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Abstract

This paper presents a stacked vector MIDAS type mixed frequency VAR (MFVAR) fore-
casting model that intends to be general and yet compact, flexible and yet parsimonious in
terms of parametrization as well as easy to estimate. First, we develop a compact mixed
frequency VAR framework for multiple variables and multiple frequencies using a stacked
vector approach. Second, we integrate the mixed frequency VAR with a non-linear Almon
MIDAS polynomial scheme which is designed to reduce the parameter space while keeping
models flexible. Third, we show how to recast the resulting stacked vector MIDAS type
non-linear MFVAR into a linear equation system that can be easily estimated equation
by equation using standard OLS. In order to empirically evaluate the predictive accuracy
of our model, we conduct a pseudo out-of-sample forecasting exercise using US real-time
data. The MFVAR substantially improves accuracy upon a standard VAR for different
VAR specifications: Root mean squared forecast errors for, e.g., GDP growth get reduced
by 30 to 50 percent for forecast horizons up to six months and by about 20 percent for a
forecast horizon of one year.
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1 Introduction

Vector autoregression (VAR) models are a standard tool for macroeconomic forecasting.
While VAR models do not necessarily outperform alternative approaches in forecasting
a single variable, they capture the dynamics in multiple time series and, hence, allow to
generate coherent forecasts of multiple variables. A challenge to joining multiple macroe-
conomic variables in a VAR is that macroeconomic variables are usually sampled at dif-
ferent frequencies. For instance, GDP comes at a quarterly frequency whereas inflation
is published monthly and short term interest rates are quoted at a daily or even higher
frequency. The traditional solution is to simply time-aggregate all higher frequency series
to the frequency of the lowest frequency series in the sample. A VAR including GDP,
inflation and a interest rate will then be a quarterly frequency VAR (QFVAR). However,
such time aggregation comes at costs. First, any new data releases or data revisions,
which occur within the lowest frequency, are only taken into account after the end of each
lowest frequency period. To stick to the above example, a QFVAR does not allow to con-
sider inter-quarterly inflation and interest rate releases and inter-quarterly GDP revisions
before the end of a quarter. This delayed processing of information potentially impairs
(inter-quarterly) forecasts and nowcasts. Second, the time aggregation implies a peculiar
constraint on the parameters attached to higher frequency variables that is potentially
quite suboptimal.

To overcome the aforementioned drawbacks, we integrate a mixed frequency VAR (MF-
VAR) framework with MIxed DAta Sampling (MIDAS). The MIDAS approach has orig-
inally been developed by Ghysels and co-authors (Ghysels et al., 2007, Andreou et al.,
2010, e.g.) for forecasting with single equations (cf. the applications by Clements and
Galvão, 2008, 2009, Armesto et al., 2010, Drechsel and Scheufele, 2012, Andreou et al.,
2013, Ferrara et al., 2014, Mikosch and Zhang, 2014, among many others). In a first
step, we propose a general – and yet compact – MFVAR forecasting framework using
a stacked vector approach. The MFVAR forecasting framework is general in the sense
that it allows for multiple variables and multiple frequencies. Second, we integrate the
MFVAR with a non-linear Almon MIDAS polynomial scheme which is designed to re-
duce the parameter space while keeping models flexible. Third, we show how to recast
the resulting stacked vector MIDAS type non-linear MFVAR into a linear equation sys-
tem. The MIDAS parameters can then be easily estimated equation by equation using
standard ordinary least squares (OLS). Ultimately, we conduct a pseudo out-of-sample
forecast evaluation exercise using quarterly and higher frequency US real-time data. Our
MFVAR substantially improves forecast accuracy upon a standard QFVAR for different
VAR specifications. Root mean squared forecast errors for, e.g., GDP growth get reduced
by 30 to 50 percent for forecast horizons up to six months and by about 20 percent for a
forecast horizon of one year.

This paper relates to a small but growing literature on mixed frequency VAR models
which fall in two basic classes.1 The first class uses a state space approach. The general
idea is to conceptually assume the mixed frequencies away by reformulating any lower
frequency series as a partially latent high frequency series. The Kalman filter or, in a
Bayesian context, the Gibbs sampler then provide the possibility to estimate the partially

