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Abstract 

   

 This paper re-investigates the stationarity of stock index futures hedge ratios. 

We show that the dynamic hedge ratios, calculated from time-varying variance-

covariance matrices, are stationary over time. However, the examination of the 

evolution of spot and futures dynamics, provides evidence that the hedge ratios are 

better described as a combination of two different mean-reverting stationary processes 

which depend on the state of the market. Additionally, we analyse the dynamics of 

hedge ratios at intraday level, which display a complex picture, suggesting that 

intraday movements in the spread between spot asset and futures position are driven 

mainly by market participants with different perspectives of investment horizon. 
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1. Introduction 

  Are futures hedge ratios stationary? This is a highly important question in the 

financial literature. The stationarity of the hedge ratios indicates a stable relationship 

between spot and futures prices. Since hedgers seek for reducing the risk of their 

investments, reliable dynamics of hedge ratios are expected. If not, futures markets 

may lose its usefulness to hedgers since the risk diversification can be hard to achieve. 

The property of stationarity motivates investors to use these strategies and can be 

utilised by policy makers to stabilize financial markets. This important question is 

also related to the performance of variances of spot and futures returns and their 

covariance. In this paper we pursue the answer to this question by analysing the 

properties of dynamic hedge ratios (HRs). 

 There are several techniques available for managing financial risk. One of the 

most widely used is hedging with futures contracts. A hedge is a spread between a 

spot asset and a futures position that reduces risk
1
. A considerable amount of research 

has focused on modelling the distribution of spot and futures prices and applies the 

results to estimate the optimal hedge ratio using various type of models such as OLS, 

GARCH, ECM and VECM models (see Chen et al., 2003; Floros and Vougas, 2004; 

Salvador and Arago, 2014). The hedge ratio is defined as the number of futures 

contracts bought or sold divided by the number of spot contracts whose risk is being 

hedged.  

Several studies have investigated the optimal hedge ratio using stock index 

futures under both a constant (static) and a time-varying (dynamic) setting. To 

estimate the optimal hedge ratios, early works used the slope of an OLS regression of 

the spot on the futures returns, while an improvement has been made by adopting a 

bivariate GARCH framework (see Park and Switzer, 1995). This last approach has 

become one of the most popular techniques since it allows the modelling of the 

empirical characteristics of the spot-futures distribution.  

 Although most of the previous studies are successful in capturing the time-

varying covariance-variances, almost all of them focus only on the estimation of the 

                                                           
1
 In this paper we follow the traditional view of hedging, i.e. risk minimization. There are other 

alternative HRs, e.g. authors use other objectives such as (i) HR based on rates of returns situations 

where spot is fixed, (ii) HR for the case when trader wishes to maximize the ratio of the expected 

return on the hedged portfolio to its variance, or (iii) when there is marking to market and stochastic 

interest rates etc. These alternatives HRs involve both risk and return, but they are generally more 

complicated than the traditional minimisation of risk, and hence they are not considered in most 

empirical studies. 
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hedge ratios. The main purpose of this paper is to further examine and understand the 

stationarity of hedge ratios over time, as the literature provides limited information 

about it
2
. 

 Previous studies such as Ederington (1979) and Anderson and Danthine 

(1981) assume that the optimal hedge ratio is constant when it can be obtained as a 

slope coefficient of an OLS regression. When the optimal hedge ratios depend on the 

conditional distributions of spot and futures price movements, then the hedge ratios 

vary over time as this distribution changes. Previous studies show the variability of 

the hedge ratios over time, and support the hypothesis that the optimal hedge ratios of 

commodities are time-varying and non-stationary (see Baillie and Myers, 1991). They 

report that the hedge ratios contain a unit root and therefore behave much like a 

random walk. 

Grammatikos and Saunders (1983) were the first to examine the stability of 

hedge ratios. They concluded that the hedge ratio stability (stationarity) in currencies 

could not be rejected. Furthermore, Malliaris and Urrutia (1991) examined the 

random walk hypothesis and concluded that the hedge ratios of the selected indices 

and currencies follow a random walk. However, Ferguson and Leistikow (1998) 

report that futures hedge ratios are stationary using a simple OLS regression 

approach. They argue that the hedge ratios in previous studies follow a random walk 

due to a small sample size of data and hedge ratio calculation overlap. Furthermore, 

Lien et al. (2002) reject the null hypothesis that the optimal GARCH hedge ratios 

have a unit root. Recently, Lai and Sheu (2010) propose a new class of multivariate 

volatility models encompassing realized volatility (RV) estimates to obtain the risk-

minimizing hedge ratios. Their results show that hedging improvement is substantial 

when switching from daily to intraday frequencies. They also report that the ADF test 

on the RV-based hedge ratios (intraday) is rejected, except for the results based on the 

(daily) OLS and the ECT-GARCH-CCC models for post-crisis period of 2008.  

 The contribution of this article is to examine whether the time-varying hedge 

ratios calculated from a set of European stock indices (German DAX30, British 

FTSE100, French CAC40 and Spanish IBEX35) are stationary over time. Testing for 

a unit root in futures and spot prices is tricky due to the propensity of such prices to 

jumps (Alexander, 2008). In order to overcome the predicament due to jumps, we 

                                                           
2
 There is to date no definite conclusion concerning the stationarity of the dynamic HRs, which may be 

used to improve hedging performance. 
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investigate the hedge ratios stationarity in low volatile periods and highly volatile 

periods based on the Regime-Switching Augmented Dickey Fuller (RS-ADF) unit 

root test introduced by Kanas and Genius (2005). 

