How important is tourism for the international transmission of cyclical fluctuations? Evidence from the Mediterranean.

Fabio Canova, EUI and CEPR Pietro Dallari, UPF and IMF May 2014

1 Introduction

Business cycles in the Mediterranean peculiar relative to ROW:

- Heterogeneous with a non-negligible idiosyncratic components (Canova and Ciccarelli, 2012, JIE).
- Each country more correlated with the EU than the neighbors, but
- Time variations are unrelated to preferential trade and financial agreements signed with EU (Canova and Schlaepfer, 2014, JOAE).
- Macro indicators, geography, institutions, etc. partially matter for cyclical synchronization.
- Cultural indicators seem important for durations and amplitudes (Altugand Canova, 2013, OER).

What other factors explain the peculiar business cycles of the region?

- Study the international propagation of cyclical fluctuations to the Mediterranean through the lenses of tourism flows. Three main questions:
- 1. Do output fluctuations originating abroad propagate to the Mediterranean basin via the tourism channel?
- 2. How important shocks impinging on tourism flows are for cyclical fluctuations in the Mediterranean?
- 3. Can we rationalize the findings with a model?

• Why tourism?

- Tourism flows to the region are growing rapidly. Compounded growth rate of international tourist arrivals in 1990-2010: 325% vs. 214% worldwide.
- Tourism is crucial for local economies:
- i) Tourism related activities is around 10% of GDP.
- ii) Employment in the tourism sector is around 13.5% of total employment (in Tunisia and Egypt about 35%).
- iii) Tourism receipts is above 50% over total service receipts.
- iv) Since Arab spring tourists to Egypt, Tunisia, Syria dropped almost to zero. GDP growth dropped by 60-80 percent.

Take bilateral tourism data
- Look at reduced form evidence (static and dynamic correlations).
- Use structural VARs.
- Conduct a counterfactual.
Take a International RBC model

- Measure transmission with and without tourism channel.

- Add tourism flows

Results

- Correlations between source country output cycles and tourism flows are modest, except in recessions. Correlations between tourism flows and cyclical activity in the destination countries are large.
- Unexpected source country output and tourist flows disturbances have important output effects in the destination country. Second round effects via investment.
- Imported shocks account for up to 80% of destination country fluctuations in output, consumption and investment; tourism shocks responsible for about 2/3 of it. Some cross country heterogeneity.
- Without the tourism channel, the effect of source country output shocks on domestic output would be, on average, about 30% smaller at all horizons.
- The model can account for some transmission facts.

Destination country	Source country	Arrivals	Nights	Pc Expenditure
Cyprus	Euro Area	1980 - 2010		1995 - 2010
	United Kingdom	1980 - 2010		1995 - 2010
	Russia	1994 - 2010		1995 - 2010
Morocco	Euro Area	1992 - 2009		
	United Kingdom	1992 - 2009		
	France	1992 - 2009		
Syria	Euro Area	1985 - 2008		
	United Kingdom	1985 - 2008		
	Russia	1995 - 2008		
Tunisia	Euro Area	1988 - 201019	87 - 2010	
	United Kingdom	1988 - 201019	87 - 2010	
	France	1988 - 2010		
Turkey	Euro Area	1984 - 2011		
	United Kingdom	1984 - 2011		
	Russia	1998 - 2011		

- Need bilateral data. Total flows available for other countries, i.e. Albania, Croatia, Egypt, etc.
- Annual data. Quarterly data available only for Cyprus and Turkey.

Which variable to use?

- Core analysis: **Number of tourist arrivals** from the Euro area to Cyprus, Morocco, Syria, Tunisia and Turkey.
- Case studies: Cyprus-United Kingdom, Tunisia-France, Turkey-Russia.
- Robustness: **Number of nights** in Tunisia and **per-capita expenditure** in Cyprus.

			Dynamic				
Output in SC						Frequencies	
& Arrivals in MED	-2	-1	0	1	2	0	$\frac{\pi}{2}$
EA - CY UK - CY EA - MA FR - SY EA - SY EA - TN FR - TR EA - TR	0.35* 0.04 0.03 0.027 0.41* -0.09 0.30* 0.34* 0.23* -0.17	-0.01 0.20* 0.26* -0.05 -0.11 -0.04 -0.01	0.20* 0.21* 0.14 0.29* -0.09 0.50* 0.02 0.14* 0.06 0.38*	0.00 0.18 0.12 0.40* -0.27* 0.62* -0.04 -0.06 0.14 0.29*	-0.28* 0.11 0.19 0.29* -0.20 0.57* -0.13 -0.30 -0.04 -0.20	0.45* 0.31 0.30 0.63* -0.34 0.69* 0.18 0.23 0.42* 0.49*	0.11 0.27 0.08 0.19 -0.19 0.26 -0.16 0.01 -0.06 0.47*
Arrivals in MED				in year			encies
& Output in MED	-2	-1	0	1	2	0	$\frac{\frac{\pi}{2}}{2}$
EA - CY UK - CY EA - MA FR - MA EA - SY RU - SY EA - TN FR - TN EA - TR RU - TR	0.03 0.33* 0.71* 0.60* 0.41* 0.34* 0.39* 0.05 -0.20	0.02 0.25 0.13 0.15 0.05 -0.11 -0.23* -0.01	0.55*	0.23 0.18 -0.32* 0.69* -0.47	0.36* 0.27* 0.19 0.23* 0.17 0.18* 0.06 0.08 0.10 0.45	0.75* 0.90* 0.73* 0.56* 0.61* 0.51* 0.21 0.64*	0.32 0.53* -0.37 -0.43* -0.05 0.15 0.09 -0.00 0.14 0.38
Output in SC	La -2	igs or l -1		in year 1	rs) 2	Frequ	$ { m encies} $
& Output in MED	 0.27*		0 0.63*	0.36*	-0.16	0.86*	$\frac{2}{0.58*}$
EA - CY UK - CY EA - MA FR - MA EA - SY RU - SY EA - TN FR - TR RU - TR	-0.11 -0.27* -0.27*	0.103 0.01 0.05 -0.39* 0.18 -0.18* -0.25* 0.11	0.42* 0.05 0.07 -0.05 -0.05 0.30*	0.30* 0.37* -0.04 -0.07 -0.06 0.67* 0.41* 0.39* -0.12 -0.20	0.10 0.09 0.24 0.19 0.14* 0.30* -0.04 0.02 -0.27 -0.35*	0.38 0.02 0.03 -0.36 0.76* 0.23 0.37 0.09 0.33	0.52* 0.52* 0.11 0.13 0.03 -0.37 0.37 0.36 0.30 0.65*

