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1 Introduction

Forecasting future volatility is essential for asset allocation, portfolio and risk management. A

vast literature has investigated time variation in volatility and the linkages between volatility and

macroeconomic and �nancial variables. Schwert (1989) relates the changes in the volatility of

returns to the macroeconomic variables and addresses how bond returns, the short-term interest

rate, producer prices or industrial production growth rate provide incremental information on

monthly market volatility. Glosten et al. (1993) �nd evidence that short-term interest rates

play an important role for future market variance. Whitelaw (1994) �nds statistical signi�cance

for a commercial paper spread and the one-year treasury rate, while Brandt and Kang (2002)

use the short-term interest rate, term premium and default premium, and �nd a signi�cant

e¤ect. Other studies, including Hamilton and Lin (1996) and Perez-Quiros and Timmermann

(2000), �nd evidence that the state of the economy is an important determinant in the volatility

of the returns.

More recent contributions include Paye (2012) and Christiansen et al. (2012), who analyse

the predictive content of �nancial and macroeconomic variables for monthly realized volatility.

Speci�cally, Paye (2012) tests whether conditioning on macroeconomic variables can improve

volatility forecasts and �nds a link between several variables and stock market volatility. How-

ever, the author �nds that improvements in out-of-sample forecasting accuracy mainly come

from simple combinations of individual forecasts. Christiansen et al. (2012) employ a compre-

hensive set of macro-�nance variables to predict the monthly realized volatility of four di¤erent

asset classes: equities, commodities, foreign exchange rates, and bonds. Using Bayesian estima-

tion techniques the authors identify the variables that are best in predicting realised volatility.

Speci�cally, they �nd the strongest predictive ability in variables associated with time-varying

risk premia, leverage or �nancial distress. By selecting the most important predictor variables

by means of Bayesian Model Averaging, they �nd that their forecast models beat autoregressive

benchmarks although this performance varies across asset classes and over time.

This paper complements these recent contributions by focusing exclusively on an out-of-

sample experiment conducted in a quantile forecast combination framework. Speci�cally, we

apply the recently proposed methodology of Meligkotsidouet al. (2014b) to provide robust

point forecasts of US stock market realised volatility. This forecasting approach is based on

complete subset quantile regressions and exploits the bene�ts emerging from three strands of the

literature on out-of-sample forecasting. First, the authors employ a quantile regression setting,

which succeeds in producing robust and accurate point forecasts. Second, model uncertainty

and parameter instability is reduced by employing quantile forecast combinations. Finally,

employing complete subset quantile regressions induces shrinkage to the respective estimates

and further helps reduce the e¤ect of parameter estimation error.

In the context of equity premium predictability, Rapach et al. (2010) �nd that combinations

of individual single variable predictive regression models signi�cantly beat the historical average

forecast as they reduce both model uncertainty and parameter instability.1 Building on Rapach

1Timmermann (2006) provides a detailed review on forecast combination methodologies.
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et al. (2010), Meligkotsidou et al. (2014a) incorporate the forecast combination methodology in

a quantile regression setting. Their quantile regression approach to equity premium prediction

allows them to cope with the non-linearity and non-normality patterns that are evident in the

relationship between stock returns and potential predictors. In this way, robust and accurate

equity premium forecasts are produced by combining a set of predictive quantile regressions in

either a �xed or time-varying manner. A novel forecast combination method based on complete

subset regressions is put forward by Elliott et al. (2013). The authors propose combining

forecasts from all possible linear regression models that keep the number of predictors �xed.

Their empirical application on equity premium predictability shows that subset combinations of

up to four predictors generates superior forecast accuracy. Their approach introduces a complex

version of shrinkage to the respective estimates which helps reduce the e¤ect of parameter

estimation error.2 The authors propose constructing forecasts based on a simple averaging

scheme of all the possible models employed keeping the numbers of regressors �xed. Finally,

Meligkotsidou et al. (2014b) extend the framework of Elliott et al. (2013) to a quantile regression

setting. They also utilise information from all the predictors simultaneously in order to produce

combined quantile forecasts from all quantile regressions that keep the number of predictors

�xed. Abstracting from the simple averaging schemes, the authors introduce several existing

combination schemes into the quantile setting.

In general, the forecasting framework we adopt is rooted in quantile predictive regressions,

which have attracted a vast amount of attention since the seminal paper of Koenker and Bassett

(1978).3 Empirical contributions in the �eld of �nance include Bassett and Chen (2001), Engle

and Manganelli (2004), Meligkotsidou et al. (2009), Cenesizoglou and Timmermann (2012),

Chuang et al. (2009) and Baur et al. (2012). The main advantage of the quantile regression

framework lies in its ability to cope with non-linearity and non-normality patterns in the joint

relationship between realised volatility and candidate predictors (see, inter alia, Guidolin and

Timmermann, 2009; Guidolin et al., 2009; Henkel et al., 2011).

To anticipate our key results, we �nd that the complete subset quantile regression framework

achieves superior predictive performance. In particular, our proposed approach can lead to an

out-of-sample R2 of 9.05% (relative to the autoregressive benchmark) as opposed to 6.90% of

the BMA approach of Christiansen et al. (2012). The subset linear regression framework can

also produce improved forecasts. While in the equity premium predictability literature, subsets

of two or three variables perform better than the remaining speci�cations, in forecasting realised

volatility subsets of six to ten variables (depending on the speci�cation and combination scheme)

emerge as superior. More importantly, the real time recursive algorithm for selecting k both

in the linear and quantile framework, developed by Meligkotsidou et al. (2014b), succeeds in

identifying the �correct�value of k which is both time-varying and quantile-varying.

The outline of the paper is as follows. Section 2 describes the complete subset regression

2Shrinkage typically is employed in order to limit the number of parameters that have to be estimated when
many potential predictors are available. Contributions to this �eld include the ridge regression (Hoerl and
Kennard, 1970), model averaging (Bates and Granger, 1969; Raftery, Madigan and Hoeting, 1997), bagging
(Breiman, 1996) and the Lasso (Tibshirani, 1996).

3See also Buchinsky (1994, 1995) and Yu, Lu and Stander (2003).
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framework of Elliott et al. (2013) and introduces its extension to the quantile regression frame-

work along with the proposed methodology for robust forecasting of realised volatility. Section

3 presents our empirical �ndings, while section 4 describes the proposed methodology for the

recursive selection of the number of predictors and presents the associated �ndings. Section 5

summarizes and concludes.

2 Complete Subset Quantile Regressions

In this section we present the setup for our analysis. Section 2.1 outlines the Elliott et al.

(2013) complete subset regressions framework and Section 2.2 extends this framework to subset

quantile regressions.

2.1 Complete subset regressions

Elliott et al. (2013) propose a new method for combining forecasts based on complete subset

regressions. For a given set of potential predictors, the authors propose combining forecasts

from all possible linear regressions that keep the number of predictors �xed. For K possible

predictors, there are K univariate models and nk;K = K!=((K � k)!k!) di¤erent k�variate
models for k � K: The set of models for a �xed value of k is referred to as a complete subset

and the authors propose using equal-weighted combinations of the forecasts from all models

within these subsets indexed by k.

Suppose that we are interested in forecasting realized volatility, denoted by RVt, using a set

of K predictive variables. Since volatility is fairly persistent, we include an autoregressive term

(lag=1) in the predictive regression to investigate whether there is additional predictive content

of the macroeconomic and �nancial variables that goes beyond the information contained in

lagged volatility. First we consider all possible predictive autoregressive models (AR(1)) with

a single predictor, i.e. k = 1; of the form

RVt+1 = �i + ciRVt + �ixit + "t+1; i = 1; : : : ;K; (1)

where RVt+1 is the observed realised volatility at time t+1, RVt is the observed realised volatil-

ity at time t; xit are the K observed predictors at time t, and the error terms "t+1 are assumed

to be independent with mean zero and variance �2. The predictive autoregressive models can

be estimated using the Ordinary Least Squares (OLS) method by minimizing the sample es-

timate of the quadratic expected loss,
PT�1
t=0 (RVt+1 � �i � ciRVt � �ixit)

2, or the Maximum

Likelihood (ML) approach after specifying the parametric form of the error distribution4. Simi-

larly, a regression of RVt+1 can be run on a particular subset of the regressors and then average

the forecasts across all k dimensional subsets to provide the forecast for the variable of inter-

est, where k � K: Elliott et al. (2013) show that while subset regression combinations bear

similarities to a complex version of shrinkage, they do not reduce to shrinking OLS estimates.

