MAT	0.3658	0.1067***	
SEC	0.4006	0.0672^{***}	SEC	-0.5297	0.2480**	
CRCY	-0.0443	0.0699	CRCY	0.4792	0.1300***	
PRIME	0.3674	0.1739**	PRIME	0.2634	0.3494	
F8	-0.3325	0.1315**	$\mathbf{F8}$	1.0823	0.3123***	
F9	-0.2022	0.1034*	F9	0.3591	0.2364	
F10	-0.3603	0.1877*	F10	1.4733	0.4159***	
F11	0.1128	0.1640	F11	0.5926	0.3157*	
F12	-0.1727	0.2294	F12	1.0773	0.4612^{**}	
F13	-0.3609	0.0825^{***}	F13	0.6911	0.2465^{***}	
F14	-0.3130	0.0843^{***}	F14	0.6327	0.2412^{***}	
F15	-0.4335	0.1081^{***}	F15	0.2961	0.2832	
F16	0.3142	0.2214	F16	2.0016	0.2328^{***}	
F17	0.0451	0.2213	F17	1.7528	0.3542^{***}	
F18	-0.6565	0.1585^{***}	F18	0.0471	0.3747	
F19	-0.4103	0.1368^{***}	F19	-0.1958	0.2794	
TA	-0.0364	0.0226	TA	0.2062	0.0445***	
LTD	0.0152	0.0095	LTD	0.0294	0.0177^{*}	
ROE	0.0030	0.0010^{***}	ROE	-0.0012	0.0025	
PPE	0.0032	0.0009^{***}	PPE	0.0006	0.0022	
LLR	-0.1935	0.0390***	LLR	0.1361	0.1280	
T1	0.1008	0.0218***	T1	-0.0534	0.0666	
ROA	-0.3226	0.1324**	ROA	0.3626	0.3476	
IB	-0.0020	0.0006***	IB	0.0007	0.0015	
\mathbf{LA}	-0.0014	0.0012	$\mathbf{L}\mathbf{A}$	0.0026	0.0026	
II	-0.0004	0.0002**	II	0.0004	0.0004	
\mathbf{TL}	-0.0072	0.0069	\mathbf{TL}	-0.0066	0.0139	
PL1	-0.6580	0.0777***	PL1	0.3323	0.3154	
MCS	0.1006	0.0780	MCS	0.5527	0.0997***	
CFR	0.0095	0.1909	CFR	0.7719	0.3566**	
CGE	0.1301	0.1521	CGE	-0.2715	0.3361	
CIT	0.8348	0.2878***	CIT	0.0439	0.6795	
\mathbf{CSP}	0.5468	0.1795***	CSP	-1.4888	0.4879^{***}	
CEUR	0.3074	0.1281**	CEUR	0.2509	0.2916	
CASIA	0.3992	0.1180***	CASIA	-0.6841	0.3778^{*}	
GI	0.3288	0.1241***	F20	-0.4796	0.1047***	
CLS	0.0228	0.0056***	SG	0.0008	0.0008	
R^2	0.6018	-	R^2	0.2000	-	
N	899		N	899		
Specification t	ests					
Test for signifi	cance of instr	ruments in first-stage reg	rression			
	F(2, 859)	12.18***	,	F(2, 859)	9.83***	
Over-identifics	$\frac{1}{1}$ test for	validity of instruments (H0: instruments	s are exogeno	us)	
	Chi-sq(1)	0.1523		Chi-sq(1)	0.5278	

Italy						
The system is jointly estimated using the 3SLS estimator. US companies have been removed from the sample.						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	10.4960	2.1321***	CONSTANT	3.5345	9.5104	
LNAMT	-0.3749	0.1587**	LNSPRD	1.4903	1.6672	
MAT	-0.0235	0.0821	MAT	0.1529	0.1973	
SEC	0.4773	0.1051^{***}	SEC	-0.4132	0.7338	
CRCY	-0.0384	0.1431	CRCY	1.0240	0.4928^{**}	
PRIME	0.1679	0.5049	PRIME	0.1159	1.0344	
F8	-0.1346	0.1685	F8	0.6266	0.5068	
F9	0.0172	0.1475	F9	-0.2180	0.3244	
F10	-0.6502	0.2883^{**}	F10	0.3887	1.1031	
F13	-0.0145	0.1365	F13	0.7491	0.4207^{*}	
F14	-0.2134	0.1443	F14	0.8935	0.6519	
F15	-0.5456	0.1862^{***}	F15	0.3792	0.8163	
F16	-0.1831	0.2747	F16	2.2436	1.1195^{**}	
F19	-0.1799	0.2219	F19	-0.3710	0.4484	
TA	-0.0792	0.0558	TA	0.5228	0.3039*	
LTD	0.0376	0.0162^{**}	LTD	-0.0792	0.0825	
ROE	0.0033	0.0023	ROE	0.0008	0.0062	
PPE	0.0030	0.0018	PPE	0.0011	0.0044	
LLR	-0.0089	0.0681	LLR	0.2735	0.1850	
T1	0.1047	0.0649	T1	-0.0126	0.1836	
ROA	-0.0235	0.1232	ROA	0.1332	0.2441	
IB	0.0021	0.0035	IB	0.0187	0.0072***	
$\mathbf{L}\mathbf{A}$	-0.0177	0.0061^{***}	$\mathbf{L}\mathbf{A}$	0.0207	0.0329	
II	0.0282	0.0092^{***}	II	-0.0455	0.0599	
\mathbf{TL}	0.0123	0.0153	\mathbf{TL}	0.0267	0.0296	
PL1	-0.4412	0.1838**	PL1	0.5414	0.7972	
MCS	-0.2652	0.0935***	MCS	0.7996	0.6208	
CFR	0.4491	0.2614*	CFR	0.8235	0.5053	
CGE	0.5623	0.2236**	CGE	0.2405	0.7691	
CIT	0.5924	0.2652**	CIT	-1.3668	1.4393	
CSP	0.7788	0.1977^{***}	CSP	-0.9609	1.4168	
CEUR	0.5949	0.2029***	CEUR	0.3897	0.6461	
CASIA	0.3654	0.1927^{*}	CASIA	-0.5123	0.7917	
GI	0.1997	0.2105	F20	-0.8208	0.3481**	
CLS	0.0122	0.0073^{*}	\mathbf{SG}	0.0036	0.0028	
R^2	0.5362		R^2	0.2276		
Ν	312		Ν	312		
Specification t	ests					
Test for signifi	cance of instr	uments in first-stage reg	ression			
	F(2, 276)	7.16***		F(2, 276)	0.95	
Over-identifica	tion test for	validity of instruments (1	H0: instruments	are exogeno	us)	
	Chi-sq(1)	0.3520		Chi-sq(1)	1.1501	