1Following Cox (1981) the first class may be referred to as parameter-driven, while the second approach
may be qualified as observation-driven (cf. Ghysels, 2012).
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latent VAR process. See Kuzin et al. (2011) and Bai et al. (2013) for state space type
MFVAR models using the Kalman filter, and Chiu et al. (2012) and Schorfheide and
Song (2013) for state space type MFVARs using the Gibbs sampler. The second class –
to which our paper belongs – employs a stacking approach: all variable observations, that
pertain to the same lowest frequency period in the sample, are stacked into one vector.
For instance, when the sample includes quarterly GDP, monthly inflation and a daily
interest rate, the quarterly frequency is the lowest frequency in the sample and, thus, the
stacked vector for each quarter t includes one quarterly GDP observation, three monthly
inflation observations and 60 daily interest rate observations (assuming a month has 20
trading days).2 Based on the stacked vectors a VAR process of any desired order can then
be modeled. Further, in order to achieve parsimony MIDAS style polynomial structures
can then be imposed on the parameter space of the stacked vector type MFVAR, resulting
in a stacked vector MIDAS type MFVAR. The MIDAS approach aims to reduce the pa-
rameter space while keeping models flexible (cf. the citations in the previous paragraph).
Ghysels (2012) provides a rich exposition of a stacked vector MIDAS type MFVAR model.
Franses et al. (2011) employ a stacked vector MIDAS type MFVAR to study the effects of
monetary policy shocks on macroeconomic aggregates using daily interest rate data and
monthly macroeconomic indicators. Foroni et al. (2014) introduce Markov switching to
both a state space type and a stacked vector MIDAS type bivariate MFVAR model and
compare these (and several other bivariate) models in terms of predictive accuracy.

Our contribution differs from Ghysels (2012) in the following respects. First, Ghysels
mainly concentrates on impulse response analysis, whereas we focus on forecasting. Sec-
ond, ideally one would like to have a MFVAR framework that allows for multiple variables
and multiple frequencies and is still straightforward and compact. While Ghysels’ frame-
work in principle allows for more multiple frequencies it becomes conceptually untractable
as the number of frequencies grows. For this reason Ghysels limits his exposition to two
frequencies (cf. Ghysels, 2012, p. 3). In contrast, our MFVAR framework is designed
for multiple variables and multiple frequencies while still being relatively compact and
straightforward. Third, Ghysels’ and our framework differ in the way they handle the
relationships between variable observations that pertain to the same lowest frequency pe-
riod t and, thus, are stacked in the same vector (for instance, the relationship between
the GDP observation of a quarter and the first monthly inflation observation of the same
quarter, or the relationship between the second and the first monthly inflation observation
of the same quarter). These within-t relationships are crucial for now- and forecasting
since they allow to incorporate data releases or revisions which occur within period t
(within a quarter, for instance). In order to capture the aforementioned relationships
Ghysels (2012, p. 12ff) proposes a scheme which augments a reduced form MFVAR with
a matrix structure which derives from the Choleski lower triangular decomposition. In
contrast, we propose to capture the within-t relationships via a recursive form type MF-
VAR scheme. While the two schemes may ultimately be transformed into each other they
fundamentally differ in terms of exposition.

The remainder of the paper is structured as follows: Section 2 presents our stacked vector
MIDAS type mixed frequency VAR framework. In particular, we show how to recast the
stacked vector MIDAS type non-linear MFVAR into a linear equation system that can

2The order of the stacking may differ according to research interest and publication structure (cf. the
discussion in Ghysels, 2012, p. 6f).
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be easily estimated equation by equation using standard OLS. Subsequently, we analyze
whether our stacked vector MIDAS type mixed frequency VAR is helpful for forecasting
in real time. Section 3 describes the pseudo out-of-sample forecast evaluation set up and
the real-time data used, and Section 3 presents the results of the empirical assessment.
Finally, Section 5 provides conclusions and possible directions of further research.

2 A general MIDAS VAR framework

Let there be a set of time series variables of different frequencies. Denote each variable by
yi,t−1+ τi

Ti
where i is the variable subscript with i = 1, . . . , I and t−1+ τi

Ti is the time period

subscript. t = 1, . . . , T denotes the lowest frequency periods such that Ti is the frequency
of variable i in each period t and τi = 1, . . . , Ti denotes the subperiods of variable i in
each period t. For instance, when the set of variables comprises quarterly, monthly and
daily variables, t = 1, . . . , T denotes the quarters, Ti = 1/3/60 is the frequency of any
quarterly/monthly/working daily variable in each quarter t and τi = 1/1, 2, 3/1, . . . , 60
denotes the quarter/months/working days in each quarter t.3 Stack all observations of
variable i in period t−p with p ∈ N0 starting with the last observation in t−p and ending
with the first observation in t− p to get

yi,t−p
Ti×1

≡


y
i,t−p−1+Ti

Ti
...

yi,t−p−1+ 1
Ti

 ,
and let

yt−p∑I
i=1 Ti×1

≡

 y1,t−p
...