4The sample size T denotes any estimation sample employed in our recursive forecasting experiment. Details
on the forecasting design are given in Section 3.
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Rather the coe¢ cient that controls shrinkage depends on all OLS estimates, the dimension of

the subset and the number of included predictors. Only in the case of orthonormal regressors

does subset regression reduce to ridge regression. Moreover, the amount of shrinkage imposed

on each coe¢ cient di¤ers with the coe¢ cient at hand. More importantly, the authors show that

in the case of strongly correlated predictors, subset regression can remedy the omitted variable

bias and improve forecasts. While the authors use equal-weighted combinations of forecasts

within each subset along with approximate Bayesian Model Averaging, alternative weighting

schemes can be employed. To this end, we also employ the Median, the Trimmed Mean, the

Discount Mean Squared Forecast Error (DMSFE) of Stock and Watson (2004) along with the

Cluster combining method, introduced by Aiol� and Timmermann (2006).5

2.2 Complete subset quantile regressions

Following Meligkotsidou et al. (2014b), we incorporate the complete subset combination frame-

work of Elliott et al. (2013) in a quantile regression setting. The proposed approach is designed

as follows.

First, consider single predictor quantile autoregressive models (k = 1) of the form

RVt+1 = �
(�)
i + c

(�)
i RVt + �

(�)
i xit + "t+1; i = 1; : : : ;K; (2)

where � 2 (0; 1) and the errors "t+1 are assumed independent from an error distribution g� (")

with the �th quantile equal to 0, i.e.
R 0
�1 g� (")d" = � . Model (2) suggests that the �th quantile

of RVt+1 given xit and lagged realised volatility (RVt) is Q� (RVt+1jxit; RVt) = �
(�)
i + c

(�)
i RVt+

�
(�)
i xit, where the intercept and the regression coe¢ cients depend on � . Both c

(�)
i and �(�)i �s

are likely to vary across ��s, revealing a larger amount of information about future realised

volatility than the predictive autoregressive model (Equation 1). Estimators of the parameters

of the quantile regression models in (2), �̂i(�); c
(�)
i ; �̂

(�)

i , can be obtained by minimizing the

sum
PT�1
t=0 ��

�
RVt+1 � �i(�) � c(�)i RVt � �(�)i xit

�
; where �� (u) is the asymmetric linear loss

function, usually referred to as the check function,

�� (u) = u (� � I(u < 0)) = 1

2
[juj+ (2� � 1)u] : (3)

In the symmetric case of the absolute loss function (� = 1=2) we obtain estimators of the median

predictive regression models. A parametric approach to inference on the quantile regression

parameters arises if the error distribution gp(") is speci�ed. The error distribution that has

been widely used for parametric inference in the quantile regression literature is the asymmetric

Laplace distribution (for details, see Yu and Moyeed, 2001, and Yu and Zhang, 2005) with

probability density function

g� (") =
�(1� �)
�(�)

exp

�
�j"j+ (2� � 1)"

2�(�)

�
; 0 < � < 1; �(�) > 0: (4)

5To keep the analysis clear, Appendix A.1 provides a detailed description of the formation of these weighting
schemes.
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For � = 1=2; corresponding to the median regression, (4) becomes the symmetric Laplace

density. A likelihood function can be formed by combining T independent asymmetric Laplace

densities of the form (4), i.e.

L(�)
�
RV1:T j�i(�); �(�)i ; �(�)

�
= (5)

=

�
�(1� �)
�(�)

�T
exp

(
� 1

�(�)

T�1X
t=0

��

�
RVt+1 � �i(�) � c(�)i RVt � �(�)i xit

�)
:

Then (5) can be used for likelihood based inference for the parameters �i(�); c
(�)
i ; �

(�)
i ; �(�); for

example for maximum likelihood estimation. The maximization of this likelihood function with

respect to �i(�); c
(�)
i ; �

(�)
i is equivalent to minimizing the expected asymmetric linear loss, while

the ML estimator of �(�) is b�(�) = 1
T

PT�1
t=0 ��

�
RVt+1 � �(�) � c(�)i RVt � �(�)i xit

�
. Similarly to

the predictive autoregressive case, the quantile regression (Equation 2) of RVt+1 can be run on

a particular subset (k) of the regressors K; k � K, with the aim to produce realised volatility

quantile forecasts.6

Next, we construct realised volatility point forecasts by combining quantile forecasts ob-

tained from a set of complete subset regressions (k � variate models with k � K): For each

k; nk;K regressions are run in order to predict the � th quantile of the distribution of the next

period�s realised volatility (RVt+1). Then we combine the predicted � th quantiles across all

di¤erent subsets (k) of predictors (nk;K model speci�cations).This approach is the Quantile

Forecast Combination (QFC) approach of Meligkotsiou et al. (2014b). With the exception of

the Mean, Trimmed Mean and Median combining methods, the existing combination methods

are not appropriate for combining predictor information in the quantile regression context. To

this end, the MSFE loss function has to be replaced by a metric based on the asymmetric linear

loss function (Equation 3). Following Meligkotsidou et al. (2014a), we employ the Discount

Asymmetric Loss Forecast Error (DALFE) and the Asymmetric Loss Cluster (AL Cluster) in

order to construct combined subset quantile forecasts (see Appendix A.2). This step yields a set

of quantile forecasts (one for each � j), which are then combined into �nal robust point forecasts
using either a �xed or a time-varying weighting scheme (see next section).

Finally, we consider the problem of constructing robust point forecasts of the equity premium

based on a set of predictive quantile regressions as an alternative to the standard approach which

produces forecasts based on the predictive mean regression model. Robust point estimates of

the central location of a distribution can be constructed as weighted averages of a set of quantile

estimators employing either �xed or time-varying weighting schemes as follows.

For a given model speci�cation or a given complete subset that has been used for producing

quantile forecasts, robust point forecasts can be constructed as weighted averages of a set of

quantile forecasts. First, we employ standard estimators with �xed, prespeci�ed weights of the
6The advantage of the parametric approach to inference is that it enables us to compare di¤erent quantile

regression models, corresponding to di¤erent subsets of predictors, using criteria based on the likelihood function,
for example the Bayesian Information Criterion (BIC) or Bayesian model comparison. This further enables us
to establish an approach of selecting the best (in a likelihood based sense) complete subset on the basis of which
forecasts are formed (see Section 5).
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form dRV t+1 =X
�2S

p�dRV (�)t+1; X
�2S

p� = 1;

where S denotes the set of quantiles that are combined, dRV (�)t+1 denotes the quantile forecasts
associated with the �th quantile and dRV t+1 is the produced robust point forecast. Here the
weights represent probabilities attached to di¤erent quantile forecasts, suggesting how likely to

predict the return at the next period each regression quantile is.

We consider Tukey�s (1977) trimean and the Gastwirth (1966) three-quantile estimator given,

respectively, by the following formulae

FW1: dRV t+1 = 0:25dRV (0:25)t+1 + 0:50dRV (0:50)t+1 + 0:25dRV (0:75)t+1 (6)

FW2: dRV t+1 = 0:30dRV (1=3)t+1 + 0:40dRV (0:50)t+1 + 0:30dRV (2=3)t+1 : (7)

In order to attach more weight on extreme positive and negative events, we also use the �ve-

quantile estimator, suggested by Judge, Hill, Gri¢ ths, Lutkepohl and Lee (1988).