- Contemporaneous comovements between source country output and tourism flows low. Many confounding factors: time lags related to booking process; substitutability of destination countries; marketing strategies; etc.
- Connection between the flow of tourists and output in the destination country is stronger.
- i) Largest contemporaneous values between UK arrivals and Cyprus output (0.70) and Russian arrivals with Turkey's output (0.55).
- ii) Correlation tourist arrival/output destination country often larger than the correlation between source and destination country output.
- Comovements tourist arrivals/output destination country always larger in the long run: the beneficial effects of tourism flows are long lasting. Why?

2 Structural VAR analysis

Multi-country random coefficients Bayesian VAR model (N countries):

$$y_{n,t} = \Gamma'_n z_{n,t} + B'_n y_{n,t-1} + u_{n,t}$$
 (1)

$$p(\beta_n|\bar{\beta},\tau,O_n,\Sigma_n) = N(\bar{\beta},\tau\times O_n)$$
 (2)

$$p(\Sigma_n) \propto |\Sigma_n|^{-0.5(N+1)} \tag{3}$$

$$p(\bar{\beta}_i) \propto 1 \quad i = 1, 2, \dots$$
 (4)

$$p(\tau) \propto 1$$
 (5)

$$p(\gamma_{ni}) \propto 1 \quad i = 1, 2, \dots$$
 (6)

 $\gamma_n = vec(\Gamma_n)$ country specific intercepts.

 $\beta_n \equiv vec(B'_n)$: country-specific slopes.

 $\bar{\beta}$: cross-sectional average slope.

au: dispersion from common slope.

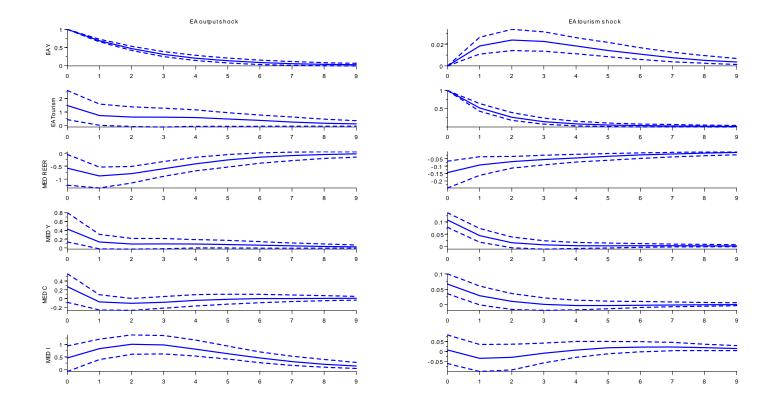
$$O_n \equiv diag\left(\sigma_{n,i}^2 \otimes \frac{1}{\sigma_{n,n}^2}\right)$$
: scaling factor.

Slope coefficients in different countries are different but drawn from a distribution whose mean is constant across countries

Alternatives:

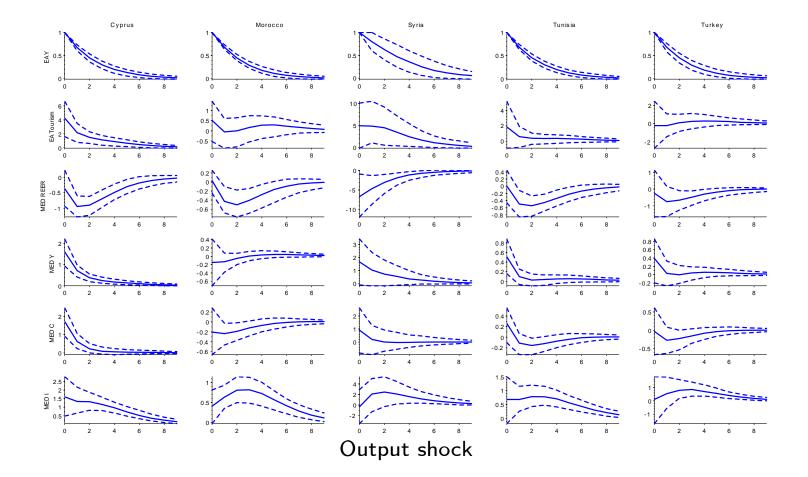
- Mean group estimator (Pesaran and Smith, 1996). Consistent estimates of average effects if **T** is large we do not have this.
- Pooled estimator. Consistent parameters estimates **only under dynamic homogeneity** suspect homogeneity is not a great assumption.
- GMM (Arellano and Bond). Difficult to find appropriate instruments.
- Bayesian RC approach. Efficiently combine unit-specific and cross-sectional information. Useful when samples are short and panel potentially dynamically heterogeneous. Can jointly compute posterior of average and individual coefficients.