yI,t−p

 .
Further, lag each element in yi,t−p by 1

Ti to get

yi,t−p− 1
Ti

Ti×1

≡


y
i,t−p−1+Ti

Ti
− 1

Ti
...

yi,t−p−1+ 1
Ti
− 1

Ti

 ,
3We model the time period subscript as t− 1 + τi

Ti in order to let τi denote the τi-th subperiod in period
t. Clements and Galvão (2008, 2009), e.g., model the time period subscript as t− τi

Ti so that τi denotes
the (Ti − τi)-th subperiod. Both variants are equally possible. For ease of exposition we assume in
this section that each variable yi,t−1+ τi

Ti
with i ∈ {1, . . . I} is released simultaneously with all other

variables y
j,t−1+

τj
Tj

with j ∈ {1, . . . I} and with t− 1 + τi
Ti = t− 1 +

τj
Tj directly after the end of period

t − 1 + τi
Ti (no ragged edge). For instance, any quarterly variable is released directly after the end of

a quarter simultaneously with any other quarterly variable and with any monthly variable observation
on the third month of that quarter. Of course, our empirical model application presented in Section 4
explicitly models real world ragged edges and delayed releases.
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let

xi,t
(P+1)·Ti×1

≡


yi,t−0− 1

Ti
yi,t−1− 1

Ti
...

yi,t−P− 1
Ti

 ,
and let

xt
(P+1)·

∑I
i=1 Ti×1

≡

 x1,t
...
xI,t

 .4
Model each element of yt−1, namely each yi,t−1+ τi

Ti
, as a function of xt,

yi,t−1+ τi
Ti

1×1

= ai,τi xt + εi,t−1+ τi
Ti

(1)

= [ai,τi,1 . . . ai,τi,I ]

 x1,t
...

xI,t

+ εi,t−1+ τi
Ti
,

where εi,t−1+ τi
Ti

is an error term, where ai,τi is the parameter vector partitioned into I

subvectors each of which is defined as

ai,τi,j
1×(P+1)·Tj

≡ [0i,τi,j,1 αi,τi,j 0i,τi,j,2] (2)

for j = 1, . . . , I. 0i,τi,j,1 denotes a row vector of zeros of dimension Tj − d τiTiTje , 0i,τi,j,2

denotes a row vector of zeros of dimension d τiTiTje − d
Tj
Ti e and the row vector

αi,τi,j
1×P ·Tj+d

Tj
Ti
e

≡ [αi,τi,j,1 . . . αi,τi,j,K ],

where K = P · Tj + dTjTi e.
5 We model αi,τi,j in two alternative ways. An intuitive strategy

is to regard each element of αi,τi,j as an unrestricted parameter. Equation (1) is then a

linear regression equation with Tj−dTjTi e zero restrictions and withK unknown unrestricted
parameters, αi,τi,j,1, . . . , αi,τi,j,K , which can be estimated via ordinary least squares (OLS).
This is the unrestricted MIDAS (U-MIDAS) approach proposed by Foroni et al. (2012).
Alternatively, following Ghysels and co-authors (Ghysels et al., 2007, Andreou et al., 2010,
e.g.) one can regard αi,τi,j as a vector of unknown weights each of which is a function of

4Stacking of lagged variables into a vector xt follows Hamilton (1994, p. 292) and Hayashi (2000, p. 397).
5The ceiling function dze ≡ min{n ∈ Z|n ≥ z}, where z is a real number and n is an integer from the
set of all integers Z. By setting Pi = P for all i and by specifying ai,τi,j as in Equation (2) we impose
– for ease of exposition – that ... Our empirical model application presented in Section 3 ... The low
frequency index p = 1, . . . , P does neither figure in ai,τi,j nor in αi,τi,j . αi,τi,j may run over multiple
low frequency periods.
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the unknown parameter vector θi,τi,j and of the lag index k with k = 1, . . . , K. We model
the weight function as a non-exponential Almon lag polynomial,

αi,τi,j,k = αi,τi,j,k(θi,τi,j, k) = αi,τi,j,k(θi,τi,j,0, . . . , θi,τi,j,Q, k) =

Q∑
q=0

θqk
q, (3)

where Q ∈ N denotes the order of the Almon lag polynomial.6 Let

Ai,j
Tj×Tj ·(P+1)

≡

 ai,1,j
...

ai,Tj ,j

 ,
and let

A∑I
i=1 Tj×(P+1)·

∑I
j=1 Tj

≡

 A1,1 . . . A1,I
...

. . .
...

AI,1 . . . AI,I

 .
Further, let

εi,t
Ti×1
≡


ε
i,t−1+Ti

Ti
...