FW3: dRV t+1 = 0:05dRV (0:10)t+1 + 0:25dRV (0:25)t+1 + 0:40dRV (0:50)t+1 + 0:25dRV (0:75)t+1 + 0:05dRV (0:90)t+1 : (8)

3 Empirical �ndings

3.1 Data, forecast construction and forecast evaluation

The data we employ comprises the �long�sample of Christiansen et al. (2012) who provide a

detailed description of transformations and datasources.7 The variable of interest is the realised

stock market volatility (RV ) of the S&P 500 index. Realised volatility is de�ned as the log of

the square root of the realised variance, computed as the sum of squared intra-period (daily)

returns as follows

RVt = ln

vuutMtX
j=1

r2t;j ;

where rt;j is the j�th daily continuously compounded stock market return in month t and Mt

denotes the number of trading days during month t. As the number of intra-period observa-

tions becomes large, realised volatility is an accurate proxy for the true, but latent, integrated

volatility (Andersen et al., 2003, 2006).

Out-of-sample forecasts are generated by continuously updating the estimation window, i.e.

following a recursive (expanding) window. More speci�cally, we divide the total sample of T

observations into an in-sample portion of the �rst T0 observations and an out-of-sample portion

of P = T�T0 observations used for forecasting. The estimation window is continuously updated
7The data are available at the Journal of Applied Econometrics Data Archive

(http://qed.econ.queensu.ca/jae/datasets/christiansen001/). We thank the authors for making them available
to us.
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following a recursive scheme, by adding one observation to the estimation sample at each step.

As such, the coe¢ cients in any predictive model employed are re-estimated after each step of

the recursion. Proceeding in this way through the end of the out-of-sample period, we generate

a series of P out-of-sample forecasts for the realised volatility
ndRV i;t+1oT�1

t=T0
. Our forecasting

experiment is conducted on a monthly basis and data span 1926:12 to 2010:12. We consider

three out-of-sample forecast evaluation periods corresponding to three initialization periods;

namely January 1937, January 1957, January 1977. We use the �ve years (60 months) before

the start of the out-of-sample evaluation period as the initial holdout out-of-sample period,

required for the DMSFE/ DALFE and (AL)Cluster forecast combination schemes.

Following Christiansen et al. (2012), we rely on a comprehensive set of 13 macroeconomic

and �nancial predictive variables. Some of these variables overlap with the predictive variables

used in the comprehensive study on stock return predictability by Goyal and Welch (2008)

as these are motivated via the risk premium channel (Mele, 2007). Speci�cally, we consider

stock valuation ratios such as the dividend price ratio (DP) and the earnings-price ratio (EP),

commonly considered in predictive regressions for stock returns (e.g. Campbell and Shiller,

1988; Goyal and Welch, 2008; Rapach et al. 2010). To capture the leverage e¤ect (Black, 1976;

Nelson, 1991; Glosten et al., 1993) suggesting that negative returns are associated with higher

subsequent volatility, we also include lagged equity market returns (MKT). We also include

the Fama and French (1993) risk factors, i.e. the size factor (SMB), the value factor (HML)

and a short-term reversal factor (STR) which is related to market volatility and distress as

analyzed in Nagel (2012). Turning to interest-rate/ bond related variables, we employ �ve

variables ranging from short-term government rates to long-term government bond yields and

returns along with their spreads. These are the Treasury bill rate (TBL), the interest rate on a

three-month Treasury bill (Ang and Bekaert, 2007); Long-term return (LTR), the return on long-

term government bonds; Term spread (TMS), the di¤erence between the long-term yield and

the Treasury bill rate (Campbell and Shiller, 1991); Relative T-bill rate (RTB), the di¤erence

between the T-bill rate and its 12-month moving average and Relative Bond rate (RBR), the

di¤erence between LTR and its 12 month moving average; To proxy for credit risk, which tends

to be higher in situations where leverage rises and should in�uence volatility (Merton, 1974) we

rely on the yield spread between BAA and AAA rated bonds, i.e. the default spread (DEF).

Finally, to capture the overall macroeconomic environment, we employ the in�ation rate, INF,

monthly growth rate of CPI (all urban consumers).

Since volatility is persistent, the natural benchmark forecasting model is the AR(1) model.

According to this model, the volatility forecast coincides with the forecast in the autoregressive

model (1) when no predictor is included, i.e. k = 0. As a measure of forecast accuracy,

we employ the out-of-sample R2 computed as R2OS = 1 � MSFEi
MSFEAR

; where MSFEi is the

Mean Square Forecast Error associated with each of our competing models and speci�cations

and MSFEAR is the respective value for the AR(1) model, both computed over the out-of-

sample period. Positive values are associated with superior forecasting ability of our proposed

model/speci�cation. Given that point estimates of the R2OS are sample dependent, we need to
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evaluate the statistical signi�cance of our forecasts. To this end, we employ the Clark and West

(2007) (CW) approximate normal test to compare our models/ speci�cations.8

The following subsections present an illustration of our proposed complete subset quantile

regression approach to realised volatility forecasting. The aim of our analysis is to assess the

predictive ability of the proposed forecasting approaches and to compare their performance

against that of alternative approaches used in the literature.

3.2 Performance of Complete Subset Regression Models

First, we discuss the out-of-sample performance of the forecasts obtained by single-variable

autoregressive models. Table 1 presents the R2OS statistics of all single-variable models relative

to the AR(1) benchmark model for the three out-of-sample periods considered (columns 2 -

4). Positive values of R2OS indicate superior forecasting performance of the predictive models

with respect to the AR(1) forecast. The statistical signi�cance of the corresponding forecasts is

assessed by using the Clark and West (2007) MSFE-adjusted statistic. Our �ndings suggest that

only three variables, namely MKT, DEF and STR can consistently outperform the predictions of

the AR(1) model. In the recent out-of-sample period, this set is enriched with the EP variable.

Both DEF and MKT are associated with the leverage e¤ect (Black, 1976; Nelson, 1991; Glosten

et al. 1993). Speci�cally, as �rm leverage and credit risk increases, default spreads also increase

and signal an increase in future volatility. In a similar mode, bear stock markets (low past

returns) precipitate higher subsequent stock market volatility. With respect to the short-term

reversal factor, its forecasting ability is related to market illiquidity. Nagel (2012) found that

STR is related to market stress and the supply of liquidity. The predictive ability of the earnings

to price ratio appears only in the recent out-of-sample period and is associated with time-varying

risk premia (Mele, 2007). More importantly, these economic variables coincide with the ones

identi�ed as useful predictors by Christiansen et al. (2012) via their BMA approach.

[TABLE 1 AROUND HERE]

Given that only three to four out of thirteen variables improve realised volatility forecasts,

we turn our attention to the performance of subset linear regressions under various combination

schemes. Table 2 (Panels A-C) reports the related R2OS values (all of which are signi�cant)

for the three evaluation periods considered. The �rst line in each panel reports our �ndings

associated with the approach followed by Rapach et al (2010), i.e. a variety of combinations

of single-variable models (k = 1). Interestingly, our results corroborate the existing literature

on the increased bene�ts of forecast combinations. Irrespective of the method employed, R2OS
values are positive and signi�cant. Simply averaging forecasts (Mean combination method)

can lead to R2OS ranging from 1.34% to 1.01% for the January 1937 initialisation period to

the January 1977 one, respectively. Marginal bene�ts appear when employing the DMSFE

combination technique that forms weights based on the historical performance of the individual

models. On the other hand, superior forecasting performance is associated with the cluster

8A brief description of the Clark and West (2007) test is given in Appendix B.
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combining scheme. Classifying predictors in �good�and �bad�can lead to an R2OS value of 2.47%

for the longest evaluation period. Increasing the clusters to four can lead to an R2OS value of

5.02%, which is quite impressive given the relative ease this method can be applied.9 Ex post

this is expected as forming clusters of the three bext performing predictors (CL(4)) is optimal

as our single-variable analysis showed (Table 1).