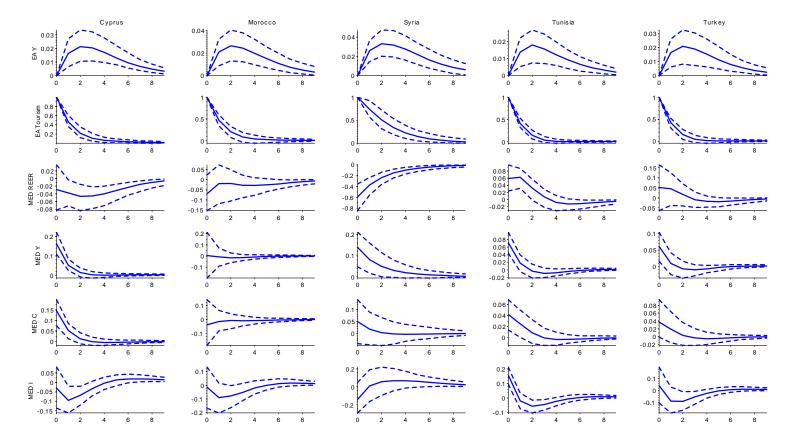
Specification and identification of the VAR


Each country VAR includes:

- constant and time trend.
- log of Euro area output, log number of tourist arrivals, log of REER, log of destination country Y-G, C, I.

Shock identification:

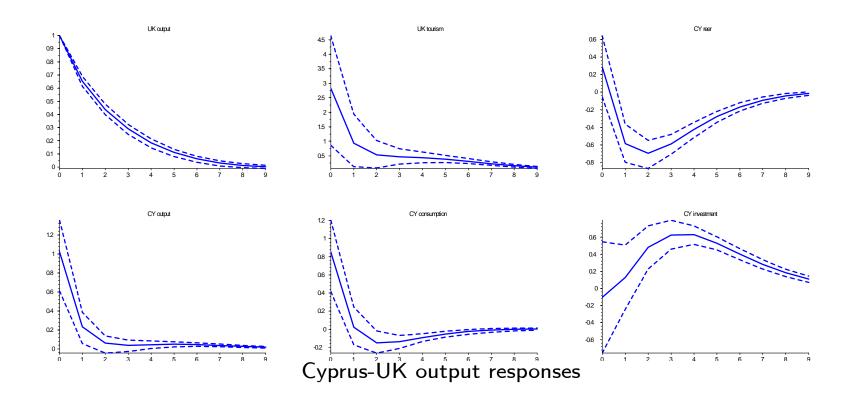

- -Source country output and tourism flows predetermined relative to destination country variables (no Arab spring in the sample).
- Source country output predetermined with respect to tourism flows.

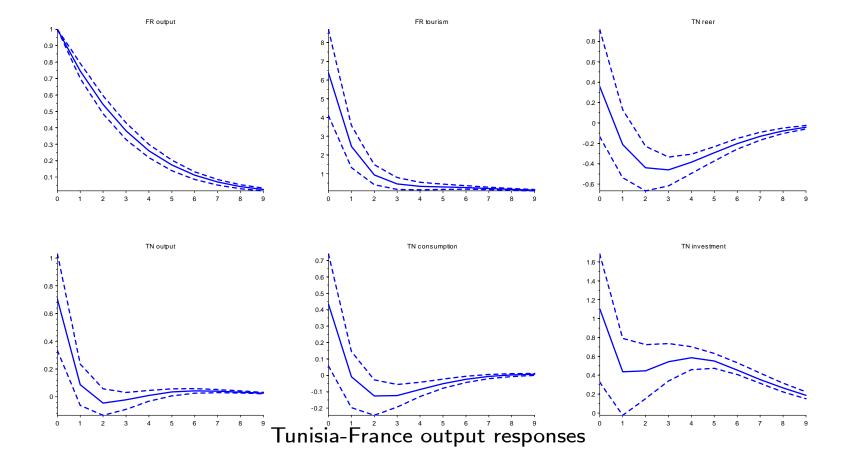

Estimation is via MCMC (Gibbs sampling).

