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Abstract: This paper proposes a method to perform model averaging in
situations in which numerous time series of limited length are available, as typi-
cally is the case in macroeconomics. Our procedure allows to perform Dynamic
Model Averaging without considering the whole model space but using a subset
of models and dynamically optimizing the choice of models at each point in
time.

We test the model in an empirical application, nowcasting GDP in the euro
area. We show that the forecasting performance is satisfactory and that the
results compare well with recent literature and with estimations performed on
similar data sets. Several robustness checks confirm the validity of our approach.
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1 Introduction

The growing abundance of available macroeconomic data should in theory sim-
plify the quest of econometricians for meaningful empirical relationships. Official
statistics and internet-based hard and soft data are growing exponentially, and
while main macroeconomic indicators such as GDP and labour market indica-
tors are still released with long lags, an increasing number of macroeconomic
indicators is available.

These indicators are often short in time and numerous, and their use poses
specific problems. A general survey of the issues when using big data can be
found in Varian (2014), but here we focus on two important and unavoidable
problems. One is the course of dimensionality. The second is to determine
which regressors, among the many available, are important for the relationship
or model under investigation.

Model averaging, and in particular Dynamic Model Averaging (DMA), is
becoming a popular way to deal with the problems above. Estimation of sim-
ple models and averaging the results has proven to be an effective way to use
efficiently the available information.

Compared to single model techniques

• Estimation of models is more robust, as less degrees of freedom are used
in each estimation.

• The results are easy to intepret, and the importance of each variable or
group of variables can be investigated. DMA is therefore a useful device
in selecting important regressors.

• When compared to large scale models with the same variables, for example
large BVARs, there is no need to tighten the shrinkage when the number
of variables increases.

other characteristics make model averaging interesting:

• It can be used to compare and discriminate different and alternative frame-
works, for example linear vs non linear or univariate vs multivariate mod-
els, fixed coefficients vs time varying parameters.

• It can be used to decide between different regressors (e.g.different measures
of slack in a Phillips curve)

In general DMA can be seen as a meta estimation technique where any
framework or model can be tested and assessed against the available data.

A growing body of empirical literature confirms that the information re-
trieved using DMA is useful and generally leads to good forecasts. At the same
time, there is a price to pay in terms of computation. Proper DMA requires the
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complete exploration of the model space, in other words every possible candi-
date model must be estimated and evaluated at each point in time. The number
of models generally growing exponentially with the potential regressors, there
is a limit to the number of variables imposed by computing time. It seems
like the “course of dimensionality” may be coming back through the window of
unacceptably long computation times.

This paper proposes a variation of DMA particularly adapted to macroeco-
nomic studies and allowing the inclusion of big information sets. Our proposal
allows to run DMA without an exhaustive exploration of the space of models,
and is ispired on the principle of the Occam window. We further propose an
application to the difficult problem of nowcasting GDP in the euro area.

The paper is organized as follows. Section 2 briefly reviews Bayesian and
Dynamic Model Averaging and Model Selection. In section 3 we explain the
principle underlyuing the Occam window and propose and discuss an algorithm
to implement it. In section 4 we propose an economic application, the nowcast-
ing of the euro area GDP, and show in section 5 that the results of our technique
compare well with the existing literature despite its lighter approach in terms of
computation. Section 6 is dedicated to robustness checks, and the final section
concludes.

2 Forecasting with Dynamic Model Averaging

A general discussion of Dynamic Model Averaging (DMA) can be found in the
seminal paper by Raftery (2010) and in Koop et. (XXXX). Here we just outline
the main concept.

Assume a population M of m1, ..,mK candidate regression models, each
taking the form:

yt = x
(k)
t β

(k)
t + ε

(k)
t , (1)

where ε
(k)
t is N

(
0, σ

2(k)
t

)
.

Each explanatory set x
(k)
t contains a subset of the potential explanatory

variables xt. It can be immediately seen that this implies a large number of
models; if J is the number of explanatory variables in xt there are K = 2J

possible regressions involving every possible combination of the J explanatory
variables.