Next, we focus on forecasts generated by simply averaging the forecasts (Mean combination

method) produced by subset linear regressions for various values of k (column 2, Table 2):

This experiment coincides with the framework of Elliott et al. (2013) and suggests that as

we increase the number of subsets (k) the subset linear regression with k � 2 generates larger
R2OS value than the case of k = 1:In more detail, for the January 1937 initialisation out of

sample period (Panel A), R2OS is maximised at k = 10 reaching the value of 7.02% suggesting

that averaging over all 10-variable models is optimal. Increasing k leads to a deterioration in

forecasting performance with a value of 4.86% for the Kitchen Sink model (k = 13). This

behaviour is markedly di¤erent from Elliott et al. (2013) and Meligkotsidou et al. (2014b)

who found that subset regression forecasts for the equity premium with k � 6 produce positive
R2OS values, while the out-of-sample forecasting ability of subsets deteriorates signi�cantly for

k � 7. Similar �ndings pertain for the other evaluation periods. Speci�cally, for the January

1957 evaluation period (Panel B), averaging over 10-variable models yields the maximum R2OS
of 4.53%, while for the most recent evaluation sample (Panel C), the Kitchen Sink model that

includes all predictors in one regression appears optimal as it is assocated with an R2OS value

of 6.13%. For this case, the values of R2OS are an increasing function of k:

[TABLE 2 AROUND HERE]

Finally, we focus on alternative (to the Mean) combination methods such as the Median,

Trimmed Mean, DMSFE and the Cluster combining schemes within the subset linear regression

approach. Overall and similar to the case of k = 1, the best performing combining schemes are

the Cluster ones. The largest R2OS value of 8.82% occurs for k = 7 and for the longest evaluation

period under the Cluster(5) combining scheme. The DMSFE methods perform satisfactorily

and reach an R2OS of 7.57% at an increased value of k equal to 10. With respect to the

Trimmed mean and Median combining schemes, we should note that they cannot outperform

the simple mean combination scheme. Turning to the most recent evaluation samples (Panels B-

C), our results are qualitatively similar to the ones for the longest evaluation period. While the

ranking of our combining methods remains unchanged, the forecasting ability of all the methods

considered is lower. For example, the best performing cluster method (Cluster(4)) is associated

with R2OS values of 6.79% and 6.63% for the two evaluation periods, respectively. Similar to our

previous �ndings, the shortest evaluation period requires more heavily parameterised models as

the optimal k of 11 or 12 suggests. The only exception is CL(5) for which k = 8 emerges as

optimal.
9Please note that for single-variable models (k =1), CL(4) and CL(5) coincide as the algorithm rounds up the

number of models included in each cluster. In our case, for k =1, both CL(4) and CL(5) methods identify the
3 best performing variables over the holdout out-of-sample period. For k � 2;these methods are distinct as the
model space increases.
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Overall, our results of Table 2 in general indicate that employing alternative weighting

schemes under the subset regression approach can lead to improved forecasting performance

relative to simple averaging of single-variable model forecasts.

3.3 Performance of Complete Subset Quantile Regression Models

In this subsection, we evaluate the forecasting performance of the proposed subset quantile

regression models. Employing the Quantile Forecast Combination (QFC) approach, the quantile

forecasts, obtained from di¤erent k-variate predictive model speci�cations, are �rst combined

employing several combination schemes. These schemes are either simple methods such as the

Mean, Median and Trimmed Mean, or are based on the asymmetric linear loss function such

as the DALFE and the AL Cluster methods. Then, robust point forecasts are obtained by

synthesizing the quantile forecasts (corresponding to di¤erent parts of the realised volatility

ditribution) employing the �xed weighting schemes (FW1-FW3) given by equations (6) - (8).

Table 3 (Panels A - C) reports the out-of-sample performance of the subset quantile re-

gression forecasts for the long evaluation period for the three weighting schemes (FW1-FW3),

respectively. Our results indicate that high positive R2OS values are obtained by using k = 7; 8,

or 9 subsets for all weighting schemes. Overall, our quantile forecasts are superior to the lin-

ear ones (Table 2) irrespective of the combining or weighting scheme employed. For example,

averaging across k�variate quantile models generates R2OS values that are greater than 7.5%
as opposed to 7% for the k�variate linear models. The ranking of the combining methods
remains roughly unchanged with the AL_Cluster(5) combining method achieving superior per-

formance. The associated R2OS values exceed 9% for the FW1 and FW2 weighting methods.

It is also worth noting that this perfromance is achieved for the lowest subset, k = 7, in the

case of the FW2 weighting method. This weighting scheme is the one that emerges as superior

judging by the higher R2OS values in the majority of the combining schemes. On the other

hand, the FW3 method that utilises a �ner grid of quantiles and puts weights on the extreme

10% and 90% quantiles is the one lagging in performance, by a small margin though. This

may be due to the relative imprecision that extreme quantiles are estimated and/or the log

transformation of the realised volatility that is closer to being normally distributed (compared

to the raw untransformed series).10

[TABLE 3 AROUND HERE]

Table 4 reports our �ndings for the forecast evaluation period initialised at January 1957.

Overall, while our �ndings are similar to the ones for the long evaaluation period, the predictive

ability of the quantile forecast combinations is lower by approximately 1.5%. However, compared

to the same evaluation period and the subset regression models, we observe an increase in R2OS
values by about 1%. As previously, among the various combination methods, the cluster schemes

rank �rst followed by the DALFE ones. In particular, the CL(5) combination scheme ranks �rst,

10The latter issue constitutes an issue for future research.
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since, for the best k = 8 subset, generates the highest R2OS values ranging from 7:35% for FW3

to 7.82% for the FW2 scheme.

[TABLE 4 AROUND HERE]

Finally, Table 5 (Panels A-C) presents the results obtained by our quantile approach for

the more recent evaluation period. Similar to the subset linear regression case, this out-of-

sample period favours heavily parameterised models. This is especially true when the simple

combination schemes or the kitcehn Sink model are employed. Superior performance is achieved

by the FW1 method and the CL(2) combining scheme for which the R2OS value reached 5.94%

(k = 12). Our �ndings suggest that increasing the number of clusters leads to a decrease in

k: For example, the best performance for the FW1 method and the CL(3), CL(4) and CL(5)

method is achieved for k = 10; k = 9 and k = 9; respectively.

[TABLE 5 AROUND HERE]

4 Real time Selection of k

Our empirical �ndings (Section 3) suggest that the predictive performance of our subset quantile

regression approach depends on the choice of the value of k. Therefore, it is important to develop

a real time algorithm of selecting k recursively, based on the past history of volatility and

predictive variables, in order to produce �optimal forecasts�. Since our proposed methodology

involves forecasting an array of quantiles, it is quite interesting to examine whether the selected

value of k varies across quantiles of volatility, thus revealing a further source of information that

can be exploited within our proposed framework. Our algorithm is �exible enough to allow for

variability of the selected k across quantiles and, therefore, information on the best complete

subset for each quantile of the volatility distribution can be incorporated within our approach.

4.1 Algorithm for selecting k

In this subsection we propose a likelihood-based (Bayesian) method for selecting k in real

time. The experiment we conduct is naturally designed in the context of our QFC forecasting

approach. At each time point in the out-of-sample period, indexed by t + 1, we compute the

posterior probabilities of all values of k (k 2 f1; 2; :::;Kg), based on the data up to time t,
for a set of quantiles. Then, for each quantile, � ; we select the most probable value of k and

produce a quantile forecast at time t + 1, dRV t+1(�); based on the selected complete subset.
These quantile forecasts are then combined according to the �xed weighting and time-varying

weighting schemes of Section 3 in order to produce �optimal�QFC forecasts in real time.

Under the Bayesian approach to inference, uncertainty about any quantity of interest is

represented by probability distributions. In regression variable selection problems there is un-

certainty about the model speci�cation. In our setting, it is of particular interest to quantify the

uncertainty about the complete subset that will be used for predicting each volatility quantile.