The paper provides empirical evidence that the time-varying hedge ratios are 

stationary over time. Thus, we confirm the stable relationship between futures and 

spot returns across time. However, if we take a closer look at the evolution of spot and 

futures dynamics, we find out that the hedge ratios are better described as a 

combination of two different mean-reverting stationary processes which depend on 

the state of the market. Although correlations follow a stable stationary process in 

both states, during periods of financial turmoil the correlations between spot and 

futures are different than during calm periods.  

This result sheds light on the controversy caused by the evidence of greater 

hedging effectiveness using static hedge ratios than using simple dynamics ones, and 

why there have been several recent papers which both theoretically (Lien, 2010) and 

empirically (Alizadeh and Nomikos, 2008; Salvador and Arago, 2014) showed a 

greater effectiveness of regime-switching models. The intuition is that omitting the 

regime-switching specification leads to inefficient hedges compared not only to the 

ones considering this state-dependence but also to the static ones. 

Moving one step beyond, we further analyse the dynamics of optimal hedge 

ratios at intraday level (we extend the study by Lai and Sheu, 2010). Since executing 

an intraday hedging strategy would be very expensive, we focus in providing new 

insights about the dynamics of the spot and futures markets at ultra-high frequency.  

The results display a complex picture on the dynamics at ultra-high frequency, 

suggesting that intraday movements in the spread between spot asset and futures 

position are driven mainly by market participants with different perspectives of 

investment horizon. This is because there is very little hedging at short horizons 

(speculative actions are more than the investment actions), but at long horizons 

(speculative actions are less than the investment actions) there is more presence of 

hedging strategies. 

The rest of the paper is organised as follows. Section 2 provides a description 

of the database. Section 3 develops the model used to obtain the dynamic hedge 

ratios. Section 4 analyses the time-series stationarity of the estimated hedge ratios not 

only from a standard perspective but also from the regime-switching framework. In 
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section 5 we take a closer look at the stationarity properties of hedge ratios using 

intraday data and section 6 concludes. 

 

2. Data Description 

The dataset is comprised by daily data (spot and futures closing prices) from 

the main stock indices and its corresponding futures contracts in Germany (DAX30), 

France (CAC40), United Kingdom (FTSE100) and Spain (IBEX35). The time horizon 

includes observations from May 2000
3
 to November 2013. Within this sample period 

we have two different contexts, i.e. before (under several years of stability and 

sustained growth) and after the global financial crisis and the Eurozone debt problems 

started in 2008. 

The stock markets analysed are the most traded European financial markets 

and all of them are traded on an electronic trading system. The time-series for the 

indices and their near-time delivery (nearby) futures contract
4
 are provided by 

Datastream
®

.  

[Insert Table 1 about here] 

 Table 1 presents the statistical properties of the price and returns series. The 

returns of spot and futures prices follow all stylized facts of financial time series such 

as leptokurtosis, volatility clustering, leverage effects, etc. (see Bollerslev et al., 

1994). Further, the log of prices are found to be I(1), i.e. the series are non-stationary, 

thus we model the log-returns for the time-series analysis5. We estimate time-varying 

hedge ratios using GARCH models which are very popular in the literature to capture 

the stylized facts of financial time series (see, for example, Degiannakis and Floros, 

2010). In the next section we develop the empirical models to obtain dynamic hedge 

ratios and we describe their patterns. 

 

3. Estimating Time-Varying Hedge Ratios 

 

3.1. Methodology 

                                                           
3
 Since May of 2000 data is available for all the examined indices. 

4
 Carchano and Pardo (2008) show that rolling over the futures series has no significant impact on the 

resultant series. Therefore, the least complex method can be used for the construction of the series to 

reach the same conclusions. 
5
 These results are available upon request.  
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 According to Lee (1999), given the time-varying nature of the covariance in 

financial markets, the OLS assumption is inappropriate when estimating optimal 

hedge ratios. In the GARCH model
6
 the conditional variance of a time series depends 

upon the squared residuals of the process (Bollerslev, 1986). It also captures the 

tendency for volatility clustering in financial data, and utilises the information in one 

market own history (univariate GARCH) or uses information from more than one 

market history (multivariate GARCH). According to Conrad et al. (1991), 

multivariate GARCH models provide more precise estimates of the parameters 

because they utilise information in the entire variance-covariance matrix of the errors 

and allow the variance and covariance depend on the information set in a vector of the 

ARMA manner (Engle and Kroner, 1995). 

 In the more traditional hedge ratio estimation methodology, the covariance 

matrix of spot and futures prices (and therefore the hedge ratio) is constant through 

time. However, a large body of research has applied the GARCH framework to infer 

time-varying hedge ratios (Cecchetti et al., 1988; Kroner and Sultan, 1993; Park and 

Switzer, 1995). Although GARCH models are useful for estimating time-varying 

optimal hedge ratios, a time-varying covariance matrix of spot and futures prices is 

not sufficient to establish that the optimal hedge ratio is time-varying
7
. 