Spain					
The system is jointly estimated using the 3SLS estimator. US companies have been removed from the sample.					
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	3.9121	1.2530^{***}	CONSTANT	16.2566	2.0260^{***}
LNAMT	-0.1703	0.0779**	LNSPRD	-1.4407	0.6041^{**}
MAT	0.1928	0.0479^{***}	MAT	0.4432	0.1408***
SEC	0.2853	0.0743^{***}	SEC	0.1805	0.2744
CRCY	0.1343	0.0915	CRCY	0.5650	0.1951^{***}
PRIME	-0.5059	0.6603	PRIME	0.9486	1.6465
F8	-0.1878	0.1078*	F8	-0.0948	0.2993
F9	-0.0304	0.1016	F9	0.0951	0.2466
F10	-0.3368	0.2051*	F10	0.0117	0.5708
F11	0.0781	0.1381	F11	0.4022	0.3315
F12	0.3904	0.2143^{*}	F12	0.4526	0.5837
F13	-0.2183	0.0748^{***}	F13	-0.1522	0.2337
F14	-0.4194	0.1044^{***}	F14	-0.4150	0.3676
F16	0.2872	0.1558^{*}	F16	1.5832	0.2822***
F18	0.2194	0.1742	F18	-0.3073	0.4560
F19	-0.5046	0.1252***	F19	-1.1743	0.3765***
TA	-0.0297	0.0317	ТА	0.1806	0.0702***
LTD	0.0300	0.0132**	LTD	0.0526	0.0374
ROE	0.0003	0.0012	ROE	0.0023	0.0029
PPE	0.0008	0.0011	PPE	0.0044	0.0025*
LLR	0.0110	0.0431	LLR	-0.0695	0.1027
T1	0.2304	0.0420***	T1	0.3091	0.1389**
BOA	-0.0800	0.1576	BOA	0.1822	0.3800
IB	-0.0005	0.0008	IB	-0.0007	0.0019
	-0.0005	0.0073	I.A	0.0410	0.0155***
	0.0101	0.0075		0.0410	0.0220
11 TI	0.0131	0.0000	11 TI	-0.0019	0.0223
	0.2545	0.0138		0.2571	0.0502
MCS	-0.2343	0.0710	MCS	-0.2071	0.3023
CED	0.0058	0.0710	CED	1.6919	0.1722
CCE	0.1009	0.2408	CCE	1.0212	0.4333
	0.1075	0.2272		1.1200	0.3037**
CSD	0.0147	0.2733	CSD	1.0201	0.7001
CEUD	0.4029	0.1926***	CEUD	0.8194	0.3320
CEUR	0.4942	0.1830	CEUR	1.0497	0.4907
CASIA	0.4771	0.2845*	CASIA	1.8841	0.6812***
GI	0.3483	0.1265****	F20	-0.5490	0.1537
CLS	0.0016	0.0033	SG	-0.0018	0.0021
<i>K</i> [*]	0.6992		<i>K</i> ⁻	0.5421	
N Ĩ	565		N	565	
Specification t	ests				
Test for signifi	cance of instr	uments in first-stage reg	ression		
	F(2, 527)	16.74^{***}		F(2, 527)	8.26***
Over-identifica	ation test for	validity of instruments (1	H0: instruments	s are exogeno	us)
	Chi-sq(1)	1.6617		Chi-sq(1)	0.1483

F 3SLS estimations, bank by bank

Société Générale						
	Loan supply	regression (LNSPRD)	_	Loan demand regression (LNAMT)		
	Coefficient	Standard Error	-	Coefficient	Standard Error	
CONSTANT	4.4384	2.9486	CONSTANT	18.5282	9.4450**	
LNAMT	0.2762	0.1684	LNSPRD	-0.5872	0.9036	
MAT	0.0150	0.0686	MAT	-0.0635	0.0913	
SEC	0.4923	0.0767***	SEC	0.1425	0.4366	
CRCY	-0.3052	0.1280**	CRCY	-0.2275	0.3351	
PRIME	0.1463	0.0935	PRIME	0.3645	0.2151*	
F8	-0.4498	0.2567*	F8	0.7505	0.3265**	
F9	0.0275	0.2129	F9	0.3103	0.2944	
F10	-0.6428	0.2581^{**}	F10	0.2771	0.5353	
F11	0.0177	0.2571	F11	0.8797	0.3793**	
F12	0.2454	0.3433	F12	0.9559	0.5711*	
F13	-0.1862	0.1352	F13	0.3803	0.1684^{**}	
F14	0.2812	0.1530^{*}	F14	-0.0600	0.2769	
F15	0.1421	0.1418	F15	0.2215	0.2420	
F16	-0.1587	0.2105	F16	0.8803	0.2483***	
F17	0.2017	0.1925	F17	0.2088	0.3241	
F18	0.6322	0.2181***	F18	-0.2866	0.5022	
F19	-0.3661	0.2859	F19	1.1102	0.2845***	
TA	-0.1420	0.0412***	ТА	0.1581	0.0794**	
LTD	-0.0043	0.0123	LTD	-0.0051	0.0170	
BOE	-0.0036	0.0017**	BOE	0.0039	0.0029	
PPE	0.0054	0.0013***	PPE	-0.0020	0.0041	
LLR	-0.0068	0.0597	LLR	-0.1824	0.0819**	
	0.1716	0.0811**		0.0745	0 1997	
BOA	-0.8434	0.4795*	ROA	-0.2882	0.4944	
IB	-0.0483	0.0285*	IB	0.0143	0.0602	
LΔ	-0.0228	0.0141	I.Δ	-0.0028	0.0311	
	0.0013	0.0118		0.0028	0.0125	
TI.	0.0013	0.0037	TI.	0.0070	0.0125	
PL1	-0.2475	0.0771***	PL1	-0.1090	0.2460	
MCS	0.2475	0.1189*	MCS	0.5400	0.2400	
CEP	-0.2080	0.1102		0.0409	0.2021	
CFR	-0.2900	0.2014	CCF	-0.0003	0.3921	
	0.1952	0.2455		0.0002	0.4003	
CSD	0.4079	0.3032	CSD	0.2462	0.0380	
CEUD	0.7009	0.2395	CEUD	0.4379	0.0070	
CNOAM	0.0362	0.2420	CNOAM	0.7270	0.3039	
CASIA	-0.1491	0.1707	CASIA	0.2312	0.2090	
	0.0514	0.2397	Dasia	0.0075	0.3994	
GI	0.4709	0.3450	F20	-0.4467	0.1317****	
CLS	-0.0062	0.0047	<u>5G</u>	-0.0004	0.0005	
<i>к"</i>	0.5278		К" N	0.4721		
	553		IN	553		
Specification t	ests					
Test for signifi	icance of instr	ruments in first-stage reg	gression		1.10	
o	F(2, 512)	8.49***		F(2, 512)	1.49	
Over-identifica	ation test for	validity of instruments (H0: instruments	s are exogeno	us)	
	Chi-sq(1)	0.4639		Chi-sq(1)	0.0185	

Table 10: 3SLS results for the period 2005-2013 (bank by bank)