11



Therefore, in a Bayesian context, the random quantities of interest are the model speci�cation,

representing the set of predictors included in the jth model and denoted by mj ; j = 1; :::;M;

M =
KP
i=1

ni;K ; the value of k and the totality of the model parameters associated with the �th

quantile regression, denoted by �(�): After specifying appropriate prior distributions for these

quantities, P (mj); P (kjmj) and f(�(�)jmj ; k); their joint posterior distribution is given by

f(mj ; k; �
(�)jRV1:t) / P (mj)P (kjmj)f(�

(�)jmj ; k)L
(�)(RV1:tjmj ; k; �

(�));

where L(�)(RV1:tjmj ; k; �
(�)) is the likelihood of the data up to time t under the �th quantile

regression (Equation 5), based on the asymmetric Laplace density (4). Dependence on the set

of predictors has been suppressed for simplicity. Then, the marginal posterior distribution of k,

under the �th quantile regression, is obtained as

P (�)(kjRV1:t) /
MX
j=1

P (mj)P (kjmj)

Z
f(�(�)jmj ; k)L

(�)(RV1:tjmj ; k; �
(�))d�(�):

The integral
R
f(�(�)jmj ; k)L

(�)(RV1:tjmj ; k; �
(�))d�(�) is the marginal likelihood of the data un-

der the �th quantile regression with k predictors and model speci�cationmj ; i.e. L(�)(RV1:tjmj ; k):

In this paper, we estimate the marginal likelihood by the BIC approximation which is given by

bL(�)(RV1:tjmj ; k) = expfL(�)(RV1:tjmj ; k;b�(�))� k ln(t)=2g;
where b�(�) denotes the ML estimate of �(�); obtained as discussed in Subsection 2.2. Alter-
natively, the marginal likelihood of quantile regression models can be estimated by Laplace

approximation (see Meligkotsidou et al., 2009).

The prior speci�cation we consider is the following. The prior probability of the jth model

is taken to be P (mj) = �kj (1��)K�kj ; where � is the prior probability of including a predictor
in the model, which is taken �xed and prespeci�ed, and kj is the number of predictors included

in model mj :We set � equal to 2/3, thus re�ecting the need of models with many predictors in

order to capture the volatility dynamics. The prior probability of k given the model speci�cation

mj is then P (kjmj) = 1; if kj = k; and P (kjmj) = 0; otherwise. This prior structure leads to

the joint prior of k;mj being P (k;mj) = �kj (1� �)K�kjI(kj = k) and to the natural Binomial

(K;�) marginal prior on k. Then, the marginal posterior distribution of k, under the �th

quantile regression is given by

P (�)(kjRV1:t) / �k(1� �)K�k
MX
j=1

bL(�)(RV1:tjmj ; k)I(kj = k):

Below we present and discuss the results of our likelihood-based approach to selecting k

for the �xed and time-varying weighting schemes of Section 3 and the respective combining

methods (see Appendix A.2).

12



4.2 Algorithm Performance

Table 6 reports the out-of-sample performance under the prior speci�cation considered (i.e.

�=2/3) of the �optimal�CSR forecasts (Panel A) and the �optimal�QFC forecasts based on

�xed weighting schemes (FW1-FW3) (Panel B) for the three out-of-sample evaluation periods.

The results of Table 6 reveal that our likelihood-based approach to selecting k in real time is

extremely successful, since the values of R2OS obtained under all weighting schemes and for all

combining methods are very high, especially for the evaluation periods starting January 1937

and January 1957. However for the most recent evaluation period, starting January 1977, the

performance of QFC is inferior to the ones of CSR. Regarding the �rst evaluation period, the

largest R2OS values are obtained for the Cluster combining methods (CL(5)), being in all cases

higher than 8.5%, with the highest value equal to 9.02% for the FW2 scheme. Regarding the

�rst dataset, the largest R2OS values are obtained again for the Cluster combining methods

(CL(5)), being in all cases higher than 6.39%, with the highest value being equal to 7.51%,

for the FW2 scheme. For the most recent evaluation period, we observe that the largest R2OS
values are obtained for the Cluster combining method (CL(5)) and the CSR approach (6.07%)

and second best is the Cluster combining method (CL(5)) under the FW3 scheme (5.65%).

[TABLE 6 AROUND HERE]

It is interesting to note that the results of the recursive k-selection exercise are quite robust

across the combining methods considered, as Cluster combining methods are the best, and

then we have DM, Mean, Tr. Mean and Median method. Moreover, it appears that all the

quantile schemes outperform the linear ones in 2 of the 3 evaluation periods and the FW2

scheme outperforms the other two FW schemes in two of the three out-of-sample periods.

In conclusion, let us note that the �ndings of our recursive experiment are very encouraging,

since they show that the proposed approach of selecting k in real time, based only on the past

history of the data, produces particularly well-performing forecasts and that these results are

very robust to the choice of weighting scheme and combining method.

5 Conclusions

In this study we propose a quantile forecast combination approach to realised volatility pre-

diction. The aim of our analysis is to construct volatility forecasts, which take into account

the bene�ts emerging from the subset framework, the quantile regression framework and the

information given by the potential predictors.

The quantile predictive approach proposed in this paper is based on the combination of

the quantile forecasts across complete subsets of model speci�cations that keep the number

of predictors, k, �xed. Forecast combination is based on several well-established combining

methods, while weighted averages of a set of combined quantile forecasts produce robust and

accurate forecasts of US equity realised volatility. We employ the likelihood-based method

developed by Meligkotsidou et al. (2014b) to select the value of k recursively. This algorithm is
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able to identify the best subset for predicting each quantile of the realised volatility distribution

in real time, based only on the past history of the data. Then, these �optimal�quantile forecasts

are combined to produce robust volatility forecasts.

The results of our study are very promising. Our �ndings suggest that our quantile forecast

combinations produced in the complete subset quantile regression framework achieves superior

predictive performance relative to the autoregressive benchmark, the combination approach,

and the subset linear regression approach. speci�cally, our approach can lead to sizable bene�ts

that exceed 9% in terms of R2OS : Extending our framework to allow for higher autoregressive lag

orders, rolling window forecasts and a large dimensional set of predictors is a promising route

for future research.
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Appendix A. Forecast Combination Schemes
Combining individual models� forecasts can reduce uncertainty risk associated with a single

predictive model and display superior predictive ability (Bates and Granger, 1969; Hendry and

Clements, 2004). In Appendix A.1, we brie�y discuss existing combination schemes that are

appropriate for combining subset mean regression forecasts, while in Appendix A.2 we present

the respective combining methods that are appropriate for producing combined subset quantile

forecasts (QFC approach).

A.1. Combination Methods for Mean forecasting
The combination forecasts of RVt+1, denoted bydRV (C)t+1, are weighted averages of the k�variate
predictor individual forecasts within each subset,dRV i;t+1, i = 1; : : : ; nk;K , of the formdRV (C)t+1 =
nk;KP
i=1

w
(C)
i;t
dRV i;t+1; where w(C)i;t ; i = 1; :::; nk;K ; are the a priori combining weights at time t for

each speci�c subset, k; k � K:

The simplest combining scheme is the one that attaches equal weights to all k-variate models

for a speci�c k, i.e. w
(C)
i;t = 1=nk;K , for i = 1; :::; nk;K , called the Mean combining scheme.

The next schemes we employ are the Trimmed Mean and Median ones. The Trimmed Mean

combination scheme sets w(C)i;t = 0 for the smallest and largest forecasts and w(C)i;t = 1=(nk;K �
2) for the remaining ones, while the Median combination scheme employs the median of thendRV i;t+1onk;K

i=1
forecasts.

The methods we describe below require a holdout out-of-sample period during which the

combining weights are estimated. To this end, the �rst P0 out-of-sample observations are

employed as the initial holdout period over which we construct combination forecasts and the

remaining T � (T0 + P0) = P � P0 forecasts are available for evaluation. The second class

of combining methods we consider, proposed by Stock and Watson (2004), suggests forming

weights based on the historical performance of the individual models over the holdout out-of-

sample period. Speci�cally, their Discount Mean Squared Forecast Error (DMSFE) combining

method suggests forming weights as follows

w
(C)
i;t = m�1

i;t =

nk;KX
j=1

m�1
j;t ; mi;t =

t�1X
s=T0

 t�1�s(RVs+1 �dRV i;s+1)2;
where  is a discount factor which attaches more weight on the recent forecasting accuracy of

the individual models in the cases where  2 (0; 1). The values of  we consider are 1:0, 0:9 and
0:5:When  equals one, there is no discounting and the combination scheme coincides with the

optimal combination forecast of Bates and Granger (1969) in the case of uncorrelated forecasts.