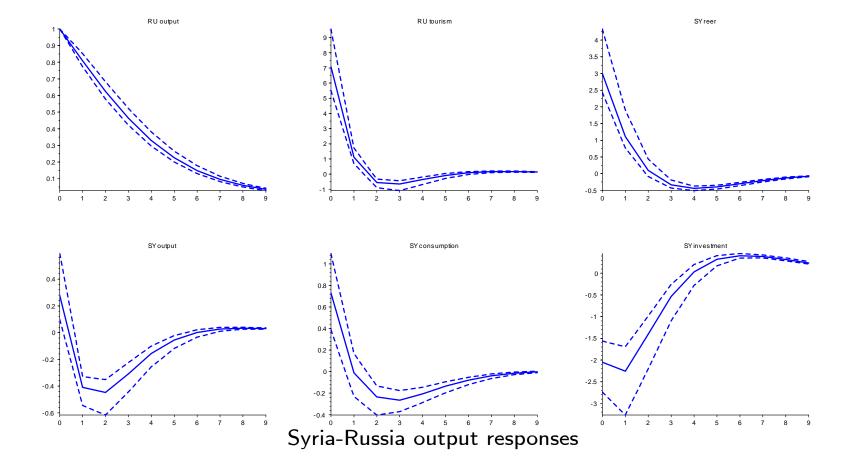
Average responses

- Tourism flows react positively and significantly to output shocks; REER falls on impact.
- Domestic output, consumption, investment in the representative country grow on impact; effect is persistent.
- -Investments reacts strongly and have a humped shaped dynamic.
- Tourism shock generates similar dynamics but magnitude smaller. No effects on investments.

Tourism shock

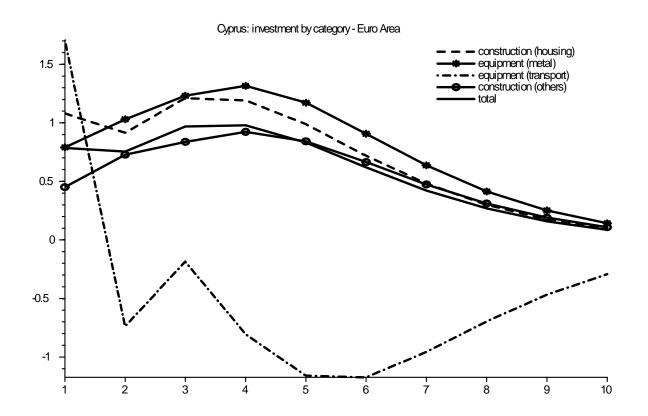

- Shape of responses similar across countries but quantitative heterogeneities.
- Response of tourist arrivals to output shocks is positive in Syria and Cyprus; REER falls.
- Output up in Cyprus, Syria, Tunisia.
- Consumption responses muted. Investment response typically delayed.
- Tourism shock make output go up in Cyprus, Syria, Tunisia and Turkey.
- Some effects on consumption. No effect on investments, except in Tunisia.

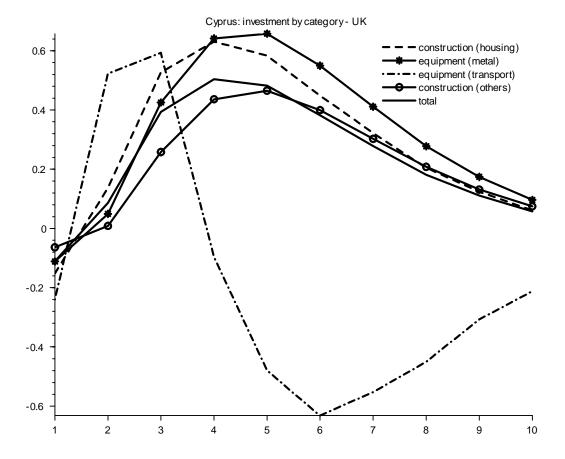

Punchline:


Source country output shocks have positive destination country effects because of a persistent increases in local demand (primarily driven by investments).

Tourism shocks also have effects on destination country output, but not very persistent.

2.1 Some special pairs





- Cyprus-UK much stronger tourism response to output shocks. Very delayed investment effect
- Tunisia-France: very strong effects on destination country.
- Syria-Russia: strong response of tourism. Perverse response of REER and investment.

2.2 What drives investments?

2.3 How important are foreign shocks?

Table 1: Forecast error variance decomposition, average result

	Time horizon (in years)						
	0	1	4	8			
EA tourism							
Shock1	6	6	6	6			
	(3,12)	(3,11)	(3,10)	(3,11)			
Shock2	94	87	83	83			
	(88,97)	(82,91)	(78,87)	(78,87)			
MED reer							
Shock1	5	6	6	6			
	(1,10)	(2,11)	(2,11)	(2,11)			
Shock2	4	6	7	7			
	(2,8)	(4,10)	(4,11)	(4,11)			
MED output							
Shock1	17	14	13	13			
	(5,31)	(6,26)	(6,24)	(6,24)			
Shock2	76	60	57	58			
	(60,88)	(48,72)	(46,70)	(46,70)			
MED consumption							
Shock1	23	30	32	32			
	(5,45)	(17,47)	(23,45)	(23,45)			
Shock2	67	61	59	59			
	(40,85)	(39,74)	(43,71)	(44,71)			
MED investment							
Shock1	21	7	10	11			
	(2,68)	(2,16)	(4,20)	(5,20)			
Shock2	21	12	8	8			
	(2,66)	(5,23)	(3,17)	(3,17)			