BNP Paribas					
The system is jointly estimated using the 3SLS estimator.					
	Loan supply	regression (LNSPRD)		Loan demar	nd regression (LNAMT)
	Coefficient	Standard Error		Coefficient	Standard Error
CONSTANT	7.7069	1.0286***	CONSTANT	18.3122	4.4392***
LNAMT	0.0142	0.0689	LNSPRD	-0.7872	0.6053
MAT	0.0832	0.0375**	MAT	0.3260	0.0794***
SEC	0.4755	0.0427^{***}	SEC	0.0840	0.2959
CRCY	-0.2580	0.0494^{***}	CRCY	-0.0166	0.1761
PRIME	0.0740	0.0493	PRIME	0.4607	0.0829***
F8	-0.3959	0.0983^{***}	F8	0.4777	0.2755^{*}
F9	-0.2260	0.0815^{***}	F9	-0.0925	0.2024
F10	-0.5601	0.1230***	F10	0.5161	0.3804
F11	0.0642	0.1065	F11	0.2471	0.1958
F12	-0.1205	0.1827	F12	1.6529	0.2583***
F13	-0.1602	0.0608***	F13	0.0765	0.1397
F14	-0.0731	0.0649	F14	0.0141	0.1240
F15	-0.0470	0.0689	F15	0.0508	0.1256
F16	0.0767	0.0970	F16	0.9950	0.1549***
F17	-0.0633	0.0916	F17	0.3140	0.1643*
F18	0.1750	0.1010*	F18	-0.3293	0.2079
F19	-0.1444	0.1179	F19	-0.0282	0.2270
TA	-0.1063	0.0155***	TA	0.0821	0.0649
LTD	0.0088	0.0060	LTD	0.0344	0.0115^{***}
ROE	-0.0003	0.0005	ROE	0.0007	0.0009
PPE	0.0042	0.0005^{***}	PPE	0.0007	0.0027
LLR	-0.8120	0.1056***	LLR	-1.0371	0.5535*
T1	0.2680	0.0431***	T1	0.4407	0.2017**
ROA	-3.5757	0.4055^{***}	ROA	-4.1336	2.3717*
IB	0.0065	0.0056	IB	0.0357	0.0115^{***}
$\mathbf{L}\mathbf{A}$	0.0028	0.0025	$\mathbf{L}\mathbf{A}$	0.0162	0.0049***
II	-0.0146	0.0050***	II	-0.0111	0.0108
\mathbf{TL}	0.0003	0.0018	\mathbf{TL}	0.0109	0.0029***
PL1	-0.2958	0.0414***	PL1	-0.1759	0.1917
MCS	-0.0678	0.0442	MCS	0.4395	0.0677***
CFR	0.0492	0.1366	CFR	-0.3455	0.2375
CGE	0.2196	0.1827	CGE	0.9453	0.3372***
CIT	0.3913	0.2725	CIT	0.1266	0.5154
CSP	0.5207	0.1573***	CSP	0.6489	0.4080
CEUR	0.2882	0.1131**	CEUR	0.6690	0.2534^{***}
CNOAM	0.1594	0.0868*	CNOAM	0.2095	0.1739
CASIA	0.3753	0.0959^{***}	CASIA	0.1281	0.2740
GI	-0.1479	0.1022	F20	-0.4322	0.0555***
CLS	0.0092	0.0031***	\mathbf{SG}	-0.0005	0.0003**
R^2	0.6521		R^2	0.3975	-
Ν	1615		Ν	1615	
Specification t	ests				
Test for signifi	cance of instr	uments in first-stage reg	ression		
	F(2, 1574)	31.25***		F(2, 1574)	4.40**
Over-identifica	tion test for	validity of instruments ()	H0: instruments	s are exogeno	us)
	Chi-sq(1)	0.0001		Chi-sq(1)	0.3357

Natixis						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	17.4178	2.0934^{***}	CONSTANT	3.6661	8.3869	
LNAMT	-0.0945	0.0797	LNSPRD	0.7058	0.6831	
MAT	0.0994	0.0633	MAT	0.4242	0.1166***	
SEC	0.4405	0.0615^{***}	SEC	-0.3402	0.3351	
CRCY	-0.2477	0.0703^{***}	CRCY	0.2953	0.2391	
PRIME	0.2245	0.0830***	PRIME	0.2161	0.1998	
$\mathbf{F8}$	-0.1652	0.1619	F8	1.3718	0.3069***	
F9	-0.0893	0.1370	F9	0.7674	0.2695***	
F10	-0.4650	0.2015**	F10	1.7174	0.5015^{***}	
F11	-0.0920	0.1625	F11	0.9183	0.3395***	
F12	-0.3038	0.3178	F12	2.7486	0.5897***	
F13	-0.3383	0.1013***	F13	0.7607	0.3180**	
F14	-0.2981	0.1070***	F14	0.6997	0.3217**	
F15	-0.2844	0.1096***	F15	0.4489	0.3065	
F16	0.1409	0.1407	F16	1.1545	0.2592***	
F17	-0.2227	0.1458	F17	0.9485	0.3396***	
F18	0.1063	0.1776	F18	-0.8535	0.3730**	
F19	-0.5393	0.1596***	F19	0.8372	0.5049*	
ТА	-0.0476	0.0223**	TA	0.2377	0.0555***	
LTD	0.0071	0.0091	LTD	0.0239	0.0188	
ROE	0.0010	0.0008	ROE	-0.0030	0.0019	
PPE	0.0040	0.0009***	PPE	-0.0039	0.0036	
LLR	-0.6074	0.1079***	LLR	0.5077	0.3163	
T1	-0.0294	0.0498	T1	-0.1234	0.0904	
ROA	1.4041	0.3770***	ROA	-1.0342	0.9479	
IB	-0.0805	0.0119^{***}	IB	0.0496	0.0414	
$\mathbf{L}\mathbf{A}$	-0.0282	0.0043***	$\mathbf{L}\mathbf{A}$	0.0181	0.0148	
II	0.0124	0.0032***	II	-0.0124	0.0096	
\mathbf{TL}	0.0004	0.0046	\mathbf{TL}	-0.0148	0.0095	
PL1	-0.3499	0.0735***	PL1	0.4549	0.2957	
MCS	-0.0296	0.0669	MCS	0.4672	0.1327***	
CFR	0.1407	0.1634	CFR	0.5871	0.3094*	
CGE			CGE			
CIT	0.5135	0.2544**	CIT	0.5374	0.5284	
CSP	0.7396	0.1668***	CSP	0.1652	0.5146	
CEUR	0.5517	0.1627***	CEUR	0.2960	0.4090	
CNOAM	0.1666	0.1396	CNOAM	0.5609	0.2510**	
CASIA	0.3722	0.1395***	CASIA	-0.3476	0.3365	
GI	-0.5658	0.1753***	F20	-0.6689	0.1224***	
CLS	0.0045	0.0043	SG	-0.0007	0.0005	
R^2	0.6841		R^2	0.3305		
N	575		N	575		
Specification t	ests			010		
Test for signif	cance of instr	numents in first-stage rea	ression			
Test IOL SIGUIL	F(2, 535)	on 51***	1 6351011	F(2, 535)	1 91**	
Over-identifier	10(2,000)	validity of instruments (HO. instrumente	1(2,000)	4.24 us)	
C ver-lacitemet	Chi-sa(1)	3.6192*	io. mon unemb	Chi-sa(1)	0.4911	