Finally, the third class of combining methods, namely the Cluster combining method, was

introduced by Aiol� and Timmermann (2006). In order to create the Cluster combining fore-

casts, we form L clusters of forecasts of equal size based on the MSFE performance. Each

combination forecast is the average of the k-variate model forecasts in the best performing clus-

ter. This procedure begins over the initial holdout out-of-sample period and goes through the

end of the available out-of-sample period using a rolling window. In our analysis, we consider
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L = 2; 3; 4; 5.

A.2. Combination Methods for Quantile Forecasting
The DMSFE, Cluster and Principal Components combining methods have been designed in the

framework of standard linear regression, in order to construct forecasts that exploit the entire

set of predictive variables. The combining weights, w(C)i;t , are computed based on the MSFE,

that is on a quadratic loss function that measures how close to the realized excess returns the

individual forecasts are. These methods are appropriate within the linear regression (subset)

framework. However, these combining schemes are not appropriate for combining predictor

information within the QFC approach since variable information is now combined in the context

of forecasting several quantiles of returns rather than producing point forecasts. In this case,

the MSFE is no longer suitable for measuring the performance of the produced forecasts and

has to be replaced by a metric based on the asymmetric linear loss function.

Below we describe how we modify the existing combining methods in order to produce quan-

tile forecasts that exploit variable information. The combined quantile forecasts,dRV (C)t+1(�), are

weighted averages of the form dRV (C)t+1(�) =
nk;KP
i=1

w
(C)
i;t
dRV i;t+1(�); where the combining weights,

w
(C)
i;t , have to be computed based on the check function (3).

First, we introduce the Discount Asymmetric Loss Forecast Error (DALFE) combining

method which suggests forming weights as follows

w
(C)
i;t = m�1

i;t =

nk;KX
j=1

m�1
j;t ; mi;t =

t�1X
s=T0

 t�1�s�� (RVs+1 �dRV i;s+1(�));
where  2 (0; 1) is a discount factor. The combining weights are computed based on the

historical performance of the individual quantile regression models over the holdout out-of-

sample period and  is set equal to 0.5, 0.9 and 1.

We also modify the Cluster combining method by forming L clusters of forecasts based on

their performance as measured by the asymmetric loss forecast error. The Asymmetric Loss

Cluster (AL Cluster) combination forecast is the average of the individual quantile forecasts in

the best performing cluster which contains the forecasts with the lower expected asymmetric

loss values. We consider forming L = 2; 3; 4; 5 clusters.

Appendix B. The Clark and West (2007) test of equal forecasting ability.
Clark and West (2007) develop an adjusted version of the Diebold and Mariano (1995) and West

(1996) statistic, namely the MSFE-adjusted statistic, which in conjunction with the standard

normal distribution generates asymptotically valid inferences when comparing forecasts from

nested linear models. Suppose that we want to evaluate the forecasts of a parsimonious model

A relative to a larger model B. Under the null hypothesis of equal MSFE, model B should

generate larger MSFE than model A, due to the estimation of additional parameters that

introduces noise into the forecasts while these do not improve predictions. A smaller MSFE

should not be considered as evidence of superiority of model A over B. In this respect, the
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testing procedure of Clark and West (2007) aims at correcting for the in�ation in the MSFE

of the larger model before evaluating the relative forecasting accuracy of the two models. LetdRV A;t+1 and dRV B;t+1 denote the one-step ahead forecasts for rt obtained from models A and

B respectively. We de�ne

ft+1 = (RVt+1 �dRV A;t+1)2 � [(RVt+1 �dRV B;t+1)2 � (dRV A;t+1 �dRV B;t+1)2]
The test statistic of Clark and West, denoted as MSFE � adjusted, is given by the standard

t� statistic of the regression of ffs+1gT�1s=T0+P0
on a constant. Given that under the alternative

hypothesis of the test, model B has lower MSFE than model A, this is an one-sided test. Clark

and West (2007) recommend using 1.282, 1.645 and 2.326 as critical values for a 0.10, 0.05 and

0.01 test, respectively. Extensive simulations performed by them, which consider a variety of

di¤erent processes and settings show that the aforementioned critical values provide reliable

results.
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Table 1. Performance of single-variable autoregressive models

January 1937 January 1957 January 1977
AR MSFE 0.1079 0.0998 0.0961
Predictor
DP -0.77 -0.36 -2.99
EP -0.15 -2.27 0.69
MKT 1.37 1.79 1.54
DEF 5.20 1.88 1.67
HML -0.19 -0.16 -0.15
INF -0.17 -0.29 -0.04
LTR -0.46 -0.16 -0.90
RBR -0.43 -0.58 -0.43
RTB -0.12 -0.52 0.16
SMB -0.64 -0.17 0.08
STR 1.12 1.37 1.86
TB -0.28 -0.25 -0.89
TMS -0.09 -0.64 -0.99

Notes: The Table reports the out-of-sample R2 statistic with respect to the AR(1) benchmark
model for the out-of-sample period 1977:1-2010:12. Bold indicates signi�cance (5% level) based
on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted statistic (CWpv)::
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Table 2. Out-of-sample performance of complete subset regression models
Panel A: Start: January 1937

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)

1 1.34 0.45 0.93 1.41 1.44 1.37 2.47 4.16 5.02 5.02
2 2.60 1.52 2.38 2.71 2.78 2.61 4.62 5.80 6.46 6.93
3 3.74 2.83 3.59 3.88 3.99 3.72 5.99 7.15 7.66 7.88
4 4.72 4.00 4.66 4.86 5.02 4.69 7.01 7.88 8.17 8.30
5 5.51 4.88 5.50 5.63 5.85 5.51 7.73 8.31 8.51 8.56
6 6.10 6.12 6.13 6.20 6.48 6.19 8.19 8.57 8.70 8.75
7 6.53 6.70 6.55 6.60 6.95 6.74 8.47 8.72 8.77 8.82
8 6.81 6.84 6.82 6.87 7.28 7.17 8.62 8.68 8.76 8.81
9 6.98 6.96 6.96 7.02 7.50 7.47 8.61 8.54 8.63 8.60
10 7.02 6.63 6.98 7.04 7.56 7.57 8.20 8.34 8.37 8.36
11 6.83 6.27 6.77 6.82 7.34 7.38 7.70 7.77 8.05 8.00
12 6.21 5.18 6.01 6.19 6.58 6.69 6.69 7.00 6.85 6.85
13 4.86

Panel B: Start: January 1957

k Mean Med. Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 1.05 0.42 0.81 1.09 1.15 1.11 1.87 3.27 3.88 3.88
2 1.87 1.47 1.79 1.94 2.07 2.00 3.43 4.26 4.67 4.96
3 2.52 2.34 2.48 2.61 2.80 2.73 4.22 5.02 5.41 5.57
4 3.02 2.56 3.01 3.11 3.37 3.34 4.83 5.47 5.68 5.70
5 3.39 2.95 3.40 3.49 3.82 3.83 5.31 5.71 5.86 5.92
6 3.69 3.57 3.69 3.78 4.18 4.25 5.71 5.94 6.11 6.21
7 3.94 3.90 3.92 4.04 4.49 4.62 6.04 6.29 6.38 6.46
8 4.18 4.04 4.15 4.27 4.78 4.95 6.37 6.51 6.65 6.74
9 4.40 4.18 4.36 4.48 5.05 5.22 6.59 6.63 6.79 6.76
10 4.53 3.95 4.47 4.58 5.21 5.33 6.45 6.64 6.67 6.72
11 4.40 3.79 4.32 4.41 5.05 5.14 6.00 6.40 6.64 6.58
12 3.75 2.53 3.47 3.72 4.24 4.37 4.81 5.42 5.52 5.52
13 2.23