 In this study we use a bivariate model with GARCH errors, the Diag-

BEKK(p,q) model, to estimate the dynamic variance-covariance matrix of spot and 

futures log-returns. The Diag-BEKK(p,q) framework of log-spot (s) and log-futures 

(f) is estimated in the form 
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where 1−Ψt  is the information at time 1−t  and the variance-covariance matrix 

specification, tH , is the BEKK model of Baba et al. (1990). The matrices iA  and jB  

                                                           
6
 The advantage of the GARCH specification is that it is a model that allows for leptokurtosis in the 

distributions of price changes. 
7
 Constancy of the HR refers to the ratio of the covariance (between the spot and futures price) to the 

variance of the futures price, which is constant (Moschini and Myers, 2002). 
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are restricted to be diagonal. The Diag-BEKK(p,q)  model is guaranteed to be positive 

definite and requires the estimation of fewer parameters compared to other 

multivariate models; i.e. Diag-VECH, BEKK, etc.  

This multivariate specification allows us obtain time-varying hedge ratios 

through the conditional covariance matrix 

2

,

,

tf

tsf

tHR
σ

σ
= , (2) 

where the dynamic hedge ratios are computed as the quotient between the conditional 

spot-futures covariance and the futures variance. 

 

3.2. Empirical Results 

 The estimation of the model is carried out using conditional quasi maximum 

likelihood estimation
8
. The p and q lag orders have been selected according to the 

Schwarz’s (1978) Bayesian criterion. The results from the Diag-BEKK(1,1) model 

(eq.1) are presented in Table 2. The coefficients are all statistically significant and 

imply volatility clustering. Both spot and futures log-returns exhibit strong persistence 

in volatility but it is the futures market which shows the strongest persistence.  

[Insert Table 2 about here] 

 Figure 1 shows the estimated variances over time for the DAX30, FTSE100, 

CAC40 and IBEX35 spot and futures indices. We observe several peaks in the 

volatility measures common to all markets; e.g. around 2003, in latest 2008 

coinciding with global financial crisis, and one covering end 2011- beginnings 2012 

with the worst part of the Eurozone debt problems which reflected in the stock 

markets. Also in Spain there is a peak during the beginnings of 2013 showing further 

problems with the stability of that market.  

[Insert Figure 1 about here] 

Figure 2 shows the plot of time-varying hedge ratios obtained using eq.2. The 

DAX hedge ratios are quite volatile during the first part of the sample but they seem 

to stabilise after 2005. Despite the evident peaks in volatilities in all countries, the 

hedge ratios follow a smooth pattern along the sample period where they seem to 

                                                           
8
 The conditional log-likelihood function for a single observation can be written as 

)2log()2/()( πθ ntL −= )()(1)'()2/1(|))(log(|)2/1( θεθθεθ ttHttH −−− , where θ  represents a vector of 

parameters and n is the sample size (for more details see Xekalaki and Degiannakis, 2010). 
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return always to a predetermined value. As, from visual description of the hedge 

ratios we cannot infer about their stationarity, next section provides a formal study of 

the hedge ratio stationarity and the implications for optimal hedging.  

[Insert Figure 2 about here] 

4. Analysing the (Non) Stationarity of the Hedge Ratios 

 

4.1. Unit Root Theory 

 The Augmented Dickey Fuller (ADF) test assumes that the ty  series follows 

an AR(p) process 

tptptttt uyyxayy +∆++∆++=∆ −−− ββδ ...11

'

1 ,            (3) 

where ty∆  defines the first difference of hedge ratios, and ( )2,0~ ut Nu σ , with 

0:0 =aH  and 0:1 <aH . 

 Phillips and Perron (1998) propose a nonparametric method to control for 

serial correlation when testing for a unit root (this test is popular in the analysis of 

financial time series). The PP test estimates the test equation tttt uxayy ++=∆ − δ'1 , 

and modifies the t-ratio of the a  coefficient; hence, the serial correlation does not 

affect the asymptotic ditribution of the test statistic
9
. 

 

4.2. Regime-Switching ADF Test 

Recent literature has questioned the asymptotic power and statistical 

properties of traditional ADF tests; e.g. Chortareas et al. (2002) and Solis et al. 

(2002). In this paper we are interested in the stationarity properties of hedge ratios 

conditioned to volatility levels in the markets (low and high volatility), i.e. if the 

hedge ratios are (non)stationary within high and low volatility periods independently 

of which is its stationarity in the long-run (assuming a single regime in the long-run).  

This can be done by applying the methodology developed by Kanas and 

Genius (2005). They extend the ADF regression by allowing both the autoregressive 

parameters and the volatility of the hedge ratios to change over time following a first 

order Markov process. Hence, the regime-switching ADF, or RS-ADF, specification 

                                                           
9
 The test corrects for any serial correlation and heteroskedasticity in the errors tu  of the test 

regression. 
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test for the (non)stationarity of hedge ratios under different states of volatility is 

defined as:  

                ttskt

p

k

skst uybyaay
ttt

++∆+=∆ −−

=

∑ 1

1

,,0  , ( )2,0~
tst Nu σ ,                               (4) 

where 
ttt ssks baa ,,..., ,,0  are regime-switching parameters, ts  is the unobservable regime, 

and tu  are normal innovations with state-dependent variances
10

.  

 

4.3. Empirical Results 

 Table 3 shows the results from the ADF and PP tests applied to the estimated 

hedge ratios under three cases: i) a simple AR(p) process, ii) a constant trend and iii) a 

time stationary trend. Tests when considering a specific trend show that the hedge 

ratio estimated from the Diag-BEKK model considering the returns of spot and 

futures prices are stationary, or I(0). This does not hold, however, when we do not 

specify a trend in the data which shows its importance when testing for stationarity in 

hedge ratios. Our results are in line with previous papers such as Ferguson and 

Leistikow, 1998 and Lien et al. 2002 who also found that time-varying hedge ratios 

are stationary over time. 

