#### **Macroeconomics and On-Line Prices**

Roberto Rigobon

May, 2014

#### Micro Price Data in Macroeconomics

- Data Sources
  - Statistical Offices (CPI, PPI, IPI)
  - Scanner Data (Merchandizers or Supermarkets)
- Uses
  - Macroeconomics
    - Price Dynamics (Price Stickiness)
    - Real Rigidities
  - International Economics
    - Pass-through and Border Effects
    - Law of One Price and Purchasing Power Parity
    - Real Exchange Rates
- Online Data
  - Billion Prices Project

## Advantages and Disadvantages

#### CPI

| Advantages                                                                                                                             | Disadvantages                                                                                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Representative</li> <li>Long Time Series</li> <li>Collection of<br/>Transaction Prices:<br/>"On-the-shelf" Prices.</li> </ul> | <ul><li>Costly to collect</li><li>Unit Values</li><li>Difficult International<br/>Comparison</li></ul> |  |  |

## Advantages and Disadvantages

#### Scanner

| Advantages                                                                                               | Disadvantages                                                                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Granularity</li> <li>Frequency</li> <li>Contains Information on Quantities and Costs</li> </ul> | <ul> <li>Non-Representative:         Supermarkets,         drugstores, and mass         merchandisers</li> <li>Imputed Prices or         Unit Values</li> <li>Extremely Difficult to         Compare except         within country (UPC)</li> </ul> |  |  |

## Advantages and Disadvantages

#### On-Line

| Advantages                                                                                                                              | Disadvantages                                                                                                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Granularity</li> <li>Easy Comparison<br/>(better matching<br/>than UPC's)</li> <li>Frequency</li> <li>Posted Prices</li> </ul> | <ul> <li>Non-Representative:     Online stores (or     Information)</li> <li>Cheap but Difficult to     Collect</li> <li>Weights</li> </ul> |  |  |

# What is the Purpose of each Data?

| CPI     | Computation of Inflation |  |
|---------|--------------------------|--|
|         | Transaction Prices       |  |
| Scanner | Marketing Strategy       |  |
|         | Accounting Standards     |  |
| On-Line | Advertise Catalog        |  |
|         | Marketing and Sales      |  |

- How representative On-Line Stores are?
  - Apple (in US) sells 50 percent On-Line
  - IKEA, H&M, Home Depot, Costco, etc. All have more than 10 percent sales On-Line
  - Walmart sells about 8 percent (non-perishable) through the On-Line store
- How representative are these?
   Especially when compared to the stores we visit.

- How representative On-Line Stores are?
  - Apple (in US) sells 50 percent On-Line
  - IKEA, H&M, Home Depot, Costco, etc. All have more than 10 percent sales On-Line
  - Walmart sells about 8 percent (non-perishable) through the On-Line store
- How representative are these?
   Especially when compared to the stores we visit.
  - How many Walmart's do you visit?

- How representative On-Line Stores are?
  - Apple (in US) sells 50 percent On-Line
  - IKEA, H&M, Home Depot, Costco, etc. All have more than 10 percent sales On-Line
  - Walmart sells about 8 percent (non-perishable) through the On-Line store
- How representative are these?
   Especially when compared to the stores we visit.
  - How many Walmart's do you visit?
  - Walmart has 4759 stores in US, 624 Sam's Clubs, and 6288 International.

- How representative On-Line Stores are?
  - Apple (in US) sells 50 percent On-Line
  - IKEA, H&M, Home Depot, Costco, etc. All have more than 10 percent sales On-Line
  - Walmart sells about 8 percent (non-perishable) through the On-Line store
- How representative are these?
   Especially when compared to the stores we visit.
  - How many Walmart's do you visit?
  - Walmart has 4759 stores in US, 624 Sam's Clubs, and 6288 International.
  - In the US, the median store is less than 0.02 percent.
     So, the Online store is orders of magnitude larger than what you observe!

## On-Line: Implications on Business

- Changes in Stores Behavior
  - Price Dispersion across On-Line Stores
    - Walgreens: 80+ percent of the Items have identical prices across zip codes
    - Large High-End retailers have 100 percent identical prices within a country.
  - Price Dispersion On-line versus Off-Line
    - High-End stores have identical prices.
    - Price Dispersion has collapsed in Clothing, Electronics, Hotels, Process Food, Household Products, and many other sectors, etc.
    - Price Dispersion remains in fresh food and services, or things we do not sell online (Gasoline)
  - Price Dispersion across Countries
    - Except within currency unions, it still remains extremely large.
    - On-Line Stores are still able to segment markets

## On-Line: Answering Pricing Dynamics Questions

#### Research

 Price Stickiness, Distribution of Price Changes, Border Effects, Law of One Price, Cross country Price Levels, Hazard Functions (Price Change), etc.

#### On-Line advantage:

• No Unit Values:

CPI: Health, Education, Financial, Real Estate, Clothing, Electronics, Hotels, Transportation, Automobiles, are all collected as unit values, or price imputed from econometric models.

Scanner: Even daily prices suffer from unit values. You need every transaction (which is what Marketing tends to use).