Panel C: Start: January 1977

k Mean Med. Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 1.01 0.40 0.71 1.01 1.09 1.05 1.29 2.28 2.75 2.75
2 1.95 1.34 1.79 1.95 2.10 1.96 2.66 3.37 3.79 4.22
3 2.79 2.34 2.66 2.79 3.01 2.78 3.71 4.61 5.14 5.30
4 3.50 2.76 3.42 3.52 3.79 3.51 4.73 5.46 5.64 5.63
5 4.07 3.51 4.05 4.11 4.42 4.15 5.56 5.93 5.99 5.99
6 4.51 4.36 4.52 4.56 4.90 4.67 6.09 6.22 6.23 6.35
7 4.84 4.96 4.86 4.91 5.25 5.07 6.44 6.49 6.43 6.47
8 5.10 5.36 5.11 5.17 5.50 5.35 6.62 6.51 6.59 6.58
9 5.33 5.72 5.33 5.39 5.70 5.54 6.63 6.53 6.55 6.44
10 5.57 5.96 5.58 5.63 5.89 5.67 6.52 6.52 6.41 6.33
11 5.83 6.06 5.91 5.88 6.09 5.80 6.45 6.53 6.63 6.48
12 6.08 6.10 6.24 6.10 6.24 5.99 6.66 6.23 6.19 6.19
13 6.13

Notes: The Table reports the out-of-sample R2 statistic with respect to the AR(1) benchmark
model for the out-of-sample period 1977:1-2010:12. The reported R2OS statistics are statistically
signi�cant based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted
statistic (CWpv):
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Table 3. Out-of-sample performance of subset quantile regression models (start
date: January 1937)
Panel A: FW1 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)

1 2.45 1.65 2.11 2.49 2.50 2.38 3.42 4.76 5.38 5.38
2 3.53 2.70 3.36 3.59 3.62 3.43 5.19 6.16 6.79 7.14
3 4.57 3.79 4.45 4.63 4.68 4.45 6.41 7.29 7.69 7.91
4 5.50 4.93 5.43 5.56 5.63 5.37 7.19 7.88 8.24 8.38
5 6.28 5.90 6.25 6.33 6.42 6.15 7.80 8.30 8.54 8.68
6 6.89 6.99 6.89 6.93 7.05 6.79 8.24 8.63 8.79 8.91
7 7.32 7.48 7.34 7.35 7.50 7.27 8.55 8.85 8.95 9.00
8 7.60 7.63 7.62 7.62 7.79 7.59 8.74 8.95 8.99 9.02
9 7.70 7.73 7.71 7.71 7.90 7.74 8.74 8.84 8.87 8.91
10 7.62 7.51 7.62 7.62 7.82 7.70 8.54 8.60 8.57 8.58
11 7.26 7.05 7.23 7.26 7.44 7.36 8.00 8.19 8.20 8.11
12 6.38 5.72 6.22 6.37 6.50 6.48 6.88 7.27 7.51 7.51
13 4.87

Panel B: FW2 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 2.50 1.65 2.19 2.53 2.55 2.47 3.48 4.64 5.29 5.29
2 3.64 2.86 3.48 3.69 3.73 3.60 5.30 6.11 6.70 6.93
3 4.70 4.03 4.58 4.76 4.82 4.63 6.50 7.28 7.62 7.81
4 5.64 5.16 5.58 5.69 5.77 5.54 7.31 7.91 8.21 8.35
5 6.41 6.16 6.40 6.46 6.56 6.31 7.90 8.34 8.61 8.76
6 7.00 7.10 7.01 7.03 7.16 6.91 8.30 8.68 8.86 8.96
7 7.41 7.49 7.43 7.44 7.58 7.35 8.56 8.89 8.99 9.05
8 7.67 7.60 7.68 7.68 7.85 7.64 8.69 8.92 8.98 9.02
9 7.75 7.63 7.76 7.76 7.94 7.76 8.65 8.73 8.81 8.87
10 7.63 7.42 7.62 7.63 7.82 7.66 8.39 8.44 8.49 8.48
11 7.19 6.91 7.14 7.18 7.36 7.25 7.84 8.02 7.98 8.02
12 6.16 5.44 5.95 6.15 6.28 6.22 6.69 7.19 7.51 7.51
13 4.59

Panel C: FW3 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 2.24 1.39 1.86 2.28 2.28 2.15 3.25 4.61 5.27 5.27
2 3.36 2.47 3.17 3.43 3.45 3.24 5.10 6.09 6.73 7.08
3 4.43 3.60 4.30 4.50 4.55 4.29 6.37 7.26 7.68 7.90
4 5.36 4.75 5.30 5.42 5.50 5.22 7.16 7.88 8.23 8.38
5 6.13 5.73 6.11 6.18 6.29 5.99 7.75 8.29 8.52 8.66
6 6.72 6.82 6.73 6.76 6.90 6.62 8.16 8.57 8.75 8.87
7 7.13 7.31 7.15 7.16 7.33 7.08 8.44 8.77 8.89 8.95
8 7.39 7.44 7.41 7.41 7.59 7.39 8.61 8.85 8.92 8.97
9 7.49 7.50 7.49 7.50 7.70 7.55 8.61 8.77 8.81 8.86
10 7.42 7.29 7.41 7.43 7.63 7.53 8.45 8.54 8.54 8.55
11 7.11 6.92 7.09 7.11 7.31 7.25 7.97 8.16 8.15 8.08
12 6.33 5.71 6.19 6.33 6.47 6.46 6.89 7.33 7.58 7.58
13 4.92

Notes: The Table reports the out-of-sample R2 statistic with respect to the AR(1) benchmark
model for the out-of-sample period 1977:1-2010:12. The reported R2OS statistics are statistically
signi�cant based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted
statistic (CWpv):
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Table 4. Out-of-sample performance of subset quantile regression models (start
date: January 1957)
Panel A: FW1 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)

1 1.66 1.01 1.46 1.69 1.70 1.59 2.49 3.61 4.14 4.14
2 2.40 2.00 2.30 2.44 2.48 2.33 3.86 4.61 5.10 5.37
3 3.10 2.81 3.03 3.15 3.21 3.05 4.73 5.44 5.83 6.04
4 3.72 3.31 3.69 3.78 3.88 3.72 5.34 6.04 6.36 6.46
5 4.26 3.90 4.24 4.32 4.45 4.31 5.89 6.44 6.64 6.79
6 4.72 4.68 4.71 4.78 4.94 4.81 6.38 6.82 6.98 7.15
7 5.10 5.10 5.09 5.15 5.35 5.22 6.78 7.18 7.33 7.44
8 5.39 5.31 5.39 5.44 5.66 5.54 7.08 7.43 7.54 7.63
9 5.58 5.55 5.58 5.62 5.86 5.73 7.22 7.47 7.56 7.62
10 5.59 5.47 5.59 5.62 5.87 5.75 7.15 7.34 7.40 7.45
11 5.32 5.13 5.30 5.33 5.58 5.48 6.66 6.99 7.07 7.05
12 4.55 3.99 4.43 4.54 4.74 4.69 5.49 5.98 6.39 6.39
13 3.13

Panel B: FW2 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 1.69 0.96 1.49 1.71 1.74 1.68 2.59 3.62 4.26 4.26
2 2.51 2.11 2.43 2.55 2.61 2.53 4.11 4.78 5.24 5.30
3 3.26 3.05 3.21 3.31 3.39 3.30 5.00 5.59 5.83 5.97
4 3.91 3.67 3.89 3.96 4.08 3.98 5.61 6.12 6.38 6.48
5 4.46 4.35 4.46 4.51 4.66 4.56 6.12 6.54 6.77 6.96
6 4.91 4.94 4.91 4.97 5.14 5.03 6.55 6.97 7.15 7.33
7 5.29 5.27 5.28 5.34 5.53 5.42 6.90 7.32 7.51 7.64
8 5.59 5.45 5.59 5.64 5.85 5.71 7.17 7.58 7.72 7.82
9 5.79 5.68 5.78 5.82 6.04 5.88 7.29 7.57 7.73 7.82
10 5.79 5.59 5.78 5.81 6.05 5.88 7.18 7.40 7.55 7.56
11 5.44 5.17 5.40 5.44 5.68 5.54 6.63 7.02 7.13 7.17
12 4.48 3.79 4.28 4.47 4.66 4.59 5.33 6.01 6.55 6.55
13 2.88