εi,t−1+ 1
Ti

 ,
and let

εt∑I
i=1 Ti×1

≡

 ε1,t...
εI,t

 .
The mixed frequency vector autoregressive (VAR) process then generally writes y1,t

...
yI,t

 =

 A1,1 . . . A1,I
...

. . .
...

AI,1 . . . AI,I


 x1,t

...
xI,t

+

 ε1,t...
εI,t

 ,
or more compactly

yt = Axt + εt. (4)

The parameters in matrix A can be estimated row by row. In case of U-MIDAS this can
be easily done via OLS. The case of non-exponential Almon lag polynomial is less straight-
forward. First, since each non-exponential Almon lag polynomial weight function αi,τi,j,k
is highly non-linear in its parameters θi,τi,j, OLS is not feasible for a direct estimation of
matrix A. Second, since each row of A contains a multitude of non-exponential Almon lag

6The literature knows yet other weight functions (see Ghysels et al., 2007, e.g.). The reason for con-
centrating on the non-exponential Almon lag polynomial is discussed below. For ease of exposition we
assume Qi,τi,j = Q for all θi,τi,j . Our empirical model application presented in Section 3 allows the
Almon lag polynomial order Qi,τi,j to be specific to θi,τi,j .
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polynomial weight functions, αi,τi,1,1, . . . αi,τi,1,K , αi,τi,2,1, . . . αi,τi,2,K , . . . . . . αi,τi,I,1, . . . αi,τi,I,K ,
even non-linear optimization methods reach their limits in practice.7 Fortunately, we can
recast Equation (4) in a linear form. For this, use Equation (3) to re-write vector ai,τi,j
from Equation (2) as

ai,τi,j = θi,τi,jMi,τi,j,

with the Almon parameter vector

θi,τi,j
1×(Q+1)

≡
[
θi,τi,j,0 . . . θi,τi,j,Q

]
and the transformation matrix

Mi,τi,j
(Q+1)×(P+1)·Tj

≡



0i,τi,j,1 1 1 1 . . . 1 0i,τi,j,2
0i,τi,j,1 1 2 3 . . . K 0i,τi,j,2
0i,τi,j,1 1 4 9 . . . K2 0i,τi,j,2
0i,τi,j,1 . . . . . . . 0i,τi,j,2
0i,τi,j,1 . . . . . . . 0i,τi,j,2
0i,τi,j,1 . . . . . . . 0i,τi,j,2
0i,τi,j,1 1 2Q 3Q . . . KQ 0i,τi,j,2


,

Further, re-write vector ai,τi from Equation (1) as

ai,τi = θi,τiMi,τi

with

θi,τi
1×I·(Q+1)

≡
[
θi,τi,1 . . . θi,τi,I

]
and

Mi,τi
I·(Q+1)×(P+1)·

∑I
j=1 Tj

≡

Mi,τi,1 00Q+1×(P+1)·T2 . . . 00Q+1×(P+1)·Tj

00Q+1×(P+1)·T1 Mi,τi,2 . . . .

. 00Q+1×(P+1)·T2 . . . .

. . . . . .

. . . . . 00Q+1×(P+1)·Tj

00Q+1×(P+1)·T1 00Q+1×(P+1)·T2 . . . Mi,τi,I




,

where 00Q+1×(P+1)·Tj denotes a (Q+ 1× (P + 1) · Tj)-dimensional matrix of zeros. Let

x∗i,τi,t
I·(Q+1)×1

≡Mi,τixt, (5)

where x∗i,τi,t can be interpreted as a row vector of transformed data in the sense that the
row vector of data, xi,t, is transformed by premultiplying it with the number matrix M∗

i,τi
.

Use Equation (5) to rewrite the basic regression equation (1) as

yi,t−1+ τi
Ti

= θi,τix
∗
i,τi,t

+ εi,t−1+ τi
Ti

(6)

7Specifically, each row of A contains I ·K = I · (P · Tj + dTjTi e) non-exponential Almon lag polynomial
weight functions.
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Let

θix
∗
i,t

Ti×1
≡

 θi,Tix
∗
i,Ti,t

...
θi,1x

∗
i,1,t

 ,
and let

θx∗t∑I
i=1 Ti×1

≡

 θ1x
∗
1,t

...
θIx

∗
I,t

 .
The mixed frequency VAR then writes

yt = θx∗t + εt. (7)

The θ-parameters in Equation (7) can be easily estimated row by row via OLS. Thereupon,
the α-weights in matrix A of the general VAR equation (4) can be calculated using
Equation (3). Notably, Equation (7) does not yet conform to a standard VAR matrix
notation because each element, yi,t−1+ τi

Ti
, in the left-hand side variable vector, yt, is a

function of an element-specific right-hand side data vector, x∗i,τi,t rather than being a
function of always the same right-hand side data vector or matrix. Let

Θi
Ti×I·(Q+1)

≡

 θi,Ti...
θi,1

 ,
and let

Θ∑I
i=1 Ti×I·(Q+1)

≡

 Θ1
...