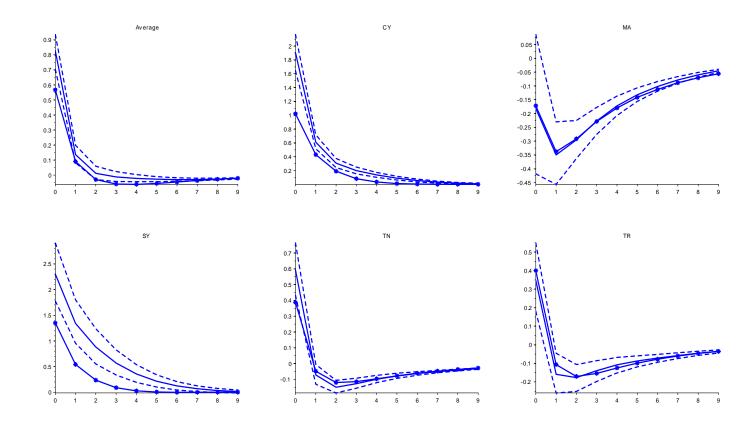
-----,,,,,

	Суј	orus	More	оссо	Sy	ria	Tun	isia	Turi	key
Time (in years)	0	8	0	8	0	8	0	8	0	8
EA tourism Shock1	29 (15,43)	28 (15,42)	3 (0,10)	14 (9,22)	66 (54,75)	43 (32,54)	2 (0,11)	4 (2,13)	4 (0,16)	14 (7,25)
Shock2	71	70	97	82	34	26	98	94	96	80
	(57,85)	(57,84)	(90,100)	(74,88)	(25,46)	(18,34)	(89,100)	(86,97)	(84,100)	(69,88)
MED reer Shock1 Shock2	16 (4,29) 1 (0,5)	41 (29,53) 30 (23,40)	38 (18,55) 2 (0,8)	34 (14,51) 3 (1,9)	31 (17,49) 17 (8,30)	33 (19,50) 17 (8,29)	2 (0,8) 28 (13,42)	3 (1,10) 24 (11,37)	2 (0,7) 2 (0,7)	2 (0,7) 2 (1,7)
MED output Shock1	36 (18,52)	35 (18,50)	29 (6,52)	30 (7,52)	72 (48,92)	39 (22,61)	23 (3,46)	20 (5,37)	7 (1,23)	14 (3,31)
Shock2	61	62	11	18	6	7	68	72	13	30
	(46,80)	(48,79)	(1,30)	(6,37)	(1,24)	(3,17)	(45,90)	(54,86)	(2,34)	(19,51)
MED consumption	50	48	27	30	39	30	37	36	9	15
Shock1	(33,64)	(33,62)	(6,60)	(9,57)	(13,72)	(17,50)	(10,68)	(18,57)	(1,25)	(4,32)
Shock2	36	37	18	25	10	18	17	34	3	8
	(22,53)	(24,53)	(2,43)	(9,49)	(2,34)	(6,34)	(2,45)	(21,51)	(0,12)	(4,18)
MED investment	29	25	42	24	4	12	11	22	8	9 (2,25)
Shock1	(3,66)	(8,50)	(18,65)	(10,40)	(0,19)	(4,25)	(2,29)	(12,34)	(0,24)	
Shock2	20	47	3	42	14	5	75	64	6	22
	(3,50)	(26,69)	(0,14)	(28,58)	(2,40)	(2,13)	(58,88)	(50,75)	(0,24)	(11,42)

Cyprus	Time horizon (in years)					
	0	1	4	8		
UK tourism						
Shock1	14	13	12	12		
	(2,31)	(2,29)	(2,29)	(2,29)		
Shock2	86	86	86	85		
	(69,98)	(70,97)	(69,96)	(69,96)		
CY reer						
Shock1	7	17	27	28		
	(1,17)	(11,27)	(18,38)	(19,38)		
Shock2	2	3	3	4		
	(0,7)	(1,9)	(1,9)	(1,9)		
CY output						
Shock1	28	27	27	27		
	(12,46)	(11,45)	(11,44)	(11,44)		
Shock2	27	26	25	25		
	(14,44)	(14,43)	(14,42)	(14,42)		
CY consumption						
Shock 1	30	28	30	30		
	(10,52)	(11,51)	(15,51)	(15,51)		
Shock2	18	18	17	17		
	(5,38)	(5,38)	(5,35)	(6,35)		
CY investment						
Shock1	11	13	27	31		
	(1,40)	(2,34)	(12,45)	(16,48)		
Shock2	29	30	28	26		
	(5,69)	(11,58)	(13,46)	(13,44)		

Cyprus	Time horizon (in years)					
	0	1	4	8		
UK expenditures						
Shock1	38	35	34	34		
	(21,56)	(19,52)	(19,49)	(19,49)		
Shock2	62	60	56	56		
	(44,79)	(44,75)	(42,70)	(41,70)		
CY reer						
Shock1	5	7	11	11		
	(1,16)	(3,14)	(6,18)	(6,19)		
Shock2	2	2	3	3		
	(0,9)	(0,8)	(1,8)	(1,8)		
CY output						
Shock1	34	33	31	31		
	(16,54)	(15,52)	(15,51)	(15,51)		
Shock2	15	16	15	15		
	(6,28)	(7,28)	(7,28)	(7,28)		
CY consumption						
Shock1	30	27	24	24		
	(14,53)	(12,49)	(11,44)	(12,44)		
Shock2	5	6	6	6		
	(1,15)	(1,16)	(2,16)	(2,16)		
CY investment						
Shock1	31	31	39	39		
	(12,59)	(12,55)	(20,59)	(22,59)		
Shock2	2	4	4	5		
	(0,13)	(1,15)	(1,14)	(1,13)		