[Insert Table 3 about here]  

 The implication of this result is that optimal hedges on stock indices tend to 

fluctuate around a mean-reverting value. This stable relationship between the 

correlations of spot and futures markets can be exploited by hedgers to reduce the risk 

of their investments. However, this adds further controversy on the debate about the 

superiority or not of dynamic hedge ratios against static strategies for minimising the 

risk of a hedged portfolio. Several authors found that more complex models do not 

provide a better performance than simple static ones (Lien et al., 2002; Cotter and 

Hanley, 2012). The variability of the time-varying hedge ratios around this mean is 

what may cause a worse performance of this kind of dynamic models compared to the 

static ones. Nevertheless, this result of stationarity in the hedge ratios can be viewed 

as good news, since it implies a reliable relationship between the spot and futures 

prices and a confirmation that futures markets are useful for hedgers.  

                                                           
10

 The model is estimated by the maximum likelihood method using an algorithm where ex-ante and 

filtered probabilities are inferred in first place and then based on them standard maximisation of the 

likelihood function is performed (see Hamilton, 1994; Floros and Salvador, 2014). 
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Besides this first analysis, we also examine the stationarity of hedge ratios by 

looking at low and high volatile periods. The advantage of our approach is that we do 

not need to assume which periods correspond to low/high volatility states but it is the 

estimation procedure itself which makes this classification.  

Table 4 shows the estimations of the RS-ADF model presented in eq.4. We 

observe that most of the coefficients representing a constant drift in the time-series are 

statistically significant, but if we look at the autoregressive coefficient just a few of 

them present significance. The most relevant coefficient in Table 4 is 
tsb  which 

represents the existence or not of a unit root in the state-dependent process. Some 

results are noteworthy. 

[Insert Table 4 about here] 

First, in both states the coefficients 
tsb  are negative and significant which 

implies stationarity within each state-dependent process. This confirms the results of 

stationarity (Francq and Zakoian, 2001; Timmerman, 2000; Yang, 2000) on time-

varying hedge ratios previously obtained, but its interpretation is different. Here we 

have two different mean-reverting processes, one when the process is in low-volatility 

periods, and another one when the process is in high-volatility periods. Within each 

state the hedge ratios tend to fluctuate around different values instead of just one 

common value independent of the state.  

Figure 3 shows the probability of being in a state of low volatility and 

complements Figure 2 which shows in shaded areas the observations that correspond 

to high volatility periods when compared to the estimated hedge ratios.  

[Insert Figure 3 about here] 

The hedge ratios process changes among regimes. The hedge ratios within 

each regime are stationary but the dynamics of the correlation in the different regimes 

are not the same. Thus, if we are interested in shorter horizons hedges the omission in 

considering different states can be a cause of a worse hedging performance.  

In fact, this result sheds light to very recent evidence which shows both 

theoretically and empirically that hedge ratios obtained from regime switching models 

outperform the rest of strategies (both static and dynamic). Lien (2010) characterizes 

conditions under which the regime-switching hedge strategy performs better than the 

OLS hedge strategy and where the GARCH effects prevail. These conditions would 
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allow the RS-GARCH hedge strategy to dominate both OLS and GARCH hedge 

strategies. 

Recently, Alizadeh and Nomikos (2008) for commodities and Salvador and 

Arago (2014) for stock indices report a greater performance of regime-switching 

strategies than those obtained through single-regime models. Our results about this 

state-dependent stationarity of hedge ratios support this previous evidence. When 

analysing the performance of hedging strategies we usually look at shorter horizons 

and we tend to follow the false dynamics. So, not considering the switching of HRs' 

regimes causes a worse hedging effectiveness. 

[Insert Table 5 about here] 

In Table 5 we repeat the estimations of the RS-ADF model, but in this case we 

do not consider a drift in the model. Here we obtain a surprising result. The 

coefficient 
tsb  in the low volatility state is negative and significant providing evidence 

of stationarity of hedge ratios during this low volatility state. However, if we look at 

high volatility states it seems that the process followed by optimal hedge ratios is 

nonstationary. This result highlights the importance of modelling properly the trend of 

the time-series (similar results when using standard unit-root tests) since its wrong-

specification could lead to wrong conclusions about the stationarity of hedge ratios. 

 

5. Hedge Ratio Stationarity for Intraday Data   

Dynamic hedging is usually expensive to implement since it involves 

transaction costs any time the hedged portfolio is re-balanced. Therefore, hedging is 

more rational at low frequencies. However, if the hedging is conducted only by 

investors, the hedge dynamics will not differ across different sampling frequencies. 

On the other hand, if the hedging is conducted by investors and traders (i.e. swap 

trading between futures and spot for speculation), then the hedge dynamics will differ 

across different sampling frequencies. In this section, we try to unmask this 

hypothesis by looking at the stationarity patterns of intraday hedge ratios both from 

standard and regime-switching techniques. Given the costs associated with a hedging 

strategy at intraday level we do not associate any of these results with hedging 

effectiveness. 