Crédit Agricole						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	7.4058	1.3237***	CONSTANT	19.3529	7.6143**	
LNAMT	-0.0514	0.0833	LNSPRD	-0.5705	1.1312	
MAT	0.1608	0.0456^{***}	MAT	0.3717	0.1808**	
SEC	0.3381	0.0563^{***}	SEC	0.1149	0.4029	
CRCY	-0.1222	0.0585^{**}	CRCY	0.1161	0.1815	
PRIME	0.1331	0.0933	PRIME	0.3436	0.2186	
F8	-0.1568	0.1094	$\mathbf{F8}$	0.6033	0.2739**	
F9	-0.0801	0.0850	F9	0.0360	0.1851	
F10	-0.3401	0.1486^{**}	F10	0.5013	0.4932	
F11	0.1538	0.1149	F11	0.1395	0.2710	
F12	0.2690	0.2094	F12	1.6117	0.3824^{***}	
F13	-0.3281	0.0950***	F13	0.3950	0.4321	
F14	-0.2674	0.0928***	F14	0.3664	0.3704	
F15	-0.1279	0.1044	F15	0.2556	0.2467	
F16	0.0181	0.1507	F16	1.2652	0.2177***	
F17	-0.2373	0.1274^{*}	F17	0.4514	0.3895	
F18	-0.1370	0.1104	F18	-0.0074	0.2642	
F19	-0.1822	0.1005^{*}	F19	-0.1500	0.2810	
TA	-0.0817	0.0173***	TA	0.0889	0.1038	
LTD	0.0197	0.0074^{***}	LTD	0.0316	0.0252	
ROE	0.0000	0.0008	ROE	-0.0005	0.0015	
PPE	0.0033	0.0008^{***}	PPE	0.0025	0.0040	
LLR	0.0474	0.0476	LLR	-0.0319	0.1011	
T1	-0.0875	0.0413**	T1	0.0133	0.1070	
ROA	-1.0554	0.3214^{***}	ROA	-0.2810	1.1213	
IB	0.0083	0.0027^{***}	IB	-0.0048	0.0104	
$\mathbf{L}\mathbf{A}$	-0.0087	0.0021^{***}	$\mathbf{L}\mathbf{A}$	-0.0096	0.0116	
II	0.0011	0.0014	II	0.0001	0.0027	
\mathbf{TL}	0.0041	0.0040	\mathbf{TL}	0.0219	0.0076^{***}	
PL1	-0.2395	0.0606***	PL1	-0.0321	0.2961	
MCS	-0.0737	0.0579	MCS	0.4352	0.1402^{***}	
CFR	0.0402	0.1484	CFR	0.0672	0.2786	
CGE	0.2096	0.1765	CGE	0.6775	0.3867^{*}	
CIT	0.1112	0.2073	CIT	0.2598	0.4040	
\mathbf{CSP}	0.7331	0.1514^{***}	\mathbf{CSP}	0.7604	0.8562	
CEUR	0.3065	0.1426^{**}	CEUR	0.7260	0.4074^{*}	
CNOAM	0.2425	0.1257^{*}	CNOAM	0.4380	0.3429	
CASIA	0.3493	0.1197^{***}	CASIA	0.0403	0.4669	
GI	-0.0828	0.1484	F20	-0.4879	0.0868***	
\mathbf{CLS}	0.0064	0.0040	\mathbf{SG}	-0.0003	0.0004	
R^2	0.6608		R^2	0.3922		
Ν	961		Ν	961		
Specification t	ests					
Test for signifi	cance of instr	uments in first-stage reg	ression			
2	F(2, 920)	19.12***		F(2, 920)	1.30	
Over-identifica	tion test for	validity of instruments (1	H0: instruments	are exogeno	us)	
	Chi-sq(1)	0.0288		Chi-sq(1)	0.2792	

Commerzbank AG					
The system is jo	intly estimated	using the 3SLS estimator.			
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)
CONCEANE	Coefficient	Standard Error	CONCEANE	Coefficient	Standard Error
CONSTANT	0.9083	2.1002	CONSTANT	11.2223	3.6024***
	-0.1530	0.1269	LINSPRD	0.8531	0.9338
MAT	0.2319	0.0775***	MAT	0.3581	0.1881*
SEC	0.4361	0.0929****	SEC	-0.8999	0.4980*
	-0.0910	0.0802		0.4154	0.1852***
PRIME	0.2566	0.0988***	PRIME	0.3053	0.2316
F8	-0.4056	0.1377***	F8	0.7966	0.4980
F9	-0.2790	0.1259**	F9	-0.1352	0.3244
F10	-0.2018	0.2040	F10	1.2540	0.4533****
F11	-0.1642	0.1571	F11	0.6609	0.3607*
F12	-0.4201	0.3480	F12	1.7521	0.8135**
F13	-0.1137	0.0936	F13	0.2513	0.2241
F14	-0.1327	0.0985	F14	0.2230	0.2393
F15	-0.0181	0.1167	F15	0.2613	0.2356
F16	0.5469	0.1786***	F16	0.9189	0.3987**
F17	-0.0510	0.1914	F17	-0.4662	0.3723
F18	-0.3797	0.2174*	F18	0.0597	0.5550
F19	0.0844	0.2179	F19	0.3332	0.4251
TA	-0.1272	0.0366***	TA	0.3809	0.1571**
LTD	0.0165	0.0098*	LTD	-0.0094	0.0253
ROE	-0.0008	0.0013	ROE	-0.0007	0.0028
PPE	0.0001	0.0011	PPE	0.0038	0.0022*
\mathbf{LLR}	-2.7176	0.4347^{***}	\mathbf{LLR}	1.6044	2.6836
T1	0.0678	0.0488	T1	-0.0084	0.0981
ROA	0.1061	0.2877	ROA	0.6168	0.5780
IB	0.0201	0.0076***	IB	0.0054	0.0156
$\mathbf{L}\mathbf{A}$	0.1892	0.0362***	$\mathbf{L}\mathbf{A}$	-0.1206	0.2020
II	0.1030	0.0242^{***}	II	-0.0548	0.1240
TL	0.0048	0.0037	TL	-0.0053	0.0089
PL1	-0.6137	0.0802^{***}	PL1	0.6643	0.6115
MCS	0.0387	0.0638	MCS	0.1773	0.1203
\mathbf{CFR}	-0.3066	0.2435	\mathbf{CFR}	0.1549	0.5051
CGE	-0.0540	0.2079	\mathbf{CGE}	0.0989	0.4119
CIT	0.8259	0.4322*	CIT	-0.4171	1.1982
\mathbf{CSP}	0.5152	0.2297**	\mathbf{CSP}	-0.7867	0.7566
CEUR	-0.4915	0.2007**	CEUR	0.3071	0.4962
CNOAM	-0.1310	0.1804	CNOAM	0.1051	0.3426
CASIA	0.0427	0.2396	CASIA	-1.2383	0.4466^{***}
GI	0.5783	0.2493**	F20	-0.4824	0.1315***
\mathbf{CLS}	-0.0055	0.0052	\mathbf{SG}	0.0006	0.0017
R^2	0.6684		R^2	0.2480	
Ν	572		Ν	572	
Specification t	ests				
Test for signifi	cance of instr	uments in first-stage reg	ression		
5	F(2, 531)	10.19***		F(2, 531)	2.14
Over-identifica	ation test for	validity of instruments (1	H0: instruments	s are exogeno	us)
	Chi-sq(1)	1.9899		Chi-sq(1)	0.0916