ΘI

 .
Further let

X∗i,t
Ti×I·(Q+1)

≡

 x
∗′
i,Ti,t
...

x∗′i,1,t

 ,
and let

X∗t∑I
i=1 Ti×I·(Q+1)

≡

 X∗1,t
...

X∗I,t

 .
In order to bring the Almon type mixed frequency vector autoregressive process into a
standard VAR matrix notation, rewrite Equation (7) as

yt = S vec (ΘX∗′t ) + εt. (8)
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The selection matrix

S
L×L·L

≡ (IL ∗ IL)′

where IL denotes the identity matrix of size L ≡
∑I

i=1 Ti and where the (column-wise)
Khatri-Rao product

I ∗ I ≡ [Il ⊗ Il]l ,

where l denotes the l-th column of I with l = 1, . . . , L.8 Use the fact that for any two
matrices B with size R× T and C with size U × V

vec(BC) = (C ′ ⊗ IR) vec(B)

to rewrite Equation (8) as

yt = S(X∗t ⊗ IL) vec(Θ) + εt, (9)

where S(X∗t ⊗ IL) with size L × I · (Q + 1) · L builds the right-hand side data matrix
and vec(Θ) with size I · (Q + 1) · L × 1 is the parameter vector. Equation (9) conforms
to the standard VAR matrix notation in the sense that each element, yi,t−1+ τi

Ti
, in the

left-hand side variable vector, yt, is a function of always the same right-hand side data
matrix, namely of S(X∗t ⊗ IL). On the other hand, Equation (9) deviates from the stan-
dard VAR matrix notation in that the data come in matrix form (but not in vector form)
while the parameters come in vector form (but not in matrix form). Importantly, the
θ-parameters in Equation (9) can be easily estimated row by row via OLS. As each row of
S(X∗t ⊗ IL) contains only I · (Q+ 1) non-zero elements, a single row can only be used to
estimate I · (Q+1) θ-parameters in vec(Θ). Hence, all rows in Equation (9) are needed to
fully estimate the I · (Q+ 1) ·L parameters in vec(Θ). Upon estimation of vec(Θ), the α-
weights in matrix A of the general VAR equation (4) can be calculated using Equation (3).

3 Data and forecast evaluation set up

Can our stacked vector MIDAS type mixed frequency VAR help improve forecasts upon
a standard single frequency VAR? In order to answer this question we conduct a pseudo-
out-of sample forecast evaluation with real time data.

The real-time data used in our analysis comprise quarterly GDP and the monthly con-
sumer price index, unemployment rate, industrial production and housing starts. Data
sources are the ArchivaL Federal Reserve Economic Data (ALFRED) published by the
Federal Reserve Bank of St. Louis and the Federal Reserve Bank of Philadelphia Real-
Time Data Set for Macroeconomists. In addition, we employ a set of time series that are
not subject to data revisions: the ISM indices for manufacturing, supplier delivery times
and orders, S&P 500 stock market index, 10 year treasury bond yield, 3 month treasury
bill yield, new unemployment claims and average weekly hours worked by production and

8See Khatri and Rao (1968).
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supervisory workers. Following common practice in the literature higher than monthly
frequency series are time-aggregated to monthly frequency (cf. Carriero et al., 2012 and
Schorfheide and Song, 2013, e.g.).

Our real-time dataset covers vintages from January 1985 to August 2012, which allows
us to use 344 samples for the forecast evaluation. The data of each vintage starts in
January 1970 and is extended each vintage, i.e. the sample for the first vintage of January
1985 covers data from January 1970 to January 1985. In order to reproduce the available
information a forecaster would have had at any vintage we also take the publication lag
into consideration. Almost all of the used variables are not available directly but are
published with a time lag. Only the S&P 500, 10 year treasury bond yield and the 3
month treasury bill yield, which are available daily, are directly available at the end of a
month (lead variables). The other variables (lag variables) are available latest at the end
of the next month. All monthly variables are available before the first publication of the
GDP.