The dataset is comprised by hourly observations of the DAX index and its 

corresponding future contract from 3
rd

 of January, 2000 to 30
th

 of December, 2010 
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(25138 observations)
11

. As in the previous datasets, we first compute the dynamic 

hedge ratios based on eqs.1 and 2. A plot of the estimated intraday hedge ratios is 

displayed in Figure 4. The hedge ratios seem to follow a smooth pattern although it is 

not possible to draw any conclusion about its stationarity from this figure. Therefore, 

we run the standard and regime-switching stationarity tests to provide new insights. 

[Insert Figure 4 about here] 

Panel A in Table 6 displays the standard unit-root tests for the German 

intraday hedge ratios. Similar to the results above, we reject the null hypothesis of a 

unit root in the intraday hedge ratio series. However, if we consider the regime-

switching approach and distinguish between high and low volatility regimes (panel B 

Table 6) we cannot reject the unit root in any of the regimes.  

[Insert Table 6 about here] 

This result draws a complex picture for the distributions of spot and futures 

returns at ultra-high frequency. Although when looking at longer horizons the spot-

future correlations seem to follow a stationary process, when looking at intra-day 

horizons the dynamics of the spreads between these two markets follow unpredictable 

dynamics. Taken this result together with the ones reported in previous sections, we 

conclude that the dynamics of hedge ratios vary across different sampling frequencies. 

Given these results and according to our hypothesis, the agents driving the spread of 

these markets at intraday level are mainly speculators. In other words, our results 

support that, at the ultra-high frequency, investors who hedge their strategies are 

dominated by speculators. This is due to the fact that market participants have 

different perspectives of their investment horizon. On the one hand, we have the 

investors who prevail at the daily frequency, and on the other hand, we have the 

speculators who prevail at the intra-day frequency.  

The implied transaction cost when rebalancing the optimal hedge position can 

be the reason to discourage the hedgers to operate at this ultra-high frequency. Also, 

the unstable dynamics followed by the correlations of spot and futures markets at this 

ultra-high frequency can make difficult for hedgers to achieve the desired risk 

reduction in their investments. 

On the other hand, day trading or speculation in securities is conducted not 

only by financial firms and professional speculators (i.e. equity investment and fund 

                                                           
11

 The hourly sampling frequency has been selected in order to minimize the effect of microstructure 

noise, see Degiannakis and Floros (2013). 



13 

 

management specialists) but, thanks to electronic trading and margin trading, it has 

become increasingly popular among at-home traders as well
12

. This is increasingly 

giving to this kind of market participants a very important role when defining the 

dynamics of the spot-futures markets at this ultra-high frequency. Our results are in 

line with Tse and Williams (2013) who support that any future efforts studying 

speculation in the futures markets must be done using high frequency intraday data.   

 

6. Conclusion 

 Static and dynamic models of various forms have been well accepted to 

calculate hedge ratios. However, there is to date no definite conclusion concerning the 

stationarity of the dynamic hedge ratios. We focus on the characteristics of optimal 

hedge ratios for the DAX30 (Germany), FTSE100 (UK), CAC40 (France), and 

IBEX35 (Spain) indices over the period 2000-2013. We examine the stationarity of 

hedge ratios by employing standard econometric methods of unit root tests and a new 

state-dependent approach following the RS-ADF test. Dynamic hedge ratios are 

estimated by a bivariate GARCH-type model.  

 We find that dynamic hedge ratios are stationary over time when the entire 

sample is considered. This result implies a stable relationship in the spot-futures 

correlations that can be used for hedgers to reduce the risk in their investments. 

However, when we consider shorter horizons and distinguish between volatility states 

(i.e. high and low volatile periods), we show that the dynamic hedge ratios follow 

different stationary processes during periods of calm and periods of financial turmoil. 

These results support evidence from previous studies which report a greater hedging 

performance of dynamic strategies using regime-switching models. 

 The different processes followed by the hedge ratios for volatile periods are 

associated with changes in the variances and the covariance between spot and future 

returns. This has important implications for hedgers. First, financial analysts and 

hedgers must determine the effect of this unexpected change in the risk on their 

position. Second, they should determine the factors causing this shifted stationarity.  

                                                           
12

 Speculators are more active at intraday level since they profit from their intraday investments in 

information. Moreover, a speculative activity is important for intraday markets. Speculators make 

markets more liquid and efficient, while they benefit from the high price volatility. We argue that 

without speculation at intraday level, markets would be less complete in that there would be fewer 

opportunities for other market participants. 
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 The results for the dynamic hedge ratios at intraday level draw a complex 

picture suggesting that the spreads are mainly driven by short-term market 

participants. We argue that we have investors who prevail at the daily frequency and 

speculators who prevail at the intra-day frequency in the spot-futures stock markets. 
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Tables 

The Table shows summary statistics and stationarity tests for prices ( )
tt

fs ,  and returns 

( ) ( ) ( ) ( )[ ]
tt

fLsL log1,log1 −−  of the 4 European stock indices (German DAX30, the British FTSE100, 

the French CAC40 and the Spanish IBEX35) in the spot and futures market. Panels A and C show the 

descriptive statistics and the Jarque-Bera normality test for spot and futures markets, respectively. 

Panels B and D show the stationary tests on the price and returns series, respectively (
***

,
**

 and 
*
 

represents rejection of the null hypothesis at 1%, 5% and 10% levels of significance, respectively). 