Deutsche Bank						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan demar	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	4.9736	1.1122***	CONSTANT	14.6869	3.2009***	
LNAMT	-0.0758	0.0743	LNSPRD	-0.3372	0.7910	
MAT	-0.1534	0.0514***	MAT	0.3138	0.1675*	
SEC	0.4363	0.0475***	SEC	-0.0767	0.3696	
CRCY	-0.2420	0.0613***	CRCY	-0.0320	0.2257	
PRIME	0.0372	0.0389	PRIME	0.0688	0.0710	
F8	-0.1307	0.1046	F8	0.4797	0.2183**	
F9	0.0771	0.1029	F9	0.2410	0.1853	
F10	-0.6232	0.1432***	F10	0.7547	0.5972	
F11	0.0329	0.1150	F11	0.4538	0.2006**	
F12	-0.0986	0.1900	F12	1.4120	0.3215^{***}	
F13	-0.1837	0.0623***	F13	0.0620	0.1835	
F14	-0.1392	0.0820*	F14	-0.0539	0.1788	
F15	-0.1356	0.0719^{*}	F15	-0.0375	0.1622	
F16	0.0520	0.1052	F16	0.8526	0.1543^{***}	
F17	-0.0007	0.1145	F17	0.4601	0.1967**	
F18	-0.5644	0.3193*	F18	-0.3981	0.7029	
F19	0.0748	0.2089	F19	0.9352	0.3512^{***}	
TA	-0.1226	0.0279***	TA	0.2945	0.1184**	
LTD	0.0139	0.0069**	LTD	0.0259	0.0152*	
ROE	0.0007	0.0006	ROE	0.0024	0.0010**	
PPE	0.0026	0.0006***	PPE	0.0013	0.0022	
LLR	1.0962	0.1791***	LLR	0.5111	0.8835	
T1	0.2647	0.0297***	T1	0.0582	0.2023	
ROA	2.5633	0.3796^{***}	ROA	0.4203	1.8774	
IB	-0.0038	0.0008^{***}	IB	-0.0037	0.0034	
$\mathbf{L}\mathbf{A}$	-0.0190	0.0044^{***}	$\mathbf{L}\mathbf{A}$	-0.0105	0.0137	
II	0.0280	0.0040***	II	0.0022	0.0260	
\mathbf{TL}	0.0007	0.0016	\mathbf{TL}	0.0055	0.0028**	
PL1	-0.3493	0.0591***	PL1	0.0683	0.3036	
MCS	0.0333	0.0415	MCS	0.3132	0.0654^{***}	
CFR	-0.1506	0.1728	CFR	0.8260	0.3333**	
CGE	0.2470	0.1624	CGE	0.9528	0.3035^{***}	
CIT	0.5985	0.3010**	CIT	1.6092	0.6393**	
CSP	0.3515	0.1397**	\mathbf{CSP}	0.1557	0.3802	
CEUR	0.1938	0.1362	CEUR	0.8835	0.2482***	
CNOAM	0.2339	0.1062^{**}	CNOAM	0.6797	0.2302***	
CASIA	0.4052	0.1337^{***}	CASIA	0.2526	0.3949	
GI	0.4595	0.2228**	F20	-0.4451	0.0664***	
\mathbf{CLS}	-0.0033	0.0034	\mathbf{SG}	0.0001	0.0005	
R^2	0.7129		R^2	0.5070		
Ν	1127		Ν	1127		
Specification t	ests					
Test for signifi	cance of instr	uments in first-stage reg	ression			
5	F(2, 1086)	26.81***		F(2, 1086)	2.36*	
Over-identifica	tion test for	validity of instruments (1	H0: instruments	s are exogeno	us)	
	Chi-sq(1)	1.6772		Chi-sq(1)	0.0000	

BayernLB						
The system is jointly estimated using the 3SLS estimator. Loan supply regression (LNSPRD) Loan demand regression (LN						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
CONCEANE	Coefficient	Standard Error	CONCEANE	Coefficient	Standard Error	
CONSTANT	18.0825	6.1544***	CONSTANT	10.9834	25.5589	
LINAMT	-0.2743	0.2861	LNSPRD	0.3644	2.1748	
MAT	0.3529	0.1149***	MAT	0.2545	0.5596	
SEC	0.4888	0.1117	SEC	0.0003	1.0074	
CRCY	-0.1241	0.1115	CRCY	0.2368	0.3953	
PRIME	0.4212	0.1595***	PRIME	0.2872	0.7240	
F8	0.1392	0.4116	F8	1.3149	0.5140^{**}	
F9	0.1698	0.3432	F9	1.0439	0.3749***	
F10	0.1269	0.5484	F10	1.8723	0.8503***	
F11 F10	0.3026	0.3506	F11 F10	0.9784	0.3987**	
F12	0.7041	1.0729	F12	3.3726	0.8486***	
F13	-0.4086	0.1281****	F13	0.2969	1.0065	
F14	-0.2832	0.1497*	F14	0.4170	0.8281	
F15	-0.3266	0.1500**	F15	0.0870	0.7414	
F16	0.2078	0.3401	F16	1.2465	0.4251***	
F17	-0.2560	0.4120	F17	-1.1001	0.4527**	
F18	-0.5493	0.4229	F18	-1.2155	0.5975**	
F19	-0.0599	0.3033	F19	-0.8601	0.4902*	
TA	-0.0534	0.0593	TA	0.2092	0.2234	
LTD	-0.0047	0.0188	LTD	-0.0278	0.0288	
ROE	0.0016	0.0016	ROE	0.0010	0.0041	
PPE	0.0038	0.0022*	PPE	0.0053	0.0052	
	0.0793	0.1356		0.3264	0.1601**	
T1	-0.1471	0.1507	T1	0.1268	0.2252	
ROA	-1.6956	0.5633***	ROA	-0.0866	2.6887	
IB	-0.0644	0.0197***	IB	-0.0055	0.1042	
	-0.0294	0.0095***		0.0055	0.0642	
ll mr	-0.0061	0.0154		-0.0015	0.0077	
	0.0095	0.0135		0.0308	0.0162*	
PL1	-0.5231	0.1291***	PL1	-0.0757	1.0277	
MCS	0.3743	0.1767**	MCS	0.4894	0.5093	
\mathbf{CFR}	-0.1954	0.4493	\mathbf{CFR}	0.2838	0.8794	
CGE	-0.2361	0.2675	CGE	0.1708	0.6618	
CIT	-1.6835	0.6874^{**}	CIT	0.1126	3.5144	
CSP	0.1837	0.3501	CSP	-0.1042	0.7292	
CEUR	-1.0069	0.4414**	CEUR	-0.3196	1.9491	
CNOAM	0.1297	0.2367	CNOAM	0.0588	0.4844	
CASIA			CASIA			
GI	-4.6936	7.5992	F20	-0.2623	0.2161	
CLS	-0.0067	0.0093	SG	-0.0005	0.0007	
R^2	0.6580		R^2	0.4872		
Ν	306		Ν	306		
Specification t	ests					
Test for signifi	cance of instr	uments in first-stage reg	ression			
	F(2, 266)	1.90		F(2, 266)	0.32	
Over-identification of the second sec	ation test for	validity of instruments (1	H0: instruments	s are exogeno	us)	
	Chi-sq(1)	0.1315		Chi-sq(1)	0.0030	