DMA (and the closely related DMS) average across models using a recursive
updating scheme. At each time two sets of weights are calculated, wt|t,k and
wt|t−1,k. The latter is the key quantity. It represents the weight of model k in
nowcasting yt, at time t, computed using data available at time t− 1. The first
is the update of wt|t−1,k using data available at time t. DMA uses forecasts
which average over all k = 1, ..,K models using wt|t−1,k as weights. Note that
DMA is dynamic since these weights can vary over time. DMS is similar but it
involves selecting the model with the highest value for wt|t−1,k and using it for
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forecasting yt. A peculiarity of DMS is that it allows for model switching: at
each point in time it is possible that a different model is chosen for forecasting.

Raftery et al (2010) derive the following updating equation:

wt|t,k =
wt|t−1,kLk (yt|y1:t−1)∑K
l=1 wt|t−1,lLl (yt|y1:t−1)

(2)

where Lk (yt|y1:t−1) is the predictive likelihood, or the predictive density for
yt for model mk evaluated at the realized value for yt. The algorithm then
produces the weights to be used in the following period by using a forgetting
factor, α, normally set to 0.99 following Raftery et al (2010):

wt|t−1,k =
wαt−1|t−1,k∑K
l=1 w

α
t−1|t−1,l

. (3)

Thus, starting with w0|0,k (for which we use the noninformative choice of

w0|0,j = 1
N for k = 1, ..,K) we can recursively calculate the key elements of

DMA: wt|t,k and wt|t−1,k for k = 1, ..,K.

3 Occam window explained

When many potential regressors are considered the number of models is too high
to be tractable. However, it is a known fact in the model averaging literature
that the great majority of models does not really contribute to the forecast, as
their weights are zero or very close to zero. These include for example highly
misspecified models, which are kept despite their poor performance only to
calculate equation (2) and because they might become useful in the future.

We propose an heuristic aiming at eliminating most of these useless models
from the computation, while being able to “resurrect” them when needed. Our
“Occam window” method is based on two on implicit assumptions:

1. We dispose at the initial time of a valid population of models

2. Models do not change too fast over time: the relevant models at each time
are close enough (in a “neighborhood” opportunely defined) to those of
the preceding time.

We believe this assumption is reasonable in macroeconomic analysis.
Some reference on how and when it’s used? Adrian? In other disciplines?

This assumption, if verified, allows the exploration of the space of models in
a parsimonious and efficient way.
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3.1 Forecast, Expand, Assess, Reduce: the FEAR algo-
rithm

Under the assumptions above, we propose to implement the Occam window on
currently used models and keep for future use only those that perform sufficiently
well relative to the best performer. Call the current set of models M and their
predictive likelihood (or any other chosen performance indicator) Lm. After
choosing a threshold C, we keep for future use the models m ∈ M such that
they pass the Occam window:

m : m ∈M,Lm ≥ C ∗max(Lm)) (4)

The FEAR algorithm iterates four steps: Forecasting, Expanding the set of
models, Assessing them, and Reducing the model set via the Occam window.

Initialization

1. Divide the sample 1..T in a training sample 1..Tr and a forecasting/evaluation
sample Tr+1..T

2. Start with a random population of models M0(Tr) and an arbitrary set of
weights W0(tr)

For every t = Tr + 1..T

1. (Forecast) Use the models in M0(t − 1) and the weights W0(t − 1) to
perform Model Averaging, e.g. as in Raftery (2010), obtaining the forecast
Pr(yt |M0(t− 1),W0(t− 1))

2. (Expand) Expand M0(t − 1) into a larger population M1(t) including all
m ∈M0(t− 1) and all their neighboring models (all models derived from
any model m ∈M0(t− 1) by adding or subtracting a regressor)

3. (Assess) Upon observing yt compute for all m ∈ M1(t) the predictive
likelihood Lm(t) = Pr(m | y1..t)

4. (Reduce) Let Lmax = maxm(Lm(t)). Define, for an arbitrary Occam
threshold C, the final population M0(t) (and initial for next period) as
M0(t) = (m : m ∈M1(t), Lm(t) ≥ C ∗ Lmax)

End for

3.2 Computational issues

This section explains why the Occam window approach allows the exploration
of very vast models spaces that would not be possible otherwise.