Panel C: FW3 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 1.57 0.90 1.35 1.60 1.60 1.48 2.42 3.53 4.05 4.05
2 2.33 1.89 2.22 2.37 2.41 2.23 3.80 4.55 5.02 5.30
3 3.01 2.69 2.94 3.06 3.13 2.93 4.68 5.38 5.77 5.98
4 3.59 3.15 3.56 3.65 3.75 3.56 5.25 5.96 6.28 6.37
5 4.07 3.69 4.05 4.13 4.27 4.10 5.74 6.32 6.51 6.66
6 4.45 4.40 4.44 4.51 4.69 4.54 6.16 6.62 6.80 6.97
7 4.76 4.78 4.75 4.82 5.03 4.89 6.49 6.91 7.08 7.20
8 5.00 4.93 4.99 5.05 5.29 5.16 6.73 7.11 7.24 7.35
9 5.15 5.10 5.14 5.20 5.45 5.34 6.85 7.15 7.26 7.32
10 5.17 5.01 5.16 5.20 5.47 5.37 6.82 7.04 7.11 7.16
11 4.95 4.76 4.92 4.95 5.22 5.15 6.40 6.72 6.77 6.77
12 4.26 3.71 4.14 4.25 4.46 4.44 5.27 5.82 6.20 6.20
13 2.88

Notes: The Table reports the out-of-sample R2 statistic with respect to the AR(1) benchmark
model for the out-of-sample period 1977:1-2010:12. The reported R2OS statistics, which are
greater than 0.50, are statistically signi�cant based on the p-value of the Clark and West (2007)
out-of-sample MSFE-adjusted statistic (CWpv):
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Table 5. Out-of-sample performance of subset quantile regression models (start
date: January 1977)
Panel A: FW1 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)

1 0.34 -0.15 0.14 0.33 0.36 0.28 0.67 1.37 1.76 1.76
2 1.05 0.49 0.91 1.05 1.11 0.96 1.87 2.49 2.99 3.26
3 1.77 1.31 1.63 1.77 1.85 1.64 2.88 3.52 4.00 4.24
4 2.44 1.74 2.35 2.45 2.55 2.30 3.66 4.37 4.71 4.77
5 3.04 2.42 2.99 3.07 3.18 2.90 4.40 4.90 5.02 5.10
6 3.55 3.33 3.54 3.59 3.71 3.41 4.99 5.31 5.34 5.45
7 3.97 4.01 3.97 4.01 4.14 3.83 5.37 5.63 5.66 5.68
8 4.31 4.42 4.33 4.36 4.49 4.19 5.63 5.84 5.86 5.85
9 4.59 4.88 4.62 4.64 4.77 4.48 5.82 5.90 5.93 5.91
10 4.87 5.21 4.91 4.91 5.03 4.75 5.94 5.93 5.87 5.91
11 5.16 5.35 5.25 5.20 5.30 5.06 5.89 5.90 5.84 5.82
12 5.43 5.65 5.56 5.44 5.52 5.36 5.94 5.51 5.55 5.55
13 5.75
Panel B: FW2 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 0.33 -0.28 0.13 0.33 0.37 0.34 0.73 1.21 1.77 1.77
2 1.13 0.52 1.00 1.14 1.21 1.14 2.04 2.52 2.97 3.05
3 1.88 1.51 1.77 1.90 2.00 1.88 3.08 3.53 3.89 4.05
4 2.57 2.08 2.49 2.59 2.71 2.54 3.87 4.35 4.63 4.69
5 3.16 2.78 3.12 3.19 3.32 3.11 4.55 4.88 5.06 5.18
6 3.64 3.51 3.64 3.68 3.81 3.57 5.03 5.34 5.38 5.47
7 4.01 4.08 4.03 4.06 4.19 3.93 5.32 5.58 5.65 5.67
8 4.32 4.43 4.35 4.36 4.49 4.22 5.48 5.74 5.79 5.81
9 4.55 4.83 4.58 4.60 4.71 4.43 5.57 5.73 5.81 5.81
10 4.77 5.06 4.81 4.80 4.90 4.63 5.59 5.67 5.71 5.67
11 4.96 5.13 5.03 4.99 5.07 4.83 5.47 5.61 5.59 5.54
12 5.06 5.26 5.17 5.07 5.12 4.96 5.55 5.21 5.18 5.18
13 5.26
Panel C: FW3 method

k Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
1 0.51 -0.01 0.28 0.50 0.53 0.42 0.85 1.54 1.95 1.95
2 1.27 0.69 1.12 1.26 1.32 1.13 2.11 2.72 3.20 3.51
3 1.99 1.53 1.86 1.99 2.07 1.81 3.12 3.79 4.25 4.47
4 2.63 1.93 2.55 2.65 2.74 2.44 3.87 4.60 4.91 4.93
5 3.18 2.59 3.14 3.21 3.32 2.98 4.54 5.07 5.16 5.22
6 3.62 3.41 3.61 3.66 3.78 3.43 5.06 5.38 5.42 5.52
7 3.95 4.01 3.96 3.99 4.13 3.78 5.36 5.60 5.64 5.66
8 4.21 4.32 4.23 4.26 4.40 4.07 5.53 5.73 5.76 5.76
9 4.43 4.68 4.44 4.48 4.62 4.31 5.66 5.75 5.78 5.77
10 4.66 4.96 4.69 4.71 4.84 4.56 5.76 5.76 5.71 5.75
11 4.95 5.17 5.03 4.99 5.11 4.87 5.76 5.75 5.68 5.64
12 5.25 5.49 5.40 5.27 5.36 5.19 5.83 5.49 5.51 5.51
13 5.54

Notes: The Table reports the out-of-sample R2 statistic with respect to the AR(1) benchmark
model for the out-of-sample period 1977:1-2010:12. The reported R2OS statistics are statistically
signi�cant based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted
statistic (CWpv):
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Table 6. Out-of-sample performance of the �optimal�CSR and QFC forecasts
Panel A: Complete Subset Regression

Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
January 1937 5.00 4.38 4.93 5.12 5.34 5.01 7.37 8.14 8.50 8.56
January 1957 3.75 3.46 3.73 3.84 4.15 4.12 5.74 6.15 6.39 6.39
January 1977 4.03 3.47 3.99 4.07 4.36 4.04 5.47 6.00 6.13 6.07

Panel B: Quantile Forecast Combinations- FW1

Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
January 1937 6.40 6.09 6.36 6.45 6.56 6.30 7.99 8.53 8.80 8.96
January 1957 4.67 4.44 4.63 4.72 4.87 4.73 6.37 6.93 7.21 7.39
January 1977 3.21 2.65 3.15 3.23 3.35 3.07 4.55 5.07 5.32 5.45

Panel C: Quantile Forecast Combinations- FW2

Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
January 1937 6.46 6.23 6.43 6.50 6.61 6.36 7.97 8.50 8.83 9.02
January 1957 4.85 4.80 4.83 4.89 5.05 4.93 6.45 6.96 7.29 7.51
January 1977 3.35 3.18 3.33 3.38 3.50 3.28 4.60 5.07 5.38 5.55

Panel D: Quantile Forecast Combinations- FW3

Mean Median Tr.Mean DM(1) DM(0.9) DM(0.5) CL(2) CL(3) CL(4) CL(5)
January 1937 6.38 6.13 6.35 6.43 6.55 6.27 8.04 8.59 8.84 8.99
January 1957 4.56 4.36 4.53 4.61 4.77 4.61 6.30 6.87 7.14 7.31
January 1977 3.49 3.04 3.45 3.52 3.64 3.31 4.84 5.34 5.54 5.65

Notes: The Table reports the out-of-sample R2 statistic of the optimal Complete Subset Regres-
sion (CSR) and Quantile Forecast Combination (QFC) approaches with respect to the AR(1)
benchmark model for the three out-of-sample periods considered. The reported R2OS statistics
are statistically signi�cant based on the p-value of the Clark and West (2007) out-of-sample
MSFE-adjusted statistic (CWpv).
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