Portigon						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan demand regression (LNAMT		
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	8.1368	2.0814^{***}	CONSTANT	3.9309	7.4839	
LNAMT	0.0213	0.1085	LNSPRD	1.4139	0.9672	
MAT	-0.1072	0.1010	MAT	0.7827	0.2075^{***}	
SEC	0.4813	0.0853^{***}	\mathbf{SEC}	-0.8252	0.4835^{*}	
CRCY	-0.3976	0.1144^{***}	CRCY	1.1736	0.4322^{***}	
PRIME	0.1739	0.1213	PRIME	0.1570	0.3251	
F8	-0.0808	0.1630	F8	0.1414	0.4115	
F9	0.2099	0.1630	F9	-0.3670	0.4559	
F10	-0.4607	0.2590^{*}	F10	1.9134	0.6669^{***}	
F11	0.0272	0.2387	F11	0.3200	0.6076	
F12	-0.5988	0.4454	F12	2.6885	1.1011**	
F13	-0.2927	0.1204^{**}	F13	0.8790	0.4070**	
F14	0.0318	0.1284	F14	-0.1553	0.3146	
F15	0.1746	0.1717	F15	-0.4745	0.4488	
F16	-0.0537	0.1748	F16	1.3054	0.3735^{***}	
F17	-0.0086	0.2246	F17	0.2884	0.5549	
F18			F18			
F19	-0.0920	0.2001	F19	-0.6725	0.4848	
ТА	-0.0660	0.0241***	TA	0.1907	0.0785**	
LTD	-0.0203	0.0142	LTD	0.0774	0.0356**	
ROE	0.0004	0.0012	ROE	-0.0026	0.0031	
PPE	0.0007	0.0014	PPE	-0.0035	0.0034	
LLR	-0.5908	0.1299***	LLR	0.3320	0.4838	
T1	0.0216	0.0544	T1	-0.0327	0.1264	
ROA	-1.8026	0.6292***	ROA	0.7443	1.9627	
IB	-0.0178	0.0064^{***}	IB	0.0205	0.0141	
\mathbf{LA}	-0.0008	0.0061	$\mathbf{L}\mathbf{A}$	0.0036	0.0117	
II	0.0013	0.0004^{***}	II	-0.0004	0.0011	
\mathbf{TL}	0.0054	0.0060	\mathbf{TL}	-0.0060	0.0155	
PL1	-0.4722	0.1265***	PL1	0.7227	0.5616	
MCS	-0.0319	0.1246	MCS	0.8249	0.2028***	
CFR	1.7154	0.6070***	CFR	-0.8563	1.9102	
CGE	0.2065	0.2541	CGE	-0.6058	0.6934	
CIT	1.2840	0.6762*	CIT	-4.3424	2.2891*	
\mathbf{CSP}	1.3527	0.2977^{***}	CSP	-3.2590	1.4982**	
CEUR	0.1429	0.2672	CEUR	-0.3325	0.6901	
CNOAM	0.4680	0.2604^{*}	CNOAM	-1.7472	0.8094**	
CASIA	0.3772	0.2430	CASIA	-0.8474	0.7376	
GI	0.4979	0.3408	F20	-0.6259	0.1795***	
CLS	-0.0292	0.0121**	\mathbf{SG}	0.0007	0.0006	
R^2	0.7016		R^2	0.0834		
Ν	314		Ν	314		
Specification tests						
Test for significance of instruments in first-stage regression						
0	F(2, 274)	12.54***		F(2, 274)	2.95^{*}	
Over-identifica	tion test for	validity of instruments (1	H0: instruments	are exogeno	us)	
	Chi-sq(1)	0.0575		$\operatorname{Chi-sq}(1)$	0.0044	

Intesa Sanpaolo SpA						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply regression (LNSPRD)			Loan demand regression (LNAM		
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT			CONSTANT	8.3477	6.6441	
LNAMT	0.0817	0.1203	LNSPRD	-0.0690	0.8143	
MAT	0.0309	0.0785	MAT	-0.0513	0.1289	
SEC	0.5296	0.1181^{***}	SEC	-0.2087	0.4601	
CRCY	-0.3043	0.1164^{***}	CRCY	0.2872	0.2740	
PRIME	0.1854	0.1149	PRIME	0.2561	0.2508	
F8	-0.4470	0.1369^{***}	F8	-0.0323	0.4205	
F9	-0.0721	0.1405	F9	-0.2180	0.2472	
F10	-0.7287	0.1945^{***}	F10	-0.0857	0.6734	
F13	-0.2209	0.1279^{*}	F13	0.4001	0.2262^{*}	
F14	-0.1073	0.1468	F14	0.3372	0.2331	
F15	-0.2205	0.1755	F15	0.0866	0.3261	
F16	-0.0813	0.2167	F16	1.1297	0.2939***	
F19	0.0728	0.2027	F19	0.1372	0.3398	
TA	-0.1890	0.0476***	TA	0.2658	0.1408*	
LTD	0.0644	0.0174^{***}	LTD	0.0012	0.0560	
ROE	0.0005	0.0016	ROE	0.0005	0.0027	
PPE	-0.0023	0.0017	PPE	-0.0042	0.0034	
LLR	-0.1939	0.1670	LLR	0.1835	0.3894	
T1	0.2689	0.1333**	T1	0.2888	0.3051	
ROA	-0.0115	0.1551	ROA	0.3574	0.3178	
IB	0.0189	0.0059***	IB	0.0136	0.0163	
$\mathbf{L}\mathbf{A}$	-0.0327	0.0274	$\mathbf{L}\mathbf{A}$	0.0289	0.0362	
II	0.0580	0.0250**	II	0.0335	0.0610	
\mathbf{TL}	-0.0043	0.0078	\mathbf{TL}	0.0238	0.0118**	
PL1	-0.7028	0.1395***	PL1	0.1982	0.6336	
MCS	-0.1362	0.0822*	MCS	-0.0040	0.1737	
CFR	0.0971	0.2367	CFR	0.7457	0.4045*	
CGE	0.3934	0.3251	CGE	1.4508	0.5976**	
CIT	0.5469	0.2767**	CIT	-0.0496	0.6111	
\mathbf{CSP}	0.4794	0.2347**	CSP	0.3360	0.5727	
CEUR	0.0595	0.2237	CEUR	0.5465	0.3763	
CNOAM	0.1717	0.1787	CNOAM	0.3509	0.3256	
CASIA	0.1614	0.2502	CASIA	-0.0055	0.4470	
GI	-0.3186	0.4382	F20	-0.5779	0.1295***	
CLS	-0.0117	0.0057**	\mathbf{SG}	0.0034	0.0018*	
R^2	0.6438		R^2	0.5388		
Ν	302		Ν	302		
Specification tests						
Test for significance of instruments in first-stage regression						
-	F(2, 266)	11.54***		F(2, 266)	3.76^{*}	
Over-identifica	tion test for	validity of instruments (1	H0: instruments	s are exogeno	us)	
	Chi-sq(1)	0.7711		Chi-sq(1)	0.0000	