Our benchmark model is a standard quarterly frequency VAR (QF-VAR) where all higher
than quarterly frequency series are time-aggregated to quarterly frequency. Our fore-
cast performance measure is the difference between the root mean squared forecast error
(RMSFE) of the MIDAS VAR and the QF-VAR in percent of the RMSFE of the QF-VAR,

∆RMSFE = 100 ∗
(
RMSFEMIDAS VAR −RMSFEQF-VAR

RMSFEQF-VAR

)
We refer to ∆RMSFE as the relative change in RMSFE. The more negative ∆RMSFE
is, the better performs the MIDAS VAR relative to the QF-VAR in terms of predicitive
power. The MIDAS VAR and the QF-VAR always have the same amount of lagged in-
formation available. Thus, differences in forecast performance between competing models
can solely accrue from two sources: how flexible – or parsimonious – the models are in
terms of parametrization, and whether they can incorporate higher frequency data up-
dates (new releases or revisions).

The evaluation of real-time forecasts depends also on the choice of the actual data with
which the forecast is compared. There have been several benchmark revisions since 1985;
the latest one occurred in mid-2014 and included a substantial redefinition of gross fixed
capital formation A forecaster in 1985 could not have predicted such a definition change.
Thus we follow the approach of Carriero et al. (2012) and use the second estimate of
quarterly GDP for the forecast evaluation.As a robustness test we also check the forecast
performance with the first and third estimate of GDP.

4 Empirical results

The following sections present the results of the forecast evaluation outlined in Section 3.
We compare MIDAS VARs and QF-VARs for four alternative specification setups: few
variables and few lags, few variables and many lags, higher number of variables and few
lags, and higher number of variables and many lags. Competing MIDAS VARs and QF-
VARs always have the same amount of lagged information available. Thus, differences in
forecast performance between competing models can solely accrue from two sources: how
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flexible – or parsimonious – the models are in terms of parametrization, and whether they
can incorporate higher frequency data updates (new releases or revisions).

3-variable MIDAS VAR with short memory

In a first step it might be interesting to see whether MIDAS VAR models improve forecasts
upon a standard VAR when model specifications are kept minimal. Following common
practice in macroeconomics our minimum VAR specification includes three variables only:
GDP growth, consumer price inflation and a (3-months) short-term interest rate (treasury
bill rate). Figure 1 presents results for an Almon MIDAS VAR of order 1 and a U-MIDAS
VAR both with one quarterly GDP growth lag, three monthly inflation lags and three
monthly interest rate lags. The benchmark model is a quarterly frequency VAR (QF-
VAR) with one quarterly lag of GDP growth, inflation and interest rate, respectively. As
regards forecasting GDP growth, the two MIDAS VAR specifications reduce the RMSFE
by more than 30 percent compared to the QF-VAR for forecast horizons of one to six
months. The RMSFE improvement gradually declines as the forecast horizon increases,
but is still substantial for longer horizons: One year before publication of GDP the MIDAS
VAR forecasts are still more than 20 percent better than the QF-VAR forecasts. For
forecast horizons of 22 months or longer the MIDAS VARs yield no improvement over
the QF-VAR anymore. For inflation, the Almon MIDAS VAR and the U-MIDAS VAR
yield very high RMSFE reductions for short forecast horizons (more than 65 percent for
months 1 to 3). On the other hand, RMSFE improvements quickly vanish as the forecast
horizon grows. When it comes to forecasting the interest rate, the Almon MIDAS VAR
and the U-MIDAS VAR improve forecasts substantially throughout all considered forecast
horizons as compared to the QF-VAR. The RMSFE reductions reach more the 75 percent
for horizons of one to three months. Forecast improvements gradually decline with an
increase in the forecast horizon, but even two years before GDP publication the MIDAS
VARs reduce the RMSFE by 5 percent or more compared to the QF-VAR. All previous
findings remain robust when we iterate the forecast evaluation for the first or third GDP
estimate instead of the second estimate (see Section 3).

– Figure 1 about here –

3-variable MIDAS VAR with long memory

VAR models of higher order than the ones presented in the previous section arguably
achieve better forecasting performance for longer forecast horizons. Thus, it is important
do know whether MIDAS VARs still improve forecasts upon a standard VAR for specifi-
cations with longer time series memory. Figure 2 shows the results for an Almon MIDAS
VAR of order 2 and a U-MIDAS VAR both with two quarterly GDP growth lags, six
monthly inflation lags and six monthly interest rate lags. The benchmark model here is
a QF-VAR with two quarterly lags of GDP growth, inflation and interest rate, respec-
tively, where two lags are chosen in order to provide each competing model with the same
amount of lagged information (see Section 3). To allow for even longer memory, Figure 3
depicts results for an Almon MIDAS VAR of order 2 and a U-MIDAS VAR both with four
quarterly GDP growth lags, twelve monthly inflation lags and twelve monthly interest rate
lags. In accordance with the above reasoning about the appropriate information set, the
benchmark model now is a QF-VAR with four quarterly lags of GDP growth, inflation and
interest rate, respectively. Generally, the RMSFE patterns in Figures 2 and 3 strongly
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resemble the patterns in Figure 1: the two MIDAS VAR specifications yield substantial
improvements in forecast accuracy upon the QF-VAR for GDP growth, inflation as well
as the interest rate. That said, for the long memory specification the U-MIDAS VAR
performs clearly worse than the Almon VAR when it comes to forecasting GDP growth.
When the forecast horizon exceeds 13 months the U-MIDAS VAR forecasts are even less
accurate than the QF-VAR forecasts. This finding is not surprising: U-MIDAS speci-
fications easily become overparametrized when the lag order grows. As a consequence,
U-MIDAS is less suitable for – and is actually not meant for – forecasting with longer lags.