- Volatility of tourism flows not much due to income effects.
- From 40 to 80% of fluctuations in domestic Y, C, I can be attributed to foreign shocks. However:
- i) Tourism shock explain a larger portion of domestic Y and C (in aggregate, Cyprus, Tunisia)
- ii) Output shocks explain larger portion of domestic Y and C for Morocco and Turkey.
- iii) Results robust to change in tourism variable.
- iv) Volatility of REER not due to source country income or tourism shocks.


3 Counterfactual

Structural responses are the sum of two distinct effects:

- 1.) A pure output shock effect common shocks.
- 2.) An effect due to changes in tourism flows- international transmission.
- Disentangle 1.) and 2.) to measure the "multiplier" effect that tourism has for output in destination countries.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ a_{2,1} & 1 & 0 & 0 & 0 & 0 \\ a_{3,1} & a_{3,2} & 1 & a_{3,4} & a_{3,5} & a_{3,6} \\ a_{4,1} & a_{4,2} & a_{4,3} & 1 & a_{4,5} & a_{4,6} \\ a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & 1 & a_{5,6} \\ a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & 1 \end{bmatrix} \begin{bmatrix} y_{n,t}^{EU} \\ \tau_{n,t}^{EU} \\ REE_{n,t}^{MED} \\ y_{n,t}^{MED} \\ c_{n,t}^{MED} \\ i_{n,t}^{MED} \end{bmatrix} = B'_n \begin{bmatrix} y_{n,t-1}^{EU} \\ \tau_{n,t-1}^{EU} \\ REE_{n,t-1}^{MED} \\ y_{n,t-1}^{MED} \\ c_{n,t-1}^{MED} \\ i_{n,t-1}^{MED} \end{bmatrix} + \begin{bmatrix} u_{n,t}^{y,EU} \\ u_{n,t}^{x,EU} \\ u_{n,t}^{y,MED} \\ u_{n,t}^{x,MED} \\ u_{n,t}^{x,EU} \\ u_{n,t}^{y,MED} \\ u_{n,t}^{x,EU} \end{bmatrix}$$

- $a_{4,1}$: instantaneous effect of EU output shock on MED output.
- $a_{2,1}$: instantaneous effect of EU output shock on EU tourism flows.
- $a_{4,2}$: instantaneous effect of EU tourism shock on MED output.
- $a_{2,1} \times a_{4,2}$: indirect effect of EU output shock on MED output. Generate an artificial tourism shock series offsetting tourism flows responses to a source country output shock ("conditional forecast", "scenario analysis").

Actual and Counterfactural

- Median impact response of domestic output in the typical destination country would fall from 0.8 to 0.6 when the tourism channel is shut down. Change significant up to 4 years.
- Effects large for Cyprus and Syria. Marginal for Tunisia.
- Effects for Tunisia and Turkey become significant with France and Russia as source country.

4 The Model

Large Country: Consumers

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left[D_t^{\theta} (1 - N_t)^{1-\theta}\right]^{1-\sigma}}{1 - \sigma} \tag{7}$$

where

$$D_t = \left[\psi^{\zeta} c_t^{1-\zeta} + \nu_t (1-\psi)^{\zeta} b_t^{1-\zeta} \right]^{(1-\zeta)^{-1}}$$
 (8)

$$b_t = \left[\int_0^1 \xi_i^{\kappa} (b_{it})^{1-\kappa} di \right]^{(1-\kappa)^{-1}} \quad \int_0^1 \xi_i di = 1$$
 (9)

where v_t is a preference shock; $(\theta, \sigma, \psi, \zeta, \kappa, \xi)$ are parameters.

Capital accumulation:

$$x_t \left(1 - \frac{\Xi}{2} \left(\frac{x_t}{x_{t-1}} - 1 \right)^2 \right) v_t = k_{t+1} - (1 - \delta)k_t$$
 (10)

 v_t is an investment shock and Ξ an adjustment cost parameter.

Large Country: Producers

Intermediate goods:

$$K_t^{\alpha} N_t^{1-\alpha} \exp(e_t) = d_t^* + f_t^*$$
 (11)

where e_t is a TFP shock. Total exports $f_t^* = \int_0^1 f_{it}^* di$.

Final goods:

$$y_t^* = \left(\theta_2^{\eta} d_t^{*1-\eta} + (1-\theta_2)^{\eta} f_t^{1-\eta}\right)^{(1-\eta)^{-1}}$$
(12)

where $f_t=\left(\int_0^1\gamma_i^\rho f_{it}^{1-\rho}di\right)^{(1-\rho)^{-1}}$ and $\int_0^1\gamma_idi=1$.