- Matching: Store item code is much better to match products than UPC
- Category Heterogeneity:
   Stores are organized along categories that are relevant and meaningful to the customer.

### What is the problem with Unit Values?

#### Unit Values works as a non-classical Error-in-Variable problem

- From the 10 stylized facts...
  - (1) Price Stickiness
    - It is incorrectly measured.
    - Especially when measured as the probability of price change
    - Error-in-variables biases downward stickiness
  - (6) Distribution of Price Changes has large mass around zero
    - Unit values derived from random weighted prices imply uni-modal distributions.
  - (9) Simple hazard functions are non-increasing.
    - Unit Values and Heterogeneity imply that Hazard Functions are almost never increasing.
- From the international literature...
  - Border effects are overestimated
  - Law of One Price is underestimated



#### Some new results....

- · Law of One Price
  - Better Matching Product ID's
  - Observe Prices at Product Introductions
- Distribution of Price Changes
  - No Unit-Values
  - Better treatment of Heterogeneity
- Border Effect
  - Better Matching
  - Granularity
  - No Unit-Values

# Product Introductions, Currency Unions, and the Real Exchange Rate

Alberto Cavallo Brent Neiman Roberto Rigobon
MIT University of Chicago MIT

2013

#### What We Do

- 1 Evaluate the LOP deviations
- 2 Introduce large dataset of identical tradeable goods, sold by global retailers in three industries and dozens of countries.
- **3** LOP generally holds within Currency Unions, fails otherwise (including pegged regimes).
- New decomposition shows RER at time of introduction is most important component of RER and moves closely with NER.

#### Price Data from Four Global Retailers

- Apple, IKEA, Zara, and H&M
- Among the largest global retailers (by sales) in technology, furniture, and apparel industries
- Headquartered in different countries, not jointly owned
- Prices "scraped" off the retailer websites
   (eg. http://store.apple.com/us/shop\_ipad/accessories/cases)

## How Does "Scraping" Work?



#### <html>

<!-- START product -->

<ahref="productId=MD963LL"></a>

Ipad Mini Smart Cover - Dark Grey
\$39.00

<!-- END product -->

.....

#### Good-level RER Definition

- $p_i(z, t)$  is log price of z in country i in week t
- $e_{ij}(t)$  is log exchange rate (units of currency i per unit of j's)
- $q_{ij}(z,t)$  is the log of the good-level RER:

$$q_{ij}(z,t) = p_i(z,t) - e_{ij}(t) - p_j(z,t)$$

•  $q_{ij}(z,t) = 0$  when the LOP holds

## Good-level RERs $q_{ij}$ for j =United States



# Good-level RERs $q_{ij}$ for j = Spain



## Good-level RERs $q_{ij}$ for j = Spain, by Store



## Currency Unions or the Euro Zone?



## Quantitative Results

|                                                                      |                                       | All Stores              | Apple                   | IKEA                    | H&M                     | Zara                    |
|----------------------------------------------------------------------|---------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Panel A: Average                                                     | Absolute Values of I                  | Log Good-leve           | el RERs                 |                         |                         |                         |
| All Data<br>All Data                                                 | Currency Unions<br>NER Pegs           | 0.076<br>0.116          | 0.023<br>0.085          | 0.129<br>0.145          | 0.020<br>0.119          | 0.102<br>0.115          |
| All Data                                                             | Floats                                | 0.187                   | 0.143                   | 0.216                   | 0.145                   | 0.207                   |
| $(p_i + p_j) > $400$<br>$(p_i + p_j) > $400$<br>$(p_i + p_j) > $400$ | Currency Unions<br>NER Pegs<br>Floats | 0.043<br>0.096<br>0.171 | 0.022<br>0.078<br>0.151 | 0.086<br>0.094<br>0.170 | 0.013<br>0.125<br>0.141 | 0.097<br>0.118<br>0.270 |
| Panel B: Share of                                                    | Absolute Value of L                   | .og Good-leve           | I RERs L                | ess Than                | 1 Percen                | t                       |
|                                                                      | Currency Unions<br>NER Pegs<br>Floats | 0.610<br>0.069<br>0.045 | 0.681<br>0.140<br>0.049 | 0.307<br>0.081<br>0.033 | 0.911<br>0.069<br>0.062 | 0.548<br>0.064<br>0.040 |

# Are Results Representative? Additional Stores (Less Data)

|               |                    | Additional Stores | Adidas         | Dell           | Mango          | Nike           |
|---------------|--------------------|-------------------|----------------|----------------|----------------|----------------|
| (i)           | Currency Unions    | 0.086             | 0.087          | 0.054          | 0.112          | 0.053          |
| (ii)<br>(iii) | NER Pegs<br>Floats | 0.154<br>0.201    | 0.172<br>0.207 | 0.130<br>0.139 | 0.158<br>0.203 | 0.103<br>0.210 |
|               |                    |                   |                |                |                |                |