Unicredit SpA						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	2.5224	3.2151	CONSTANT	13.9363	4.9335***	
LNAMT	-0.1848	0.1379	LNSPRD	-0.3991	0.8673	
MAT	-0.3992	0.1030***	MAT	-0.0332	0.4215	
SEC	0.3607	0.1187***	SEC	-0.1582	0.4109	
CRCY	0.0025	0.1601	CRCY	0.9310	0.2681***	
PRIME	0.3583	0.1788**	PRIME	0.6755	0.3693*	
F8	-0.2922	0.1667*	F8	-0.0686	0.4205	
F9	0.0664	0.1798	F9	-0.4218	0.3744	
F10	-1.1256	0.2976***	F10	-0.6406	1.0938	
F13	0.1859	0.1396	F13	0.3537	0.2759	
F14	0.0781	0.1714	F14	0.1383	0.3279	
F15	-0.1978	0.1984	F15	-0.2570	0.4236	
F16	-0.5780	0.3490*	F16	0.4717	0.9331	
F19	0.3454	0.3707	F19	-0.6631	0.8043	
TA	-0.0942	0.0558*	TA	0.2256	0.1406	
	0.0299	0.0154**		0.0148	0.0389	
ROE	-0.0043	0.0029	ROE	0.0054	0.0077	
	0.0032	0.0021		0.0073	0.0039*	
	1.3523	0.05/3**		1.3882	0.0204***	
	-0.2411	0.2166		-0.6835	0.3710**	
ROA	-0.3463	0.3025	RUA	0.8352	0.3752***	
	0.0157	0.0094		0.0083	0.0077	
	0.0747	0.0411		-0.0110	0.0270	
	0.0079	0.0300		0.0550	0.0075	
	-0.0072	0.0147		0.0510	0.0294	
PLI MCS	-0.3319	0.2703	PLI MCS	0.1402	0.0459	
	-0.2428	0.0929	CEP	0.1300	0.2667	
CCF	-0.0941	0.2545	CCE	0.1097	0.5402	
	-0.0138	0.2545		0.5514	0.5110	
CSP	0.2425	0.3174	CSP	-0.3483	0.0291	
CEUR	0.4905	0.2458	CEUR	0.1247 0.5037	0.0003	
CNOAM	0.2005	0.2280	CNOAM	0.0037	0.4693	
CASIA	0.0909	0.4646	CASIA	0.2781	0.4025	
	2 2248	1 1902**	F20	-0.0030	0.0930	
	2.2348	0.0060	F 20 SC	-0.0728	0.2350	
	0.0017	0.0000	D2	0.5067	0.0051	
n N	0.7515		N	0.5907		
Specification t	201		1	201		
That has aimilianage of instruments in first store regression						
rest for signin	F(2 = 164)	5 80***	1 6991011	F(2, 164)	0.00	
Over-identification test for validity of instruments (H0: instruments ar				1(2, 104)	us)	
Over-identifica	$Chi_{sq}(1)$	0.0854	ino. motruments	Chi-sq(1)	0.9717	
	UIII-SQ(1)	0.0004		UIII-SQ(1)	0.2111	

		La C	Caixa			
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan demar	nd regression (LNAMT)	
	Coefficient	Standard Error	•	Coefficient	Standard Error	
CONSTANT	-5.7212	4.2908	CONSTANT	11.3629	3.9976^{***}	
LNAMT	-0.0037	0.1548	LNSPRD	-2.2248	1.0366^{**}	
MAT	0.1974	0.0728^{***}	MAT	0.7830	0.2638^{***}	
\mathbf{SEC}	0.3640	0.1279^{***}	\mathbf{SEC}	0.2760	0.5078	
CRCY	0.2031	0.2326	CRCY	1.5861	0.4812^{***}	
PRIME			PRIME			
$\mathbf{F8}$	-0.0588	0.1171	F8	-0.2232	0.3865	
F9	-0.1092	0.1148	F9	0.1343	0.3701	
F10	0.1206	0.3487	F10	1.8497	0.9525^{*}	
F11	-0.0623	0.1745	F11	-0.4158	0.5497	
F12	0.4593	0.2831	F12	1.7883	0.9717^{*}	
F13	-0.1551	0.0904^{*}	F13	-0.0540	0.2948	
F14	-0.1572	0.2043	F14	0.1173	0.6628	
F16	-0.2651	0.3265	F16	1.3315	0.5920^{**}	
F18	0.5902	0.2776**	F18	0.7043	0.9599	
F19	-0.2827	0.2102	F19	-1.5654	0.5650^{***}	
ТА	-0.0316	0.0602	ТА	0.2571	0.1019**	
LTD	0.0115	0.0150	LTD	0.0456	0.0543	
ROE	-0.0025	0.0017	ROE	0.0014	0.0048	
PPE	-0.0004	0.0016	PPE	0.0062	0.0040	
LLR	-0.1111	0.0959	\mathbf{LLR}	-0.2931	0.2316	
T1	0.1124	0.0433***	T1	0.1066	0.1530	
ROA	0.4656	0.2786*	ROA	0.1959	0.8320	
IB	0.0168	0.0052***	IB	0.0173	0.0107	
\mathbf{LA}	-0.4795	0.1549***	$\mathbf{L}\mathbf{A}$	-0.4064	0.2542	
II	0.2040	0.0700***	II	0.1545	0.1095	
\mathbf{TL}	-0.0324	0.0286	\mathbf{TL}	-0.1919	0.0785^{**}	
PL1	-0.0578	0.1179	PL1	-0.2461	0.4019	
MCS	0.3090	0.1660*	MCS	1.1856	0.6062**	
CFR	0.4109	0.6175	CFR	4.2385	1.3219***	
CGE			CGE			
CIT	0.3357	0.6190	CIT	3.5915	1.4195**	
CSP	0.7150	0.2997**	CSP	2.5877	1.3192**	
CEUR	0.6649	0.3421*	CEUR	2.6042	1.3467*	
CNOAM			CNOAM			
CASIA			CASIA			
GI	0.9513	0.4681**	F20	-0.4165	0.2249*	
CLS	-0.0102	0.0060*	\mathbf{SG}	0.0022	0.0040	
R^2	0.7571		R^2	0.5050		
Ν	233		Ν	233		
Specification tests						
\dot{r}						
	F(2, 198)	2.27		F(2, 198)	4.41**	
Over-identifica	ation test for	validity of instruments (H0: instruments	s are exogeno	us)	
	Chi-sq(1)	0.4928		Chi-sq(1)	0.0445	