 

 

Panel A.- Summary statistics for log-returns 

 Germany  United Kingdom France Spain 

Spot Futures Spot Futures Spot Futures Spot Futures 

Mean 2.37 e-05 2.26e-05 4.98e-06 2.55e-06 -1.45e-04 -1.45e-04 -9.98e-05 -1.04e-04 

Standard 

deviation 
0.0159 0.0158 0.0127 0.0126 0.0154 0.0153 0.0155 0.0158 

Minimum -0.0887 -0.1481 -0.0926 -0.0969 -0.0947 -0.0882 -0.0959 -0.0988 

Maximum 0.1080 0.1208 0.0938 0.0958 0.1059 0.1028 0.1348 0.1383 

Skewness 0.0000 -0.1527 -0.1490 -0.1674 0.0427 0.0120 0.1204 0.0706 

Kurtosis 

(excess) 
1.4142 3.6816 3.2337 3.6535 1.7892 16396 1.9989 1.8315 

JB test 2767.97 6356.89 5534.01 6306.22 3259.47 3058.11 3558.34 3319.15 

Panel B- Stationarity test  for log-returns 

 
Germany  United Kingdom France Spain Germany  

Spot Futures Spot Futures Spot Futures Spot Futures 

Dickey-

Fuller 
-59.512

***
 -58.843

***
 -61.585

***
 -60.731

***
 -60.600

***
 -60.494

***
 -58.429

***
 -58.875

***
 

Phillips-

Perron 
-59.512

***
 -58.843

***
 -61.585

***
 -60.731

***
 -60.600

***
 -60.494

***
 -58.429

***
 -58.875

***
 

Table 1.Summary statistics for prices and log-returns of spot and futures on the selected European 

indices 

Panel C.- Summary statistics prices 

 Germany  United Kingdom France Spain 

Spot Futures Spot Futures Spot Futures Spot Futures 

Mean 5688.36 5710.46 5366.68 5361.56 4190.81 4189.39 9726.12 9701.97 

Standard 

deviation 
1439.34 1445.12 797.90 802.45 969.41 976.41 2365.61 2370.29 

Minimum 2202.96 2214.00 3287.04 3262.00 2403.04 2397.00 5364.50 5362.00 

Maximum 8530.89 8530.00 6840.27 6902.00 6922.33 6956.50 15945.70 15981.00 

Skewness -0.2335 -0.2323 -0.3758 -0.3653 0.7019 0.7089 0.6500 0.6618 

Kurtosis  

(levels) 
-0.8637 -0.8688 -0.8745 -0.8486 -0.4280 -0.4153 -0.1908 -0.1777 

JB test 139.81 140.76 192.74 181.79 312.00 316.22 250.05 258.27 

Panel D- Stationarity test prices 

 
Germany  United Kingdom France Spain Germany  

Spot Futures Spot Futures Spot Futures Spot Futures 

Dickey-

Fuller 
-0.2262 -0.2330 -0.3067 -0.3208 -1.3078 -1.3006 -0.8342 -0.8546 

Phillips-

Perron 
-0.2262 -0.2330 -0.3067 -0.3208 -1.3078 -1.3006 -0.8342 -0.8546 
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Table 2. Parameters estimations of the Diag-BEKK(1,1) model. 

 DAX30  FTSE100 CAC40 IBEX35 

0a  
0.0632

***
 

(0.0185) 

0.0384
**

 

(0.0153) 

0.0416
***

 

(0.0125) 

0.0468
***

 

(0.0188) 

0b  
0.0648

***
 

(0.0181) 

0.0374
**

 

(0.0153) 

0.0394
***

 

(0.0127) 

0.0455
***

 

(0.0192) 

11c
 

0.1974
***

 

(0.0254) 

0.0936
**

 

(0.0376) 

0.2182
***

 

(0.0367) 

0.1507
***

 

(0.0108) 

12c
 

0.1938
***

 

(0.0271) 

0.0895
***

 

(0.0307) 

0.2428
***

 

(0.0450) 

0.1676
***

 

(0.0123) 

22c
 

0.0368
***

 

(0.0086) 

0.0231
***

 

(0.0056) 

0.0307
***

 

(0.0141) 

0.0236
***

 

(0.0027) 

11a
 

0.3319
***

 

(0.0320) 

0.2294
***

 

(0.0377) 

0.2827
***

 

(0.0201) 

0.2425
***

 

(0.0061) 

22a
 

0.3520
***

 

(0.0427) 

0.2237
***

 

(0.0292) 

0.2969
***

 

(0.0228) 

0.2544
***

 

(0.0070) 

11b
 

0.9382
***

 

(0.0095) 

0.9694
***

 

(0.0123) 

0.9438
***

 

(0.0096) 

0.9632
***

 

(0.0014) 

22b
 

0.9322
***

 

(0.0130) 

0.9708
***

 

(0.0094) 

0.9353
***

 

(0.0126) 

0.9587
***

 

(0.0019) 

The Table shows the estimated parameters for the model in eq.1 for the log-

returns on the spot and futures markets for the DAX30, FTSE100, CAC40 and 

IBEX35 indices. Standard errors are computed using Bollerslev-Wooldridge 

(1992) specification correcting for heteroskedasticity (
***

,
**

 and 
*
 represents 

statistical significance at 1%, 5% and 10% levels of significance, respectively).
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Table 3. Unit-root tests for HRs series 

Panel A. AR process
 

 
ttt

uyyH +=
−10

:  

ttt
uayyH +=

−11
: , where 1<a

 
 