We define, rather imprecisely but as a rough reference, a Notional Unit of
Computation (NUC) as a basic operation of estimation. Since we are concen-
trating on computability, we consider broadly equivalent (one NUC) one OLS
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estimation, one period estimation of a Kalman filter and in general each oper-
ation involving at least a matrix inversion. On this loosely defined but quite
general metric we compare the Occam method with a DMA exhaustively explor-
ing the space of models. Let J = number of candidate explanatory variables, T
= length of data in time, and N = population of models in the Occam window
(a subset of the K possible regression models).

DMA with all models estimates

NUCDMA = 2J ∗ T (5)

Because all the potential models need to be estimated once per period.
The Occam method reduces the number of models to be evaluated but

changes the population dynamically. It is therefore necessary to re-estimate
each model from the beginning each time, therefore it needs to estimate

NUCOCC =
(T + 1) ∗ T

2
∗N (6)

different models. The role of the number of models N is extensively explored in
section 6.

The Occam window allows gains in speed when NUCOCC < NUCDMA, or

N < 2 ∗ 2J

(nT + 1)
(7)

In our test case, N varies, T = 45, J = 25, then

NUCOCC
NUCDMA

=
10.350.000

1.509.949.440
= 0.68% (8)

therefore the Occam window isabout 150 times faster. We represent graphically
the relationships (5) and (6) in Figure 1:

Figure 1 shows the number of NUC (vertical axis) against length and mumber
of regressors. The blue area refers to the Occam window, the red area to DMA.
The computational complexity for the Occam window grows quadratically with
the length of the available series T, the one of DMA grows only linearly in T but
increases exponentially in the number of regressors J. Above 15-20 regressors
the Occam window is always more convenient. This is particularly true when
the series are relatively short in time, since long series imply a higher number
of recomputation for each model in the case of the Occam window.

4 An economic application: GDP in the euro
area

Short term forecasting and nowcasting economic conditions is important for
policy makers, investors and economic agents in general. Given the lags in
compiling and releasing key macroeconomic variables, it is not surprising that a
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Figure 1: Computing time

particular attention is paid to nowcasting, an activity of particular importance
because it allows to set economic decisions and policy actions with a more precise
idea of the current situation.

We apply the Occam window method to the nowcast of GDP in the euro
area. This problem is particularly difficult because there are many candidate
explanatory variables (large J) but most of them cover a short time span (small
T). We use quarterly (or converted to quarterly) series available from 1997,
and we describe our source data in the appendix ADD TABLE IN THE END. Ab-
stracting from minor differences in publication dates, there are two main GDP
nowcasts that a forecaster may perform, depending on whether the preceding
quarter figure for GDP is available or not. We focus for simplicity of exposition
on the case when the past quarter is already available. Our nowcasts will be
based on an information set comprising past GDP and current indicators.

The need to use timely indicators largely dictates the choice of potential
regressors, but most sectors and economic concepts are well covered. Our in-
dicators include domestic prices (HICP, HICP excluding food an energy and
producer prices), cycle indicators (unemployment rate, industrial production,
lags of GDP), expectations (mean and dispersion of 2 years-ahead SFP fore-
casts for GDP, PMI for employment, orders and output), prices of commodities
(oil prices, non-energy commodity prices), exchange rates (nominal effective ex-
change rate, EUR/USD exchange rate), monetary policy variables (short and
long interest rates, M3), financial variables (spread between interest rate on
bonds of AAA states and average interest rate on bonds, Dow Jones Eurostoxx
index, domestic credit). Given the relevant role of uncertainty in the macroe-
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conomic developments included in our sample, we include potential macroeco-
nomic risk indicators (Composite Indicator of Systemic Stress, Risk Dashboard
data on banking, total, global and monetary factors). All variables are in year-
on-year growth rate, with the exception of interest rates and indicators. The
target variable in our forecasting exercises is the year-on-year GDP growth rate.
As a consequence, at least four lags of the independent variable must be included
as potential regressors; we use five to account for potential autocorrelation in
the residuals. This may be overcautious, but unnecessary lags will be selected
away in the model averaging, and the possibility of adding regressors just to
throw them away is after all one of the luxuries of using our methodology.