Banco BVA						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	Loan supply regression (LNSPRD)		Loan demand regression (LNAM		
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	-0.1927	4.4583	CONSTANT	-12.0898	9.5331	
LNAMT	-0.0918	0.1024	LNSPRD	-1.6080	2.0187	
MAT	0.2747	0.0733^{***}	MAT	0.8373	0.4510*	
SEC	0.2860	0.1040***	\mathbf{SEC}	0.0186	0.6851	
CRCY	0.1384	0.0999	CRCY	0.5452	0.2600**	
PRIME	0.2136	0.1557	PRIME	1.0669	0.3964^{***}	
$\mathbf{F8}$	-0.4456	0.1296***	F 8	-0.6331	0.8757	
F9	-0.2709	0.1265**	F9	-0.3593	0.5532	
F10	-0.2661	0.2099	F10	0.3214	0.8073	
F11	-0.2383	0.1666	F11	-0.1411	0.5764	
F12	0.2325	0.2403	F12	0.4462	0.6669	
F13	-0.2603	0.0920***	F13	-0.2165	0.5882	
F14	-0.2092	0.1102*	F14	-0.3359	0.4284	
F16	0.2708	0.1576*	F16	1.2982	0.5489**	
F18	0.3790	0.1902**	F18	-0.1191	1.0538	
F19	-0.4919	0.1810***	F19	-1.6927	0.8305**	
TA	-0.0950	0.0508*	\mathbf{TA}	0.1881	0.3001	
LTD	0.0504	0.0178^{***}	LTD	0.0538	0.1191	
ROE	0.0006	0.0017	ROE	0.0032	0.0045	
PPE	-0.0014	0.0012	PPE	0.0006	0.0046	
$_{-}^{\text{LLR}}$	0.3032	0.2842	$_{-}^{\text{LLR}}$	-0.8510	0.9890	
T1	-0.0100	0.2260	T1	0.8321	0.5399	
ROA	0.2859	0.3891	ROA	1.8365	0.7377**	
IB	-0.0029	0.0112	IB	0.0179	0.0270	
	-0.0085	0.0744		0.3247	0.1716*	
	0.0954	0.0297***		0.2623	0.2065	
TL	0.0066	0.0091		0.0047	0.0280	
PL1	-0.1660	0.1141	PL1	-0.1178	0.4390	
MCS	0.0793	0.0836	MCS	0.4195	0.2310*	
CFR	-0.0760	0.3488	CFR	1.3654	0.7380*	
CGE	-0.0390	0.3539	CGE	0.4586	0.7422	
CIT	0.7317	0.5049	CIT	2.3710	1.5899	
CSP	0.4557	0.2805	CSP	0.5637	1.1821	
CEUR	0.1816	0.3180	CEUR	1.0323	0.6822	
CNOAM	0.4949	0.3711	CNOAM	1.7190	1.4009	
CASIA	0.3017	0.4363	CASIA	1.9047	1.0336*	
GI	0.1874	0.1904	F20	-0.5226	0.2006***	
	-0.0024	0.0056	SG	0.0009	0.0100	
R^2	0.7565		R^2	0.5532		
<u>IN</u>	400		IN	400		
Specification tests						
Test for significance of instruments in first-stage regression						
	F(2, 361)	9.72***		F(2, 361)	0.65	
Over-identifica	ation test for	validity of instruments (1	H0: instruments	are exogenor	us)	
	Chi-sq(1)	9.4861***		Chi-sq(1)	0.1156	

Banco Santander SA						
The system is jointly estimated using the 3SLS estimator.						
	Loan supply	regression (LNSPRD)		Loan deman	d regression (LNAMT)	
	Coefficient	Standard Error		Coefficient	Standard Error	
CONSTANT	4.0051	2.1941*	CONSTANT	17.6671	5.1279^{***}	
LNAMT	-0.0203	0.0887	LNSPRD	0.0290	0.6630	
MAT	0.1274	0.0481^{***}	MAT	0.1529	0.1413	
SEC	0.2270	0.0814^{***}	SEC	-0.3258	0.2517	
CRCY	-0.0027	0.1030	CRCY	0.4760	0.2350^{**}	
PRIME	0.4515	0.2102^{**}	PRIME	0.7911	0.5267	
$\mathbf{F8}$	-0.1062	0.1188	$\mathbf{F8}$	-0.1912	0.2937	
F9	-0.0452	0.1100	F9	-0.1311	0.2687	
F10	-0.4695	0.1961^{**}	F10	0.4863	0.5819	
F11	0.2748	0.1581^{*}	F11	-0.0811	0.4464	
F12	0.0806	0.1847	F12	-0.0493	0.4585	
F13	-0.3324	0.0804^{***}	F13	0.4118	0.2818	
F14	-0.0708	0.1433	F14	0.2732	0.3542	
F16	0.0099	0.1631	F16	1.6352	0.2806***	
F18	-0.0574	0.2474	F18	-1.3258	0.5394^{**}	
F19	-0.1519	0.1404	F19	-0.6580	0.3349**	
TA	-0.0752	0.0380**	TA	0.3190	0.0855***	
LTD	0.0175	0.0140	LTD	0.0123	0.0395	
ROE	-0.0010	0.0014	ROE	0.0054	0.0032*	
PPE	0.0004	0.0012	PPE	0.0059	0.0028**	
LLR	0.3065	0.1671*	LLR	0.0226	0.4077	
T1	0.6828	0.1667^{***}	T1	-1.1183	0.7230	
ROA	1.0493	0.2965^{***}	ROA	-1.0878	1.2600	
IB	-0.0079	0.0032**	IB	-0.0037	0.0067	
$\mathbf{L}\mathbf{A}$	-0.0221	0.0252	$\mathbf{L}\mathbf{A}$	-0.1000	0.0616	
II	-0.0736	0.0312**	II	0.1602	0.1103	
\mathbf{TL}	-0.0108	0.0104	\mathbf{TL}	-0.0388	0.0243	
PL1	-0.4674	0.1027***	PL1	0.2008	0.3967	
MCS	-0.0095	0.0981	MCS	-0.0832	0.2371	
CFR	-0.5854	0.2561**	CFR	1.6855	0.4418***	
CGE	-0.4254	0.2428*	CGE	0.8248	0.4723*	
CIT	-0.0255	0.2677	CIT	0.6652	0.6143	
CSP	0.0945	0.1959	CSP	-0.5081	0.4966	
CEUR	-0.1380	0.1957	CEUR	0.8057	0.3941**	
CNOAM	-0.3133	0 2159	CNOAM	1 0753	0 4432**	
CASIA	-0.6799	0.3549*	CASIA	0.5197	0 7989	
GI	0.7787	0 1934***	F20	-0.6812	0.1485***	
CLS	-0.0063	0.0044	SG	-0.0009	0.0041	
$\frac{315}{B^2}$	0 7464		$\frac{2}{B^2}$	0.6919		
N	396		N	396		
Specification tests						
Tost for similarno of instruments in first stage regression						
rest for signin	F(2, 357)	0.61***	1 6991011	F(2 357)	6 91***	
Over-identifier	r(2, 307)	validity of instruments (1	HO. instrument	r(2, 307)	0.21	
Over-identifica	Chi-sq (1)	5.4014**	110. mstruments	Chi-sq (1)	0.1463	