– Figures 2 and 3 about here –

6-variable MIDAS VAR with short memory

The previous minimum scale VAR specifications including only GDP growth, inflation
and an short-term interest rate provide us with first evidence on the potential of MIDAS
VAR models for forecasting. However, in order to improve predictive accuracy forecast-
ers usually employ VAR models with more than just the aforementioned variables. So,
do MIDAS VARs still improve forecasts upon standard VARs when more variables are
included? To answer this question we include three additional variables which are com-
monly considered to be helpful for now- or forecasting GDP growth: industrial production,
housing starts and the Standard & Poor’s 500 stock market index (S&P 500).9 Figure 4
depicts results for an Almon MIDAS VAR of order 1 and a U-MIDAS VAR both with one
quarterly GDP growth lag and three monthly lags of inflation, the interest rate, industrial
production, housing starts and the S&P 500. The benchmark model here is a QF-VAR
with one quarterly lag of each of the aforementioned six variables. Thus, as before each
competing model has the same amount of lagged information such that differences in
forecast performance cannot accrue from differences in the (lagged) information set. The
RMSFE patterns in Figure 4 strongly resemble the patterns presented in the previous
subsections: the two MIDAS VAR specifications substantially improve predictive accu-
racy upon the QF-VAR for GDP growth, inflation and the interest rate.

– Figure 4 about here –

6-variable MIDAS VAR with long memory

The previous section has shown that small scale MIDAS VARs substantially improve
predictive accuracy upon a standard small scale VAR when only short time series memory
is taken into account (one quarterly lag or three monthly lags). Is this gain is robust to
allowing for longer time series memory (which increases the risk of overparametrization)?

9Indeed, we find that a small scale MIDAS VAR (with industrial production, housing starts, S&P 500,
GDP growth, inflation and the interest rate) improves forecast accuracy upon a minimum MIDAS
VAR (with only the latter three variables). Equally, the corresponding small scale benchmark QF-
VAR performs better than the corresponding minimum scale benchmark QF-VAR. A rigorous variable
selection procedure might deliver small scale specifications with still greater forecasting ability. That
said, it is not the goal of this paper to find the best model specification. Rather, we compare MIDAS
VARs and standard VARs for several sensible, yet alternative model specifications in order to see whether
MIDAS VARs robustly outperform standard VARs.
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Figure 5 (or Figure 6) shows the results for an Almon MIDAS VAR of order 2 and a
U-MIDAS VAR both with two (or four) quarterly GDP growth lags and six (or twelve)
monthly lags of inflation, the interest rate, industrial production, housing starts and
the S&P 500. The benchmark model is a QF-VAR with two (or four) quarterly lags
for each of the aforementioned six variables such that each competing model has again
the same amount of lagged information (see Section 3). The Almon MIDAS VAR still
largely outperforms the benchmark QF-VAR in terms of forecast accuracy. A comparison
between the RMSFE improvements resulting from the longer memory Almon MIDAS
VARs in Figures 5 and 6 with the RMSFE improvements from the short memory Almon
MIDAS VAR in Figure 4 yields only few differences: Regarding GDP growth, the forecast
improvement is slightly smaller for longer horizons. For inflation and the interest rate,
the longer horizon forecast improvement is substantially larger.

– Figures 5 and 6 about here –

5 Conclusion

A challenge to joining multiple macroeconomic variables in a VAR is that macroeconomic
variables are usually sampled at different frequencies. For instance, GDP comes at a
quarterly frequency whereas inflation is published monthly and short term interest rates
are quoted at a daily or even higher frequency. The traditional solution is to simply time-
aggregate all higher frequency series to the frequency of the lowest frequency series in
the sample. A VAR including GDP, inflation and a interest rate will then be a quarterly
frequency VAR (QFVAR). However, such time aggregation comes at costs. First, any new
data releases or data revisions, which occur within the lowest frequency, are only taken
into account after the end of each lowest frequency period. To stick to the above example,
a QFVAR does not allow to consider inter-quarterly inflation and interest rate releases
and inter-quarterly GDP revisions before the end of a quarter. This delayed processing
of information potentially impairs (inter-quarterly) forecasts and nowcasts. Second, the
time aggregation implies a peculiar constraint on the parameters attached to higher fre-
quency variables that is potentially quite suboptimal.