In order to concentrate on the effects of the proposed Occam method, we
slightly simplify Raftery (2010) and estimate each model recursively but with
fixed parameters. We choose this setup because Koop (quote) has shown that
DMA is a good substitute for time varying parameters, and we want to con-
centrate on the advantages of the Occam method alone in accounting for model
changes. Dynamic Model Averaging is performed as in Raftery, using a discount
factor set at α = 0.99.

The nowcast realized with the Occam Window, along with uncertainty bands,
is reported below.

Figure 2: euro area GDP, nowcasting, and uncertainty bands

The chart shows that the DMA with the Occam window has overall a satis-
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factory nowcasting performance, even in presence of turning points. The accu-
racy of the method, as expected, increases with the available data. The 95 per
cent error bands take into account the within and between model uncertainty.

The difficult episode of the recession in 2008-2009 is well captured by the
DMA. The forecast slightly underpredicts in the trough, but it immediately
recovers and becomes quite accurate in the aftermath of the crisis.

The following table compares the forecasting performance in a pseudo-real
time exercise. Practically all the indicators we use are seldom or never revised,
the main difference with a real time forecasting exercise being the fact that we
use the latest available vintage for GDP.1

The evaluation sample ranges from 2003q1 until 2014q1.

RW AR2 DMA−R DMA− E DMS −R DMA− E
RMSE 0.0101 0.0088 0.0043 0.0043 0.0048 0.0048
MAE 0.0067 0.0059 0.0033 0.0033 0.0035 0.0035
MAX 0.0332 0.0376 0.0125 0.0126 0.0139 0.0139

Table 1: Forecasting performance

The baseline forecast using MAm0 compares very favourably with random
walk benchmarks. It largely beats both the simple random walk and a standard
AR(2). We remind that the forecast MAm0 is based on past GDP and recent
information on the indicator variables.

Forecasts computed using the wider population M1 are reported for robust-
ness. The results are equivalent to MAm0. When there are differences in the
assessment, these are not sizeable and completely disappear if a sufficient size for
population M0 is allowed. Intuitively, the population M1 has the advantage of
always including all regressors in its models and as a consequence it should react
quicker to model changes. On the other hand its forecast is slightly more noisy
due to the presence of additional models. The two effects basically cancel out.
Each DMA beats the corresponding forecast computed with DMS, although by
a small margin, corroborating the common finding that model pooling can beat
even the best model in the pool.

We also tried as a further robustness test the DMA of models with time
varying parameters. This more solution, more classical in the literature, tends
in our case to overreact to the crisis, showing poorer performance. We interpret
this result as hinting at the fact that changes in models during the crisis were
not due to strong non linearities in the model but to the appreance of new
regressors.

Following Koop and Korobilils, we tried additional benchmarks, such as a
single TVP model including all regressors, a single B-OLS with all regressors,
but these models cannot be estimated or perform very poorly as their estimated
paramaters are very unstable.

1We could have easily used vintages for the GDP, but we did not see an important value
added in this exercise, as forecasters generally try to guess the final numbers.
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5 Results, description

This section briefly comments the results of our nowcasting exercise.
The main set of results (and an important value added of using Model Averag-
ing) concerns the inclusion probabilities of each regressors and their evolution.
DMA identifies the importance of single variables and how this varies over time,
an advantage in terms of easy interpretation and storytelling. Inclusion proba-
bilities of a variable are calculated summing up the weights of the models the
use that variable as a regressors. They vary as a consequence between 0 and 1
and give a measure of the importance of that regressor.

Their evolution in time is summarized in the spy plot below and detailed in
appendix.

Figure 3: Inclusion probabilities of variables over time: (black) above 10%, (red)
above 50%

Overall, and despite being the result of an automatic procedure, inclusion
probabilities tell us a coherent story and identify in a small group of variables
the most useful indicators of real activity. In greater detail:

• lags of GDP are, as expected, overall important. The first lag captures the
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persistence in GDP, and it remains important even during the crisis, when
GDP shows pronounced swings. The fourth and fifth lag capture essen-
tially base effects. Our careful approach, including lag 5 in the potential
regressors, turns out to be justified.