 
DAX30 FTSE100 CAC40 IBEX35 

ADF test 

Statistic -0.7062 -0.3965 -0.3642 -0.3155 

Critical Value -1.9416 -1.9416
 

-1.9416
 

-1.9416
 

Result Cannot reject Cannot reject Cannot reject Cannot reject 

PP test 

Statistic -0.7935 -0.3953 -0.3833 -0.2915 

Critical Value -1.9416
 

-1.9416
 

-1.9416
 

-1.9416
 

Result Cannot reject
 

Cannot reject
 

Cannot reject
 

Cannot reject
 

Panel B. AR with drift
 

 
ttt

uyyH +=
−10

:  

ttt
uaycyH ++=

−11
: , where 1<a  and drift coefficient c  

 
 

 
DAX30 FTSE100 CAC40 IBEX35 

ADF test 

Statistic -12.3014 -8.7212 -12.7170- -9.0966 

Critical Value -2.8638 -2.8638 -2.8638 -2.8638 

Result Reject Reject Reject Reject 

PP test 

Statistic -13.3642 -8.8844 -13.2070 -9.5918 

Critical Value -2.8638 -2.8638 -2.8638 -2.8638 

Result Reject Reject Reject Reject 

Panel C. Trend-stationary
 

 

ttt
uyyH +=

−10
:  

ttt
uaydtcyH +++=

−11
: , where 1<a , drift coefficient  and 

deterministic coefficient d  

 
 

DAX30 FTSE100 CAC40 IBEX35 

ADF test 

Statistic -12.3111 -8.7223 -12.8570 -9.5937 

Critical Value -3.4139 -3.4139
 

-3.4139
 

-3.4139
 

Result Reject Reject Reject Reject 

PP test 

Statistic -13.3758 -13.3441 -8.8861 -10.1352 

Critical Value -3.4139
 

-3.4139
 

-3.4139
 

-3.4139
 

Result Reject Reject Reject Reject 

The Table shows the ADF and PP tests on the estimated HRs using eq.2 for the spots and futures 

returns on the DAX30, FTSE100, CAC40 and IBEX35 indices (sample period: May 2000-

November 2013). Each panel shows a variation of the test in terms of the drift coefficient 

considered. 
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Table 4. RS-ADF test with drift 
 

ttskt

p

k

skst uybyaay
ttt

++∆+=∆ −−

=

∑ 1

1

,,0  , ( )2,0~
tst Nu σ ,                                

Hedge ratios  

Parameters State Germany UK France Spain 

tsb  St =1 -0.1548*** 

(-5.3643) 

-0.1259*** 

(-4.7192) 

-0.2191*** 

(-5.3463) 

-0.1364*** 

(-6.3804) 

St =2 -0.0467*** 

(-12.8277) 

-0.0158*** 

(-7.2695) 

-0.0429*** 

(-6.8347) 

-0.0199*** 

(-7.2798) 

tsa ,0  St =1 0.1546*** 

(5.5581) 

0.1195*** 

(4.6624) 

0.2226*** 

(5.5059) 

0.1428*** 

(6.5421) 

St =2 0.0414*** 

(11.4636) 

7.7625 

(0.0162) 

0.0408*** 

(6.2814) 

0.0181*** 

(6.5505) 

tsa ,1  St =1 0.0894* 

(1.6749) 

0.2626** 

(2.1778) 

0.2242* 

(1.8681) 

-0.1106 

(-1.5960) 

St =2 -0.0078 

(-0.8433) 

-0.0090 

(-0.7209) 

-0.0114 

(-1.0612) 

0.0011 

(0.1492) 

tsa ,2  St =1 -0.0437 

(-0.8081) 

-0.0598 

(-0.8644) 

0.1055** 

(2.0320) 

0.0018 

(0.0368) 

St =2 0.0040 

(0.5623) 

0.0022 

(0.2931) 

-0.0110 

(-0.9783) 

0.0015 

(0.1703) 
2

tsσ  
St =1 0.0018*** 

(4.6984) 

4.28 e-04*** 

(4.0308) 

9.02 e-04** 

(2.4834) 

3.52 e-04*** 

(6.6941) 

St =2 0.0003*** 

(5.0392) 

1.27e-05*** 

(5.4779) 

2.42 e-05*** 

(4.4565) 

1.13 e-05*** 

(9.1923) 

P - 0.4458*** 

(12.6924) 

0.3778*** 

(8.5676) 

0.1736*** 

(4.0981) 

0.2840*** 

(9.3152) 

Q - 0.7037*** 

(21.3647) 

0.7752*** 

(24.5056) 

0.8276*** 

(18.1814) 

0.7558*** 

(32.2734) 

The Table shows the estimated parameters for the RS-ADF test presented in eq.4. Dependent variables 

in each column represent the estimated HRs using eq.2 for the spots and futures returns on the DAX30, 

FTSE100, CAC40 and IBEX35 indices (sample period May 2000-November 2013). Standard errors 

are computed using Bollerslev-Wooldridge (1992) specification correcting for heteroskedasticity (
***

,
**

 

and 
*
 represents statistical significance at 1%, 5% and 10% levels of significance, respectively). 
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Table 5. RS-ADF test with no drift
 

tkt

p

k

sktst uyayby
tt

+∆+=∆ −

=

− ∑
1

,1  , ( )2,0~
tst Nu σ ,                                

Hedge ratios  

Parameters State Germany UK France Spain 

tsb  St =1 0.0067*** 

(3.9945) 