To overcome the aforementioned drawbacks, we integrate a mixed frequency VAR (MF-
VAR) framework with a MIxed DAta Sampling (MIDAS) approach which has been orig-
inally been developed for forecasting with single equations (cf. Ghysels et al., 2007, An-
dreou et al., 2010, e.g.). In a first step, we propose a general – and yet compact – MFVAR
forecasting framework using a stacked vector approach. The MFVAR forecasting frame-
work is general in the sense that it allows for multiple variables and multiple frequencies.
Second, we integrate the MFVAR with a non-linear Almon MIDAS polynomial scheme
which is designed to reduce the parameter space while keeping models flexible. Third, we
show how to recast the resulting stacked vector MIDAS type non-linear MFVAR into a
linear equation system. The MIDAS parameters can then be easily estimated equation
by equation using standard OLS.

Can our stacked vector MIDAS type MFVAR help improve forecasts upon a standard sin-
gle frequency VAR? In order to answer this question we conduct a pseudo-out-of sample
forecast evaluation using quarterly and higher frequency US real-time data. Our MFVAR
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substantially improves forecast accuracy upon a standard QFVAR for different VAR spec-
ifications. Root mean squared forecast errors for, e.g., GDP growth get reduced by 30 to
50 percent for forecast horizons up to six months and by about 20 percent for a forecast
horizon of one year.

The VAR specifications in our empirical application are intentionally kept simple in the
sense that each variable’s own lags include the same memory than its other variables lags.
For instance, when the quarterly GDP growth equation has two own quarterly lags, it has
six monthly inflation lags in case of the MFVAR (or two quarterly inflation lags in case
of the QFVAR). The linear transformation of the stacked vector MIDAS type MFVAR
could be estimated using Bayesian methods instead of OLS. This would allow to employ
Bayesian MFVAR specifications with prior types, like the Minnesota prior, that are known
to deliver a better forecast performance than the non-Bayesian MFVAR specifications
in our empirical application. However, it is an open (and ultimately empirical) question
whether such priors will improve the forecast performance of the Bayesian MFVAR relative
to the Bayesian QFVAR. We leave this question for future research.
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Figure 1: MIDAS VAR specifications with 3 variables and short memory

x-axis: Forecast horizon, i.e. months prior to GDP growth/interest rate/CPI inflation release. y-axis: Relative change in RMSFE, ∆RMSFE,
i.e. difference between RMSFE of MIDAS VAR and QF-VAR in percent of RMSFE of QF-VAR.

Figure 2: MIDAS VAR with 3 variables and medium-long memory

x-axis: Forecast horizon, i.e. months prior to GDP growth/interest rate/CPI inflation release. y-axis: Relative change in RMSFE, ∆RMSFE,
i.e. difference between RMSFE of MIDAS VAR and QF-VAR in percent of RMSFE of QF-VAR.

Figure 3: MIDAS VAR with 3 variables and long memory

x-axis: Forecast horizon, i.e. months prior to GDP growth/interest rate/CPI inflation release. y-axis: Relative change in RMSFE, ∆RMSFE,
i.e. difference between RMSFE of MIDAS VAR and QF-VAR in percent of RMSFE of QF-VAR.
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Figure 4: MIDAS VAR with 6 variables and short memory

x-axis: Forecast horizon, i.e. months prior to GDP growth/interest rate/CPI inflation release. y-axis: Relative change in RMSFE, ∆RMSFE,
i.e. difference between RMSFE of MIDAS VAR and QF-VAR in percent of RMSFE of QF-VAR.

Figure 5: MIDAS VAR with 6 variables and medium-long memory

x-axis: Forecast horizon, i.e. months prior to GDP growth/interest rate/CPI inflation release. y-axis: Relative change in RMSFE, ∆RMSFE,
i.e. difference between RMSFE of MIDAS VAR and QF-VAR in percent of RMSFE of QF-VAR.

Figure 6: MIDAS VAR with 6 variables and long memory

x-axis: Forecast horizon, i.e. months prior to GDP growth/interest rate/CPI inflation release. y-axis: Relative change in RMSFE, ∆RMSFE,
i.e. difference between RMSFE of MIDAS VAR and QF-VAR in percent of RMSFE of QF-VAR.
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