• Among the consumer price variables, HICP is an important regressors
over the whole sample. This confirms the idea that prices and output
are not determined in insulation. Without extenfing our interpretation
to the existence of a european Phillips curve, we notice that these re-
sults confirms the results for the euro are recently obtained by GLMO
(2014). Furthermore, the DMA emphasizes the role of producer prices as
a forward-looking indicator for nowcasting GDP.

• Among the early indicators of real activity, industrial production is the
most important. This is a well known result in nowcasting, where in-
dustrial production is widely used as a timley and already comprehensive
subset of GDP. The role of unemployment changes over time, becoming
less important in the aftermath of the crisis.

• DMA selects almost all GDP surveys as important over the sample, with
the exception of the period immediately following the 2008 crisis, which
the surveys fail to capture adequately. This results confirms the recent
nowcasting literature LUCA SEARCH FOR REFERNCE arguing that surveys
have a relevant nowcasting power, thereby supporting the importance of
expectations in determining macroeconomic outcomes.

• No single external variable, alone, has a determinant role. This is possibly
due to the relative closeness of the euro area. Even variables traditionally
important in determining prices, such as oil prices or the exchange rate,
appear to have a limited impact on real GDP. We find this result interest-
ing but not surprising, given that these variables affect mostly prices and
only indirectly GDP.

• Among the variables closer to the operation of monetary policy, interest
rates loose progressively importance in the credit constrained post-crisis,
while the monetary variable M3 has an increasing role, possibly highlight-
ing the importance of liquidity in the recent part of the sample.

When compared with a similar work (KO) on inflation2, it is apparent that
the determinants of GDP growth are somehow similar. The differences are
largely intuitive: while cycle variables influence consumer prices, GDP is also
well forecasted with producer prices, determined in advance; international prices
do not have the same importance on the cycle as they have on inflation. On
the other hand, as in KO, variables representing expectations are important
predictors, with the exception of the crisis period.

The complete set of inclusion probabilities is reported in appendix.

2KO use DMA on a very similar dataset, but they explore the whole space of models, and
this limits the number of regressors they can use.

11



A natural complement to the results above is the average size of the coeffi-
cient of each variable. While inclusion probabilities provide important informa-
tion about which variables should be included in the regressions at each point
in time (as a significance test would do), they do not specify the size of their
effect, and even a variable with a very high inclusion probability may have a
small overall impact on GDP. The coefficients are averages over models at each
point in time, and vary of course within the sample. A discussion about each
coefficient is out of the scope of the paper; for completeness, a chart with all
the estimated coefficients is reported in appendix.

6 Robustness of the Occam method

6.1 Initial conditions

The Occam method assumes that at the initial estimation time the correct
population of models is known. This is not true at the beginning of the sample,
where models are estimated on less data and the forecaster does not start with
a valid pool of models to draw from. Our implementation of the Occam method
for example is based on an initial M0 population consisting of a unique model,
the constant. In this section we check the robustness of the forecast to the
choice of the initial population of models.

The chart below reports the average number of variables included in the
model. Same size of models is a necessary but not sufficient statistic for conver-
gence in populations of models, but it allows an easy graphic exposition of the
issue.

It is immediately clear that the Occam window favours models with about 8-
10 variables, and that the initial population M0 is little representative. The spy
plot supports this finding by showing that the inclusion probabilities change
rapidly at the beginning of the sample.We test the importance of the initial
conditions by using 1) a random population of nN models, and 2) an initial
population m0 equal to the final population m0(T).