9.02 e-04*** 

(8.4932) 

0.0076*** 

(7.1746) 

0.0054*** 

(7.0819) 

St =2 -0.0039*** 

(-15.2984) 

-0.0027*** 

(-3.0045) 

-0.0018*** 

(-5.1232) 

-0.0019*** 

(-16.3492) 

tsa ,1  St =1 -0.0012 

(-0.0206) 

0.2122** 

(2.0078) 

0.0199 

(0.2262) 

-0.2041*** 

(-2.8188) 

St =2 -0.0241** 

(-2.2556) 

-0.0173 

(-1.4901) 

-0.0152 

(-1.3763) 

-0.0069 

(-0.9274) 

tsa ,2  St =1 -0.1185** 

(-2.3243) 

-0.0934 

(-1.069) 

-0.0555 

(-1.2342) 

-0.0612 

(-1.2678) 

St =2 -0.0172 

(-1.2256) 

-0.0097 

(-1.2411) 

-0.0192 

(-1.6027) 

-0.0063 

(-0.6967) 
2

tsσ  
St =1 0.0020*** 

(4.9637) 

4.64 e-04*** 

(3.7786) 

9.33 e-04*** 

(2.8121) 

3.74 e-04*** 

(6.9448) 

St =2 4.54 e-05*** 

(5.7429) 

1.37e-05*** 

(5.1356) 

2.4117*** 

(4.8599) 

1.16e-05*** 

(9.3970) 

P - 0.4471*** 

(12.2439) 

0.3663*** 

(8.1832) 

0.2076*** 

(5.0682) 

0.2846*** 

(9.2134) 

Q - 0.7167*** 

(25.2484) 

0.7803*** 

(22.3735) 

0.8244*** 

(20.7753) 

0.7573*** 

(34.0556) 

The Table shows the estimated parameters for the RS-ADF test presented in eq.4 but omitting the drift 

component. Dependent variables in each column represent the estimated HRs using eq.2 for the spots 

and futures returns on the DAX30, FTSE100, CAC40 and IBEX35 indices (sample period May 2000-

November 2013). Standard errors have been corrected for heteroskedasticity (
***

,
**

 and 
*
 represents 

statistical significance at 1%, 5% and 10% levels of significance, respectively). 
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Table 6. RS-ADF test with drift 

 

Panel A. - Standard unit-root tests 

 Hedge ratios (intraday data): Germany 

 
 

AR AR with drift Trend stationary 

ADF 

test 

Statistic -0.4907 -20.0372 -20.6146 

Critical 

Value 
-1.9416 -2.8610 -3.4123 

Result Cannot reject Reject Reject 

PP 

test 

Statistic -0.4907 -20.0372 -20.6146 

Critical 

Value 
-1.9416

 
-2.8638 -3.4123

 

Result Cannot reject
 

Reject Reject 

Panel B. - RS-ADF Test 

 Hedge ratios (intraday data) 
Parameters Germany 

St =1 St =2 

tsb  -0.0106 

(0.0180) 

-0.0071 

(2.4421) 

tsa ,0  0.0151 

(0.0193) 

0.0621 

(2.4855) 

tsa ,1  0.0286 

(0.0247) 

-0.0541 

(2.1608) 

tsa ,2  0.0194 

(0.0213) 

-0.0553 

(1.5695) 

tsa ,3  0.0355 

(0.0252) 

0.0669 

(5.4937) 
2

tsσ  
3.84e-05

***
 

(1.02e-05) 

2.85 e-04
***

 

(8.86e-05) 

P 0.9809
***

 

(0.0020) 

Q 0.9791
***

 

(0.0030) 

Panel A shows the statistics for the ADF and the PP tests on the estimated HRs using eq.2 for the spots 

and futures returns on the hourly DAX30 index. Each panel shows a variation of the test in terms of the 

drift coefficient considered. Panel B shows the estimated parameters for the RS-ADF test presented in 

eq.4 (sample period January 2000-Decemeber 2010). Standard errors have been corrected for 

heteroskedasticity (
***

,
**

 and 
*
 represents statistical significance at 1%, 5% and 10% levels of 

significance, respectively). 
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Figures 
Figure 1. Conditional variances  

 

This Figure plots the conditional spot (
2

,ts
σ ) (black line) and futures (

2

,tf
σ ) variances (green line) for the 

log-returns of the DAX30, FTSE100, CAC40 and IBEX35 indices (sample period May 2000-

November 2013).  

 
Figure 2. Hedge ratios 

 
This Figure plots the estimated HRs according to eq.2 for the spot and futures stock indices in 

Germany, United Kingdom, France and Spain. Shaded areas correspond to periods of high volatility 

based on the filtered probabilities of eq.4.  
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Figure 3. Filtered probabilities for low volatility states 
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This Figure plots the probability of being in a low volatility state [P(St=1|Ψt-1)] for the RS-ADF test of 

eq.4. In these plots we use the estimated HRs from eq.2 using the returns on the spot and futures stock 

indices in Germany, United Kingdom, France and Spain as the main input for the regime-switching 

stationarity test. 

 

 

Figure 4. Hedge ratios for intraday data 
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This Figure plots the estimated HRs according to eq.2 using the intraday (hourly) returns on the spot 

and futures stock indices in Germany.  

 