Aggregate demand (g_t is random) is

$$Z_t = c_t + x_t + g_t \tag{13}$$

Prices

Price of the consumption bundle is

$$p_t^D = \left[\psi(p_t^c)^{\frac{\zeta-1}{\zeta}} + (1-\psi)(p_t^b)^{\frac{\zeta-1}{\zeta}}\right]^{\frac{\zeta}{\zeta-1}}$$
(14)

The price of the tourism bundle is

$$p_t^b = \left(\int_0^1 \xi_i (\nu_{it} p_{it}^b)^{\frac{\kappa - 1}{\kappa}} di\right)^{\frac{\kappa}{\kappa - 1}} \tag{15}$$

The price of intermediate goods is

$$p_t^* = p_t^{d*} = p_t^{f*} = \left(\alpha^{\alpha} (1 - \alpha)^{1 - \alpha} \exp(e_t)\right)^{-1} \left(p_t^{k*}\right)^{\alpha} (w_t^*)^{1 - \alpha}$$
 (16)

where p_t^{k*} is the rental rate of capital; w_t^* the rental rate of labor.

The price of the final good is

$$p_t^{y*} = \left(\theta(p_t^{d*})^{\frac{\eta-1}{\eta}} + (1-\theta)(p_t^f)^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}$$
(17)

Price of imported bundle is

$$p_t^f = \left(\int_0^1 \gamma_i(p_{it}^f)^{\frac{\rho-1}{\rho}} di\right)^{\frac{\rho}{\rho-1}} \tag{18}$$

National accounts

$$y_t^* p_t^{y*} = Z_t p_t^{z*} - \int_0^1 \frac{\vartheta^i}{\vartheta^*} \left(p_{it}^f f_{it} + p_{it}^b b_{it} \right) di + \left(\int_0^1 f_{it}^* di \right) p_t^{f*}$$
 (19)

- $\frac{\vartheta^i}{\vartheta^*}$ is the ratio of populations.

The trade balance is

$$-\int_0^1 \left(p_{it}^f f_{it} + p_{it}^b b_{it} \right) di + \left(\int_0^1 f_{it}^* di \right) p_t^{f*} = L_t p_t^{f*} - L_{t+1} p_t^L$$
 (20)

where L_t one period debt in zero net supply, paying one unit of good f^* in period t, with price p_t^L .

Exogenous processes

 $\log g_t = (1 - \rho_g) \log \bar{g} + \rho_g \log g_{t-1}$

$$\log \nu_t = \rho_{\nu} \log \nu_{t-1} + \epsilon_{\nu t}$$

$$\log \nu_t = \rho_{\nu} \log \nu_{t-1} + \epsilon_{\nu t}$$

$$e_t = \rho_e e_{t-1} + \epsilon_{et}$$
(21)
$$(22)$$

(24)

Small Countries

Monopolistically competitive in the tourism market. Consumer preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left[C_{it}^{\theta} \left(1 - N_{it} \right)^{1-\theta} \right]^{1-\sigma}}{1-\sigma} \tag{25}$$

Can work in two sectors: good producing (a) and tourism (b):

$$N_{it} = \left[\mu^{\chi} N_{t,b}^{1-\chi} + (1-\mu)^{\chi} N_{t,a}^{1-\chi}\right]^{(1-\chi)^{-1}}$$
(26)

Capital aggregator:

$$K_{it} = \left[\phi^{\omega} K_{t,b}^{1-\omega} + (1-\phi)^{\omega} K_{t,a}^{1-\omega}\right]^{(1-\omega)^{-1}}$$
(27)

Capital accumulation

$$x_{it} \left(1 - \frac{\Xi}{2} \left(\frac{x_{it}}{x_{it-1}} - 1 \right)^2 \right) v_{it} = k_{it+1} - (1 - \delta) k_{it}$$
 (28)

Production

Intermediate goods:

$$K_{t,a}^{\gamma} N_{t,a}^{1-\gamma} exp(e_{it}) = d_{it} + \hat{f}_{it}$$
 (29)

 e_{it} country specific TFP shock; \hat{f}_{it} = percapita export.

Final goods:

$$y_{it} = \left[\theta_i^{\iota} d_{it}^{1-\iota} + (1 - \theta_i)^{\iota} \left(\hat{f}_{it}^*\right)^{1-\iota}\right]^{(1-\iota)^{-1}}$$
(30)

Tourism goods production:

$$\hat{b}_{it} = K_{t,b}^{\varsigma} N_{t,b}^{1-\varsigma} exp(u_{it}) - \Delta_{it}$$
(31)

where Δ_{it} is an stochastic fixed cost making zero monopolistic profits; u_{it} country specific TFP shock. Aggregate demand (g is random) is:

$$Z_{it} = c_{it} + g_{it} + x_{it}$$

Prices

The price of y_{it} is

$$p_{it}^y = \left[heta_i \left(p_{it}^d
ight)^{rac{\iota - 1}{\iota}} + \left(1 - heta_i
ight) \left(p_{it}^{f*}
ight)^{rac{\iota - 1}{\iota}}
ight]^{rac{\iota}{(\iota - 1)}}$$

The prices of the intermediate goods are

$$p_{it}^{d} = p_{it}^{f} = \left(\gamma^{\gamma} (1 - \gamma)^{1 - \gamma} \exp(e_{it})\right)^{-1} \left(p_{ait}^{k}\right)^{\gamma} (w_{ait})^{1 - \gamma}$$
(32)