MAm1 MAm0 rw MSm1 MSm0 AR2

RMSE 0.0043 0.0043 0.0101 0.0047 0.0047 0.0088
MAE 0.0032 0.0032 0.0067 0.0035 0.0035 0.0059
MAX 0.0127 0.0127 0.0332 0.0139 0.0139 0.0376

Table 2: Forecasting results starting from an initial population of models of
average size 4
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Figure 4: Chart of forecasting results starting from different intial assumptions:
one model, an initial population of models of average size 9, or the final popu-
lation of models

6.2 Maximum number of models

A pure application of the principle of the Occam window and of the FEAR
algorithm would keep each model passing condition (4). This would soon lead
to a relatively high of models in the wider population M1, as this population,
generated from the E-step of the algorithm, includes all possible neighbours
of the preceding population M0. The latter, however, is comparatively well
contained by the following R-step, where condition (4) is applied. Figure 4
shows the evolution of the size of population M0 over time.

The effort of the algorithm to find a stable population of models at the
beginning is reflected in the high number of models retained. It is important
to remind that we start our evaluation sample after ten data points, therefore
many models are very poorly estimated and their performance varies wildly.
After a few periods, a stable population has been found and it is progressivley
refined, therefore the size of M0 decreases.
Once starting from a valid population, as in one of our hypothesis, the FEAR
algorithm increases the population site only during turbulent times, for example
in 2008-2009. The algorithm automatically increases the population M0 because
the forecast is less accurate and no model is clearly dominating. This leads the
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MAm1 MAm0 rw MSm1 MSm0 AR2

RMSE 0.0043 0.0042 0.0101 0.0047 0.0047 0.0088
MAE 0.0031 0.0031 0.0067 0.0035 0.0035 0.0059
MAX 0.0127 0.0127 0.0332 0.0139 0.0139 0.0376

Table 3: Forecasting results starting from the final estimated population

Figure 5: Occam window and number of models over time: M0

FEAR algorithm to “resuscitate” additional models in the attempt to improve
forecast. The preceding figure shows that this attempt is susally successful.
Quiet periods are instead characterized by smaller, stable model populations.

Finally, as the sample size increases and models including the best regressors
are selected the necessary population site becomes quite small (the last M0 has
size 186). Overall, population M0, from which the baseline nowcast is gener-
ated, never exceeds 10000 models, the wider M1 can be up to about ten times
larger.

In the interest of speed, we introduced the possibility of specifying a maxi-
mum number of models N , and our last robustness chaek experiments with this
number in order to assess whether it implies a deterioration of the forecast.

Figure 5 reports the nowcasting performance (as measured by the RMSE)
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in relation to maximum model size N.

Figure 6: Number of models and RMSE of nowcasting

In our model space of 27 potential regressors the forecasting performance
improves until about 10000 models in populationM0. Bigger model populations,
as we have seen from the unconstrained estimation, do not lead to any further
improvement, and constraints set at 50000 or above on the total population
are not binding and thus exactly equivalent to the Occam window without a
maximum number of models. We would of course still recommend to keep the
maximum number of models as high as possible. The picture also confirms that
in our case DMA performs slightly better than DMS for any population size.
This is a robust result in the case of macroeconomic variables, but it cannot
be generalized. Koop and others (***) and Morgan et al (***), for example,
have shown using Google searches as predictors that DMS performs better in
contexts where the data are noisy and forecasting benefits from excluding many
of them.

When looking at specific parameter values we observe that convergence may
be slower for those parameters characterized by low inclusion probabilities. For
some specific parameters and inclusion probabilities there are observable con-
vergence issues up to 50.000 models. When this more specific information is
important, we would suggest increasing the maximum number of models by one
(or if possible two) order of magnitude.
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7 Conclusions

This paper proposes an innovative method to perform model averaging in pres-
ence of very large model spaces. This method, based on the Occam window, is
particularly efficient in situations in which numerous time series of limited length
are available, as typically is the case in macroeconomics. Our procedure allows
to perform Dynamic Model Averaging without considering the whole model
space but using a subset of models and dynamically optimizing the choice of
models at each point in time.

After explaining the principle of the Occam window and outlining an imple-
mentation algorithm, we test the model in an empirical application, nowcasting
GDP in the euro area. We show that the forecasting performance is satisfac-
tory compared to common benchmarks and that the results compare well with
recent literature and with estimations performed on similar data sets. Several
robustness checks confirm the validity of our approach.
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Appendix

Figure 7: Inclusion probabilities of single variables over time
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Figure 8: Average coefficients of single variables over time
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