## Does This Show Up in "Aggregated" Data?

- Eurostat "Product Level Indices" (PLI)
- Pick the 8 non-overlapping tradable mfg sectors similar to ours (i.e. excludes "restaurants and hotels" and "meat"):

|        | Audio<br>Equip | Clothes | Elect<br>Equip | Metal<br>Prods | Shoes | Furniture | Software | Transp<br>Equip |
|--------|----------------|---------|----------------|----------------|-------|-----------|----------|-----------------|
| Euro   | 0.067          | 0.091   | 0.069          | 0.067          | 0.114 | 0.095     | 0.112    | 0.079           |
| Pegs   | 0.103          | 0.167   | 0.082          | 0.115          | 0.174 | 0.375     | 0.109    | 0.120           |
| Floats | 0.123          | 0.198   | 0.091          | 0.101          | 0.200 | 0.296     | 0.133    | 0.121           |

Also true in disaggregated (confidential) data from Eurostat



#### Product Introductions

- Result 1 : LOP holds well within currency unions  $(q \approx 0)$
- Result 2: We now propose an RER decomposition that emphasizes evolution of RER for newly introduced goods
  - Significant recent attention to "intro prices", given exclusion from matched-model price indices
  - Baxter and Landry (2012) only other paper with actual measurements of this

#### Good-level RERs at Introduction vs. NER, Lowess



# The Distribution of the Size of Price Changes

Alberto Cavallo Roberto Rigobon MIT MIT

2013

#### Motivation

- Fact from CPI and Scanner Data research: Distribution of Price Changes has a large mass around zero. Large mass between -2 and 2 percent!
- This result can be the outcome of Unit Values being collected as opposed to Regular Prices exhibiting small price changes.
- Formal test of unimodality within narrow windows of price changes
  - Hartigan
  - Silverman
  - Proportional Mass

#### What we do

#### Data

- Study daily price changes from hundreds of retailers
- Compute three tests for unimodality in different parts of the distribution.

#### Results

- Unimodality is rejected in most retailers
  - Rejections occur in narrow window (-5 to 5 %)
  - Rejections increase when window is increased: Possibly due to "Sales"
  - Hartigan and Silverman's tests are rejected in all retailers
  - Proportional Mass rejects about 2/3 of the retailers
  - Supermarkets are more unimodal than clothing and electronics

## Distribution of Price Changes



## Distribution of Price Changes



## Distribution of Price Changes



## Comparison with Scanner and CPI sampling methods

Compute the average weekly price (only for the Supermarkets in our data). We assume equal weights.

|                                     | Daily Data | Weekly Average |
|-------------------------------------|------------|----------------|
| Mean Dip (Hartigan)                 | 0.035      | 0.019          |
| Mean Critical Bandwidth (Silverman) | 1.351      | 0.799          |
| Mean PM Score                       | -0.143     | 0.145          |

Unimodal distributions have lower Dips, lower CBs and positive PMs.

## The Billion Prices Project

Alberto Cavallo Roberto Rigobon MIT MIT

2014

## Inflation in USA



## Inflation in Argentina



# Inflation in USA (Winter Shock)



# Inflation in Greece (Different Seasonality)



- Micro Price Data has become a very important resource for macroeconomics and international economics research.
- Some new research using OnLine Prices is challenging the consensus.
  - Distribution of Price Changes, Explanations of LOP deviations, Border effects, Hazard Functions, and Price Level Differences.
- The purpose of the collection of such data matters for the econometrics.

- Micro Price Data has become a very important resource for macroeconomics and international economics research.
- Some new research using OnLine Prices is challenging the consensus.
  - Distribution of Price Changes, Explanations of LOP deviations, Border effects, Hazard Functions, and Price Level Differences.
- The purpose of the collection of such data matters for the econometrics.
  - Most of econometrics procedures we use assume there are no problems with the integrity of the data.

- Micro Price Data has become a very important resource for macroeconomics and international economics research.
- Some new research using OnLine Prices is challenging the consensus.
  - Distribution of Price Changes, Explanations of LOP deviations, Border effects, Hazard Functions, and Price Level Differences.
- The purpose of the collection of such data matters for the econometrics.
  - Most of econometrics procedures we use assume there are no problems with the integrity of the data.
  - This is a trivial point for IO or Labor economists

- Micro Price Data has become a very important resource for macroeconomics and international economics research.
- Some new research using OnLine Prices is challenging the consensus.
  - Distribution of Price Changes, Explanations of LOP deviations, Border effects, Hazard Functions, and Price Level Differences.
- The purpose of the collection of such data matters for the econometrics.
  - Most of econometrics procedures we use assume there are no problems with the integrity of the data.
  - This is a trivial point for IO or Labor economists
  - You need at least 3 macro guys, arguing and fighting, to reach the same conclusion.

- Micro Price Data has become a very important resource for macroeconomics and international economics research.
- Some new research using OnLine Prices is challenging the consensus.
  - Distribution of Price Changes, Explanations of LOP deviations, Border effects, Hazard Functions, and Price Level Differences.
- The purpose of the collection of such data matters for the econometrics.
  - Most of econometrics procedures we use assume there are no problems with the integrity of the data.
  - This is a trivial point for IO or Labor economists
  - You need at least 3 macro guys, arguing and fighting, to reach the same conclusion.
- At the Billion Prices Project we have been collecting data for 6 years. We are working on making that available to all – very soon.