The (local) price of tourism is a mark-up over the marginal costs

$$\tilde{p}_{it}^b = \frac{1}{1-\kappa} \left(\varsigma^{\varsigma} (1-\varsigma)^{1-\varsigma} \exp(u_{it}) \right)^{-1} \left(p_{bit}^k \right)^{\gamma} (w_{bit})^{1-\gamma}$$

 P^k_{iit}, w^k_{iat} rental price of capital and labor in sector j=a,b.Final price:

$$p_{it}^b = \tilde{p}_{it}^b + \pi_{it} \tag{33}$$

National accounts

Per-capita national account identity

$$y_{it}p_{it}^y + b_{it}p_{it}^b = Z_{it}p_{it}^Z + \frac{\vartheta^*}{\vartheta^i}f_{it}^*p_{it}^{f*} - f_{it}p_{it}^f$$

The trade balance is:

$$-\hat{f}_{it}^* p_{it}^{f*} + \hat{f}_{it} p_{it}^f + \hat{b}_{it} p_{it}^b = \hat{L}_{it} p_t^{f*} - \hat{L}_{it+1} p_t^L$$

International prices

• TOT = price of export/price of import:

$$TOT_{it} = \frac{p_{it}^{f} f_{i}^{ss} + p_{it}^{b} b_{i}^{ss}}{\left(f_{i}^{ss} + b_{i}^{ss}\right) p_{it}^{f*}}$$

• REE= price consumption at home/ relative to price of consumption abroad:

$$REE_{it} = \frac{p_{it}^z}{p_t^{z*}} = \frac{p_{it}^y}{p_t^{y*}}$$

Exogenous variables

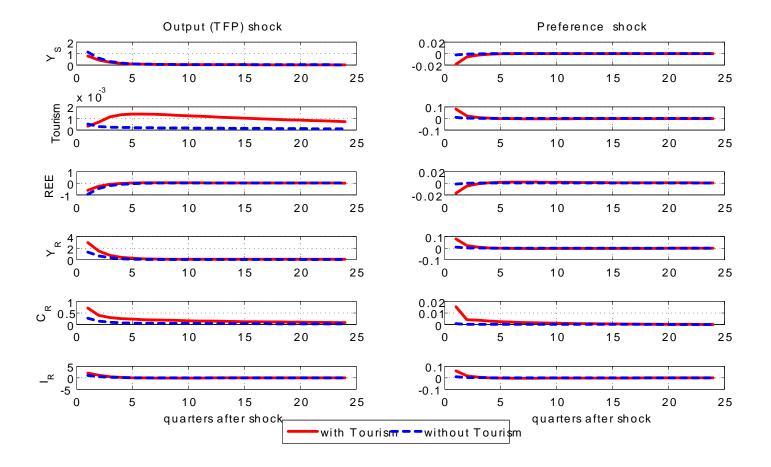
$$\begin{array}{rcl} \log \upsilon_{it} &=& \rho_{\upsilon i} \log \upsilon_{it-1} + \epsilon_{\upsilon it} \\ e_{it} &=& \rho_{ei} e_{it-1} + \epsilon_{eit} \\ \log g_{it} &=& (1 - \rho_{gi}) \log \bar{g}_i + \rho_{gi} \log g_{it-1} \\ \log \Delta_{it} &=& (1 - \rho_{\Delta i}) \log \bar{\Delta}_i + \rho_{\Delta i} \log \Delta_{it-1} \\ u_{it} &=& \rho_u u_{it-1} + \epsilon_{ut} \end{array}$$

International markets equilibrium

Equalization of demand and supply for the traded goods b_{it}, f_{it}, f_{it}^* :

$$p_{it}^f = 1$$

$$v^*b_{it} = v^i\hat{b}_{it}$$


$$v^*f_{it}^* = v^i\hat{f}_{it}^*$$

- Study two cases: one with and one without tourism.

$$D_t = \left[\psi^{\zeta} c_t^{1-\zeta} + \nu_t (1-\psi)^{\zeta} \left(\xi_i^{\kappa} (b_{it})^{1-\kappa} \right)^{\frac{1-\zeta}{(1-\kappa)}} \right]^{(1-\zeta)^{-1}}$$

$$= c_t$$
(34)

- Consider two shocks: TFP (output) and preference shocks.

- Tourism does not react much to income shocks.
- Without tourism output receiving country 50 percent lower.
- REER unaffected by tourism channel.
- Receiving country output effect larger with TFP shocks; effect is more persistent than with tourist shocks.
- Quantitative failures: response of investment not humped shaped; REER reacts to income shocks.

5 Conclusions

.

- Tourism is an important channel of international transmission of output shocks.
- Source country output shocks generate important fluctuations in destination country variables via tourist flows. Demand effect is via investments.
- Shocks to tourist arrivals unrelated to source country income fluctuations are also important for destination countries output. Effect less persistent
- Simple IRBC can explain the qualitative features of transmission. Some failure about quantitative effects.

Policy recommendations

- Fostering the tourist relationships may help to integrate faster Mediterranean economies with the EU.
- It may also have long lasting beneficial output effects because of the virtuous investment cycle they produce. Tourism based growth policies? e.g. Montenegro.
- Transport subsidies? Advertisement tilting?
- Make tourism flows more predictable see effects in Egypt, Tunisia, Syria.